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Chapter 1

A candidate for a spin liquid
ground state

1.1 Introduction

Historically the antiferromagnetic spin-1/2 Heisenberg model on the triangular lattice
was the first proposed Hamiltonian for a microscopic realization of a spin liquid ground
state (GS) [1]:
H=7YS;-§;, (1.1)
(i.9)

where J is the nearest-neighbors antiferromagnetic exchange and the sum runs over
spin-1/2 operators. At the classical level the minimum energy configuration is the well
known 120° Néel state. The question whether the combined effect of frustration and
quantum fluctuations favors disordered gapped resonating valence bonds (RVB) or
long range Néel type order is still under debate. In fact, there has been a considerable
effort to elucidate the nature of the GS and the results of numerical [2, 3, 4, 5, 6, 7, 8,
9, 10, 11], and analytical[12, 13, 14, 15, 16] works are controversial. In particular, the
wide extension of exotic proposed GS like spin-nematic [17], chiral [18], and spin liquid
of the Kalmayer-Laughlin type[2, 9] gives an indication that the problem has not been
theoretically resolved yet. From the numerical point of view, exact diagonalization
(ED), which is limited to small lattice sizes, provides a very important feature[6]: the
spectra of the lowest energy levels order with increasing total spin, a reminiscence
of the Lieb-Mattis theorem[19] for bipartite lattices, and are consistent with the
symmetry of the classical order parameter [6]. However, other attempts to perform a

3



finite size scaling study of the order parameter indicate a scenario close to a critical
one or no magnetic order at all[3, 8].

1.2 The variational Huse and Elser wavefunction

The variational Quantum Monte Carlo (VMC) allows to extend the numerical calcu-
lations to fairly large system sizes, at the price to make some approximations, which
are determined by the quality of the variational wavefunction (WF). Many WEF have
been proposed in the literature[2, 4, 10] and the lowest GS energy estimation was
obtained with the long range ordered type. In particular, starting from the classical
Néel state, Huse and Elser [4] introduced important two and three spin correlation
factors in the WF:

g . . zZQz

v} = 3 Qa) exp (5 3 v(i — 55755 )Ia) | (1.2)
z ]

where |z) is an Ising spin configuration specified by assigning the value of 57 for each

site and

Q(z) = T(z) exp [z‘—?(% 57 — _}“65;)] (1.3)

represents the three sublattices (say A, B and C) classical Néel state in the zy-plane
multiplied by the three spin term

T(z) =exp (i 3 155757) (1.4)

(4.3:k)

defined by the coefficients ;5 = 0,1, appropriately chosen to preserve the symme-
tries of the classical Néel state, and by an overall factor § as discussed in Ref. [4].
Since the Hamiltonian is real and commutes with the z-component of the total spin,
SZ., a better variational WF on a finite size is obtained by taking the real part of
Eq. (1.2) projected onto the S¢,, = 0 subspace.

For the two body Jastrow potential v(r) it is also possible to work out an explicit
Fourier transform v,, based on the consistency with linear spin wave (SW) results and
a careful treatment of the singular modes coming from the SU(2) symmetry breaking
assumption[20, 21]. This analysis gives:

(1.5)



o 5 (s) | (oldv)? | Eo/J | %
0.00 | 0.0 | 0.9942 \ 0.8610 | -14.54061 1.7
0.09 1 0.9952 | 0.9303 | -14.6813 | 0.8
0.50 | 0.0 | 09100 | 0.5274 | -16.4229 | 4.0
0.14 | 0.9597 | 0.6650 |-16.7016 | 2.4
0.75 | 0.0 | 0.8200 | 0.3712 | -17.5459 ] 5.5
0.17 1 0.9183 0.5353 | -17.9630 | 3.2
1.00 ] 0.0 | 0.7331 1 0.3157 | -18.5275| 8.2
0.19 | 0.9323 | 0.5743 | -19.4400 | 3.6
0.23 { 0.9372 0.6070 | -19.4239 3.7

Table 1.1: Average sign, overlap, GS energy and its percentage error obtained with the
variational WF of Eq. (1.2) for N = 36 and some values of the easy-plane anisotropy
«. The calculations were performed by summing exactly over all the configurations.

for ¢ # 0 and 0 otherwise, where v,= [cos (gz) + 2cos (gz/2)cos (V3 qy/‘Z)} /3 and the
g-momenta are the ones allowed in a finite size with N-sites. For a better control
of the finite size effects we have chosen to work with clusters having all the spatial
symmetries of the infinite system [6].

