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1 Introduction

The study of the properties of materials at very high pressures is a subject of great interest
both from a theoretical and a technological point of view. The great development of the
modern technology of ultrahigh pressures has given a considerable impulse to such studies.
Nowadays, in a diamond anvil cell it is possible to produce hydrostatic pressures of the
order of a few hundreds of GPa. This possibility is of great importance in geophysics. if
we think that the typical pressures of the inner mantle of the earth are of this order of
magnitude.

In solid state physics, this technologv allows the exploration of regions of the phase
diagrams falling in ranges of pressure once forbidden. This fact has led to the discover of
new and unexpected structural phases of many materials, and so it is of current interest
studying how such unknown phase transitions depend on the changes in the electronic
structure induced by a strong external pressure.

In the last years a very large number of experimental and theoretical studies [1, 2, 3] have
been carried out in order to investigate the phase diagram and the structural transitions

of alkali halides. These compounds have a cubic lattice cell in their equilibrium structure,
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but some of them show a spontaneous breaking of the high-symmetry phase when subject
to a strong external pressure, with a transition to a low-symmetry structure. In particular.
cesium iodide (CsI) has been found, both experimentally [4. 5] and theoretically [6, 7].
to underge a transition from the room pressure cubic-B2 (CsCl-like) structure to a new
high-pressure orthorhombic phase.

A family of compounds quite similar to these salts is that of alkali hydrides. The
alkali halides are fully ionic solids. The alkali hydrides, while being more covalent, are
crystallographically analoguous to alkali halides and are expected to behave similarly with
increasing pressure. At room pressure. the alkali hydrides have a cubic-B1 (NaCl-like)
structure and, with the exception of LiH. have been observed to transform to the cubic-B2
structure at elevated pressures.

Very recently, an experimental work [3; on the structural properties of cesium hydride
has shown a transition of this compound towards an orthorhombic lattice structure. The
sample of CsH, put in a diamond anvil cell. was studied by means of energy dispersion x-ray
diffraction (EDXD).

The authors find the B1— B2 transition to start at very low pressure (0.83 GPa). They
fit their data for the latter structure to an equation of state in which the ratio between
this cubic-B2 equilibrium volume Vp, extrapolated to zero pressure and the cubic-B1 real
equilibrium volume Vp is Vg, /Vy = 0.86. The percentage volume change at the transition is
about 8.4%. The transition from this B2 phase to the new orthorhombic is found to begin

at 16.3 GPa with Virens/Vo = 0.53. The volume change of this second transition is observed




to be 6.3%. The experimentalists found in the EDXD spectra a good agreement between
the intensities and the positions of the peaks of the CsH sample and the orthorhombic
structure of CrB. Therefore, this phase was fitted to this structure, which falls in the C'mem
space group. Cesium hydride does not undergo any other structural transition up to 253
GPa, the highest pressure obtained in this experiment.

Gandehari et al. [9] studied also the behavior of the band gap of this material, finding
that it remains an insulator up to the highest pressure investigated. They estimate. by
extrapolation of their data, the gap closure to occur moreless at 1000 GPa. It is quite
interesting to note that their results show that the system behaves as if it “does not want™
to become metallic: the slope of the band gap vs. pressure is remarkably more negative in
the cubic structure than in the orthorhombic high-pressure phase.

In the present thesis work, a theoretical study of the structural, vibrational and elec-
tronic properties of cesium hydride is presented in order to investigate this type of transitions
so as to understand the driving mechanisms of the deformation of the cubic lattice that are
involved in the transformation. These calculations are completely ab initio, and are based
on the density functional theory (DFT) and density functional perturbation theory (DFPT).

In Chapter 2 the theoretical tools upon which this study is based are briefly described.
In Chapter 3, we present our results on the structural and vibrational properties of cesium

hydride. Chapter 4 is finally devoted to the conclusions.




2 Theoretical tools

The theoretical calculations of the structural. vibrational and electronic properties of cesium
hydride presented in this thesis are completely ab initio, and are developed in the framework
of density funcional theory. These calculations are performed at zero temperature, where
the properties of interest can be obtained from the determination of the electronic ground
state.

It is obviously impossible to solve exactly the many-body Schrédinger equations of
electrons and nuclei in a crystal, but an approximation universally used in solid state physics.
known as the Born-Oppenheimer approximation, allows to decouple the “fast” electronic
variables from the “slow” ionic ones, by virtue of the great difference of masses. The system
is thus divided in two subsytems: the electrons move in the potential of the fixed nuclei.
following adiabatically their slow motion and remaining always close tho the quantum-
mechanical ground state, while the ions are treated as they were classicle particles in the
effective potential determined by the electronic ground state.

