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1 Introduction

1.1 Strategic motivation

A protein is an heteropolymer chain, comprised of the 20 naturally occurring aminoacids,
which can perform biological functions. It is then likely that existing sequences have been
selected through natural evolution. A protein is usually modeled as a self-avoiding chain
of tens to thousands of monomer units. The monomers belong to the natural set of amino
acids.

A class of proteins of major interest is that of globular proteins, existing in typical living
cell conditions, i.e. in aqueous solvents, near neutral pH and at 20°-40° C. Under these
physiological conditions proteins assume a unique three dimensional globular conformation.
In such a folded state (the ”"native state”) they are biologically active [1,2]. The structural
information is encoded in a yet unknown way in the linear amino acid sequence.

‘The protein folding problem (P.F.P.) is that of predicting this compact three dimensional
structure from the knowledge of the amino acid sequence.

The native structure must fulfil two requirements, it must be thermodynamically stable
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and it must be kinetically accessible [3, 4, 5].

If we consider the enormously large number of conformations in which the protein could
find itself, the protein folding is a very fast process. Would a protein find its native structure
after a systematic testing of all the allowed configurations. the folding time should be
measured in cosmological time units.

Nature selects those aminoacid sequences that render fast the dynamic evolution toward
equilibrium. It is well known that choosing at random the sequence of aminoacids, with
probability close to 1, a system is found with a huge degeneracy of the energy minima, and
hence with a glassy dynamic behavior that prevents the system from finding a unique stable
equilibrium and from quickly finding it. In fact, the dynamics of the random heteropolymer
is characterized by frustration, arising by antagonistic interactions between aminoacids, and
by the chain topology constraint, which produce a complex connectivity pattern between
low energy states. As a result, the energy landscape of a random polypeptide sequence is
rugged, with energy barriers of any height [6]. Shackanovic and coworkers [4, 7] have shown
by Monte Carlo simulations, that the ground state could possibly be found only for special

protein sequences.

At present, Metropolis MonteCarlo dynamics has been the principal tool for studying
model proteins, which is equivalent to a statistical mechanical description.

Also molecular dynamics simulations has been widely used to try to simulate the folding
of the proteins. Because the harmonic motions of bounded atoms have characteristic times

of about 10714-107!3, stable numerical integration requires femtosecond (107! second) time
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steps. Supercomputers can currently simulate up to nanoseconds (10~° second) of real time
protein dynamics with such short time steps, but this scale doesn’t approach the 1071-1073
seconds typically required to fold real proteins. This notwithstanding, natural dynamics
might convey informations complementary to MonteCarlo dynamics. In fact, recent devel-
opments (numerical and theoretical) in nonlinear Hamiltonian dynamics provide new in-
sights in its rich phenomenology; it has been shown, for instance, that a very rapid increase
of the time scales to reach thermodynamic equilibrium is a typical feature of many degrees-
of-freedom Hamiltonian systems when energy is lowered below some threshold value [8, 9].
This is a general result [10, 11], related with the existence of qualitatively different chaotic
regimes (weak and strong chaos), whose existence can be also analytically predicted on the
basis of a new method to treat chaotic Hamiltonian dynamics [12, 13, 14]. In the weakly
chaotic regime, a rich variety of dynamical behaviors exists (breathers, metastable coherent
structures of solitary type), that keep a system far from thermal equilibrium for a long time.
During these long-living non equilibrium states, in the natural (i.e. Hamiltonian) dynamics
the decay of correlations is slow, which makes an important difference with respect to a

MonteCarlo dynamics, i.e. a Markovian dynamics.

A basic question is how to characterize the dynamics of “good” sequences, i.e. those
having a unique native state and short folding times. What kinds of dynamical indicators
make possible to discriminate between a “good” and a “bad” sequence?

This work is intended to make a first step toward this problem by studying simpli-

fied models of homopolymers, in order to assess the actual interest and feasibility of the
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Hamiltonian dynamics approach.

Such a study of conformational properties of chains in three-dimensional space has
never been tackled from the dynamical point of view. A natural starting point along this
line of research is suggested by the existence of several results [15, 16, 17, 18, 19, 20]
obtained by means of equilibrium statistical mechanics - predicting the scaling behavior of
conformational quantities, like the end-to-end distance of a polymer chain, with the number
N of atoms in the chain according to the type of interactions (short-range only, short plus
long-range, attractive and repulsive, etc) - that can be compared with the outcome of
numeric simulations.

We can a-priori guess that the predictions of statistical computations will hold true
after a relaxation time scale that in some physical conditions could become very long. The
wildly fluctuating energy landscape of the glassy phase - in the statistical description with
the canonical ensemble - has eventually a microcanonical counterpart in the very slow phase
diffusion of the weakly chaotic regime. In this case a new and very interesting question arises:
is it possible to find out how the threshold energy between weak and strong chaos moves
passing from a “good” to a “wrong” sequence of “aminoacids” in some toy-model? Here
one of the basic questions in the P.F.P. is rephrased in the language of natural dynamics,
making a link with a well defined dynamical phenomenon (threshold between weak and

strong chaos) for which recently developed theoretical tools are available.