In the square antiferromagnet (AF) the classical part by itself determines exactly
the phases (signs) of the GS in the chosen basis, the so called Marshall sign. For the
triangular case the exact phases are unknown and the classical part is not enough
to fix them correctly. Therefore, one has to introduce the three-body correlations of
Eq. (1.4). Although these do not provide the exact answer, they allow to adjust the
signs of the WF in a non trivial way without changing the underlying classical Néel
order. To this respect it is useful to define an average sign of the variational WF
relative to the normalized exact GS |1)g) as

(s) =2 Ivo(z) "sgn (v (z)o(2)) , (1.6)

with ¥ (z) = (z]y)).

We have compared the variational calculation with the exact GS obtained by ED
on the N = 36 cluster. For completeness we have considered the more general Hamil-
tonian with exchange easy-plane anisotropy «, ranging from the XY case (a = 0) to
the standard spin isotropic case (o = 1). As shown in Tab. 1.1, in the variational
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approach the most important parameter, particularly for « — 1, is the one, 3, con-
trolling the triplet correlations. Though the overlap of our best variational WF with
the exact GS is rather poor, the average sign (s) is in general very much improved by
the triplet term. Our interpretation is that short range many body correlations are
very important to reproduce the relative phases of the GS on each Ising configuration.
The optimal parameters for our initial guess 1 of the GS 1 are expected to be very
weakly size-dependent but they are very difficult to determine accurately for large
sizes. For ¢ = 1 and N = 36, where ED is still possible, our best guess for the GS
WF - with the maximum overlap and average sign - is slightly different from the one
determined with the optimization of the energy. Since the forthcoming calculations,
which significantly improve the VMC, are more sensitive to the accuracy of the WF
rather than to the one of the GS energy, henceforth we have chosen to work with
B = 0.23 for all the system sizes.



Chapter 2

The numerical investigation

2.1 Facing the sign problem

Omne way to get accurate GS properties is to use the Green Function MC technique
(GFMC). As in the fermionic case, for frustrated spin systems this numerical method
is plagued by the well-known sign problem. Recently, to alleviate the above men-
tioned instability, the Fixed-Node (FN) GFMC scheme [22] has been introduced as a
variational technique, typically much better than the conventional VMC. As shown
in Fig. 2.1, and also pointed in Ref. [23], for frustrated spin systems, this technique
does not represent a significative advance compared to VMC, leading therefore to
results biased by the variational ansatz.

In order to overcome this difficulty we have used a recently developed technique:

VMC FN SR(p=2) | SR(p=4) | SR(p=7) | Exact
eo/J | -0.5396 | -0.5469(1) | -0.5534(1) | -0.5546(1) | -0.5581(1) | -0.5604
Sz, 1.71 1.20(1) 0.65(1) 0.46(1) 0.02(1) 0.00
mt? | 0.7791 | 0.7701(4) | 0.7659(2) | 0.7546(3) | 0.7512(3) | 0.7394

Table 2.1: Variational estimate (VMC) and mixed averages [24] (FN, SR and Exact)
of the GS energy per site, of the total spin square and of the AF order parameter
for N = 36. SR data are obtained using the first two (p = 2), four (p = 4) and all
(p = 7) the correlation functions shown in Fig. 2.2.
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Figure 2.1: GS energy per site eg = Ey/N, in unit of J, as a function of the system
size, obtained with VMC (full triangles), FN (empty dots) and SR with p = 7 (full
dots) techniques. SW size scaling [16] is assumed and short-dashed lines are linear
fits against 1/N3/2. The long-dashed line is the SW prediction, the empty triangle is
the N = 36 ED result and the empty squares are data taken from Ref. [10].

