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1 Introduction

In 1982 Stormer and Tsui [7] while attempting to observe the Wigner crystal in a high-
mobility Gads/Alg3GagrAs heterojunction discovered the fractional quantum Hall effect
(FQHE) at the fractional fillings v = % and :?,; of the lowest Landau level(LLL) .

FQHE is observed in 2-d electronic systems in the extreme quantum limit of very high
B(> 5T), low T(< 2K) and high-mobility electronic samples (1 > 10°cm?/Vs). Under
these extreme conditions when the LLL is fractionally filled the FQHE resistencies appear

quantized as :

h1
pry(platean) = =
Pu(plateau) =0

where v is the LLL filling factor.
The filling factors where FQHE was observed are such that they appear with odd de-

nominators: v = z, £ ...,

%% ...etc ,but FQHE is not confined only to the lowest Landau

ol
Wi

level, he is observed also in the higher Landau levels ( n=1.2...), where some surprises came.

A fractional Hall plateau p,, = (’—e’%) / % corresponding to an even denominator filling






factor was found. There are indications that other even denominator filling factors Jlike the
very interestig case of v = % exists and work in such direction is current research.

Why is the FQHE so exciting ?

Firstly the observation at the LLL of a quantized plateau at v = % represents an unusual
evidence of a fractional quantum number. Clearly, the single-particle density of states model
cannot account for the existence of structures phenomenologically similar to the IQHE at
fractional v, where D(E) is structure-less.

It follows that the electronic state underlying the FQHE must be of many electronic
origin, and the new quantized p,, plateaus in FQHE result from transport of fractionally
charged quasiparticles and quasiholes in the strongly correlated electronic system.

FQHE is actually met in 2-d electronic systems of very high mobility electrons. Impu-
rity potentials are not expected to be very important in comparison with e — ¢ Coulomb
interactions.

The first step in the FQHE explanation would be the study of the properties of a system
of 2-d interacting electrons in a uniform positive background, with the magnetic field B so

high and T so low, such that only the LLL would be partially filled. The filling factor of

the lowest Landau level (LLL) v can be written as :
v =2xlin

where [y = \/;’}—g is the so-called magnetic length and n is the 2-d electronic density.

2
e?

The unit of Coulomb potential energy is £ which is the energy scale throughout and

o

¢ is the background dielectric constant. Where FQHE has been generally observed can be
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verified that :

2

€
— < hw,
610

so the admixture of states in higher Landau levels can be ignored .

Magnetic field B is considered such that all electronic spins S are frozen along the
applied field B and have no interesting dynamics .

Electrons with charge —e(e > 0) are considered as usual to be confined in the x-y plane.
They are subjected to a strong magnetic field perpendicular to the plane. Considering the

symmetric gauge:
- [B -B
I= |2y, =2a,
705

the magnetic field B = V x A results to be of the form:
B =1[0,0,-B]

The many-electron system is described by the hamiltonian:

N
2m S (—ifV + ed)) +ZT/ ”HZI é‘[
€ j=1 j<k 1%

where e > 0, m, - is the electron mass. z; = x; + iy; - is the location of the j-th electron in
complex coordinates, 1°(z;)-the potential generated by the uniform neutralizing background
charge and N the number of electrons in the LLL.

For filling factor » = L of the LLL with m=1.3....odd. Laughlin [?] proposed the

following variational ground state wave function :

m H("J ~‘*' HG‘ o

i<k J=1



To determine which m minimazes the energy , he wrote the probability distribution of

the 2-d electrons described by ¢, as :

|¢’m12 = e‘ﬁHm
with
N l.., |2
BHp = —2my _ In|zj — =] + Z ZJIQ
i<k

From here he identified 3 = L ~ and mapping the problem into a classical 2-d OCP plasma [?]
he found that energy is minimazed when plasma 2-d electrons spread out uniformly in a
disk where 2-d electronic density n,, corresponds to a filling factor v = % where m is an
odd integer.

Let us recall the 2-d OCP where the potential energy is the following :

£
7

LS

= —e” Zln Lk —|-V Z(

i<k

L -is an arbitrary scaling length and N -is the total number of particles. Taking the
number density of the particles n , a convenient unit of length is the ion-disk radius :
a = -\/% so in the future will be convenient to choose L = a , and use reduced distances
x = L. If the N particles are confined to a disk of radius R uniformly filled by the neutralizing
background , the total potential described previously is the sum of particle-particle . particle-
background and background-background interactions .

Monte Carlo calculations of Caillol et al [?] have demonstrated that 2-d OCP is a

hexagonal crystal when the dimensionless plasma parameter I' = €?3 is greater than 140

and a fluid otherwise. Laughlin maped his FQHE states to a 2-d OCP with coupling
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parameters of the form :

T'=2m

The most interesting feature in the intermedite coupling regime of the 2-d OCP is that
calculations can be done exactly for one special value of coupling constant , namely : T’ = 2.

The 2-d classical plasma provides a strong supbport that the Laughlin ground state
function is indeed a translationally invariant incommpresible liquid up to v, ~ %:, where a
2-d hexagonal Wigner crystal ground state function is calculated to be more preferable.

For v = 1 and v = { Laughlin [?] . using a Modified Hypernetted Chain (MHNC)
technique described by [?] found : U(3) = (—0.4156 £ 0.0012) %2; and U(1) = (—0.3340 &
0.0028) £ .

Later , almost exact results for the energy per particle were obtained by Levesque

)=

Wi

et al [?] performing Monte Carlo calculations on 256 electrons and obtaining : U
(~0.410 4 0.0001) & and U/(1) = (~0.3277 £ 0.0002) & .

Laughlin’s model accounts the FQHE at v = 771; and v =1- —31—, (by electron-hole symme-
try) [?] for m-odd .