2 Dynamical characterization of

homopolymer chain models

2.1 Basic Model

We will assume, as is usually done in simple models, that a polymer is represented by a
chain of N beads. A configuration of the chain is defined by the positions rq,...,rn of
the beads in the three-dimensional continuous space. A simple choice for the interaction

potential [21, 22, 23] is:

o

a
Vij = bi g1 f(rig) + (=) = mii(—)°, (2.1)
Ty

where 7;; = |r; — r;| are the interparticle distances.

The interaction energy of monomer 7 with all the other monomers is the sum 3 i Vij-
The parameters entering Eq. (2.1) have to be adjusted to fit both the complex interactions
between the various groups of aminoacids and the interactions with the solvent. We choose

for the energy bond function the expression:
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f(z) = a(z — do)? + b(x — do)*. (2.2)

that is the fourth-order expansion of a generic and symmetric function of the distance
z. The parameter dy represents the equilibrium distance of the nearest neighbors along the

chain. The Hamiltonian is defined as:

N P2 N
H=3 S+ 3 Vi (2.3)
=1

1=1 7>t

The first term is the classical kinetic energy of the chain, where the p;’s are the canon-

ically conjugated variables of the r;’s.

2.2 The first step: the ”free chain”

We start by "switching off” the interparticle potential V; ;, i.e. by setting all the constants
7;,; and o equal to zero. In so doing, we define the simplest non-trivial idealization of a
flexible polymer chain: the Hamiltonian dynamical counterpart - in the three dimensional
space - of the random walk model (RWM) on a periodic lattice. In the RWM, the polymer
chain configurations are mapped into histories of a random walk on a lattice, i.e. successions
of N steps on the lattice, with arbitrary end points. At each step, the next jump may proceed
toward any of the nearest-neighbor sites, and the statistical weight for all these possibilities
is the same. All the properties of the simple statistical model are easily computed and
visualized [15].

Our dynamical model consists of a chain on N ”beads” ry,....ry separated by "springs”
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along the vectors ay,...,ay_; in the three dimensional continuous space (ax = rg41 — ry).
At initial time we generate a random sequence of beads in the space, so the distance between
two neighboring beads is dp + Ad. Then the system has the total energy (N — 1)[a(Ad)? +
b(Ad)Y].

This kind of random configurations, generated at different NV and at different energies,

are used to initialize the numeric integration of Hamiltonian equations of motion

0H . oH

— pi=—— i=1,....N 2.4
apr P o (2.4)

P =

from which the dynamical evolution of the chain is obtained. As the initial configurations
are chosen at random, we may expect a convergence of time to ensemble averages - of
the relevant observables - only after some transient non-equilibrium regime. Eventually,
equilibrium will be attained and time averages will only fluctuate around ensemble averages.

The following questions naturally arise:
e how fast is the convergence of time to ensemble averages?

e is the relaxation time 7g of the non equilibrium transient trivial or not as a function

of energy density (energy per degree of freedom)?

e is it there any effect of the transition from weak to strong chaos on the relaxation

time TR?

Let us briefly recall that the ergodic hypothesis at the grounds of statistical mechanics is
not sufficient to ensure the finite-time convergence of time and ensemble averages, this finite

time convergence requires a stronger condition: a phase space mixing dynamics. Hence it is
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understood that a mixing dynamics is required to make useful the predictions of statistical
mechanics. Dynamics is mixing if it is unstable with respect to variations, however small,
of the initial conditions. With the exception of integrable systems, the generic situation of
classical dynamical systems describing N particles interacting through physical potentials,
is instability of the trajectories in the Lyapunov sense. Nowadays such an instability is called
intrinsic stochasticity, or chaoticity, of the dynamics and is a consequence of nonlinearity
of the equations of motion. Likewise any other kind of instability, dynamical instability
brings about the exponential growth of an initial perturbation, in this case it is the distance
between a reference trajectory and any other trajectory originating in its close vicinity that
locally grows exponentially in time. Quantitatively, the degree of chaoticity of a dynamical
system is characterized by the largest Lyapunov exponent A; that — if positive — measures
the mean instability rate of nearby trajectories averaged along a sufficiently long reference
trajectory. The exponent A; also measures the typical time scale of memory loss of the
initial conditions.

Let us recall that if

i = X'(ct...2N) (2.5)

is a given dynamical system, and if we denote by

£ = Jila(t)] €* (2.6)

the usual tangent dynamics equation, where [J}] is the Jacobian matrix of [X?], then the
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largest Lyapunov exponent A; is defined by

I 0 )
M=l ) (27)

and, by setting Afz(2),6(t)] = €7 Tle(t)]€/ €76 = €TE/€7€ = L4 In(€7€), this can be

formally expressed as a time average

A1 = lim %/0 dr Alz(7),&(7)] . (2.8)

t—oc

In recent papers [8, 9, 10, 11] it has been shown that different regimes of mixing exist,
fast and slow, characterized by a sudden change of the energy density dependence of 7
and tightly related to a cross-over between different scaling laws with the energy density ¢
of the largest Lyapunov exponent A;(€) defining the transition from weak to strong chaos.

For the "free chain” model of homopolymer, we can analytically compute the e-dependence
of the largest Lyapunov exponent, in the large N limit, by taking advantage of a recently
developed method [24, 25].