In the spirit of this approximation, it is possible to simplifv the problem, and DFT

provides the appropriate mathematical scheme for determining self-consistently the ground
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state of the whole system.

2.1 Density functional theory

This theory was developed 30 years ago on the basis of the Hohenberg-Kohn theorem [10].
which proofs the uniqueness of the external potential acting on the subsystem of the elec-
trons as a functional of the electronic density n(r). The energy of the electrons can be

written as

Eln(r)] = Fin(r)] + /V(r)n(r)dr, (2.1)

where F[n] is a universal functional of the electronic density (independent on the external
potential), and V(r) is the “external” potential (with respect to the electrons) generated
by the ionic cores.

In principle this problem should be solved via the constrained minimization of this
functional, in general unknown, with respect to the electron B density, that must always be

normalized to the number N of electrons:
/n(r)dr:N. (2.2)

In order to apply this theory to actual calculations, Kohn and Sham proposed to separate

the functional F[n] into three distinct contributes:

Fn(r)] = To[n(r)] + %/El(f)__ﬁ%l(lrdr’ + Eze[n(r)]. (2.3)

To[n(r)] is the kinetic energy of a system of noninteracting electrons of density n(r). the

second is the classical Hartree term describing the Coulomb potential of the electrons.
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while Egc[n(r)], defined by this formula. is known as the exchange and correlation energy
and contains all the information about the many-body interactions among electrons that

we do not know.
This way, the problem of constrained minimization becomes the problem of solving a

set of self-consistent single particle equations:

Ve Veerie)] ¢ , .
-5t I"SCF!.I')J Ui(r) = € Uy(r) (2.4)
Hgs
Vscr(r)=V(r)+ / !T'% + vze[n(r)] (2.5)
n(r) =Y lvir) 8(e — er). (2.6)

These are the well known Kohn-Sham (KS; equations [11], where the Fermi energy €r is
defined by the constraint on the number of electrons, v,.(r) = 6 Eze[n]/én(r)is the exchange-
correlation potential and the single particle orbitals satisfy the orthonormality constraint
J i (r);(r)dr = &;;.

The Kohn-Sham equations are exact and still contain a completely unknown term in the
exchange- correlation potential . In order to face this problem it is necessary, at this point.
to introduce some approximations. A very natural approximation to DFT is the well-known
local density approximation (LDA), in which the exchange-correlation energy is taken as a

local function rather than a functional of the density:

Egen(r)] = /n(r)em(n(r))dr.; (2.7)
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and the potential is given by:

Vge(r) = %(n(r)eu(n(r))) = fize(n(r)). (2.8)
In this approximation, the total energy of the crystal in its electronic ground state is:
B9 = -3 6 - Ep)/uf(r)vgdy(r)dr + /V,»mn(r)dr
+ %/%drdr’ + [ n()esnir)yir
’ /
N el =

LDA works surprisingly well for a large variety of systems. even more than any possible
expectations, but it is known to be worse when describing weak atomic bondings. In the
last decade, a lot of improvements to LDA were proposed [12. 13, 14, 15], but none of them
seems to be a real “breakthrough” in this direction.

They are mostly based on the inclusion. in the dependence of the exchange and corre-
lation functional, not only of the electronic density, but also of its gradient. and even of
the Laplacian. For this reason it is commonly known as gradient-correction approximation
(GCA). These kinds of new functionals are not satisfactory from a theoretical point of view.

but certainly are able to describe better those situations in which LDA breaks down.

2.2 The plane-wave pseudopotential method

The actual solution of the KS equations can be obtained expanding the KS wavefunctions

on a basis set. The most widely used choice of this basis is that of plane waves (PW), which
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have the great advantage of being translarionally invariant:

hilr) = Ypx(r) = > e:+GTe (4 G, (2.10)
G

where k belongs to the first Brillouin Zone (BZ) of the crystal. G is a reciprocal lattice
vector and n is the band index. The PW basis set is infinite and it is usually truncated by

choosing a kinetic energy cutoff through the condition:
k+G? < B (2.11)

To treat explicitly all the electrons it would be necessary to choose a very large number of
PW in order to describe accurately their rapid oscillations near the nucleus. This would
request a very heavy computational effort for the calculation. It is possible to avoid this
problem freezing the core electrons in the atomic configuration around the ions. and con-
sidering only the valence electrons.

