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1. INTRODUCTION

We intend to present the study of some topics related to the existence of soluticns for

the system

| —pBu -y Vdivu~+ Yp(8,5) = §[f - (u-V]u],
(111 ) div(Qu=¢g ,
-XAT +¢,uVE + Cp;:’(g’,(:]div u= ¢h+ Y(uu), nQ,

ulr*:O ; ‘C,IP=ZO ;

which describes the stationary motion of a compressible, heat conducting, viscous
fluid in a domain Q. of R" . Moreover we discuss an interesting problem involving
the solutions of the stationary, compressible Navier-Stokes equations in the
barofropic case: more precisely, we study the behavior of the solutions as the
reciprocal of the Mach number becomes large ( in this case p = p(§ ) and system
(111) is reduced tc a simpler form as we shall see in chapter 5, we consider g = 0),

The system (111) is, in the physically interesting case g = 0, a particular case
of (n+2)x(n+2) conservation laws endowed with suitable boundary conditions (see
appendix, section B).

If not otherwise specified, we assume here that C is a bounded open subset of R" ,

n » 2, and lies (locally) on one side of its boundary " | a C™® manifold, We indicate

(119) ¥ () = X, f; (D +Dyu V' + X (div o) |

We denote by u(x) = (u, (x)..,u. (x)) the fluid velocity. Q(x) is the density of

the fluid, and since the total mass m of the fluid is given we impose the condition

1l
10X O
where m > 0 and &(x) is defined by setting g[x] =m + 6(x}.

(113) L Jgﬁ(x) dx = m, or equivalently éjjﬁ(x) dx = 0 ,




We indicate by T (x) the absolute temperature, u(x), O(x) and Z(x) are the
unknowns of (1.11).

From a physical point of view it is not a strict assumption to impose that the
coefficients > 0, v> =, ey ,Xn)](“)bo are constant. Therefore we assume also
that T > 0 is constant, although a dependence of those coefficients on u,§ ¢, would
not imply substantial difficulties (the physical meaning of this coefficients is
discussed in the appendix, section B).

f(x) and h(x) are the assigned external force field and heat sources per unit mass,
Through thermodynamic considerations the scalar pressure p becomes a well-defined
function of the density and the absolute temperature, ie. p = p( S .C )
We assume p(§ ,7) e girs ((m-lm+}x[5, -1, , €.+, 1), where 0 < 1 ¢ m/2,
0 <1, ¢ C,/2 Under those hypotheses and by seiting T, = ¢ +d& , we can write

p’g (m+§, L +d) =k + w(6,d)
(1.1.4)
P (M6, +s) = 0f60)

1 Co

I, ) =[] x [-1, ), ] We assume that k > 0 { k # 0 would be sufficient here),

This assumptions yield the following equivalent system for (1.1.1)

where k = p’30 (m Z,), ©(00) =0 and ©,,®, are in the space G (11}, )) with

[ - /U.Au -vVdivu+ kY6 = F{fug,d),
(115) ) mdivu+uV6 + &divu=g ,
-XAL =Hhus,d) , inQ,
uj =0, oL =0
Ir r

where by definition

F(fu,5,4) = (6+m][f - (u-Vju] - (6,s)V 5 ~ w5,V
(1.18}
H{h,u,5,4) = (6+m)h - ¢y (m+8)u-Y« + Y{uu) +%‘3§§L—w (6,4 uVs - g) .
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In the first pari of this work we focus on certain topics related to system (1.1.1)
(more precisely, to the equivalent system (115)) and present some tools needed to
treat them.

Chapter 2 is concerned with an exisience and regularity result for the non-—
homogeneous Stokes problem. We establish the smoothness of the solution of this problem
applying the paper of Agmon-Douglis—Nirenberg [2] (see appendix, section A) where a
priori estimates of solutions of general elliptic systems are given. Our interest in
this problem is motivated by the necessity to solve the system (4.116) in chapter 4.

We present in chapter 3 a work of H. Beir@o da Veiga [6] regarding the existence of
solutions in the Sobolev spaces Wi , 1 » =1 for the stationary transport equations (TE).

We consider the system of first order partial differential equations
(TE) Ay + (v(x)-V)y + Alx)y = f{x) in O,

where )\ a positive parameter, v(x) = (v, (x)...v, (X)), A(x) =(a;x (x),ik = 1N,
f(x) = (f, (x),... fu (x)) are given and the vector function y(x) = (y, (¥),...y. (x))
is unknown. We look for Le &£ {Wi‘P ) 1 » -1 such that y = Lf is a solution of (TE)
for each f & W™ _ The theorem 311, which shows the main result for this system of
equations and performs the core of this chapter, will be a powerful tool to accomplish
the task of giving an existence result of sysiem (1.11) in chapter 4.

In the case N = 1, (TE) can be seen as a pariicular case of a more general class of
equations, namely, of the class of elliptic—parabolic equations (called also second
order equations with non—negative characteristic form). It was shown by Fichera [8],
[S], in this more general context that the problem above is well posed in the
functional space L if y is assigned only on the seb I,={xel :v-n <0}, where n
indicates the unii outward normal on " . Let us emphasize that in chapter 3 the
condition (312) ( v- n = 0 on [" ) is a necessary and sufficient condition for the
existence of y in W)  for every f e WJP (j » 1). Other results regarding an Il theory
for the stationary transport equation are given in O.AOleinik [19] [20]; existence
results in Sobolev spaces where previously given only in the hilbertian case p = 2 (see
K.OFriedrichs [10], PD.Lax and R.SPhillips [17], }}Kohn and L.Nirenberg [16] A

more complete treatment of results regarding this equation is presented by O.A Oleinik
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and EV. Radekevic in [21]
Let us now describe our main motivating problems.

The goal of chapter 4 is to give the proof of the following

Theorem A. Let pe i~ and j > 1 verify (j+2)p > n. Assume Q as above with
Fe C*2 and p(9,)e C¥? ([m~Lm+I]x[z, -1, ,¢.+1,]). There exist constants ¢ , ¢’ such
that , if (Fgh)e W™ x W™ x W** and

)
e € G

(LL7) MV, o+ g, + \hl

Jrap Jrap

there exists a unique solution (u,5,«)e W™ x W™ x W  of problem (1.1.5) in
the ball

(1.18) ful;

- + “6“\}“ + \\el\\\‘l_‘_s\v £ c,

P
. . . 1¥3,7 i+ j+3p
In other words, there exists a unique solution (4,9,0)e M{fi‘ x W5 x WO of

problem (111}, (1.1.3), in the ball

“u“\iﬁﬁ’ - “g"m“mm + “t—tal\jw,\’\< C: -

In the above statement ¢, , ¢’ are suitable positive constants depending only on n, p,
i By kmQ LT, X,k X, L1, LT, S (= 12), where
T, =sup | (e,o])] for (5,d)eIl}l, ), and S; is the norm of (&, ) in the space
CHay, ).

Theorem A was stated by H. Beirao da Veiga in reference [4] where this author gives
complete proof in the case j = ~1 and shows the main lines in the case j > —1. Here we
present the complete calculations corresponding to the case j > -1 For related

resulis we mention the papers [3], [5], [26], [27] and references given therein.



Let us briefly describe the main points treated in this chapter for proving theorem A.
We emphasize that the core of chapter 4 is the study of the linear system (411) in
section 4.1, We show first that this system is not an elliptic system in the sense of
Agmon-Douglis—Nirenberg due to the term v-V6' (except if v(x) vanishes identically inQ ).
and describe then the way to deal with this difficulty. In section 42 we give the
proof of theorem A by applying theorem 411 and a fixed point argument,

Finally, in chapter 5 we turn our atiention to the stationary, compressible Navier—
Stokes equations in the barotropic case (see (5.1.1)) and we study the relationship
between the equations of compressible and incompressible fluids when the reciprocal of
the Mach number becomes large. Quite often, the limiting solution (when it exists)
satisfies completely different partial differential equations. The incompressible limit
of the compressible Navier-Stokes equations i a physical problem involving dissipation
and it is therefore interesting to discuss such a limiting process. We consider so the

solutions of the equations of the stationary , compressible fluid flow

- phuy = yVdivu, - Vp,(8,) = [f - (u:7)u, 1,
(1.19) div( §, u, )} =0, IO,
0

Here p, (9) is a one-parameter family of equations of staie with dp, /d§ — +  as
A—> + o _ Under suitable assumptions on p, ( ), our objectives are to analyze the
limit as X\ —= += of solutions of the compressible equations {119) and to discuss

the convergence to solutions of the incompressible equations

“}u'i\-uoo + VT(}'{] = m[f—-(umV]uoo] ’
(1.1.10) divu.=0 , inQy.