The elementary charged excitations in a stable state v = 7—71; are quasiparticles and
quasiholes with fractional charge &= . If one electron is added to the system. it amounts
to adding m elementary excitations. The wave function at v = ,L; changes by a complex
phase factor €™, upon the interchange of 2 quasiparticles. so quasiparticles in the Laughlin

model obey fractional statistics , but they also can be described by wave functions obeving

Bose or Fermi statistics.



-1

When filling factor v is slightly shifted from the stable value 7}7 , where m is odd, the
ground state of the system is expected to consist of a small density of quasiparticles or
quasiholes with fractional charge +< interacting via Coulomb interaction.

When ﬁ]h"llg factor v is slightly less than ;71— , quasiholes are formed, while when is

£

slightly higher than —T% quasielectrons are formed . We study the segond hierarchy states
like v = % ...using some non-conventional Ground State Wave Functions known with the
name of Extended Shadow Wave Functions (ESWEF).

Any further knowledges here may result useful for our future steps on studying the
FQHE , namely to test the Ground State Wave Functions of Jain [?] , which seem the
last credited ones of being the general . His Composite fermion idea looks fascinating ,
but further considerations and reliable tests are not available yet . We use the HNC/0 and
HNC /04E techniques throughout this work , which are very reliable in the thermodynamic
limit . This has to do with the simple fact that even if people who make Monte Carlo can
be very proud of their results and it is not easy to compete with them , in the case of the
hierarchy of Jain , the thermodynamic limit is essential in order to materialize even the less
understood filling factor » = 3 . Fortunately HNC guarantees that . What a HNC cannot
generally guarantee is the high accuracy of MC simulations , because in a HNC we are
forced to neglect the cumbersome so-called Elementary (Bridge) diagrams for whom until
now there is not a systematic way of summing them .

We shall prove that . at least for the Laughlin states . this problem can be succesfully

overcomed and the rather good results obtained with HNC/0 . become even better using a
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Scaling technique , which I denote as : HNC/0+E . -



2 Laughlin states

The Hypper-netted chain (HNC) method is a standart one used in the study of strongly

interacting bosonic or fermionic systems. Let us make only a brief description of the 1-

component HNC/0 method. It follows that multi-component HNC/0 method is only a

straightforward generalization of the 1-component one.

Let suppose we have a 1-component non-ideal system in classical statistical mechanics

and we want to calculate the pair-distribution function :

N(N = 1) [exp[-p ﬁ\éj u(rij))drs..din

g(ri2) = —
p? [ exp[-p ﬁ\éj u(ri;)]dry...dry

at temperatures T' = (3k p5)~! and density p. Let us define :
flri;) = exp[—pulr;)] — 1

where u(r;;) is the interaction between particles i and j .

Closely related to the pair distribution function is the long ranged pair correlation

function defined as :

h(ri2) = g(ri2) —1
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which heals out to 0 as the interparticle distance grows very large. It turns out that the

following formula is valid :
g(r12) = [1 4 f(r1g)]eN (1) +E(r2)

where N(ry2) is the sum of all Simple Nodal 1-2 diagrams , while E(rq3) is the sum of
all Simple Non-nodal diagrams . Now everything is reduced (nice word to describe the
complicated things) on the ability to sum all possible diagrams which in this case can be

grouped in the following classes and types :
o Composite (Non-nodal) diagrams , from now denoted as Non-nodal diagrams .

e Non-Composite (Simple Nodal) diagrams , of the type of Simple Chain or Netted

Chain, from now denoted as Nodal diagrams .

e Non-composite (Simple Non-nodal) diagrams , of the type Elementary (known also

with the name of Bridge) , from now denoted as Elementary diagrams .

To sum them is not an easy task. Returning to the previous formula if we have the Nodal
function N(ry2) and the Elementary function E(ry,) the Non-nodal function X (r12) is given
as :

X(ri2) = g(r12) =1 = N(r12) (2.2)

and the generation of g(r) must go through a self consistent procedure. Here comes the
difficulty : its not known yet a systematic way to deal with the Elementary diagrams closing

in the same time the self-consistency . And the best way to eliminate a problem is..... just
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to neglect its existance . This is the reasion why always as a first approximation (and a

good one) the contribution of the Elementary diagrams is put to 0 :

E(r12) =0

The subscript “0” at the HNC/0 reflects this approximation . The Nodal diagrams are

easily summed in Furie space and we finish with

N(g) = pX ()X () + N(q)]

Finally within the 1-component HNC/0 scheme the pair distribution function g¢(ri2) is

obtained by solving self-consistently the following set of coupled equations :

(1) = [1+ flrp)]eNi2) = g PulraaltN () (2.3)
_Y(j‘lg) = g(’Tlg) -1~ ]\T(le) (24)

T p}{(q}Z <

(¢)=7— X (0) ‘

We start the procedure puting N(r)=0.

We calculate :

Performing a Furie transform we find

X(q)

and from it we easily compute N(g¢) which in turn by being Inverse Furie transformed is

converted in the new N(r). The process goes on until the desired convergency is achieved.
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The 2-d Furie transforms are defined in the following way :

F(q) = / ¢ F(r)dF

F(r)= /e"i’iFF(q)(l(]

1
(2m)?

Let us now apply the HNC/0 scheme to the Laughlin states :

N N |2
§ -~ = "'J
f‘}Hm = —-2m ; :llll~_) - /"k[ + Z ‘2](2)
i<k J=1

We can easily identify that : Ju(r) which enters the HNC/0 equations is the following :

=2mlin(r) .

To simplify notation let absorb 3 in the potential defining our pseudopotential as :

u(r) = —2min(r)

In order to handle the logarithmic interaction , the standard procedure is to separate the

short-range and the long-range part of the interactions as

u(r) = 2mho(Qr)

ul(r) = =2mEo(Qr) — 2min(r)

where I'g(2) is the modified Bessel function , and Q is the cutoff parameter of order unity.