To do this, one introduces the pseudopotentials, able to describe the interactions be-
tween these electrons and the pseudoions {ions+ core electrons). The valence electrons
wavefunctions are considerably smoother near the nucleus, but are identical to the “true”
wavefunctions outside the core region. This method is now well-established in computa-
tional physics, and the results are very accurate.

The widely-used norm-conserving pseudopotentials [16] consist of a local contribution

for the radial function and a non-local one for the angular part:
, , ITTIBI
vs(r,v) = vioc(r)é(rw r)-+ Z vs (r)8(r — PV Py(E, 7 ), (2.12)

=0

where P is the projector on the angular momentum I.
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This form of semilocal pseudopotential still is not the most convenient one from a com-
putational point of view, and for this reason Kleinman and Bylander (KB) introduced [17]

a fully non-local pseudopotential in which also the radial part of the potential is non-local:

lmar - ,
vV D,y = vl ifr— 1) + Z vgm(r,r ). (2.13)
1=0

where

'Us,l('r )R v Jillm(g O)}}xm(glv O/)RS,I(T/)’US’Z(T’)
(Rs.l' l’s,lIRsJ) ’

{
)= SO (2.14)

m=—]

This form of the potential allows a verv convenient simplification of its matrix elements in
reciprocal space, where the KS equations are iteratively solved.

The only problem which one is often compelled to face (this is in fact our case) with

the KB form of pseudopotentials is that of “ghosts®. The non-local character of the kB

potential makes possible that eigenstates with nodes have lower eigenvalues than the zero-

node state [18]. However there is a standard way of eliminating this problem, simply byv

collecting together in a different manner all the i-different contributes to the potential.

2.3 Lattice dynamics

In the conceptual scheme of density funcrional theory, it is also possible to study the vibra-
tional properties of a crystal, treating ions as classical particles. In the harmonic approx-
imation the total energy of the system can be expanded in a Taylor series in the atomic
displacements u:

J? Etot
dus(R)duy(R')

us(R)ug (R') + O(u®). (:

[RV]
—
ot
~

1
Etot[u] — Eéot + 5 Z
R,s,R/,s’



10 §2.  Theoretical tools

where u,(R) is the displacement of the s-th atom in the unit cell in R. The equations of

motion of the ions are:

Msiias(R) = = 3" Coypo(R - R)ugy(R)), (2.16)
R’/ s 5

where o and 3 are the polarizations of the modes, and Cys gs(R — R’) are the interatomic
force contants which, thanks to the translational invariance of the crystal, depend just on
(R —R'), rather than on R and R’ separately.

The solution of those equations of motion can be written in Bloch form:

. 1 (AR —w 5 1=
us(R):Tus(Q)el(qR 9, (2.17)

where the wave vector g belongs to the BZ. We obtain a linear svstem:
w?u,(q) = = > D,u(q)uy(q) (2.13)

in which D,y (q) is called the dynamical matriz of the system and is simply proportional
to the space Fourier transform of the interatomic force constants matrix Cas,pgs'- From the

diagonalization of this matrix one obtains the dispersion relations w = w(q) of the system.



3 Results

In this chapter are presented and discussed all the theoretical calculations performed on
cesium hydride, in order to describe its structural, vibrational and electronic properties.

and to relate our results with those obrained by the experimentalists.

3.1 Technicalities

The first step of this work is the check on pseudopotentials. We have two possible choices
for both the elements of the compound. For hydrogen one can use the bare 1/r potential.
or a potential generated following the method proposed by von Barth and Car [19]. The

potential is fitted to the analytical form:

-7,

r

vloe(r) = erf(ry/az). wu(r)=(aq+ bir?)exp(—ayr?). (3.1)

For cesium we have a choice between two fully non-local pseudopotentials, one generated
with the Kerker’s procedure, and fitted to the same analytical form already shown, and the
other, in numerical form, generated with the technique of Martins and Troullier [20]. Each of

these potentials suffer the presence of a “ghost” state when put in the computationally more

11
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convenient KB form, but they are eliminated simply writing in a different but equivalent
manner the local part of the pseudopotential.

It is necessary to include, as valence electrons, also the 5s and 5p states, because pseu-
dopotentials with the only inclusion of the 6s electron yield completely unrealistic results.
However, cesium remains one of the elements more difficult to treat with pseudopotentials:
it has the 4d electrons not so far in energy from those other which we consider explicitly.
From the other side, it would be computationally too expensive to consider 19 valence
electrons per atom:.