(u.)] =0,

Ir

We give so in chapter 5 the proof of the following




Theorem B, Let pe Jl,+[ and j > -1 verify (j+2)p > n. Let the family of state
functions p, (© ) verify the assumptions done in chapter 5. Then there exist positive
constants ¢; , ¢, depending at most on n, p, j, /L ,v,m 1 & , k, ,Q such that
if fe W™ and

MW € ©

the following statements hold:
i) for each X >, , the problem (1.1.9) has a unique solution
(u,, % JeWSZF x W™ in the ball

lug g, € €5, WS- miy,, . < c/ky .
i) If Em k, =+, then

. +3
u, —> u, , weaklyin W, E ,

- - '-\-.l,
divuy, —> 0 , weakly in W) |

§ —»m ,strongly in W% |

144,

Vp,\(yk] —— VT, weakly in W™ |

where (u, , T ) is the unique solution of the incompressible Navier—Stokes

equations (1.1.10).

Our general assumptions on the family of state functions p, (§ ) (see chapter 5)
contain the physically interesting cases described by SKlainerman and A Majda [15].

To readers interested in the incompressible limit of compressible fluids we refer also

to papers by A Maijda [18], S.Schochet [22].



Hotations

The differential operator /2 x; 1 ¢ 1 € n, will be written D

In the sequel § and " indicate multi-indexes, and \§l=§, + -+ §,, \vll (T
1 n
D’ will be the differential operator D’ =D Dn ?Jﬁ_ﬂ; .
We denote by WP , ] an Integer, 1 < p < + e, the Sobolev space W (o),

endowed with the usual norm W Wi, and by 1§, , 1 ¢ p € +e , the usual norm in

I = I'(q). Hence, Il e = 11y
Moreover, W, is the closure of ${Q)) = C.(Q) in W™ . W™ is the dual
space of W.© , p’ = p/(p—1), provided with the usual norm LI

For j » 1 we define W;S’P = {ve W'¥ : v = 0 onT}. Note that W = WA W
is not the closure of (L),

Furthermore, CS(Q) = {ue C°(OL): IDule I® for 161¢ s }, where s is a non-
negative integer; C°(0Y) = {ueC (1) D’u has a continuous extension on X , 1§ < s}.

‘For convenience, these notations are also used for functional spaces whose
elements are vector flelds or matrices defined in Q).
So, we use the symbol X to denote the space of vector fields v in such thai
v, e X, i=l_.n where X is a functional space, and we write A e X, if
Alx) = (aw(x)), r = LR , s = 1.S , where a., are real functions in

Q and a, eX, We set
RS
I D" A(x)) = Z L. nga&(:{}iz.
IF AcW" , we setb
b LaP
ID Al = (S\D Al dx) . AN

ol 5

Furthermore, we set W™ = {ceW’ :T=0), W = WA WY i3 1, where




in general ¥ denotes the mean value of $(x) in 0.

Finally, for vector fields, we define Wj‘: = {ve Woj“’ :divv=0onrmT }
iy

Let ¥ =(¥,,..& ) w=(w,,.w) then we define w = 2; W, ,
gy =z2¥.

For v = (v,,..,v,,), we define (V‘V]E‘—‘Z‘; vD.E,
Vv:VZ = [i (D;v. MDD, £). We use also the symbol V for D = (D,,..,D.).

In general, if X and Y are Banach spaces, £ (X,Y) denotes the Banach space
of all bounded linear maps from X into Y. We set £(X) = L{X,X).

If not otherwise specified we use the symbols ¢, ¢ 1 » 0 to denote

P )

positive constants depending at most on n, p, j, Q0. The symbol ¢ may be

utilized (even in  the same equation) to indicate distinct  constants.

Soedoley eméedd:}zq {heorems

We recall here briefly the Sobolev embedding theorems which will be used
frequently from now on (see [1]). Under our assumption on €L |, r » 1, pe JI,+ =],
the following results hold:

w1t for p {q ¢ np/ln-rp) , ifrp<n ;
WP e L', forpgq<+e ,if p=n;
W™ . @, ifrpon.

We point out that the results given above are still valid for ), a bounded domain
with Lipschitz continuous boundary. More generally, if (. satisfies a uniform interior
" cone condition — that is, there exists a fixed cone K such that each xeQ. is a veriex
of a cone K (x) < () and congruent to K, - then the last embedding above is reduced to

the imbedding W™ <, C (Q),#f rp>n .



2. THE NON-HOMOGENEOUS STOKES PROBLEM

We consider the non-homogeneous Stokes equation concerning a  vector

function u(x) = (u,(x)...,u(x)) and a scalar function T(x)

—}LAU+VK ;f .
(211) dvu=g , inQ,

where f{x] = (f, (x),..f, (x)) and d; (x] = { 33 4 (2 Cl)n (x)) are given
vector functions and g is a given scalar function on 2 | 8 constant.

We have the following existence and regularity resuit:

Theorem 211, Let ©) be an open set of R® with the boundary I e o ,

r = mex{l+22), | integer > -1, pe J+oo[, and let fe W | ge W |

be W R 1Y be given satisfying the compatibility condition

(21.9) Sg dx - R»n ar =0
£ r
where dU  denotes the element of surface area on I and n denotes the

UAWP and Te W

which are sclutions of (211). Here the function u is unique while p is unique

outward unit normal on U . Then there exist functions u € W

up to an additive constant.

Moreover {21.4) is satisfied.
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For the proof of the existence part of this theorem we refer to
LCattabriga [7] when n = 2 or 3 For n = 2 one can reduce the problem to a
classical biharmonic problem (see R.Temam [25]). For an arbitrarily large n the
proof can be find in Y.Giga [13]. Among other authors, also V.A Solonnikov [24 ] and
M.Giaquinta - GModica [12] (for p = 2, without using potential theory) gave a

proof of this theorem.

Note that we can define the trace on " of a function u e Wi‘? , 1> 1,
pe [+ [, if ©Q is a open set of R" with smooth boundary. In other words,

» -_i
there exists an operator tre £ (W"" W P (1)) such that tr u = u| for every
i

ue WP wih? (1) is equipped with the image norm WH -4 wey= inf lullj, .

up=t

We give here the proof of the regularity result for the Stokes problem
(2.1.1).

3

Theorem 212 Let & be an open bounded set of class CW“, | integer » 0

pe Jl,+<[. Let us suppose that
ue W

are solutions of the generalized Stokes problem (2.1.1).
IFfeW™™, geW " and e WPP(p) then

, TeW®

L p

Lrdp L+4p

(2.1.3) ue W TeW

and there exists a constant ¢p,ln, Q) such that

(2.14) }m\u&\w«, + umw%z e, +ugl,,, - Lozt )
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Lroof. This theorem results from the paper of Agmon-Douglis—Nirenberg
[2], giving a opriori estimates of solutions of general elliptic systems
(reported in the appendix).

Let u = (u,,.,u..), U, = 1/ plr, F=( 4u . //u ).

Then the system of partial differential equations given by the equations
(211), , [2_1.1),, , will be represented as

nt4

(2.1.5) 20y (D) (x) = F, (), 1<ign+,
J=4
where lij (x.2) [ =(k, .. £.) e R, x= (x,,..%.) € O] is the matrix
&) = \«i\za}g » 1L < n (g the Kronecker symbol)
(2163 lnu'j(a) = _lj,m-«\ (E;) :E“A . 1 & 1 "Q{ n

lh+-l,h1-4 (g) =0

According to the appendix we shall introduce two systems of integer weighis

s, and #§ i 1 & ij € n+l, attached to the equations and to the unknowns
respectively. We take s, =0, t, = 2 1 ¢ i € n S, = —L, b, = L This implies
that '
(2-1'7) deg ILJ (xﬂz] \<. SL + tJ s isj = 1,...,1’1"'1 3

as requested in (A2). Furthermore, (A3) and [A.4) are satisfied We observe
that I’Lj (x,%) = lq (x,£). By induction, an easy computation gives L{x,2) =

= det (l’.t.3 (x,2)) =1\ and so L{x,2) # 0 for any real £+ 0. This ensures {condition
(A5} is satisfied) the ellipticity of the system of vpartial differential
equations introduced above,

Let us verify the Supplementary Condition on L. From L(x, z) = 121" follows




12

that L(x,%) is of even degree 2n with respect to £ . Furthermore,
Lx,&+TtE ) = |E+TE|™ = 0 has exactly n roots with positive imaginary part

and these roots are all equal to

(2.18) THx,2,E) = —e¥ - ilglE (g g2 .