Defining the short-ranged Nodal and Non-nodal functions .

Ne(ry=N(r)~- ul(r)

Xo(r) = X(r)+ ()
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Laughlin state m=3
HNC/0

10 |
0.8

06

g(r)

0.0 1 ] ] L
0.0 2.0 4.0 6.0 8.0 10.0

t/lo

Fig.1
Figure 2.1: Pair distribution function g(») for m=3 obtained with a HNC/0 calculation

the HNC/0 final set of equations is solved with the same iteration scheme starting from

Ne(r)=0.

In Fig.1 we plot the resulting g(r) for v = %— as a function of {- , it shows clearly
characteristics of a Liquid state.

For small l’—o , g(r) dies as (I%’)‘S , differentlv from the r? dependence of the crystal state .

2
€

The ground state energy per particle results : U (%) = —0.4055 G- very close to the result
U(L) =-0.4056 f,% [?] . obtained with a similar technique .

It is widely belived that the HNC/0 treatment even if its very accurate lacks of Ther-
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Laughlin state m=3
HNC/0

1.0 +

0.8 - 4

04 - -

02 b

0.0 - .
0.0 2.0 4.0 6.0

q‘lo

Fig.2
Figure 2.2: Structure factor S(q) for m=3 obtained with a HNC/0 calculation

modynamic consistency . This is related to the fact that the sum rules that ¢g(r) must
satisfy in the LLL are somehow violated . To my opinion this simply has to do with the fact
that HNC/0 being an approximation cannot be accurate on everything . In my case the
“Charge neutrality “ sum rule and “Perfect screening” sum rule are satisfied in the limit of
my numerical error , while the so-called “Compressibility “ sum rule is violated .

In Fig.2 , we plot the structure factor of the v = % state as a function of ¢ly . The same

procedure applied to the v = % state is a little hit more peculiar .

1

In Fig.3 we plot the resulting g(r) for v = ¢ as a function of 7> Which still shows char-
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Laughlin state m=5

HNC/0
10
0.8 -
5 06
04 +
02
0_0 ] 1 Il L L L
00 20 40 60 80 100 120 14.0
i/lo
Fig.3

Figure 2.3: Pair distribution function g(r) for m=>5 obtained with a HNC/0 calculation
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Laughlin state m=5
HNC/0

1.0

08 E

04 | -

0.2 r 8

0.0 2.0 4.0 6.0
q'lo

Fig.4

Figure 2.4: Structure factor S(g) for m=5 obtained with a HNC/0 calculation
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Laughlin states m=3 and m=5
HNC/0

T T T

1.0

ga(r)

0.6

02 -

0.0 :
0.0 2.0 4.0 6.0 8.0 10.0

t/lo

Fig.5

Figure 2.5: Pair distribution functions g(r) for m=3 and m=5 obtained with a HNC/0 calculation
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Laughlin states m=3 and m=>5
HNC/0

i2r y

0.8 - / .

0.6 - / .

04 | —— me3 -
J ==

0.2 ¢ .

S(q)

0‘0 L " L
0.0 2.0 4.0 6.0

q'lo

Fig.6

Figure 2.6: Structure factors S(q) for m=3 and m=>5 obtained with a HNC/0 calculation

acteristics of a Liquid state , but now g(») is much more structured than the v = £ case .
For small l’—o , g(r) dies as (%_)10 in total agreement with the Laughlin theory .

The ground state energy per particleis : U (%) = —0.3240 —:7%- very close to the almost exact
result of [?] .

The resulting structure factor of the state v = % is plotted in Fig.d as a function of ¢ly .
With reference to the sum rules the same conclusions drawn for the v = 13 case remain valid
here .

In Fig.5 we compare both pair distribution functions and we can clearly see the tendency

that for smaller filling factors the solid-like behaviour becomes more evident ( in fact for
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=1~

filling factors smaller than = the electrons solidify in a Wigner crystal ) .
In Fig.6 the same comparison between the respective structure factors is do:e.
The natural question coming after this treatment is :

How to improve it ? The magic answer seems to be “SCALING”.

It is argued that a HNC/0 procedure must have a better performance if an intelligent
way of envolving there the neglected Elementary diagrams is found . This is nct easy and
a systematic way of doing it is not known yet . However efforts were done by Laughlin [?]
who used a MHNC treatment described by [?] . The ground state energies per particle he
obtained are as good as the HNC/0 results in the sense that the absolute best estimation
for v = % is U (%) = —0.410(1) flio and either HNC/0 , or MHNC have the sam: deviation
from this value .

The main idea is based on the assumption that the shape of the Elementary fur.ction for a

2-d OCP for a general coupling constant I' does not change significantly with I . In other

words the following ansatz was done :
Er(a) = aFr=(r)

The I' = 2 case is the only one where exact results are available [?] and what reraains to be

done is the fitting of coefficient a . to achieve thermodynamic consistency . In the Laughlin

1

— correspond to a 2-d OCP with coupling constant I' = 2m and this

theory the states v =

was exactly what he did .
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Now let me think differently :

Is this ansatz the best one ?

I would like to judge in this way : there is no doubt that it works perfectly within the
plasma framework , but to me it does not seem the most natural one in the framework of
the FQHE . The only simple argument that I can state to support my claim is of physical
nature :

The FQHE states v = —,}7 and v = 1 are physically very different , the first one is an Incom-
pressible liquid governed by strong correlations in the ground state , while the latter one is
Jjust the Integer Quantum Hall Effect (IQHE) where the LLL is completely filled.

For this reason I would like to pose the problem differently :

Am I able to calculate all Elementary diagrams and to sum them ?