The theoretical prediction of A;(¢), together with other statistical averages that are an-
alytically computable for the "free chain” model, are then compared with the time averages
of the same quantities computed along the dynamical trajectories. Moreover, in the dynam-
ical simulations, we also measure the relaxation time 7r needed by an average to converge
to its expected value.

The dynamical simulations of the system are performed for a finite number N of degrees
of freedom; therefore it is also interesting to compare the analytic results, obtained in the

limit N — oo, with the numeric results obtained at different finite N values.
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2.2.1 Calculations and results
2.2.1.1 Statistical averages

Statistical averages are computed in the canonical ensemble. The partition function for the

system in the d-dimensional space

N N
Z = /gdpi/gdriexp [-BH(p,r)], (2.9)

is then written with the Hamiltonian
N-1 P
H= 3‘ |1‘z+1 —ri| — do)* + ([rz+1 —r;| — do)*]. (2.10)
1=1
Integrating over the p variables and setting w; = (ri41 — r;), w = |w|, we obtain
AT N o v [ [T a1 Ba % N :
7= (™) U v dwexp(~55 (w — do)? - —(w oh . @1
0

The square of the distance from one end to the other can be expressed in terms of the w

variables as follows

N-1 N-1
,
R® = |ry—nf= [Z rip1 — 1)) [Z Tj+1 — Ij)]
=1 j=1
N~-1 N-1
= > (rig—ri)(Tjpr—r) = ) Wi W, (2.12)
ij=1 ij=1

Hence for the mean value of the end-to-end distance we find

JTIEL dwi(SN wi - wi) exp —BIT 1L §(wi = do)? + §(wi — do)’]
fHN 1 dw; exXp ﬁ[Zz =1 g(wz —dp)? + l(wz — do)*]

) [ dww? exp[~BL(w — dp)? — B4(w — do)?]
J dwexp[-B§(w — do)? ~ 3(“1— do)?]

C(B)N =1). (2.13)

(R?) =

(-

Il

I
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Thus, with the canonical measure, in the limit N >> 1 we find the same power law (R?) ~
N of the random walk model on the lattice. The proportionality constant C'(f3) is now
dependent on the temperature, and represents the "mean bond distance” in the chain (that
is the lattice constant in the discrete model). It is known [26] that, in the limit N — oo, we
can obtain the microcanonical average (f), of any observable function f(r)in the following

parametric form

(FHule) — (2.14)

d 10
D =35"Nag

where (f)“ is the canonical average of the observable f. At finite NV it is (f),(8) =

—=[log Zc(B)] .

(NE(B) + 0(F).

Then, we can expect that, for sufficiently large N and after a suitable transient, the
time averages of the end to end distance R? of the chain, numerically computed along the
dynamical trajectories of the system, will agree with the scaling law RZ~ N, at any fixed

value of the energy density € = %

The gyration radius of an homopolymer chain is defined by

Rg=+ Zl(rz Tem )| (2.15)

i=1
where r.n, is the center of mass of the system. The mean square value of this quantity is
always proportional to the mean square value of the end-to-end distance. In the numerical
calculations it is better to work out the gyration radius rather than the end-to-end distance

because the former is computed using the coordinates of all the particles while the latter



12 §2. Dynamical characterization of homopolymer chain models

using only the coordinates of the ends. So, the numerical fluctuations around the mean

value is smaller in the first case than in second one.
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Figure 2.1: Check of the power law R? ~ N for two different values of ¢.

In Fig. 2.1 we show the comparison between analytic and numerical results for two
different values of €. The agreement between ensemble and time average is very good, even
if the values of IV, chosen in the interval [12,100] in our numeric simulations, are not very

large.

All the numerical calculation have been carried out using an efficient algorithm described

in appendix (§4).

2.2.1.2 The Lyapunov exponent and the relaxation time

Now we wonder if we can a-priori predict the € - value at which a cross-over of \;(e)
occurs, and correspondingly a transition between slow and fast mixing will take place (i.e.

a transition between slow and fast relaxation of time averages to ensemble averages). A
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Figure 2.2: Largest Lyapunov exponent A; vs. energy density e: comparison between theoretical
prediction (solid line) and numerical results (circles); dotted lines are references to asymptotic power

laws €2 and €2/3, and their intersection defines the SST

recently developed method [24, 25] makes possible to cope with the problem of analytically
computing the largest Lyapunov exponent A; for many degrees of freedom Hamiltonian
systems as a function of the energy density €. A brief explanation of this method is reported
in appendix (§5).

We have made use of this method to compute the exponent A for a "free chain” model

in the large NV limit. The results of the analityc computations are shown in Fig 2.2.

We have also numerically computed the "experimental” values of A\; by means of the
standard algorithm [27] at N = 25 and N = 60 for different values of €. The agreement

between analytic and numeric results is strikingly good. Fig. 2.2 also shows the existence
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Figure 2.3: Relaxation time 7g vs. energy density ¢

of a cross-over energy density ¢, between two different scaling-laws of the exponent A;.
Such a bimodality is characteristic of the transition between regimes of a qualitatively
different chaoticity, i.e. of the existence of a strong stochasticity threshold (SST). At ¢ > «.
the dynamics possesses good properties of randomness (of course if it is observed with a
suitable temporal coarse graining). On the contrary, at € < €. phase-space diffusion is much
slower because of a major change of the topology of phase trajectories whose chaoticity
gets definitely weaker. Usually, in this weakly chaotic regime, the behavior of a nonlinear,
nonintegrable Hamiltonian system displays very long mixing times. We have estimated
these mixing times through the numerical relaxation times 7r(¢) of the time averages of the
mean square radius B2 to its theoretically predicted values at different energy densities.