Moreover, 2n = deg (L{x,£)) > 0, and (A7) is satisfied for A =1 and
m = n,
To apply the theorem Al we must finally analyze the complementing

boundary conditions (2.1.1),, which are expressed as

n+d

(219) /. ByxDyx) = &(x) onT, h=1.n,
=1

where B,; (xD) = &U‘ ,for 1 ¢ hgn 1] g n+l. Above we have assigned the
system of integer weights &, ,.t... attached to the dependent variables.
Furthermore, here we assign a new system r, = -2 for h = 1,.n, attached to
the equations representing the complementing boundary conditions for the
elliptic system above. Then, as requested in (A.9), deg th xg ) &1, + b
and we have B’ (x,g) = th (x,£). From above it follows that

'L‘k[x,%) =T (x,&,n), k = 1_.n. Therefore,

M'(x2,7) = (c- t‘“(x,&,n)).ﬂ

The matrix with elements Z: Wil & ]LJk[ ¢ ) is simply the matrix with

n+4

1
elements 1,, (£), 1 £ hk < n, hw[ ), 1 £ h ¢ n. A combination Z_ C, 2. B "

h=4 j=1
is then equal to

(C,‘lf)-&-tn[z,..., C“\E-f-'tnl:" QCL( g tn )]

and this is zero modulo MT only if C, = - =C, =0, and the Complement

Boundary Cendition is satisfied.
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Therefore, we can apply theorem Al We have |, = max{0r,+ 1) = 0. From
our assumptions it follows that | Ul » 1 €] < 0, and VTN are finite |
I » 0. Moreover, there exists a constant ¢ = cfp], /L)R,Q) such that (214) is
satisfied  (according to the remark after theorem Al one can take dy = 0 in

(All) since the solutions of (211} are unique [ T is unique up to an

additive constant).

sk
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3. EXISTENCE RESULTS IN SOBOLEV SPACES FOR THE STATIONARY
TRANSPORT EQUATION

In this chapter let wus consider the system of first order partial

differential equaiions

(311) ANy + (v(x)-Vy + Alx)y = f(x) ,inQ

where M e R", v(x) = (v, (%),..%.(x)), AlX) = (2 (®), ik = LN, f(x) = (, (x),..f.(x))

are given and the vector function y(x) = (¥, (x),..,(x)) is unknown.

Let us point out that the study of the system (311) in this context is
motivated by the necessity to solve equation (419) below (in this last case
N =1 \=mk/(p +>), A = 0, f = G(Fg ). |

The main result of this chapter can be summarized in the following theorem:

Theorem 311, Let pe I+« [ and j » -1 verify (j+2)p > n. Assume
that ve W”™°  Ae W™ Te ¢¥? | and

(31.2) vn=0 on [
Then, if
(3.13) A D Xj = ¢ LA A\\j,flm )

there exists a bounded linear map L e X (W' ) such that u = Lf is a

solution of {3.11), for every fe Wi



Moreover
(814) (3 =% Jhuly, ¢ B,
Finally, if j > 1, then u e W if and only if f e WY

Here © and ¢ are suitable positive constants depending only on n, N, p, j Q .

In proving theorem 3.1.1 we proceed in several steps:

32. PRELIMINARIES

We summarize briefly some later useful inequalities, Let (L be an open,
bounded set of R" satisfying a uniform interior cone condition. Let pe L+ [

be fixed.
We denote by r = 1(p) and s = s{p) two reals such that:

r=p ,ifp>n, S=p ,if p>n/2,
(3.21) r>n ,ifp=n, s>nf2 ,if p=n/2,
r=n , i p<n; s=n/2 ,if p<n/2.

By using Holder's inequality and the Sobolev’s inequalities one verifies

that there exist positive constants ¢ = ¢{n,N,pr,s,Q) such that
(32.2) HEF Wl\\, < elFlghwl,, , IGHDwl, gclGl I wi,

for every weW." | Fel® K Gel .
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Let us proof for example (3.2.2),.
If 9p > n, we have W " — C[q) and s = p. Therefore
UFllwll, < c(nNps)lFi, | Wi, <clFL lwl,, |

If % < n, we have W* s L' for p € q € np/(n—2p) ; s = n/2.
Let us take q = np/(n-2p). We get moreover p/s + p/q = 1.
Therefore HFHwHP < IFL wkﬁ%; . The Sobolev
embedding theorem above gives (3.2.2),.

If 2p = n, we have W** <+ L' for p<q< +e ;8>nf2
We take q = nsf(2s—n). Furthermore p/s + p/q = 1. As above
we get (3.2.2),.

This proves (322), . ek

From (322) one deduces that there exist constants c¢; = c. (n,Nprs, Q) i = 1.3
such that

VA% Vzwl\p e \Uvijtawl,
(3.2.3) [(Av-Wiwl, e lavllawl, |
03

Lafaw)l, <oy (WAL, ~ VAL, ~ 1AL, JAwl, ,

for every we W . Note the equivalence of the norms Awl, and Iwl,  in W.° |
0 14 up

33. THE EXISTENCE THEOREM OF (311) IN W °.

Let us define

(831 T =Q/p)idivvi_+2¢, Vvl +clavl + c,(TAL . + LA

4,

+ 1AL ).

One has the following result:



Theorem 331, Let pell,+w[, FeC* and

(332) C oveW AWM AW AW A L® .

Let us assume that (3.1.2) holds,
Then, if X ><J, and feW’® there exists a unique solution ye W% of (3.1.1).

Moreover
(333) (A= )iayl, < lafl,

and the estimates (3.4.3) (3.5.3) hold.

In particular () -3, oyl + W}fiP + 1yl )< 1AfL, + Wi, +1fl, .

Note that W"* is the Sobolev space W' (Q) = {uel” : D’uel™, (Sl¢ i }

endowed with the usual norm 1l L

Froof Let €& be a constant > 0 , and let us consider the elliptic

system with Dirichlet boundary conditions

(33.4) -t Dy, + Ay, +~(v7)y, +Ay, =f, nQ,
(5: )] =0.
r
For X sufficiently large { )\ > J, gives an existence result for (3.3.4)),

the problem (3.3.4) has a unique solution ye W.** .
Since y, =0 onTl it follows from (312) that (v. ¥ Jy, =0on [,
Therefore (3.3.4) yields

(3.3.5) Ay, =0 on M.
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Our aim is to get the solution of (311) as the limit for ¢ — 0" of the
solutions of (334). To prove the existence of that limit we are looking for
estimates, uniform in & , for the norms of the solutions of (3.34) in a suitable
selected functional space, more precisely, in ML"‘? )

Let us therefore consider a positive parameter @, and set N\ = (@ + |Ay,\* )/yl'.
By applying the Laplace operator to both sides of system (3.34), and taking the

scalar product on R with AY™ Ay, and finally integrating it over (L, one gets

Q

+ gA(Ays )} XAy, dx = SAf-l\"'ZAyE dx
2 Q

(336) - SA(A)'E ) K‘LA}'E dx + )\j\Ay;‘\z/\P'L dx + jA[(v-V)ys 1A Ay, dx +
Q2 Q

Let us consider (3.3.6) term by term.

By doing an integration by parts, and by taking in account (335), it follows

887) - <[alby, My, dx= e|Dlay, YDAy, ) dx
Ll Q

Without difficulties one shows thai

D(ay, DX *ay, )= K*IDAy, T + p-2A' DAY, 12 ), ae Q.
4

Hence

(3.3.8) —sgA(Ays ) /\‘NA)(2 dx = gg/\wiDAy&\" dx + d_g:@)&&”"’\D(lAya\" N dx .
Q Q * Q
This proves that the left hand side of (3.3.8) is non—negative for p » 2.
For pe]1,2] we had to observe that

D{ay, )DIN*Ay, ) =
= NID(ay, J* +[(p-2)/2N™" DAY *)- by, )4y, >
> AFHD(Ay, I + (p=2)AF"% D(AY )P |A y * =
=[@ + (p-1)Iay, [ I ID(Ay, V™.
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Hence, the left hand side of (338) is non-negative for p ¢ JH+eo [
Let us now consider the third term on the left hand side of (3386).