The answer is : No

But what I am able to calculate numerically is the lowest order Elementary ciagram
E4(r). It is not an easy task , but at the end is doable . The calculation of other Elerientary
diagrams seems to be a very difficult task and unless I am not able to sum all of them .
essentially I dont need to think more .

Now I make the ansatz : the shape of the Elementary function for the Laughlii states
v = ;;1; does not change significantly from that of the lowest order Elementary diagram of

that state :

E(2) = aE4(2)
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The simplest Elementary graphs

= ]
1w
,’, — m=3
03 -~ ————m=5 .
-0.4 : ! :
0.0 2.0 4.0 6.0 8.0
r
Fig.7

Figure 2.7: Lowest order Elementary function E4(r) for m=3 and m=>5
The next step is to fit a in order that g(r) satisfies all the sum rules valid on the LLL

reaching the thermodynamic consistency that was missing in the HNC/0 treatinent . The

lowest order Elementary diagram is the following :
P’ : VB (o V172 s 12
Ed(ria) = & [Ihtris)h(radh(ras)h(ra)(ras)d*rsd'ry
where the long ranged pair correlation function h(r) was previously obtained from the

HNC/0 calculation .

In Fig.7 we plot the resulting E-4(r) functions for m =3 and m =5 respectively .

After finding them the only thing which remains to be done is to run again the HNC/0
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procedure with the difference that now we are including there also the Elementary finction
that was missing before .

Let me call this modified HNC/0 technique as : HNC/0+E .
The only equation that changes is the equation regarding the pair distribution finction

which now looks like :

g(ria) =€ w(ri2)+N(r12)+E(r12)

As we knew before the HNC/0 pair distribution function lacks thermodynamic cons stency,
so my scaling parameter o must be fitted in such a way that the new g(r) satisfies all sum
rules where the “compressibility” sum rule was the bad-behaved one in the case of HNC/0
The scaling parameter a was found to be : a = 6.25.

In Fig.8 we plot the pair distribution function g(7) of the state v = —15 obtained afte: fitting
all the sum rules , as a function of -

To my estimates it fits very well with the best calculations whom I know .

‘More surprisingly the ground state energy per particle for the La.ughliﬁ state v = % is :
U (%‘) = —0.41005 % . a value that fits perfectly with the MC exact result of Levesque et
al [?] .

Let me mention here some of the best quoted results regarding this state . just to give a
flavour of the multivariety of approaches used to study the Laughlin state v = % : Yoshioka
et al. [?] put 6 electrons in a box obtaining : U7 (%) = —0.4129 & F[ . Haldane and Rezayie [?]

used the Spherical geometry to obtain : U (%) = —0.415(+0.0005) —FT— Morfand Halperin [?]

performed a MC evaluation in Disk geometry for up to 144 electrons finding a 7 (%) =
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Laughlin state m=3

HNC/0+E
1.0 F
0.8
% 06
04
0.2 +
0.0
0.0 2.0 4.0 6.0 8.0 10.0
/lo
Fig.8

Figure 2.8: Pair distribution function g(r) for m=3 obtained with a HNC/0+E treatment
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Laughlin state m=5
HNC/0+E

02 -

0.0 T :
0.0 2.0 4.0 6.0 8.0 10.0

i/lo

Fig.9

Figure 2.9: Pair distribution function g(r) for m=>5 obtained with a HNC/0+E treatn:ent
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Laughlin states m=3 and m=5

HNC/0+E
T T T T T
12 +
1.0 +
08 -
5
06
04
02}
0.0 L
0.0 2.0 4.0 6.0 80 100 120
r/lo
Fig.10

Figure 2.10: Pair distribution function g(r) for m=3 and m=>5 obtained with the HNC /0+E tech-

nique

—0.4097 % and finally Girvin [?] using an analytic parametrization of g(r) obtaii.ed U(3) =
—0.4087 £ .

In Fig.11 structure factors S(q) of the states v = % and v = 15 . are plotted as a function
of ¢ly .
The same scaling procedure (HNC/0+4+E) applied to the state v = —15- results o1 finding a

scaling parameter a = 5.2 and the resulting pair distribution function is plottec in Fig.9 .

The ground state energy energy per particle turns out to be : U/ (%) = —0.3274 % that fits
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Laughlin states m=3 and m=5

HNC/0+E
12 -
1.0 I\
1
i !
08 - / .
IG5 . /
(%] ]
0.6 ] 4
i
. !
[
04 - K -
S/ o—e- m=3
02+ f — m=5 -
0.0 : :
0.0 2.0 4.0 6.0
q*lo
Fig.11

Figure 2.11: Structure factors S(q) for m=3 and m=>5 obtained with the HNC/0+E tech ique

very well with the almost exact results of [?] .

A comparison between the respective g(r)-s obtained from HNC/0+E is done in Fiz.10 .

The respective structure factors are plotted in Fig.11 .

Fig.12 shows the influence of the Elementary function (HNC/0+E) on modifving the

1

pair distribution function for the Laughlin state v = % .

W

1

Fig.13 regards the same . but for the state v = £ .

In Fig.14 and Fig.15 we can respectively compare the HNC/0 and HNC/0+E structure

factors of the Laughlin states v =  and v = £ .