The main part of our calculations is performed within LDA, With} the electron-gas
exchange-correlation energy and potential determined by Ceperlev and Alder [21] as inter-
polated by Perdew and Zunger [22]. As we will see later, a part of the structural calculations
is instead carried out using the so-called gradient corrections (GC), in order to vield more
accurate results, comparable with experiments.In particular, we use the Becke exchange
energy [13] and the Perdew correlation term [12].

In aﬂ.calculations the sums over electronic eigenstates in the BZ are performed using
some special points meshes in the Monkhorst and Pack scheme [23]. Plane waves up to a

kinetic energy cutoff of 25 Ry are included in the basis set.

3.2  Energetics from First-Principles: LDA and beyond

The first step of a total-energy calculation is the test of convergence of the resulting energies

with respect to the main numerical approximations, the cutoff and the finite sample mesh
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Figure 3.1: LDA and GC theoretical Murnaghan curves.

of k-points in reciprocal space.
The zero-pressure equilibrium structure of cesium hydride is the cubic-B1. We fit our

results to a Murnaghan equation of state [24]:

N BO Vv _Bé PR
P(V) = o [(TE) - 1} : (3.2)

The plots of the Murnaghan curves are shown in Fig 3.1.

In Tab. 3.1 we report our results for some structural properties of CsH in the three
phases studied here: B1, B2, and CrB. The LDA fails to account for the stability of the
rocksalt structure at zero pressure (negative B1 — B2 transition pressure), while GC cal-
culations predicts the correct sequence of transitions. GC-DFT also considerably improves
the agreement between calculated and observed equilibrium lattice parameters and bulk
moduli.

The inclusion of Cs semi-core states in the valence manifold implies that the pseudopo-
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Experiments LDA GGC
ao(B1) 12.07 a.u. ~ 11.62 a.u. 12.25 a.u.
Bo(B1) 8.0 + 0.7 GPa  11.3 GPa 10.3 GPa
B} (B1) 4.0 3.3 2.8
ag(DB2) 7.23 a.u. 6.94 a.u 7.30 a.u.
Bo(B2) 14.2 + 1.0 GPa 18.6 14.0
B.(B2) 4.0 £ 0.2 42 3.71
P*(B1 — B2) 0.83 GPa  -0.8 GPa 1.5 GPa
AV(B1 — B2) 8.4% s % 12.5%
AV(B2 — Ortho) | 6.3% - 45% 4.0%
P~(B2 — Ortho) 17.5+1.5 GPa 11.040.5 GPa 14.6+1.0 GPa
V=V 0.53 - 0.63 0.54

tential transferability is optimal around the corresponding orbital energies, rather that the
energies of the valence states. As a consequence this treatment of semi-core states—although
essential to obtain sensible results— might require the use of more than one reference state
in order to ensure optimum transferability. VWhether or not the relatively poor quality of
the LDA predictions is due to deficiencies in the Cs pseudopotential and the improvements
achieved by using GC-DFT due to a fortuitous cancellation of errors is a matter which
deserves further investigations. In any events. our results seem to confirm the importance
of the gradient corrections to the LDA in the description of structural phase transitions.
recently claimed in the case of diamond to 8-tin transition in silicon [25].

Both LDA and GC-DFT calculations correctly predict that a transition from the B2

to the CrB phases would occur at pressures somewhat larger than 10 GPa. In this case
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too, GC-DFT gives a value of the transition pressure in closer agreement with experiments
(15 vs. 17 GPa). Note however that—due to hysteresis effects—an estimate done when
loading the sample only provides an upper limit to the transition pressure. Also the volume
discontinuity and the ratio between the transition volume and the equilibrium one are well

reproduced by our calculations.

3.3 Distortion of the high-symmetry phase

The low-pressure transition B1— B2 is tvpical of ionic solids. and so it is not interesting to
us.

After having predicted, both in LDA and in GC calculations. the high-pressure transition
to the orthorhombic phase, we instead focus our attention on the possible mechanisms of
distortion involved in this transition.