Straightforward calculations prove the identity
Allv-vly, 1= (v-V)ay, +29wv:7%, +(av-Vy,

Since D.(Ay, )-AyN7= (1/2) N D.(IAy,1*) = (1/p)DAF , an integration by parts
v [ (3 v 3 v

implies

S[V»V]Aya‘f\"'zb.ys dx = —[1/p)§[d'w VAP dx .
Q. EOR

This yields

©39)  [Allvvly, F7Ay, dx = ) @i AT ax -
L Q

+ 2&(7':: V’“ya )/\"'ley‘E dx + S [[Av-V]yE ]/\‘,_sza dx.
Q- Q

From our considerations above it follows therefore

(38.10) - agA(Aya N Ay, dx + )&}Ayg\" A dx - (1/p) S(div VAN dx g

QO Rol 2
<2 g\Vv: VZY&“ By \N™ dx + gl(AV'V)Yg“s\A}'EK/\Y-L dx +
Q a
+ StA(Ay£ WAy W™ dx + glAf\\AyEU\*"z‘ dx .
L Q

Since 0  |Ay, | ¢ N™* | the Lebesgue’s dominated convergence theorem applies
as @ — 0°. By taking in account that the first term on the left hand side of (3.3.10)

is non-negative, and by passing to the limit as @ —0", one gets

(3.311) }\S\Ay&\" dx - (1/p) g(div v)l&yé\P dx <
2 Q
¢ |@TwTry - ey i) - jalar, - 10 dx
0
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By taking in account (32.3) and (33.1) we get in particular (A —J; )! Ay.l, < IAfl,
Since the y, are uniformly bounded in W.” there exists a subsequence y, (we use the
same notation for the sequence and the subsequence) and a vector function ye W, such
that y, converges weakly in WO"‘P to y (the convergence of all y follows from the
uniqueness of the solution of (311) which will be proved below). Clearly y verifies
(33.3). From the estimate above it follows also that & Ay, — 0 strongly in I, as
¢—» 0". By passing to the limit in (334), as ¢—0", it follows that y is a
solution of (3.1.1).

The uniqueness of solution of (311) and the estimates (3.4.3) and (3.5.3) will be

proved in the sequel. ok

34, A PRIORI ESTIMATE IN I AND UNIQUENESS RESULT OF (3..).

Let m, and M, be constants such that for every ‘Ef,eIRN, [gl = 1, the estimates

N

(3.4.1) m, < Mz;abj[x ; la. (x)Z ,
hold ae. inQ) . Define
(3.4.2) = (1/p) 1 div vl — m,

Clearly, ~J< (1/p)ldiv vl + M, <c(ivl,,+ 1A\, ),

for a suitable constant c. We have so the following result:
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Theorem 341, Let pel,+[, M'e C*, and
veW™ | Ael”, feL® .
Let yew * be a solution of (311) [resp. ye W™ be a solution of (3..1), under the
assumption (3.1.2) for the coefficient v].

If >+, , then

(3.4.3) (=% Jiyl, € Ul .

In particular from {3.4.3) follows that the solution, if it exists, is unique,

Proof: Let us define now A = (@ + |yi* )%" . By taking the scalar product on
of (311) with Ay, by integrating in L , and by taking in account (341), ,one

N

gets

344 )y N d - 0/p)| DN dx+ m, fynax ety ax
= a a a

Since 0 ¢ | yIAN™* A , the Lebesgue’s dominated convergence theorem applies as

@—0". For ye W." (if ye W' , we take in account (31.2)) we get

(1/p)g(v-V)lﬂP dx = 1/p§d1vv Jiyl? dx |
QL O

Therefore,

(N =0/p)Idiv vl +m Jlyl” <IFl 1y (

and hence (3.4.3]. -
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35. THE EXISTENCE THEOREM OF (311) IN W, .

Let Ae W"" A L . Recall (321). By using Hélder’s inequality and the Sobolev’s
inequalities one verifies as in the proof of (3.2.2) that there exists a constant
¢ = c(n,N,pr,00) such that IDAVwWI, < clAl, Nwl,, ,for every we W,*F .
Poincare’s inequality furthermore implies Wwl,, c\Dw\, , for every weW," ,and a

suitable constant ¢ = c(n,N,p,Q1). One easily verifies that

(85.1) lD(Aw]\\, <e (VAL + 1AL, JDwl, , for every we WS |
where ¢, = ¢, (n,)N,p,r,Q). We set

(35.2) I = /) div vl + ([TV]L + c, (WAL + 1Al ],

where [v] = ma \_Lz;(DLv-Jz-bm-
1g\=14
One has the following

Theorem 351, Let pe J,+=[,TeC*, and
veW A W, AcW'a L™
Let us assume that (3.1.2) holds.

Then, if X >, and fe W,” there exists a unique solution ye W.¥ of (3.11).

Moreover
(3.5.3) (N =1 )Wyl\, £ \Vf\P ,

and the estimate (3.4.3) holds.

In particular {» — )\‘\yllw e “Hﬂ? )
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Proof:
i) Let us first assume that A(x) = 0, and denote by J, the right hand side of (3.31)

for A = 0. Assume that \ > :9’;, .Let £ e W,"™ be a sequence such that f_—f in W*
as m— +« , and denote by y,. ¢ W.* the solution of Ny +(v-V)y =f_ given
by theorem 331. Set for convenience, A = (@ + |Dy,\* ]7", for a positive parameter @,

One has immediately, for v.n=0on [ |

n

(385.4) ﬁ Z[(‘!-V)D; Yo WDy, dx = (1/p)g(v-v)/\" dx = —(llp)S(div VN dx.

=4

Q Q £
By taking the scalar product on R of both sides of the equation
ADiy, + (v-V)Diy. +[(Dv)-Vly, =Dif, with N*D.y, , by adding for

i =1,.n, by integrating on Q) , and taking in account (35.4), one gets

IRl

QO O L1

= | LDt Dy N ax
QL-’\

(35.5) kngym\”/\”“ dx — (1/p]j (div V)N dx + gi[(Dw).v]ym D.y. N dx =

Hence

(35.6) k&lDym AT 4y - (1/p) ldiv v!
ol

/\zj dx £

foce]

pL//"v

< XX[VV]EEDym\L/\‘"L dx+§lDfm\\Dym\/\""' dx .
O O

By passing to the limit as @ — 0%, we show that ( \ - ) lDym\P < IDE,
where ~J, denotes the right hand side of (352) for A = 0, For m sufficiently large we
get so a uniform bound in the L —norm for Dy, . Since W." is a reflexive Banach space,
we get a solution ye W,° of Ay + (v-¥ )y = f as a weak limit in W, of a
subsequence of y, (the uniqueness result above guaraniies that the whole sequence ¥
converges to y).

Furthermore () — 7, ) IDyl, < |Dfl,
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ii) We extend now the result proved in part i) to the case in which A(x) = 0 and )\ >:§;.
Fix >4, , and denote by y = Tw the solution of problem Ay + (v-V)y =f + (x = X\ )w
for an arbitrary we W,% ({the existence of such y is shown in i)). If ¥ = TW ,one has
(X = F)IDy-y)\, €« (N =X)IDw-w)|, .Since (X=X} (X-F)<1,Tisa
contraction in W,". Therefore, there exists a unique fixed point ye W.* .,y = Ty. yis
the solution of Xy + (v-V)y = f, and one gets (X -7) 1Dy\, < |D{f +(X->X W, .
This implies { % —3,) | Dyl, < \Dfl, .

iii) Finally, we assume that A(x) £ 0 and that \ >, . Clearly )\ >¥ . Let we W,
and denote by y = Tw the solution of Xy + (v.¥)y = f - Aw (by taking in account
(851), we get Awe W."¥ | and the existence of y is shown in ii)). Let § = TW. One has
(% -%) IDy-Ply < IDAG-T, <o, (1AL, + lAln )1 DW=,

Since ¢, (WAL, + 1Al )= 74 —% ,and %\ >, , we get that T is a contraction in

W . The fixed point y = Ty 1is a solution of (311)
Moreover ( \ — Z‘i) lDy\? £ \D(i’—.«ﬁ.y)‘;p RS \Df\\o +c, (VAN + 1Al )|Dyl,
This proves (3.5.3). *hk

KZemark. The assumption ve W™ in the theorem 35. can be dropped.

In fact, let V' , A, f, N , be as in the theorem above, and veW"” v .n=0ont0 |
Let v, e W A W™ ,v.-n=0on" and v_—> v strongly in W"" .

Define 4 = (1/p) \div v).. + [TV, ]I, +c, [WAL, + 1Al ] Let ¢ =X~
and fix & > ¢ > 0. Then there exists Me N such that J, < g, +e <X\ ,form>M
The theorem 351 shows that there exists y, ¢ w_® such that
Mw + (0 V)Y, + Ay, =fand (X -3 )Uy0,, < VL, , for m > M.