Laughlin state m=3

~=-=-- HNC/0+E

0.0 2.0 4.0 6.0 8.0 10.0
t/lo

Fig.12

Figure 2.12: Pair distribution function g(r) for m=3, a comparison between HNC/0 anc HNC/0+E

technique is done



technique is done
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Laughlin state m=5

1.2 - ,’Q\\ -]
1.0
0.8 -
s
0.6 -
04 -
—— HNC/0
02 + =«== HNC/0+E h
0.0 L L Il ! I
0.0 2.0 4.0 6.0 8.0 100 120
t/lo

Fig.13

Figure 2.13: Pair distribution function g(r) for m=>5, a comparison between HNC/0 and HI 'C/0+E

Laughlin states
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Laughlin state m=3

/-\‘
1.0 |+
0.8 r -
CA L 4
& 0.6
04 + -
—— HNC/0
02 L -=== HNC/0+E ]
0.0 ' :
0.0 2.0 4.0 6.0
q“lo
Fig.14

Figure 2.14: Structure factors S(g) for m=3, a comparison between HNC/0 and HNC/0+E technique
is done
Finally in Fig.16 and Fig.17 we compare the present result with the analytic form of g(r)

fited with 27 coefficients to MC data [?] .
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Laughlin state m=5

1.0 N

$(q)

06 - b

0.4 + —— HNC/0 .
-=== HNC/0+E 1
02 - -

0.0 - :
0.0 2.0 4.0 6.0

q*lo

Fig.15

Figure 2.15: Structure factors S(g) for m=5, a comparison between HNC/0 and HNC/0+E te chnique

is done
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Laughlin state m=3

comparison with analytic forms

1.0 +
0.8
g 0.6 +
04
—— HNC/0+E
0.2 + - - - - Girvin{fit to MC) R
0‘0 1 1 L
0.0 2.0 4.0 6.0 8.0 10.0
rlo
Fig.16

Figure 2.16: A comparison of our pair distribution function g(r) for m=3 with an analyt ¢ MC fitted

one
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Laughlin state m=5

comparison with analytic forms

1.2 +
1.0 +
0.8 -
S
06 +
04 +
= HNC/0+E
0.2 - --~-- Girvin(fit to MC) -
0-0 1 1 L
0.0 2.0 4.0 6.0 8.0 10.0
t/lo
Fig.17

Figure 2.17: A comparison of our pair distribution function g(r) for m=>5 with an analytic M C fitted

one



3 HNC/0 treatment for the EEWEF

The description of strong interparticle correlations in both Bose and Fermi systems with
continuous degrees of freedom is a long-standing problem of current interest. Mcre recently
the shadow wave function (SWF) has been proposed as a new variational ansatz o compute
the properties of solid and liquid He* at T=0K.

The form of SWF in the bosonic case has been proposed to be as:

N N N
U (P in) = [T fon(ris) / TT67 = &D T fossij)ds (3.1)
i<j i=1 i<j

5 denotes all [5] and & are the so-called "shadow” variables associated to each particle,

=Upp(7i;)
fpp("‘ij):e 7

fss(-gij) = e‘Uss(s,‘j)

where U,,(r;) and Uss(s;j) represent respectively the particle-particle and shadow-shadow
interaction. fss(s;;) has the same structure as fp,(r;;) namely it heals out to 1 at large
intershadow distances, whereas the “correlation™ @(a) between a particle and its associated

shadow is taken of Gaussian form normalized to 1.
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Physically, the shadow variables &; can be thought of as mimicking the quanturi corre-
lation "holes™ which the particles carry around themselves in the dense system.

In the fermionic case the SWF is assumed of the form:

F g S - q
\PS"VF(.TI”"‘JV) = ‘I"EH/F(Tl.,..7'1\[’)@}7'@(.71...71\[‘) (32)

where ® g (71...7v) is the uncorrelated Ideal Fermi wave function (Slater determinans). The
physical interpretation of SWF as well as the request of more variational freedom znd of a
full symmetry under the exchange of any particle with any hole, suggests further e::tended
forms for the SWF, so a new type of so-called extended shadow wave function (ESWT') was
proposed.

The ESWFT in the bosonic case is:

N N,M M _ ’ -
(i) = [ (i) [ TT Sl = 55 ] fuls3)dS (3.3)
i<j 6,7 1<J

where N and M are respectively the number of particles and shadows. The extensio:1 which
(3.3) represents over the standard SWF of (3.1) concerns two aspects.

First, in the ESWTF all shadows are correlated with all real particles, rather tha being
in one to one correspondence as in (3.1). This allows the possibility that the numer and
location of "holes™ become different from those of the real particles.

The second aspect, which is however related to the first. is to assume a more general
“correlation” function f,s, than the original Gaussian form of (3.1). In (3.3) al. three:

Top()s fps(@). fss(x) are taken to heal out to 1 at large values of x.



The ESWF in the fermionic case is assumed of the form:

-
v

‘I’gs(ﬂ...f}v) = \I’gs("""l---FN)@FG('FL--"N) (3.4)

In the bosonic case of ESWF, the cluster diagrams are characterized by only 3 different
types of points: p, s, s, where p denotes particle and sl denotes respectivly right or

left shadow. In fact the normalization of ESWF in the bosonic case is:

N N.M N , -
< UBs|08s >= [ fris)? [ T fyulI7i = 52D ] SuslsisM)aS"
i<j i 1<J
N,AM A . R
/ TT fosll7i = 55D TT foslsisP)dSRIR (3.5)
i,] <7

and coincides with the partition function of a classical 3-component system (p. sB sl in-

teracting via the (pseudo)potentials:
Upp = “lnfppz

Upsr = Upsr = —Infps
Usrsr = Ugzr = —Infs
Usrge =0

There have been several schemes [?].[?],[?] to explain the hierarchy of states for the
FQHE. One of them for the second level of the hierarchy has been provided by Macdonald

et al [?] in terms of the following wave function:

. coge 2
N _ ZI\ I-!.i
Pl J=1 42

\I!V:H(,:j_:k) 0
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N, M A _ ZM Iaxz'l2
= * \ 770 =1 212 & -
/ H (z; — sk) H (87— sp)™(sj — sp)e =25 S (3.6)
ik i<k

where [y = \/?'B— is the magnetic length, N + M = mAa{ [?] where N, M are respecti-ily the
number of particles and shadows and m is the Laughlin odd integer number.
The respective particle and shadow coordinates z;, and sj are given in complex rotation
Tk + iyr where p is an integer (0,2.4..) [?] number .
If we consider the Laughlin parent state vy = ;}7 the the wave function ¥, will cor: espond
to the daughter state :
1

V~1—~1/o !