In Fig. 2.3 we show that there is a rather sudden change of the behavior of 7g(¢) at
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the same value €. at which the SST occurs. this is a very interesting result in asmuch the
dynamics provides us with a new physical parameter - 7 - which is dynamically generated
and whose energy dependence is non-trivial. This time scale has to be eventually compared
with other physical time scales of the system under consideration, thus a-priori enriching

the physical phenomenology that can be described by the natural dynamics.

2.3 The second step: the ”self-avoiding chain”

Let us now ”switch on” the repulsive interaction among the particles by modifing the "free

chain” Hamiltonian as follows

N-1

2
H= 37 (B 4 S(rin =l - do)? + (Irz+1—rzl—do)4 4+ 3 (s
i=1 2 i>7 Iri rJ!

— )12 (2.16)

so that we have defined a Hamiltonian counterpart of the self-avoiding walks (SAW) on
a periodic lattice, these are the walks which can never self-intersect. Certain mathematical
properties that are trivial for simple random walks become complex in the SAW case. Indeed

the SAW is a rather accurate model for the real chain in a good' solvent. The end-to-end

distance has a mean square average which now scales as:
(R*) ~ N%, (2.17)

The existence of a non-trivial exponent v is proved by the renormalization group calcula-

tions, but the exponent v is not exactly known. For three dimensional systems, numerical

'In a good solvent the polymers are in the swoilen phase.
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and experimental results agree with a value of v very close to 3/5. Long ago, Flory devised
a simple and brilliant scheme for computing the exponent v, which gives excellent values
for all dimensionality [28]. He roughly estimated the free energy as a sum of a repulsive

energy proportional to the square of the average monomer concentration

2
Frep ~ <£> Rd (218)

T R¢

and an entropy term computed for an ideal chain as

~—, 2.1¢
S~ (2.19)

It is easily found that this free energy has a minimum for a radius R = Ry defined by the

relation:
RE? ~ N3, (2.20)
This equation states that
3
V= m, (221)

which is an amazingly good assessment; it gives the correct value for d = 1 and the values

for d = 2 and d = 3 are within a percent of the most accurate numerical results.

2.3.1 Calculations and results

On alattice, the effect of the repulsive interaction between the monomers is built in the self-
avoidness condition. Two non-nearest-neighbors monomers along the chain must stay more
distant, one from the other, than one lattice constant. If & = 0, again we have a random

walk. As soon as we switch-on the repulsion, we prevent two monomers from contact. The
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Figure 2.4: Behaviour of the gyration radius (lower curves) and the end to end distance (upper
curves) for different values of the ratio ¢/dp; solid lines are references to power law R? ~ NS/3

dotted lines to R? ~ N.

repulsive potential (%)12 is a very steep potential and, roughly speaking, we can say that
monomers ¢, j cannot get closer than a distance r;; ~ o. In the Hamiltonian (2.16) there is
another scale of distance, that is fixed from the parameter dp, the equilibrium distance of
two nearest neighbors along the chain. When o << dy, a very large number N of monomers
in the chain are needed in order to appreciate the change of the power law from R? ~ N, to
R?* ~ N?. We are interested in studying the dynamical behavior of the system in a finite
range of N (NV € [10,100]), where we expect the correct scaling with the exponent v ~ 3/5

if the ratio o/dy exceeds a critical value.

Fig. 2.4 shows theresults for o/do = %/500/10, ¥/105/10, ¥/108/10, ¥/1019/10, ¥/10'/10
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in this range of N.
o For o/dy = %/500/10 we have the scaling R?> ~ N, as in a random walk.
o For o/dy > %/108/10 we have the correct scaling of the SAW.

o For g/dy = %/105/10 we note a change of the power law at an intermediate value of

N in the range considered.

We have used a Flory-like method, with its approximations, modifying it as to account
for a dependence on the parameter o/dg, in order to fit different curves by means of a unique
expression.

We guess a scaling function for the radius as follows:

R*(e,N)~ N¥f (;&) (2.22)

where f is an universal and unknown function. The parameter ¢ is a measure of the

"efficiency” of the repulsion, then we put

e~ <%)¢7 (2.23)

where ¢ is an exponent to be determined. N(¢) is the value of N above which the exponent

v is that of the SAW, we assume that it obeys the following expression:
N(e)~e? (2.24)

where we introduce another exponent ¥. The function f must be such as to reproduce

always the SAW exponent v in the limits N — oo and finite ¢, and the random walk
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exponent (= 0.5) in the limit ¢ — 0, i. e.:

f(z) —const. as z —
flz) —2z'"% as z—0 (2.25)

Then, like in the Flory’s scheme, we proceed to a rough estimate of the entropy that
enters the free energy expression, the repulsion energy must be now dependent on ¢, so the

following simple approximation is natural:

2
Ff’;” ~& (%) R4 (2.26)

Hence we can write (for a generic dimension d):
2
2 el lrd
R? ~ N%emra, (2.27)

For each value of €, there is a critical value N(¢) at which a cross-over of the two different

power laws occurs, then we can write

1

N(e)2 ~ N(e)“e7+1, (2.28)

and therefore:

]m
-8

N(g)~e T (2.29)
that fixes the value of the parameter ¥ to ¥ = 2/(4 — d). This expression is reasonable
because d = 4 is the upper critical dimension of the SAW. In our numerical simulations
d = 3, and then ¢ = 2.