It follows (% — 4, —& Jhy, 0, < WL .
Therefore, we get a solution ye W."¥ of (3.11) as a weak limit in W.* of y, ,as m—» -+,
It follows also ( » =%, —¢ )l yh, < IFh . Since ¢ has been fixed arbitrarily

LWy
we geb (3.5.3).
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36. THE EXISTENCE THEOREM OF (344) IN LF.

Let us first explain what we mean by saying that ueIf is a solution of (3.L1).

Definstron 361, Let ve W™ | Ael”® and fel’ .
We say that ye L' is a weak solution of (311) if y satisfies

(35 M - (LD« (Ar) = E1) ¥ tews
where Y = (, »'fu). We recall that p’ = p/(p-1).

N
Note that (uw) = SZ‘ u w dx. One has the following result:
ﬂl;»\

Theorem 361, Let pell,+«[,TeC 4, and
veW™ n W', AW AL”,
Let us assume that {31.2) holds.

Then, if N >, there exists a bounded linear map L e £(L% ) such that y = Lf

is a weak solution of (3..1) for every feL’.
Moreover (3.4.3]) holds.

Lroof: Letb f e WOA‘P be a sequence which converges to f in L. The theorem
85.1 shows the existence of the solution y, e W, of My + (vv)y + Ay =f,. From
(343) it follows that (% - & )y, - y.\. « Vf. - 1.l , and therefore {y, }
is 2 Cauchy sequence in L. Hence the sequence {¥m} converges strongly to a function y
in I | as m—s-+ oo . Since :Z.:;D;(VL ¥)e LY, Ay. e L', by passing to the limit in
AMym ) = Z;, D,(vi4)ym ) + (Ay. ,4) = (fn,9), we get that y is the desired
solution. The proof of (3.4.3) is immediate. ok
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Remark. The assumptions ve W™ and Ae W™ can be dropped in theorem 36.1.
Moreover, the map L exists for every N >J, . Finally , from the existence theorem for
the adjoint problem XY - (v-v){ - (div v)¥ + A*{ =g (see below) it follows an
uniqueness result for the above solution y, at least for sufficiently large values

of \ .

37. THE EXISTENCE THEOREM OF (311) IN W "%

For the sake of completeness we give here also an existence theorem for (31.1) in
the space W"‘?I, p’e JI,+<of.

This theorem is needed for the study of equation (4.19) in the case j = -1, see [4]

Denote by < , > the duality pairing between W." and the dual space WP

Beﬁhle'oﬂ 371, Let ‘,ewhw , AQL& ,and few—'uP'.

We say that yew‘hpl is a weak solution of (3.1.1) if y satisfies

(871) O = LD+ £ =<th  ¥teal),

where = (Y, ,.,{,) and A is the transpose matrix of A.

We proof the following statement:
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Theorem 371, Let p'e Jl,+=[, p = p’/(p’~1) . Let r{p) be as defined in
(321), fe C*, and |
veW  a W™ | AW AL
Let us assume that (31.2) holds.
Then, if X > ;" , defined by (373), there exists a bounded linear map
B: el (W"“") (as defined below) such that y = B:f is a weak solution of (31.1) for every
fe W™ (actually, (3.7.7) holds).

Moreover

*
(37.2) (A =9yl ¢ WL,y .

£Proof. By applying theorem 3.5.1 it follows that there exists a positive constant
¢; = ¢, (nN,pr,Q) such that

(373) MO ze (v, + Wyl + LAl « Al )

implies the existence of a bounded linear map B,e £ (W,"*) such that Y =B, ¢gis the

(unique) solution of the equation
(8.74) N = (v V)Y - (div v)f + AY =g

for every ge W,"" (note that (div v) e W™ n L™, and can therefore be treated as A* ).
Moreover

(3.7.5) (X = & )y, < el

e

The operator B, is invertible and we set A, = B;f . We denote by D(AP ) the
domain of A, , ie. the range of B, .
The operator A, is closed in W, (in fact, since D(B, ) = W." is closed in W,* and B,

is a bounded and linear operator on W** | it follows that B, is closed in W." . From
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the existence of A, = B: follows that A, is closed in W." ). Moreover
(3.7.6) D(A? J={f e W™ : [v.v)¥ e W)¥ }.

In particular one has (1) < D{A, ), and therefore D(A‘, ) is dense in W, .
Denote by A’; the adjoint of A, . Since A7 = Bye £ (W™ ), we get
(AY )= By e Z (W ™"*") (this follows from a result on Functional Analysis which will
be recalled below) and By lg(ur) = 1By lygy-rwy -

Consequently, the equation A:, y = { has a unique solution y = B\f f , for every
feW™ . This equation is equivalent to <A { ,y> = <Y f>, for each { e D(A, );

hence it is equivalent to
@77 O = (r-9)Y - (div V) + A" > = <>, ¥(eDA,).

In conclusion, y = B*f is a weak solution of (3.1.1).
Moreover |y, = WBLFUL, < UB; homor )if = |B \\uw‘vjf\\ o
In the other hand (3.7.5) can be written ( ) — & ) IB, gl,, < legh, .

These last two inequalities imply (3.7.2). Faxx

Kemark. We have the uniqueness of the weak solution of (31.1) in W i it is

defined by using the equation (3.7.7) instead of (3.7.1).
Let us recall the following theorem used in the proof above:

Theorem. Let X and Y be two normed linear spaces and T a closed operator from
X into Y. Assume D(T) = X. If T’“ exists and T"'e £(Y,X), then (T*)" exists and (T*)"
e L(X™,Y™*). Moreover (T*)" =(T™J".
In the other hand, if Y is complete and (T* )" exists and (T*)'e & (X*,Y*),
then T exists, T e £ (X)Y), and (T*) = (T T

Note that | T “sé’(xp() = ig(p | Tx \\Y
\\x\\XM
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38. A PRIORI ESTIMATE AND EXISTENCE THEOREM OF (811) IN W

In this section we prove theorem 311 We start from the main a priori bound.

Theorem 381, Let pell,+=[ and j> -1 verify (j+2)p > n. Let ve wier satisfy
(812), A e W™ and fe W™ |
There exists a positive constant & = c{n,N,p,j, ) such that if X verifies
(313) and ye W™ is a solution of (3.11), then

(381) (3 =5 Dyl < VLG,

Lroof. Let § =(§ ,.,§,) be a multi-index such that I§| = . By applying the
operator D¥ to both sides of (3.1.1) one gets

(382) APy« (vyDy~ )T (1)Pv D1 @uy) +
=4 1$hzls‘
) (S>D'LA D*1y=Df , mnn.
osiv[lej 'l

We define here A = (@ + |D! yl* ]4"’ , where @ is a positive parameter, and
|DYy|* = Z: i |D? y.\* . Similarly to some previous proof, we take the scalar
15[:3 “"-"\
product on R" of (382) with N DS ¥. By adding then side by side for all indexes
§ such that 18| = }, by integrating in £ , and by taking in account that the third term
(resp. last term) on the left hand side of (882) is bounded by
C“ﬂ\i*w i y\\j\‘) (resp. ¢ NAN; s ) 3'“5‘? ), it follows that
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(3.8.3) )\SIDiylb/\‘“‘ dx ¢ (1/p) ldiv vi l/\I: +
£

(Ul + WAL, Uy U AL + (DI AL

The Lebesgue’s dominated convergence theorem can be applied as @ —0%. It follows
(38.4) NDiyl,  <oliviy,, + VAL, o Jlyig, + DL, .

Since (38.4) holds for every integer j, , 0 £ i, < j, by adding side by side all

that estimates for j, = 01,.,j, one gets (3.8.1). Frx

Now we are able to proof the main result of this chapter.