For instance the Laughlin parent state vy = % where m = 3, for p=2 with geneiate the
daughter state v = 2.

where m = 3, for p=0 with generate the daught :r state

Lol

The Laughlin parent state vy =
v=2

where m = 5, for p=0 with generate the daught r state

sl

The Laughlin parent state vy =
=1t

In this way by choosing different m and p we can go from the Laughlin state (first level of
hierarchy) to the proposed wave functions for other FQHE states. The exponential factors
in ¥, are relevant only in the trivial long wavelength limit. so they may be not corsidered
for our purposes.

In this case a simple comparison between ¥, and the bosonic ESWF WZ . evides ts that

V¥, is a bosonic ESWF with :

Foplik) = (zj — 2 PH!
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fps(jk) = (Zj - Sk)
foslik) = (5] = s5)" (5 = sx)

As in the bosonic ESWT case the normalization of ¥, yields:

N N,M M
2(p+1 g Lx L L1
<V, |0, >=00, = H |z — 2kl (pt )/ H (27 —s57) H (s7 = s%)
i<k 7k i<k
N.AL M
x : \m SL G -
(Qf‘ — sE) H (2 — s8) H (s?* — sf) (.sf — sFyastash (3.7)
Ik i<k

where the detailed form of the exponential factors is not considered being irrelevant for our

purposes .

Writing :

we see that the normalization condition for ¥, coincides with the partition fu1ction of a

3-component system ( p, R, L ) interacting via the (pseudo)potentials :
Upp = =2(p + 1)in|zj — 2]
U,_,R = ["pL = -—l‘nlsj - SARI - i(}ij
T = ITrr — R _ R ; ERY'R
Upp=Urr = —-(m+ l)lnl.sj — s+ im—=1)0;RriR
Urr =0

For simplicity we denoted sR and s respectivily R (right) and L (left) shadow.
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For our 3-component system of p, R, L "particles” we can apply a 3-component HNC/0
treatment, but with a major difference with the previously known HNC/0 treatmen: in the
sense that in the present case various HNC/0 quantities are complex functions and depend
on both xj; and y;; components of the interparticle distance. Both the correlations fps(jk)
and fss(jk) depend on the polar angle 8;; . As a consequence the long range parts 7 Tos LK)
and UL (jk) brings the angular dependence into all the HNC quantities . It turns cut that
the Nodal functions N,s(jk) and Non-nodal functions Xo3(jk) = gas(jk)—1—Nas(j%) have
a long range behavior exactly given by —U é /3(: Jk)and U i 3(Jk) , so that all pair distiibution
functions g.3(jk) are short ranged [?].

The multi-component HNC/0 method is only a generalization of the 1-compon2nt one
described in the previous sections . An iteration scheme similar to that used in the 1-
component case can be used here.

In the case of a multi-component system the corrisponding HNC/0 quantities a:e given

by the following equations:

Jap(r12) = e~ Uap(r12)+Nap(r12) (3.8)
Nap(riz) Zp/ av(T13)[Xy3(732) + Nop(raz)]dia (3.9)
Xop(r12) = gapl(ri2) = 1 — Naslriz) (3.10)

Here p, represents the densities of the different types of particles of the multi-con ponent
system.
Returning to the FQHE we remind that the wave function ¥, that was essentially a

bosonic ESWF', corresponds to a 3-component system where the different "particle;™ were
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identified as p (particle), R (right shadow) and L (left shadow).

Due to the fact that ¥2¢ is symmetric under the exchange of shadow variables s;
irrespective of r; there are only 4 indipendent HNC/0 quantities, i.e, Nyp, Nyr = NpL, NRR
= N and Nppr.

So among the 3 components p. R, L there are only 4 indipendent pairings : pp), (pR),
(RR) and (RL).

The respective densities of the 3 components p, R, L are p,, ps and ps. The 4 possible
indipendent pairings are: (pp), (pR), (RR) and (RL). Let us define the 2-d Furi¢ transform

as :
Fyl) = py [ €7 Fyplr)aF
Foula) = V/Pos / ST, (r)dF
Fula) = po [ €7 Fanlr)dF

where #is a 2-d vector ; d¥ = rdrdé ; §can be R or L .

The 2-d inverse Furie transforms are :

: 1 i (e
PPFPP("') = (27)2 /e 1 Fpp((.l)dq

1 —igF -
\/Pppsts(r) = (27 ) /E' Fps((l)dq

7

pskss(r) =

(27 )2 / f_i(ﬁ‘Fss((J)d(T

From the general formula :

Napl(T12) Zp»/ o (713)[Xa3(r32) + No3(r32)]d7s
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by performing a Furie transform like in the convolution we have:

17\70‘/3 (Q) = Z ‘Xa"/ (Q) {*'Y"y'ﬂ ((I) + jV'*,‘/? ((I)]

!

As R and L are hermitically conjugated we expect:
Foplq) = F},(q)
Fyr(q) = Fyr(q)
Frr(q) = Frp(0)
Fre(q) = Frr(q)
While :

FpR(Q) = FRP(([)
FpL((I) = FLp(q)

Keeping this in mind after a long algebra we determine all relations between HNC/0
quantities in the Furie space for the 4 possible indipendent pairings: (pp), (pR), (RR) and

(RL).