GFMC with Stochastic Reconfiguration (SR) [23], which allows to release the N
approximation, in a controlled but approximate way, yielding, as shown in Fig. 2.1,
a much accurate energy for N = 36. Furthermore the agreement with the expected
size scaling [16] indicates no sizable loss of accuracy with increasing size. In the ap-
propriate limit [23] of large number of walkers and high frequency of SR, the residual
bias introduced by the SR depends only on the number p of operators used to con-
strain the GFMC Markov process. These constraints, analogously to the FIN one,
allow simulations without numerical instabilities. In principle the exact answer can
be obtained, within statistical errors, provided p equals the huge Hilbert space di-
mension. Practically it is necessary to work with small p and an accurate selection
of physically relevant operators is crucial. As can be easily expected, the short range
correlation functions 5’55’5 and (3:’3_—%5'[5';) contained in the Hamiltonian give a
sizable improvement of the FN GS energy when they are put in the SR procedure.
In order to be systematic we have included in the SR the short range correlations
generated by H? (see Fig. 2.2), averaged over all spatial symmetries commuting with
the Hamiltonian. This local correlations are particularly important to obtain quite
accurate and reliable estimates not only of the GS energy but also of the mized av-
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Figure 2.2: Short range spin correlation functions generated by H (a,b) and H? (c-g).

erage [24] of the total spin square S2, and of the order parameter m'? (defined as

in Ref. [6]). These quantities are easily estimated within the GFMC technique and
compared with the exact values computed by ED for N = 36 in Tab. 2.1. In partic-
ular it is interesting that, starting from a variational WF with no definite spin, the
GS singlet is systematically recovered by means of the SR technique. Furthermore,
as it is shown in Fig. 2.1, the quality of our results is similar to the variational one
obtained by P. Sindzingre et al. [10], using a long range ordered RVB wavefunction.
The latter approach is almost exact for small lattices, but the sign-problem is already
present at the variational level, and the calculation has not been extended to high
statistical accuracy or to N > 48.

2.2 The spin gap

Having obtained an estimate for the GS energy, at least an order of magnitude more
accurate than our best variational guess, it appears possible to obtain physical fea-
tures, such as a gap in the spin spectrum, that are not present at the variational
level. For instance in the frustrated J;—J, spin model, with the same technique and
a similar accuracy, a gap in the spin spectrum was found in the thermodynamic limit,
starting with a similar ordered and therefore gapless variational WE [23].

In the isotropic triangular AF, the gap to the first spin excitation is rather small.
Furthermore, for the particular choice of the guiding WF (1.2), the translational
symmetry of the Hamiltonian is preserved only if projected onto subspaces with total
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Figure 2.3: Size scaling of the spin gap to the S = 3 excitation obtained with VMG,
FN and SR (p = 7) techniques. The long-dashed line is the linear SW prediction and
the solid line is the weighted linear fit of the SR data for N > 36.

Sz. multiple of three. Such an S = 3 excitation belongs to the low-lying states of
energy Fs and spin S of the ordered quantum AF, behaving as Eg — Ep o< S{5 +
1)/NI[6]. If instead Es — F, remains finite for S = 3 and N — oo, this implies a
disordered GS. For all the above reasons we have studied the gap to the spin S = 3
excitation as a function of the system size. As it is shown in Fig. 2.3, for the lattice
sizes for which a comparison with ED data is possible, the spin gap estimated with the
SR technique is nearly exact. The importance to extend the numerical investigation
to clusters large enough to allow a more reliable extrapolation is particularly evident
in the same figure in which the N = 12 and 36 exact data extrapolate linearly to a
large finite value. This behavior, is certainly a finite size effect and it is corrected
by the SR data for N > 48, suggesting, strongly, a gapless excitation spectrum
((F3 — Eg)/J = 0.002 £ 0.01).