Proof of theorem 311

i) We prove first the statement of theorem 311 for -1 £ j € 2
Let I be a fixed ball such that C. C I and define maps T,e L (Witer ,Wj“’s“’ (),
T,ed (WP Wi*2® (1)) such that (T, v)[ﬂ= v, (T, A) in.: A If j=0[resp. j = -1],
let T,e Z (L° L7 (1) [resp. T, e L (W™ W™ (I))] such that (T, f)I_Q= f {in the
case j = 0 we define (T, f)(x) = f(x), for xe 2, (T5 f)(x) = 0 for x¢<Q. ; therefore
Vil o= T, HP:T- }. For j =1 and j = 2 we define T, e L (WiP  WIP (1)) such that
(T, f]'n =f Weset ¥ =T, v, A = T, A, f= T, f. Without difficulties one proves
using Sobolev’s inequalities that the coefficients ¥ and A verify in the ball I the
assumptions of theorem 371 for j = -1 ( we have to use the statement of theorem 3.7.1
with the roles of p and p’ exchanged), of theorem 361 for j = 0, of theorem 351 for
] = 1, and of theorem 331 for j = 2.
Let us give for example the proof in the case j = O
Our hypotheses are pe Jn/2, +=[, Ye WX (I), A e WHP (1.
Since 2% > n, we get v e W' () [resp. A e L™ (Il
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If p > n, we have immediately ¥ ¢ W*" (1) [resp. Ae W™ (I]]
If p=n, we haver > n. Since W™ < L} , PLq< +=, i
follows ¥ e W™ )] [resp. A e W™ (01
If p<n,wehaver = n Since W «— L}, p £ q < np/(n—p), and
q =1 is allowed , we get ¥ and A as above, From 7 e w0
follows obviously (31.2).
Then by applying one of the theorems above , depending on the value of j, there exists
a constant ¢ = ¢(n,N,p,j, Q1) such that if \ >3’\j = (Wl -+ AN v )} and
fewbe (I) we get a solution Ve WHF M of \y+#V)y+Ay=T in I, and
{» —3\’:\ )l\}?t\j‘? £ l\f!\j&, . It follows that y = ’ﬂﬂ_ is a solution of (311) in o0 .

i) We prove now the statement of theorem 311 under the assumption j » -1 and pe In+w.
For j < 2 this was proved in part i). Let us proceed by induction on j. Hence, we
assume that the thesis hold for a value j » 1, and we will prove it for the value j+1.
Let ve Wie ,¥-n=0onl, Ae wirae , fe WY and assume thatverifies (3.1.3).
By the induction hypothesis there exists a unique solution ye W of (3.1.1). Moreover
(814) holds . By applying the differential operator D; to both sides of (311), we

get foreachi=1_n
(3.8.5) ADyy + (v-VIDy + ADyy +~ [[Dw)-Vly = D.f - (D;A)y ,in 00

Note that D, v e W¥*** and can therefore be regard as A. Moreover (D, Alye W
(38.5) is therefore again a system of type (311) on the nN unknowns D; y; . By the
induction hypothesis there exist T = c(nNn,jp, Q) and ¢(nNnjp, o) such that if
\ >_):3 =clly Ve * WAl Jonehas H= [hj;), 1Lj¢N, 1 ¢ign, He WP ,
satisfying (385) and ( % - %; ) W Hi i < e{ W DF | ip * VAN, 1 ¥V ). In the other
hand, also D; y; € WY is a solution of (88.5) for each i = 1,.,n. From the previous

theorem it follows H = Dy, Therefore ye Wi and

(386) (% =)Dy, CBOUDEY, + WAL, Uyl;,).
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The estimate (3.14) for j+1 follows from the estimate (314) for j together with
(386).
Set for instance ¢ = c[Npnjp, Q )= max {c(Npnjp, . ), cnNnjp, L )}+
+ ¢(nN,n,j,p,0), and &(N,n,jp.0)= max{&(N.njp,q), e(nN,n,j,p,)}.

iii) Finally, let j » 1 and pe Jn/(j+2),+=[ be fixed (the cases k = —1 and k = 0 are

already proved). Fix a real p, > p, p, > n, and let ve W yerif y (312) and
AWt 14 {f.. } be a sequence of functions belonging to W¥**  such that
for—f in W _Let N be such that

{3-87) "\ }/U. = C[Nrn)j+1:po :Q)( [ %4 “

AL TN + 1A 1\\3'*5‘?4, )

and let v, e WithP {hence ye Wi® ) be the solution of \y +{vyv)y +Ay =f.,
whose existence was proved in ii). We can apply theorem 381 We get from (381) that
{y. } is a Cauchy sequence in W™* | and converges o in W™ to a function y. The
function y satisfies (3.11) and verifies (3.1.4).
I Ye 1N, M1 let us fix a value X > | We consider the problem
ATy + Ay =f (-2 )w, w=W'" _ From above follows that there exists a
solution y of this problem. Let us denote it by y = Tw. If ¥ = TW, from (3.1.4) follows
(N = Ihy-y e € Ch =2 ) hw=wl) ip - Since T is a contraction in WU there exists
a unique fixed point y = Ty in W'* ; y is then a solution of (3.1.1) and satisfies (3.1.4).
Let us now suppose ve W™ y.n=0onT ,Ae W"**®  We consider sequences
{vm}ewj**“’“ ,Y.on=0onT, {A,}eW*™ such that v,—v in W*** and
A,— A in W ag m -+« From above follows that if ) > AR VAR
(note that from our assumption (3.1.) this follows for m sufficiently large) there

exists a solution y.of the problem )y + (v.-V)y + Amy =Ff in Q. ; moreover

)

(» - N IR Yl RGY “\S«: . Let y be the weak limit in W of a subsequence of the

sequence {y, } and y is the desired solution of problem (3.1.1). ik
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4 THE STATIONARY, COMPRESSIBLE NAVIER-STOKES EQUATIONS:
EXISTENCE OF SOLUTIONS (PROOF OF THEOREM Al

41, THE LINEARIZED SYSTEM

In this section we consider the linear system

-
—/;.Au—-vvdivu-o—kVO‘:F(x) ,
(4.11) { mdivu+vV +Gdivv=g , inQ,
u; =0
I

9

where F(x} = (F, (x).,F, (x)), v(x) = (v, (x),.,v.(x)) are given vector functions
and g is a given scalar function on QL | Let m, k, I ,Y are constants as defined in

the introduction. We are looking for a pair (u = (u, (x),..,u.(x)), &) soluticn of (4.11).

It should be emphasized that (411) is not an elliptic sysiem in the sense of
Agmon-Douglis-Nirenberg (see appendix), except if v(x) vanishes identically in <. . In
fact, let us consider the system (411), where for convenience we assume /L =m=k =1
and Y = 0. We have

—Au+V6' :F s

(412) divu+v.V6 + 6divv=g ,in (L,
u =0,
r

The system of partial differential equations (412), and (4.12), can be written as a

system of type (A1), where ICJ (x,2), x=(x,,..%)e ), is the matrix

Iy(x2) = 1212&3' , 1<ijgn
lh««‘j (x»fi] = —ljmm (X,E) = aJ s 1 £ j {n
lhﬂ,nﬂ [xla) = V(x)'a -+ a(x)
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We indicate a(x) = div v(x). As in the proof of theorem 212we introduce two
systems of integer weights s; and t; . Let us distinguish two cases:

If v(x) # 0, we assume s, =0 forig1¢n+land by=2 for1gjgn b, =1
In this case it follows that 1’--[x g) = Iylhg) for1<ign 1&jg<n+1 and
B; (0E) =0 for 1 < j g m, By(x,2) = v(x)-£. Therefore L{x,z) = (v(x) -2) Iz 1™

If ¥(x) = 0, we assume s; =0 for1¢ i n, Sa, =-land tj =2 for1<jgn,
tw.. = L In this case it follows that l’.~(x g) = lti (x,2) for1¢ign+l 1¢ j\< n,
and I, . (6,2) = L. (x,2) = a(x). It follows that Lix,2) = (1 + a(x))ig

Consequently, the elliptic condition L{x,z ) # 0 for real E;% 0 (see (A5)) can
not be satisfied unless v(x) = 0 for all x< QL

If v(x) =0 forall xeQl and if a is small (for instance, if |al, < 1), the sysiem
is elliptic. However, this last property can not be used to treai the term v.Ve as a
perturbation term. In fact, by assuming that e W™ | the term v-V6 belongs just to
LF . In this situation the equation (412), yields div u ¢ L' , and equation (412),

gives ue W™  gelf. Hence, from the point of view of regularity we lose one derivative.