-X—I)R((I)[l - ‘Y;?R(q)] + ‘Y;R(q)‘X’EL( (1)

Apr(q) + Nprlg) = | Dig) (3.11)
- - _ [1 - ‘Y]J])((I)][l - -Y}ER(([)] - *Y;R((])z . o .
Xrrlq)+ Nrrig) = Do) -1 (3.12)

. XL = Xpplg)] + 1 Xpa(0)] -
Xalg)+ Npplq) = ALl 1’)’((1)] [ Xpr(9)] (3.13)
Y 2 _ Y 2
—‘Ypp((]) + A"?])p((l) = Il ‘\RR((])I [_ RL((I)I -1 (3.14)

D(q)
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The form of the function D(q) that enters the denominator is the following :

D(q) = [1 — Xpp()[1 = Xrr(Q))* = [XRe(O*]) = | Xpr(0)*[XRL(0) + XF(q) —

XprM(@)[1 = XfR(0)] = X;RM(0)[L - XRr(q)] (3.15)

As in the previous standard HNC/0 treatment our (pseudo)potentials of the form :

U(z) = aln(z) + @ are separated in their short-ranged and long-ranged parts :

U(z) = —alp(Qz)

U'(z) = alln(z) + Ko(z)] + 6

where L'y is the modified Bessel function and Q is the cutoff parameter of orde: unity.
Later on , all Nodal and Non-nodal functions for all our indipendent pai:ings (pp),
(pR), (RR) and (RL) are splitted in their short and long range parts , and doae this our
3-component HNC/0 procedure is ready to start.
The set of coupled equations is solved by an iteration scheme where the pair-cistribution
function g(r) in the present case may depend on the angle 8 too .

The 0-order step in the numerical iteration procedure is to set
N(r)=0

From the respective HNC/0 formula. knowing the respective short-range (pseud»)potential
U*(r) we calculate X °(r).

By performing a Furie transform we obtain

X°(q)
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Substracting from X°(¢) the known long-range part of the respective potential {'(¢) in
Furie space we obtain :

X(q)

From the set of formulas where enter only X(¢) quantities and D(¢) we can obtain the
desired N(gq).

Subtracting U7*(¢) from it we obtain
N*(q)

Finally performing an inverse Furie transform on it we obtain the new value of N° r) and
we restart the iteration circle once again until the desired convergency is reached .
Differently from other computations, the present treatment deals with HNC/0 quantities
which are:
a) Complex functions depending on zj; complex coordinates of the interparticle d stance.
b) Have angular dependence through the polar angle 6;y.
In our computations we considered the density of particles (m — 1) times greater than that
of shadows [?] .
For instance the state v = % has p, = 2p, while the state v = § has p, = 4p; .

In all cases the axis coordinates are scaled as dimensionless in the following for:n :

VT

This form was chosen as the most convenient for our calculations and is different fiom the

widely used 776 . In our case the distances are expressed not in magnetic length ly units ,
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ESWF
Filling factor 2/7
T v T ¥ T
1.0 +
0.8 .
\;; 0.6 - q
04 -
02 |+ 4
0'0 1 1 L
0.0 1.0 2.0 3.0 4.0
/W2/7)
Fig.1

Figure 3.1: Pair distribution function for v = %, the axis coordinate is scaled as L('%) =Twly

but in “kilometric” L units ’Z where :

L: \/-2—7510
14

i . . . . . . g
For v = £ we have the following dimensionless axis coordinate f(’_,—) where L(-:) = VTxly

For v = é and v = % the “kilometric™ unit length-s L will be : L(%) = /3xly and

In Fig.1 we plot the pair distribution function g(r)for v = f: as a function of ﬁi—) which

clearly shows characteristics of a Liquid state . It seems that g(») has no ev dentifiable




§3. HNC/0 treatment for the ESWF

ESWF
Filling factor 2/7
1.0 +
0.8 - 4
0.6 | i
04 - E
02 + .
0.0 : :
0.0 2.0 4.0 6.0
a‘le
Fig.2

~Ht

Figure 3.2: Structure factor S(q) for v =
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angular dependency . The ground state energy per particle calculated from :
P -
vy =2 [vr)lg(r) - 1)di

. 2 g — e2 . .
where v(r) = £ was found to be : U (%) = —0.374 g in close agreement wit]. the value

—0.377(3) f% of Morf and Halperin [?] being qualified as a reasonably good res it in [?] .

In Fig.2 we plot the structure factor S(q) for the state v = % as a function f ¢l .
Before presenting the results for the other states we anticipate that the pair cistribution
functions for the states v = —% and v = 55- are different from each other only in she small-r
regime. A good test of our ESWF and a useful source of information for futu e research
seems to be the study of small -t behaviour of our pair distribution functions .

Yoshioka [?] diagonalized numerically the Hamiltonian for a finite system of 4 to 6 fermions
[yosh1] and obtained the coeflicients of expansion of g(r) for small r which sem to vary
continuously as function of v.
For small r around the origin r = 0 we can expand g(r) as :

oo »

g(r) = Y el

i=0 0
We least-squared-fit the previously calculated g(r)-s in the region of 0 < r < 1.7¢; to obtain
the ¢;-s.
For v = % we found that :

co=0.¢c1=0,cp =0 ,c3=0.008185 .cy = —0.001455 and the others 0 within *he limit of

our numerical accuracy .
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ESWF for 2/7
small r behaviour
0.1 - . .
S
0.0 1 1 1
0.0 0.5 1.0 1.5 2.0
r/lo
Fig.3

Figure 3.3: Small r behaviour for v =

~1r3

We plot our fitting function in Fig.3 .

The values of the fitting coefficients seem to be in a quite good agreement with [?] .
The same procedure applied to the state v = % gives :
co =0, c; = 0.481689, ¢c; = —0.133997 . ¢3 = 0.024499. ¢y = —0.002222 .

The fitting function of the state v =

Wtk

is ploted in Fig.t .

For the state v = -g— we obtain :

co = 0, c; = 0435377, ¢ = —0.117703 , c3 = 0.021723. ¢y = —0.001994 .