2.3 The order parameter

As we have seen GFMC allows to obtain a very high statistical accuracy on the G5
energy, but does not allow to compute directly GS expectation values (1ho]Ol1bo)[24].
A straightforward way is to perturb the Hamiltonian with a term —0 , calculate
the energy E()) in presence of the perturbation and, by Hellmann-Feynman theorem,
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Figure 2.4: Size scaling of the order parameter: VMC (full triangles), FN (empty
dots), SR (full dots), exact data (empty triangles) and finite size linear SW (empty
squares). The inset displays the A — 0 extrapolation for N > 12. Lines are quadratic
fits in all the plots.

estimate (1o|Othe) = —dE(\)/d)|x=0 with few computations at different small \’s.
A further complication for non exact calculations like the FIN or SR, is that if the
off-diagonal matrix elements O, of the operator O (in the chosen basis) have the
opposite sign of the product ¥y (z')iv(z), they cannot be handled exactly within FN
because these matrix elements change the nodes of 1. A way to circumvent this
difficulty if to split the operator O in three contributions: O = D + OF + O, where
O+ (O‘) is the operator with the same off-diagonal matrix elements of O when they
have the same (opposite) signs of ¥y (z')¢v(z), and zero otherwise, whereas D is the
diagonal part of O. Then we can add to the Hamiltonian a contribution that does not
change the nodes: H(A) = H - AD+20%) for A >0 and H(\) = H—-\ND+20")
for A < 0. Tt is easy to show that /l\gl'(l)(E(-—)\) — E(X\)/2) = (1| O)tbo).

We plot in Fig. 2.4 m'? estimated with this method using the FN and SR. tech-
niques. For the order parameter the inclusion of many short range correlations in the
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SR is not very important (see Tab. 2.1). Then, in order to minimize the numerical
effort, we have chosen to put in the SR conditions the first four correlation functions
shown in Fig. 2.2, the order parameter itself and Sfot. While the FN data extrapolate
to a value not much lower than the variational result, the SR calculation provides a
much more reliable estimate of the order parameter with no apparent loss of accuracy
with increasing sizes. In this way we obtain for 7 a value well below the linear and
the second order (which has actually a positive correction [13]) SW predictions.



Chapter 3

Conclusions

In summary, we have investigated the ground state properties of the S =1/2 Heisen-
berg antiferromagnet on the triangular lattice using exact diagonalization (ED), and
several Quantum Monte Carlo techniques. In particular, using the recently devel-
oped Green Function Monte Carlo with Stochastic Reconfiguration (GFMCSR) [23],
which allows to deal with the sign problem within a satisfactory accuracy even for
large system sizes, we have obtained the first robust numerical evidence for a gapless
excitation spectrum, confirming the existence of long range Néel order. Our best
estimate is that in the thermodynamic limit the order parameter m' = 0.41 & 0.02 is
reduced by about 59% from its classical value and the ground state energy per site is
ep = —0.5458 £ 0.0001 in unit of the exchange coupling.

These conclusions are partially in agreement with those of the finite temperature
calculations [7] suggesting a GS with a small but nonzero long range AF order and of
the series expansions [5] indicating the triangular antiferromagnetic Heisenberg model
to be likely ordered but close to a critical point. However in our simulation, which to
our knowledge represents a first attempt to perform a systematic finite size scaling
analysis of the order parameter, the value of /' remains sizable and finite, consistent,
with a gapless spectrum. This features could be also verified experimentally on the
K/Si(111):B interface [25] which has turned out recently to be the first realization of
a really bidimensional triangular AF.

Though there is classical long range order, both the Variational Monte Carlo
(VMCQC) and the Stochastic Reconfiguration (SR) approaches show the crucial role
of GS correlations defined on the smallest four spin clusters: in the variational cal-
culation they are important to determine the correct relative phases of the GS WF
whereas in the latter more accurate approach this correlations allow to obtain very
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accurate results for the energy and the spin gap and to restore the spin rotational
invariance of the finite size GS.
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