Let us explain so the ideas used to solve the linear system {4.11) and we state the

main result of this section :

Theorem 411, Let pell,+=[ and j > -1 verify (j+2)p > n, Let Fe Wi™F G e WITP

There exist positive constants ¢, ¢, and Y = yopjn,y mQ) defined by

equation (4.1.30), such that if ve Wf:f“’ verifies the condition

(413) IV, < vk,
then there exists a unique solution (4,5 )e WGJ?P x Wit of problem (4.11).
Moreover

Il
(4_1‘,4) /ul \G“JH‘\O £¢ (1 -+ &%:—-) J’H\P c, /u J-\'J.,P
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Proof: By applying the divergence operator to both sides of equation (4.11),,
and by applying the Laplace operator to both sides of equation (4.1.1), one gets

{(4.15) -—(/x +¥ JAdivu + kA6 =divF |
and
(4.16) mAdivu -+ v.VAE = Ag-2Vv:V6 + AvV6 + Aledivv)] ,

n
respectively in ) . We recall that Yv:v6 = (Dv; JD; D& ). By adding side by
é«

side these two equations one obtains

(417 mk AS + v.V5 = G(Fg6), nQ,

/AL+V

where by definition

(418) GFgo)=Ag+ m dvF -[2Vv: V% + AvV6 + A(6div )] jn QL.
/W
In order to be able to solve equation (417) for AG  we replace G(Fg o) by

G{Fg, t) where T ¢ W™® is an arbitrary function. We consider so the linear equation

(4.0.9) mk y+vVy =GFgt) , inQ,
/xw
where formally y ‘should be regarded as AS " (actually, y =A§ if T =6 isa
solution of (4.1.1)).
Note that G is a linear map from W*™* x W**? x WI*® info W™ and by using

Sobolev’s inequalities one gets

(4110) NGy, < gl + m \F

R TR ML R

We recall that under our assumptions on j and <) | W is » Banach algebra.,
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From chapter 3, theorem 311, it follows that there exist positive constants ¢ and C.
such that if Wvll,,, < ¢, mk/( |l ) , then there exists a bounded linear map
Led (W‘i“’) such that y = LG is a solution of problem (4.1.9) and one has

(4.111) ‘ 1{;1)1)!) by, & chGl; .
(Note that in this case X = mk/2p+v ), ©=1/2, , & =c)
Recall that if j = 0, y is a weak solution of problem (4.19). In other words, y

satisfies
[/%%‘ ¥.4) - (div (v$).y) = (GY) , for every { ¢ W:‘PI i
Using (4.1.10) in (4.111) one gets
(4112) _mk ”J\r £ ¢ ( m “F“_‘;W + gl + |yl irap \\‘C“jnm>

= 1t p
/l'\')/

/u+v
Now let J e WJH‘P (see [14]) be the solution of the Dirichlet problem

(4.113) (/Hv)Aé“ = ky-divF, inQ,
e'l =0,
r
Moreover
(4.114) (/u + )Wllw CelF N, +ckiyl;, <
CelFiy, o +e A fugly, o+ vl el ]

We poin out that the function ' should be regarded as div u. Furthermore, the
boundary condition (4.113), is suggested by the property (div u)]r = 0, and this
follows from (1‘15)/3. (This property allows us to impose the condition (div v)| = 0 on

o v
the coefficieni v appearing in equation (4.11], ).



Let us define

(4..15) J, ) =) - F .
Obviously, the function J, verifies the estimate 15 g € © WU, . Since T = 0,
the theorem 211 implies the existence of a unique solution (u,& Je WP W of

the non—homogeneous linear Stokes problem

]

-/U»Au-i-kwf = F +y»VJ
(4.116) : div u = J, ,in L,
u[ =0,

I

L

Moreover (u,6) verifies the estimate

1

Jeap frap

(4.017) plul, kol < e [UF, o (o ML

Putting together this last estimate with the estimate (4.1.14) one gets

P Nuly,, ~+ k\\snm‘P Le (1 + ﬁ%) WFljne +

oy pl [igly, o+ IVl T, ]

The inequalities (4.1.3) and (4.1.30) imply

m P

(4.118) /““u“j*g,& + k\\ﬁ\\jﬂ‘? ‘g(kjg)“t“ju.p +C (1 +/1:\:‘ “F“j«-'\\v + C.z,/“h}\“g“'
We call now attention to the sequence of linear maps

(Fgt) — (F.G) — (Fy) — (F,¥9) —(F,J,) —(u,5)

where F is left unchanged, and the elements G, y, 7, +J, , (u,&) are defined by equations
(4.18), (4.19), (4.113), (4.115), (4116}, respectively. The product map is linear and

continuous by (4.1.18). Hence, if (u,,6 ) is the solution corresponding to the data
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(Fg, t, ) it follows that (u — u, ,& -5, ) is the solution corresponding to the data

(00, t-1,).

Therefore the estimate (4118) implies 16 - &1, < (/20T -<\y,,, and the

map T— & is a contraction in W¥**® _ Hence it has a (unique) fixed point 6 =t .
Finally, we prove that the pair (u,&) corresponding to the fixed point <T=¢ is

a solution of (411). We note that (411), and (411); follow immediately from

(4116) . The main point is to prove (4.11), .

From (4.1.13) it follows
(4119) y= A divuy _‘1<_divF , in Q.

The equations (4.115) and (4.1.16)
divergence operator to both sides of equation (4.116), and using (4119) one gets y =As .

Let us first suppose j > 0. Let y be replaced by (4.1.19) in the first term on the
left hand side of {419) and by A in the second term on the left hand side of (4.1.9).
This yields

yield AJ = Adiv u By applying the

P}
~

(4.1.20) Amdivu+v¥W +6divyv-g+mT })=0, in S .

On the other hand, since (div u)l ==3,¥ } = 0, (div v)! =0,¢g| =0, one
. . r A r s
has (mdivu + vV + odivy - g)IF =-my .
Therefore taking in account (4.1.20) it follows that

mdivu+div(ey)-g+mo =0, in Q).
By integrating in {1 both sides of this equation we obtain J = 0, This proves (4'1'1)2.
in the case j > 0.

Let us now suppose j = 0. y in this case satisfies the equation
(4121) (pk v - @v (1) 9)= (@), ¥ e A
¥y

We replace y by the right hand side of (4.119) in the first term on the left hand

side of the last expression and by AS in the second term on the left hand side of the
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last expression. This yields for every Y4 e W‘,‘"’l

(4122) (m Adiv u\) - (div(v¥), A& )} = (Ag - 2Vv:V% - Av.VE - A(e div v),%).
We claim that for every e W;‘P,
(4.1.23) ~ (div(vf),A0) + 2 V¥V + Av-V6 ,§) =(alv-Y6 %)

Let &, e C[Q), 6,—¢& in W™  as n—s + . The identity {4.123) follows for
the functions &, from the formula A(v. V6, ) = v.VAG, + 2V v:Vs, + Av.V6, .By
passing to the limit as n — + we prove (4123) for € . From {4122) and (4.1.23)

we geb
(4.1.24) Amdivu+mI+vV6 +6divv-g)=0 ,in ) .
As above we can immediately conclude that

(4.1.25) mdive+md +v7% +6divv-g=0 ,inQ,
since the left hand side of (4.125) is harmonic in £ and vanishes on " . Then
by iniegrating in {0 both sides of this equation we conclude " = 0. This proves {4.11],
in the case | = 0. '
(Note thai in the case j = -1 this argument has to be carefully handled since the
function Yo' has not a trace on " . See reference [4])

We have so proved the existence part of theorem 4.1.1.

We start now by proving the uniqueness of the solution of the linear system (4.1.1)
valid under our assumption (4.1.3).

Let {u, ,6, ), (u, ,6, ) be two solutions of (411) with data F and g Then
- 6, ) is a solution of (4.11) with data F = 0, g = 0,

(u,@')=(u4 —‘uz »64



By multiplying both sides of system (411) by mu and of equation (4.11) by k& , by

integrating over {1 and by adding side by side the two equations one gets

(4.1.26) | (p+» Jm i\ Dul*dx = —(k/2)5 *div v dx
Therefore by putting Mo = min { /u- , /u-v } it follows

(4.127) I ull £ ofk/2m /,L o) 1div vl

Moreover from § = 0 and (4.11), it follows that

(4.1.28) kigl, < cklvei,, § olu+v)lul,
Hence
(41.29) Wty el W) m Tl Nu g,

This implies that for a suitable constant ¢, the solution of (4.11) is unique

whenever Ivll. ., (mkp)/ [c( n+ Wl )" ] For convenience we set
Jrip }L ] /u

— mi Cqam m m Mo
(4.1.30) X min v ’ zc‘a(/ﬁ\v\) ? co(/u»’*\\’\)"k-

Then inequality (4.130) includes all the assumptions on I vl utilized in

proving theorem 411 *kk
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42 THE NON-LINEAR PROBLEM

In this section we prove the existence and uniqueness theorem A in the case j > -1
Recalling (1.1.4) we set

T, = sup o (6,a)1 , S; = layo,s )

TAL g N T L2.

We denote by ¢, a positive constant such that
(4.21) T eV Tl , {(5"” < S 1B, N e TP , V’FJ c W;i-\-zﬁ’

For convenience, in this section we denote by ¢, ¢’ , i » 0 posiilve constants

depending at most on n, p, j () ,/v. Yo, km%,, e X, X, X, L1, T, ,
S, (i=1,2). The symbol ¢’ may be utilized even in the same equation to denote distinct

constants.