In Fig. 2.5 we show that all the curves of the previous figure collapse an a unique curve

if we take for the exponent ¢ a value of ¢ = 3. So the guessed scaling function (2.22) is

verified.
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Figure 2.5: Collapse plot for the scaling law (2.22)

2.3.1.1 Dynamical behavior

We can now study the behavior of the Lyapunov exponent of the self-avoiding chain. We
compute it numerically, by the standard algorithm [27].

In Fig. 2.6 the comparison among the numerical results, for the case o = /1011, and
the analytic ones, for the case of the random walk (¢ = 0), is plotted. Notice that again
for o = /1011 the analytic curve computed at o = 0 gives a good approximation of the
behavior of the Lyapunov exponent A;(¢) as a function of the energy density €. So, while
the scaling law changes from R* ~ N to R? ~ N% in the same range of parameters, the
dynamics seems to keep the features of the random walk case. Indeed, the introduction of
the repulsive energy in the Hamiltonian has apparently no effect on the degree of instability

of the dynamics in the three dimensional space. The repulsive potential (~ 1/7)!% grows



22 §2. Dynamical characterization of homopolymer chain models

10 &

0.1 &

-|||m| syl pocanb vl vl v el v send e el o 4
0.01 0.1 1 10 100 1000  10¢ 10% 108 107

€

Figure 2.6: Comparison among the largest Lyapunov exponent for the RWM case (open circles) and

the SAW case (full circles). The solid line is the analytic prediction for the RW case
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up very steeply for 7 < 1. Thus the phase space can be viewed like the previous one (i.
e. the random walk case) with some forbidden regions. If these forbidden regions of phase
space are not too large (in a sense that should be made mathematically precise, what is
now beyond the aims of the present work) we can think that some observables, that are
sufficiently uniform in phase space, will not be very much affected. Now, in the strongly
chaotic regime all the geometric properties - of configuration space and of phase space -
that determine the value of Lyapunov exponent (see Appendix 2), are rather uniform: they
do not change significantly when are measured in different regions of the ambient manifold.
Therefore, being the average Ricci curvature and its fluctuations rather uniform, they are
not very sensitive to the esclusion of some regions of phase space, consequently neither
the Lyapunov exponent will be affected. We may expect that this reasoning will cease to
be valid when the range of the repulsive potential will become closer to the interatomic

distance.

2.4 The 6 point of a linear polymer in two dimensions

The study of some dynamical properties of the free-chain and of the self-avoiding chain
has positively answered to our initial question about the interest and the feasibility of the
Hamiltonian dynamical approch, therefore we can now begin to study a more complex
case, in which also the attractive forces are relevant. This is a more realistic choice for a
potential between the amino-acids in a protein. The prevalence of the attractive forces or

of the repulsive ones between the amino-acids depends on the range of the interaction, that
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in turn depends on the pair of the involved aminoacids. Here we study the simplest model
where the same type of monomer is put on all the sites of the chain. This corresponds to
set the parameters 7;; = 1 = const., Vi,j in the expression (2.1). Hence we deal with
an homopolymer chain with pair-wise interparticle interaction of Lennard-Jones type. We
introduce the parameters v = % and A = % so that we can write the Lennard-Jones

potential in the standard form:

Vi(r) =4y [(;)12 - (%)6:} . (2.30)

It is been known for a long time [28], that by varying the temperature an homopolymer
chain presents two different phases according to the dominance of actractive or repulsive
interaction energy (as it can be the with the Lennard-Jones potential). At high temperature,
the attractive part of the potential is negligible and the chain is in the swollen phase: in
these conditions the system closely behaves as in the case with only repulsive forces (SAW).
So, the same power law of the self-avoidinge case, R? ~ N?", is found. As the temperature
lowers, the attractive terms become more relevant and the chain becomes more and more
compressed, then the radius of system scales as R? ~ N?/¢, The separation between the
fegimes of self-avoiding chain and of collapsed chain is marked by a 6 temperature; at this
temperature a phase transition occurs. Here we study the properties of this model on two-
dimensional space. For d = 2 the Flory estimation of the exponent v provides v = 3 /4,

whereas in the collapsed case we have v = 1/2.
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Figure 2.7: Check of the two different scaling laws above (full circles) and below (open circles) the

theta point. Solid line is reference to R? ~ N3/2, dotted line to R* ~ N.

2.4.1 Calculations and results

First of all, we have tried to obtain the correct power law by dynamical simulations per-
formed in the range N € [10 — 100]. We fix the parameters 7 and A so that at high
temperature the system is in the case of the correct scaling in this range of N (§2.3.1). In
the dynamical simulations we vary the energy density e = E/N, which is a function of the
temperature [Eq.( 2.14)], that in our microcanonical simulations acquires the meaning of a
mean kinetic energy per degree of freedom.