The CrB structure can be viewed as resulting from a continuous deformation of the
cubic B2 structure in which a shear of the cubic edges in the (110) planes is coupled
with a vibrational distortion of the atomic lattice, having the periodicity of a zone-border
transverse phonon at the M point of the Brillouin zone (BZ). q = (% %,0), and polarized
along (001). In Fig. 3.2 we display how the distorted (110) plane (Fig. 3.2¢) results from
the combination of the elastic (Fig. 3.2a) and the vibrational (Fig. 3.2b) deformations.
In the ideal CrB structure the a and b crystallographic parameters indicated in Fig. 3.2
are in the ratio b/a = 2v/2 which would be appropriate to a cubic structure. Due to the

lower symmetry of the CrB structure with respect to the cubic one, the actual value of b/a
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Figure 3.2: Decomposition of the distortion leading to the CrB structure (right panel) into an
elastic (left panel) and a vibrational (middle panel) contributions. Large and small circles represent
Cs and H atoms respectively. Dark and light shading refer to the topmost and second (110) layers

respectively.

slightly differs from the ideal one and depends somewhat on pressure. This dependence is
however very weak: at the transition pressure. for instance, one has b/a =~ 2.9. The third
crystallographic axis is orthogonal to the ab plane, and the corresponding crystallographic
parameter has an ideal value ¢ = v/2a. The pressure dependence of ¢/a is somewhat stronger
than that of b/a: at the transition, for instance. one has ¢/a=1.3.

In Fig. 3.3 we show the T = 0 enthalpy, H = E + PV, of the system constrained to
a given elastic deformation, as a function of its amplitude, ¢ = tan(a) x b/a [26]. We see
that at any positive pressure a second minimum exists at f = 1. corresponding to the CrB
orthorhombic structure. Actually, the exact value of tan(a) slightly depends on pressure

because so does b/a. For pressures higher than P§ ~ 11 GPa the second minimum becomes
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H (mry)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.3: Enthalpy vs. angle of deformation for different fixed external pressures.

more stable giving rise to a first-order phase transition. The amplitude of the vibrational
distortion, u = z/a, which minimizes the enthalpy, U, depends on t, but for t = 1 it is
constrained by symmetry to be u,,;, = 1/4. independent of pressure. The dependence of
Umin Upon the amplitude of the elastic distortion, ¢, is shown in the inset of Fig. 3.3. We see
that wms, remains equal to zero up to a critical value of ¢ = ¢ which depends on pressure,
and that it saturates to 1/4 for ¢ = 1. This behavior is typical of the order parameter at
a second-order phase transition, and it indicates therefore that a phonon frequency softens
when the elastic distortion becomes larger than ¢*.

In Fig. 3.4 we display the My phonon frequency as a function of ¢ at different pressures,
P, (left panel) and as a function of P for different elastic distortions.

The softening of the Mj frequency in correspondence to some value of the elastic dis-

tortion could have been expected on the basis of symmetry considerations. To see this. let
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Figure 3.4: Phonon frequency as a function of external hydrostatic pressure for different angles of

deformation (indicated in the figure) of the cubic structure.

us consider the crystal energy as a function of t and u. E (t,u). Crystal symmetry requires
that E(t,u) = E(+t,u) = E(t,4u) = E(t + 2. u + D=FE(t+2.u- ). These relations
imply that E(¢,u) is stationary at the point (¢. u) = (2.0). This point lies in between the
four equivalent minima at (0,0), (Q,i%), and (4,0). Assuming that the energy landscape
is simple, we arrive at the conclusion that (2.0)is a maximum. In particular, one has that
9*E/0u® < 0, and hence there exists a value of 0 < # < 2 for which wif; ~ O?E/ou* = 0.
The orthorhombic phase corresponds to the (1. %) point in the (¢, u) plane which is also sta-
tionary because of symmetry. This point is located halfway between the two points (1.0)
and (1,3) which are equivalent by symmetry and stationary with respect to variations of u

(DE/du = 0).

If t were larger than 1, 9*E/9u® would be positive at (1,0) and (1, 3). and therefore the
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assumption of a simple energy landscape would imply that (1. %) is a maximum with respect
to u, and the orthorhombic structure unstable. It is easy to see that a first-order transition
with a discontinuous variation of u would occur in this case as the elastic distortion crosses
t = 1. In fact, in this case the line (¢,0) is stable with respect to variations of u. up to ¢t = 1.
For ¢ > 1 one has that E(t, %) < E(t.0). Hence, a discontinous jump in u would occur at
t =1 where E(t,1) = E(¢,0).