ESWF for 4/5
small r behaviour
1.0 T T T T T
g o5t
0.0 : ' : '
0.0 0.5 1.0 1.5 2.0
i/lo
Fig.4

Figure 3.4: Small r behaviour for v = %
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ESWF for 2/3
small r behaviour
1 .0 M T M T T
% 05
0.0 L L . .
0.0 0.5 1.0 1.5 2.0
t/lo
Fig.5

Figure 3.5: Small r behaviour for v = %
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Small r behaviour

i/ eESWF27
' » ESWF 2/3

4 -ESWF45 /

gl
54
b

0.0
05 1.0 1.5 2.0

i/lo

Fig.6

Figure 3.6: Small r behaviour for several states

In Fig.5 we plot the fitting function of the state v = %

With some slight differences these results agree and support the finite size calculations of

Yoshioka [?] .

The small -t behaviour of different FQHE states is plotted in Fig.6

wivs

There are only small differences between states v = % and v =

Let me speculate that the small difference in their filling factors forces the fitting -oefficients

to be close to each other so that a continuous variation of ¢;-s as functions of v ooks quite

natural .




50 §3. HNC/0 treatment for the ESWF

ESWF
Filling factor 2/3
10
08 - 4
5 06 4
04 F A
02 - 1
0-0 1 . 1 1
0.0 1.0 2.0 3.0 4.0
i(2/3)
Fig.7

Figure 3.7: Pair distribution function g(r) for v» = %, axis coordinate is scaled in units L{ %) ERVEF N

In Fig.7 we plot the resulting g(r) of the state v = % as a function of f(fz—)
K}

In Fig.8 we plot the resulting S(¢) of the state v = % The shape of g(7) looks in a good
agreement with that obtained by Morf and Halperin [?] using Non-antisymmetrized wave
functions . In this case the ground state energy per particle was found to be : U( %) = -0.510

2 2 . : . :
+; close to the result —0.509(5) & of [?] using Antisymmetrized wave functions .

Knowing the almost exact values of energy for the states v = % and v = -1— th> exact

energy values for the states v = 2 and v = # are found from the following formul:. of the
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ESWF
Filling factor 2/3
1.0 +
0.8 + .
Sos _
& 0.6
04 ~ -
0.2 - .
0.0 . L
0.0 2.0 4.0 6.0
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Fig.8

Figure 3.8: Structure factor S(¢) for v =

wie
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particle-hole symmetry :
T e?
vU(v) = (1= v)U(L~ )+ [ <(1~ 2v)=
3 610

The exact energies should be : U(g) = —0.518 g% and U(%) = —0.5519 520- .

Finally pair distribution function and structure factor of the state v = % were obta ned .
Ground state energy per particle of the state v = % was found to be : U (%) = —0 548 261‘20'
close to the above exact result .

Shape of g(r) for v = % is similar with that of v = % , as a result the same can be ;aid for

their structure factors .



4 Conclusions

Among many interesting aspects of the FQHE , at first we studied the Laughlin states
v = ;1; using the HNC/0 technique . Then we made a systematic study of ths Laughlin
states , using a modification of the HNC/0 technique (different from the MIINC of [?]
and [?]) denoted here as HNC/0+E , to account the Elementary diagrams throvgh a clever -
scaling .

A much better improvemént on the HNC/0 results was observed . The HNC/0+E
quantities look very accurate and fit very well even the best MC results for the energy per
particle .

is a

ST

While for v = % the results are impressive from all of point of views , the case v =
little more peculiar , being more structered and longer tailed than the previous one .
Equally very good results were obtained also for this case . in the order of zccuracy of
the best available results . The HNC/04+E g(r)-s fit very well even with enalvtically
parametrized MC-fitted functions . It may be speculated that such a treatm:nt can be

applied with success to other states , but right now I cannot strongly support my statement

53
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It is generally belived that HNC/0 underestimates structure . The present work , 1t least
at the level of Laughlin states , guarantees that a clever way of bringing into the g me the
Elementary diagrams can overcome succesfully this weak point .

Hoping that HNC/0+E works well not only for the well-known Laughlin states , 1 ut also
for the Jain’s wavefunctions (how to apply it ?) it is expected that the problem of " sorking
on the thermodynamic limit can be overcomed without loosing the accuracy that a finite
number Monte Carlo simulation is able to offer . Having not the guarantee for tlat , let

have the hope...

Later , we switched on the second hierarchy states like v = % ... for the FQI:E‘. As
ground state wave function for the strongly correlated electronic system , we usec a new
one of the Extended Shadow form (ESWF'). The ESWF were found to have a simil ir form
with the wave functions proposed by Macdonald et al [?] . The problem was mape:! into a

3-component mixture of particles and a multi-component HNC/0 technique was ap>lied .

,v=z2and v = 15‘- are reported.

Results regarding states v = 2
1

wWir

The quantites obtained with this technique seem to agree quité well with s ever:l other
calculations , essentially confirming the validy of this treatment . The small -r be aviour
that generally is believed to be rather “unfriendful” seems to be quite good for the ESWF
. following with a very good accuracy (with only some slight differences ) the coe ficients
of expansion reported by Yoshioka [?] . In my opinion , a clever way of accounting the

Elementary diagrams here , given the rather complicated form of the treatment . se>ms . if
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not impossible , a very difficult task .

Further , such a bet looks not so interesting , because it seems that these las  times the
most elegant and credited theory on dealing with the hierarchy scheme and accounting
IQHE together with FQHE , is that of Jain [?] . The form of his ground state wave
functions has not so big similarities with an ESWF form .

If we are able to perform a HNC/0+E or a FHNC treatment on the functions of Jain , with
the favor of working on the thermodynamic limit , then things look more interesting .

In such situation even the less known v = % state seems reachable with a goo:l degree of

accuracy . This is a difficult duty that , at present , regards only future .
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