In Fig. 2.7 we show that the two different scaling laws are found for values of the energy

density € = 10 and € = —2 2. Hence at these values of € the system is in two different phase.

?Here we use dimensionless quantities. Physical units can be easily introduced when we want to describe
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10

.
e+ 4.5
Figure 2.8: Plot of the behaviour of v(¢) for different values of N.

In order to have an extimation of the critical value ¢; at which the transition occurs, we
have performed a finite size scaling analysis. An immediate way of analyzing approximate

results for R%;, at finite N and near a # point, consists in computing effective exponents of

the type:
(2.31)

In(R/R% o)
21/N = —————ﬁ_—
In < )

N-2

The curves at different IV have a clear tendency to intersect each other in a restricted region,

as showed in Fig. 2.8.
Abscissas and ordinates of these intersection points yield approximations to ey and vy,

respectively [29].

a given real system for which masses, lengths and parameters of the potentials are assigned
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2.4.1.1 The Lyapunov exponent and the dynamical characterisation of the §

transition

Recently it is been conjectured that there exists a non-trivial relationship between the dy-
namical properties (like those described by Lyapunov exponents) and the behaviour of the
statistical observables when the system under consideration undergoes a second order phase
transition [30, 31, 32, 33, 34, 35]. It is observed that the behaviour of the Lyapunov ex-
ponent is not smooth near the transition point: the dependence of Ay on € changes rather
abruptly at e.. A differential geometric approch to Hamiltonian [12, 13, 14] is useful in
trying to explain this result. Indeed the curv@ture fluctuations of the Riemaniann manifold
whose geodesics are the trajectories of the dynamical system undergoing a phase transition,
exhibit a singular behaviour at the critical energy density. This singular behaviour is repro-
duced in abstract geometric models and suggests that the phase transition corresponds to a
change in the topology of the ambient manifold. The relevance of the topological concepts
for the theory of phase transitions has already been suggested in a more abstract context
[36].

We have numerically computed the largest Lyapunov exponent A;(¢€) of the system at
varying the energy density €. As shown in Fig. 2.9 we actually find a rather sharp change
in the behaviour of the Ai(¢) at an energy density that agrees with the critical value e,
previously extimated. The numerical calculations of the Lyapunov exponent have been
performed at NV = 25, but already seem to hint for the existence of the phase transition,

which is properly defined in the thermodynamic limit. In order to check that these numerical
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e+ 4.5

Figure 2.9: Cross-over between two different behaviors of the Lyapunov exponent at the theta

point.
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calculations really have some relevance to estimate the behaviour that some observables
have in the limit N — oo, we have analytically computed the high temperature behaviour
of A1(€). Indeed, even if the statistical averages are not exactly computable, we can use the
above explained method (§2.2.1.2) with the same approximation for the high temperature
phase. When the attractive part of the potential is negligible, the chain is, in practice, a
self-avoiding one. In the self-avoiding case, in the three dimensional space, we note that the

behaviour of the Lyapunov exponent is not different from the random walk (see §2.3.1).

In the two dimensional space a similar result holds for the self-avoiding chain, but it is
necessary a more careful estimate of the average quantities that are needed to apply the
theoretical method of refs. [24, 25]. If, to obtain the mean value of same observable, we
integrate over all the possible configurations by means of the canonical measure exp(—3Vp)
of the free chain potential V5 (Eq. 2.10), the integrals diverge. But it is very unlikely that
two particles will happen to be closer one another than the length scale 4 of Lennard-Jones
interaction. Thus we can approximate the difference between the canonical measure for the
free chain and that of the self-avoiding chain by the exclusion of the volume of the sphere
of radius equal to v around each particle. A similar procedure does not change the result
in three dimensional space because, there, the integrand functions vanish in this region (see
appendix §5).

In Fig. 2.10 we show the analytical result for the Lyapunov exponent obtained by the
application of this method. The agreement with the numerical values is very good in the high

temperature phase, at energy density greater than the critical value ¢.. By decreasing the
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Figure 2.10: Comparison between the numerical values of the Lyapunov exponent (N=25) and the

analytic prediction for the SAW case.
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energy density, when the agreement of the numerical values with the theoretical prediction
for the SAW case becomes poor, we can imagine that the attractive part of the Lennard-
Jones potential ceases to be negligible. At even lower energy densities, the attractive energy

becomes comparable with the repulsive one, and the theta transition shows up.



3 Conclusions and perspectives

The results here reported give a positive answer to the questions that have been formulated
in the Introduction, concerning the feasibility and the interest of a dynamical approach to
the statistical properties of homopolymer chain models.

Throughout the present work dynamics means natural (Hamiltonian) microscopic dy-
namics.