Arguments similar to those expounded above show that for * < 1 the (1. }1) point is a
minimum in the » direction, while nothing can be concluded in principle for other directions.
but the fact that local stability is allowed. Our calculations indicate that in the present
case t* < 1 and that the CrB structure is indeed locally stable. For pressures higher than
11 GPa (15 GPa within GC), this structure is favored with respect to the cubic one, giving

thus rise to a first-order transition.

3.4 Electronic structure »s. volume and symmetry

In the last part of the work developed in this thesis, we want to investigate the physical ori-
gins of the occurring phase transition B2—orthorhombic. First of all, there are geometrical
reasons that make the orthorhombic structure closer-packed than the cubic one. In fact. if
we focus our attention just on the cesium atoms sublattice. that is quite reasonable since a
cesium atom is much larger than a hydrogen one, we can observe that in the B2 structure
it has 6 other cesium atoms as nearest-neighbors. A simple analysis of the crystallography

of the system shows instead that in the high-pressure phase. in a sphere of radius 1.1ag
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centered on each cesium atom there are 8 other cesium atoms.

It seems however that another strong reason should be at the origin of this transition.
We know in fact, from experimental results [9]. that the energy gap between the valence
and the conduction bands is strongly dependent on the symmetry of the system.

It has an experimental value of 4.4 eV at zero pressure, but it is shown to go down quite
rapidly for an increasing external pressure, in the range of cubic- B2 stability. After having
become orthorhombic, the system exhibits a quite slower closure of the energy gap, and it
is still an insulator even at the highest applied pressures. This behavior suggests that the
transition may occur just in order to balance the incoming metallization of the system.

To this aim, we determine the electronic structure of the system for different pressures
and in the different phases. In fig. 3.5 we see such bands for an external pressure slightly
higher than that of tranmsition. We know that the calculation of the excited states is a
purpose beyond density functional theory, which is a ground state theory. However, it is
able to give results in general qualitatively and semiquantitatively correct, and so we can
be confident that the correct trend is well predicted. In this limitations, we observe that
the energy gap is smaller in the cubic phase than in the orthorhombic.

It is very interesting to look at what happens if we increase the external pressure up
to 40 GPa: as we can see in fig. 3.6, if the svstem had the cubic structure, it would be
metallic. On the other hand, in the orthorhombic structure, which is the most stable for
these values of pressure, the system is still non-metallic. The fundamental band gap in the

B2 phase corresponds to a transition from the X to the R point of the BZ. We note that
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Figure 3.6: Electronic bands for both structures at 40 GPa
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the wavevector which is the difference between these two corresponds to the A/ point of BZ.
which should be the wavevector of the phonon involved in the elastic distortion.

In the distorted structure, the small value, for any pressure, of ™ found in our calcu-
lations can be also traced back to the electronic properties of this material. because the
phonon softening is related to the metallization of the system under the elastic deformation
described in the previous section. In fact we have found that the band gap. corresponding
to the same transition between the q-points equivalent to X and R of the BZ in the B2
phase, closes when increasing the amplitude of the deformation and vanishes for a value of
¢ slightly smaller than ¢*. When the amplitude of the elastic distortion is larger than ¢=.
the spontaneous vibrational distortion due to phonon softening re-opens the band gap and

makes the orthorhombic phase insulating.



4 Conclusions

In this work we analyze the properties of cesium hydride at high pressure. We are able
to predict the recently discovered orthorhombic phase transition with a good estimate of
the transition pressure both in LDA and in GC. In fact we find a value of 11 and 15 GPa.
respectively, while the experimentally found value of about 17 GPa is only an upper limit.
because of hysteresis effects.

We investigate a reasonable mechanism of deformation of the cubic structure which
involves an anisotropic elastic ( "first-order™) distortion coupled with a vibrational ("second-
order”) deformation of the crystal lattice. For each value of the external pressure there exists
a critical strain that makes the structure unstable with respect to lattice vibrations. Small
anisotropic stresses dramatically lower the phonon-softening pressure, which in the cubic
phase would be of about 160 GPa.

This behavior is strictly related to the electronic band structure of this material, which
would become metallic in the cubic phase. Both in the experiments and in our calculations.
it is observed a gap closure with increasing pressure. In particular, we find that the funda-

mental band gap corresponds to a transition between the X and R points of the BZ of the
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B2 structure, whose g-vector difference corresponds to the M point. It suggests that the
system gains energy re-opening the band gap with a phonon-softening-induced deformation
of the lattice when elastically distorted. and this vibration actually corresponds a phonon of
the same wavevector in the cubic phase (the M5 phonon). in agreement with our qualitative

band structure analysis.
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