First, the dynamical approach has reproduced all the expected basic laws for spatial
packing that are predicted for homopolymers on the basis of idealized models for the spa-
tial conformations seen as random walks on a lattice. This is already a non trivial result
because in our dynamical models the different monomer units are free to move continuously
in space, moreover the change of conformation in time is driven by a non trivial differen-
tiable dynamics. Thus it is interesting to find that, already at small number NV of monomer
units, the statistically predicted scaling laws are reproduced by natural dynamics. However
the dynamics has something of its own to add to the existing knowledge. In fact, starting
from a generic initial condition, only after some relazation time 7 the time averages con-

verge to their statistically predicted values. Moreover, Tg has a non trivial energy density
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(¢) dependence. A sudden change of Tg(e€) is observed in correspondence of the Strong
Stochasticity Threshold that generically exists for nonintegrable many-degrees-of-freedom
Hamiltonian systems. In other words, the transition from different regimes of strenght of
chaos, signaled by a cross-over in the ¢-dependence of the largest Lyapunov exponent, brings
about a qualitative change in the characteristic phase space mixing time.

It is also worth mentioning that the dynamical approach can convey other kinds of com-
plementary physical informations, as is the case of the “self-avoiding chain” that compares
to the SAW model on a lattice. In this latter model just by switching-on the condition of
self-avoidedness induces a change in the scaling law with NV of the end-to-end as well as of
the gyration radius. At variance, in the Hamiltonian model the change of this scaling law
depends on the relative magnitude of the effective range of the repulsive potential and of
the interparticle distance, which is physically sound.

Another interesting result is that of a clear dynamical signature of the “theta”-transition
between filamentary and globular conformations that already shows up at rather small NV,
a situation very far from the N — oo limit which is implicit in the statistical mechanical
approach. Here again dynamics gives complementary informations of physical relevance, as
real polymers may exist with few tens of monomer units.

Finally, in view of attacking the study of the dynamics of heteropolymer chains and
of proteins, the above mentioned transition between different regimes of chaos, and thus
of phase space diffusion efficiency, suggests that phenomena like the glassy transition of

heteropolymers might well have a dynamical counterpart whose study could benefit also
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of new theoretical tools to study the transition between slow and fast phase space mixing.
Hence the approach started in this work appears potentially very interesting to cope with
the problem of dynamically recognizing the difference between “good” aminoacid sequences

of real proteins and “bad” sequences of random heteropolymers.



4 Appendix 1: Numerical compu-

tations

A faithful numerical representation of a Hamiltonian flow (i.e. fulfilling Liouville theorem,
energy conservation, conservation of Poincaré invariant) is guaranteed only by symplectic
integration schemes. A very efficient and precise symplectic algorithm has been recently
proposed [37]. This integrator alternates two different choices of the function generating
the canonical transformation that maps coordinates and momenta from any time ¢ to a
subsequent time ¢ + At. For this reason the algorithm is called “bilateral”.

Let us recall that the well known leap-frog scheme which - for Hamiltonians like H(q, p) =

ZiNzl p?/2 +V(q) - reads as

i(t+ At) = q(t) + Atpi(e)
P(t+A0) = pi(0) - AtV (alt+A0) | (4.1)

is a canonical transformation of variables generated by the function

F(Q7P7At): “’QP+AtH(Q7P)7 (42)

(small letters — p, q — refer to time ¢ while capital ones to the same variables at time ¢+ At).
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At infinitesimal At, the function (4.2) becomes exactly the generating function of the
natural motion of the system in phase space [38]. There is some arbitrariness in the choice
of (4.2) to construct the numerical integration scheme: in fact,va function ® obtained from
(4.2) by interchanging the role played by the coordinates with that of their conjugated

momenta,

3(q,P,At)=q-P + AtH(q.P). (4.3)

has the same meaning of F for a vanishing At; the transformation generated by (4.3) is in
fact an alternative form for the leap-frog algorithm.

The difference between these two limits shows up only at finite At, and so it has practical
consequences only when these canonical transformations are used in the form of numerical
integration algorithms. Hence the simple but ingenious idea of compensating the errors of
each partial scheme by alternating them in a “bilateral” algorithm [37].

Moreover, by applying this idea to the general scheme to generate higher order symplec-
tic algorithms reported in ref. [39], a second order bilateral algorithm is worked out [37] in

the following form

G = q(t)

- 1 a ., .
P = pz(t)_iAtégV(q)

G(t+At) = G+ Atp;

1 0
; t = ~i S —_ ;
pi(t+ At) P 2Ataqu(q(t + At))

P = pi(t+ At)
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4
pi(t + 2At)

gi(t + 2At)

Il

1 .
g:(t+ At) + §Afpi
pi— At=V(q)

i+ —;—Atpi(t +2A1).

(4.4)



5 Appendix 2: Riemannian the-
ory of Hamiltonian chaos and Lya-

punov exponent

Here we give a sketchy summary of the concepts involved in a differential-geometric method
to describe hamiltonian chaos and to predict theoretically the value of the largest Lyapunov
exponent. Longtime ago the geometrical formulation of the dynamics of conservative sys-
tems [40] was first used by Krylov in his studies on the dynamical foundations of statistical
mechanics [41] and subsequently became a standard tool to study abstract systems like
Anosov flows in the framework of ergodic theory [42]. In recent papers [12, 13, 24, 25] the
geometric approach has been extended in order to consider physical models like coupled
nonlinear oscillators.

Let us briefly recall that the dynamics of N-degrees-of-freedom systems defined by a
Lagrangian £ = T — V, in which the kinetic energy is quadratic in the velocities, T =
1

1ai;#'77, can be rephrased in geometrical terms due to the fact that the natural motions are
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the extrema of the Hamiltonian action functional Sy = [ £dt or of the Maupertuis’ action
Sy =2 [T dt. In fact the geodesics of a Riemannian manifold are themselves the extrema
of the arc-length functional £ = [ /g;;dridrs, hence a suitable choice of the metric tensor
allows for the identification of the arc length with either Sy or Spr, and of the geodesics with
the natural motions of the dynamical system. Starting from Sp; we obtain the so-called
Jacobi metric on the accessible configuration space, (g7)ij = [E—V ({r})] a;;. A description

of the extrema of Hamilton’s action Sy as geodesics of a manifold can be obtained using

Eisenhart’s metric [43] on an enlarged configuration spacetime ({t = r%,71,..., 7V} plus
one real coordinate 7Vt related to the action), whose arc-length is
ds® = —2V(r)(d'r0)2 + a,'jdridrj + 2dr0drN+T | (5.1)

The manifold has a Lorentzian structure and the dynamical trajectories are recovered as
those geodesics satisfying the condition ds? = Cdt?, where C is a positive constant. In the
geometrical framework, the stability of trajectories is therefore mapped to the stability of
geodesics, hence it is completely determined by the curvature properties of the underlying
manifold: the field J which measures the deviation between nearby geodesics obeys Jacobi
equation [44]

where V; stands for the covariant derivative along the geodesic y(s), R is the Riemann
curvature tensor, and 7 is the velocity field along 7. J is commonly referred to as the Jacobi
field. In the case of hyperbolic isotropic manifolds the curvature term in Eq. (5.2) can be

rewritten as R(7,J)7 = KJ and the sectional curvature K is a negative constant, thus
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equation (5.2) has exponentially growing solutions and the system is dynamically unstable.
This is the origin of chaotic dynamics in Anosov flows [42]. As far as coupled nonlinear
oscillators are concerned the geometric picture is completely different since because all
the curvatures (Ricci, scalar, sectional) are mainly (and in some cases strictly) positive.
Actually, negative curvatures are not necessary to make chaos, and exponentially growing
solutions of the stability equation (5.2) can be obtained through parametric resonance even
if no negative curvature is experienced by the geodesics [12, 13, 24, 25]. In the large N
limit, and under the assumption that the manifold is nearly isotropic, this mechanism can
be modeled by replacing Eq. (5.2) with an effective scalar Jacobi equation [24, 25] which

reads

S R(s)Y =0, (5.3)

where %% « |J|? and the “effective curvature” x(s) is a stochastic, §-correlated gaussian
process whose mean kg and variance o, are identified respectively with the average and the
rms fluctuations of the Ricci curvatures at any given point kg = Kgr/N (which is itself the
average of the sectional curvature over the directions of J) along a geodesic

) ((Kn- (KR))
N’ " N '

(5.4)

Using Eisenhart’s metric Kg = AV = Y%, 8?V/0r?. The exponential growth rate ) of
the envelope of the solutions of Eq. (5.3), which in this picture is the natural estimate of

the Lyapunov exponent, can be computed exactly:
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A:é—Qﬁo

6413 3
- 2 =0 4.2 )
5~ 3A A (20,{7' + °F +4oir ) (5.5)

where 7 = (7+/k0)/(2v/ko(ko + 0x) + 70); in the limit 0,./kg < 1 one finds A o o2. The

details can be found in Refs. [24, 25].

5.1 Application of this model to the homopolymer ”free-

chain”

The quantities needed by the above model to work out a value of the largest Lyapunov
exponent A; are the average and the rms fluctuations of Ricci curvature, i. e. - using

Eisenhart’s metric - the mean and the fluctuation of the function:
AR = —_— (5.6)

In the case of the system described by the Hamiltonian (§2.10) in the d-dimensional space,

this expression reads

(92
Kp = E E
=1 pu=1 Al-
N d )
= 2adN —2a(d -1 E 662 r; ;| —d
( )2 llrz—}-l_rzl (I +1 = ! 0)
N 3
(Irivs =il = do)®
+ 2b(d -1 5.7
R (57)

In order to compute the Gibbsian average, we slightly modify the canonical partition func-

tion as follows:
N

Z(a) = / H dp; / H driexp [—-(H(p.r)+ aKpg], (5.8)

=1
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so the problem of computing the mean values is now reduced to that of working out

<£]%R> = ,i [E%Z(Q)L=o (5.9)
(Krp—(Kgr))*) _ 110
o - [W Z(a)] R (5.10)

Setting w; = (r;41 — I;), integrating over the p we obtain:

Z(a) = [H(a))", (5.11)
where
§ [t
o) = (%) Qd./o wtdw exp(—-ﬁg—a(w — dp)* — %(w —do)* + ak(w)),  (5.12)
with
k(w) = 2ad — 2a(d — 1)% + 6b(w — do)* + 2b(d — 1)(—1—?—:5@—())—3. (5.13)

Therefore the quantities to be computed are the integral (5.12) and its derivative with
respect to a. These integrals run only over the variable w, then (5.12) is easily computed

numerically.
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