In order to prove theorem A for j > -1 we prove the following statement:

Zemmas 421, Let pe Jl+oo[ and j > -1 verify (j+2)p > n. Let © e WP |

(b e W,f““’ verify the assumptions
(4.22) hThy,, . < les 1Y € Ly feg

and ve W™ | (fghle Wy Wj”m x W Then

[ ) 3 1 o b 2
VR, @, € M, o+ ey, )+ STl o+ oS AR
(423) 4
“ H(h,‘!,t,(&)‘\j““p < o’ \\h“j“m + c’cvm “v“s*lxv’“(b“\i*z;{? + C’( X°+‘X1) v “z:“'f’xl”

+ ¢ & Ss (v, Tl + Mgy,
m

4P Jr, P
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The verification of this result is based on the following lemma:

Lemms 422, Let pe l,+=[ and j > —1 verify (j+2)p > n. Let O be a domain in R"
having the cone property. Assume ue W™°  ye W™

Then the product uv, defined pointwise ae. in Q. , belongs to W' and there exists
a constant K = K(n,p,j,Q2) such that

(4.2.4) Nuvll Jup < Kluly \lvl\w\

Irap

Proof of lemma 422 We recall that Sobolev embedding theorems for we W™ | r

a non-negative integer, imply that for every index S, |8\ ¢ r there exists a constant
K($) = K(§ npr, L) such that

(425) IDwlx)l < K(S)Mwl,, =e onll,if (—18\)p > n;

(4.26) J(D wilPdx < K(8)IwI, , for p ¢ q. np/ln—(r—1s1)p], i (- ls1)p <
Q for p £ q <+, if (r-l5|Jp = n.

In order to establish (4.2.4) it is sufficient to show that, if hll j+1, then

J'[Drl ()l dx ¢ K'l tulf oyt ,

J+ryp Jrp

where K‘L = K,L[n,p,j,ﬂ.).
Let us assume for the moment that v ¢ C™ (). By Leibniz’s rule for distributional

derivatives, that is,

D {uv) = Z G) D®uD1-¢ v,

SéVL



-
[95)

it is sufficient to show that for any &< 1 l»[[\< j*+1, we have

ilDS uxD1™¢ v dx ¢ K,Ug Il ull;u‘r l\v\\‘jﬂ‘, ,

where K, 5 = K.lg (n,p.;, Q).

Let k be the largest integer such that (j+2-k)p > n. Since (j+2Jp > n we have that k 3 0
Let us first assume k = 0. Hence (j+2)p > n, (j+i)Jp < n

a) If 5] = 0, then applying (4.2.5) we obtain

Jngu(x)DTgv(x)i? dx = J‘[u(x)D’l v(x)I¥ dx ¢ K(np,jo)tuil foap { D1 ﬂ: <
O o

¢ ¥
¢ Kmpja)luly, o Uvi,, o

b) If “l —~§| =0, then

legu(x]DT{v(x) \Fdx = legu(x)v(x)l" dx .

0 Q.
Now, if 1§l = 0, we are in the case a). Otherwise 1§l » 1 so that (j+2- 181 )
Moreover

p <o

n-(+2-8p , n-(+tlp ., _ (2+3-Wlp o , _ (i+2p
n n n n

< 1.

Hence there exist positive numbers r' " with (1/r') + (1/r") = 1 such that

p £ r'p € np/[n—{j+2-181)p] , p < 1'p < np/[n-(j+1)p].

Thus by Hélder's inequality and (4.2.6) we have

B! , et
EDS u(x)v(x)° ( IDgu ”’ dx) < j\v(x)lrrdx>
0

L el
4/‘_1 ‘\/r
(K(e)] [K(n-3]] pullf  gvtf

Jrup M AR <

N

N



< K5 1" [K(y -5 IR\ Loyl

Jt2.p 3 AP

¢) Nowif 151 > 0 and W =81 >0, we have (j+2- 15| Jp < n and (j+1- np-sllpgn

Moreover it follows

n-(+2-151)p | n=(iwb=ly =6l -5 _ @+8-Wllp ¢, _ @3- , ,
n n n n ’

Hence there exist positive numbers r’, r* con (1/r') + (1/r") = 1 such that

p < r'p £ np/[n—(j+2~- 151 )p] , P < 'p & np/[n—{j+1- 1y —&1)p.

As above we have

r 4/!" 4/'—”
j[D‘u(x)m-d v{x)IF dx ¢ ( 5195 u(x)l" P dx> (S\D“f%(x]l”dx) <
Q 0 £

o Yo P
CIKGED [KOp-801 nulf, Wi, o

Let us now assume k > 0. Hence we have (j+2-k)p > n, {(j+1-k)p ¢ n. Let us also here
distinguish different cases:

a’) If 181< k, then {(j+2— 161 )p > n, so (4.25) implies

P

£
G YN

Jtap -

ﬂlpsu(x)m-%(xw dx ¢ [D°ul, lD'l'Svl: < K 1ull
Ll

b’}  Consider now the case Iy -8l ¢k
If IVL—-S | ¢ k-1, then (j+1- \1—51 Jp > n; using again (4.2.5) we have

j ID® u(x)D 15 v(x) IF dx ¢ [K(q -8 I TRV R
0

If 1n -5\ = k, then 18l = \VU - k & j+1-k If 18| £ k we are in the case ).
Otherwise || > k. Since

n - (j+2-lsl)p 4 n-(j+1-W-6l)p
= + — <4




(4.2.4) follows in the same way as in ¢},
¢') Finally, if 151 > k and l'L-é' | >k, then (j+2-15| )Jp < n and (j+1- W =l p < (+1-k)p ¢
< n
The proof of (4.2.4) follows then as in ¢),
This completes the proof of (4.2.4) for ue Wi*™F veC™[Q)

If ve WY , then there exists a sequence {v, } of C™(Q) functions converging to
v in WY _ Then by the above argument {uv, } is a Cauchy sequence in wire , So it
converges to an element w of that space. Since (j+2)p > n, u may be assumed continuous
and bounded on {). . Thus

| w—uv U‘.iﬂm £ \\w——uv.,ﬂj,mp + W{v—v, Ju llJ-Hm £ ikw—uvn\\jﬂw + luig v—vnujw—*o
as n —s+  Hence w = uv in Il and so w = uv in the sense of distributions.
Therefore w = uvy in W' and tuv e € lrl‘rg* sup Muv g, < Klu L7 U 4 Y

This completes the proof of the lemma 422 rE

Froof of lemma 421, By recalling (16) we have to estimate
Flfy,t,) = (v +m)[f - (v-V)v] - wlT,plve - w,(c,g)Np ,
H(h, v,r,ﬁ] (t+mh — ¢, (m+TIv-V3 + Y(vy) + .ELG_ o(T,g)v-vr - ¢g) ,
in the W™® norm. Using lemma 422 and (422) we have

I (T +m)f i wp € ¢’ M fljeyp, . Being Wi Banach algebra and taking in account
(42.2) we obtain |(T+m)(v-V)vlj,, < ¢ l\v\\“g\? Finally,
ooy [t,(s)vm\jw R CS,‘(\\Vt\\jHlP + AIplg, Juezl;
' wZ(r,{s)V[Hj,,w € e5, (WTTy;,, . + W9pl;
Again using lemma 422 and (4.22) we have

e and

Feup )WV ly,,, ; this proofs (4.23), .

U (T +mhij,, . ¢ Uhly,, . . From the fact that W% is a Banach algebra follows
ARZH) J+4p

(t+m)v e W™  Lemma 422 then gives Ic, (r+m)v IBYup Koy & Uvl, Uph

From (12) we get immediately Y (v,v) < 4 Z %) o+ A ldiv v)©.

Since W3 . C° , the following estimate holds.
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vyl € Y. v vl\;‘”‘\o + Y, ¢c ilvﬂ\:-'ﬂ\? g e(X, +%,) \\V\\;s‘v :
Finally by taking again in account lemma 422 we get

l\é%@_ w,(T,plv Ve - g)\\jﬂ\\, & c’é%(l\ﬂjum VTl +. NE Wjenp ).

This proofs (4.2.3),. : ok

Theorem 411 lemma 421, and classical resﬁlts for the Dirichlet problem {4.28)

yield the following statement:

Theoremm 4292 Assume that the hypotheses in lemma 4.21 hold, Let ve woff“’

verify (4.1.3). Then there exists a unique solution (u,% ) e Wy Wiae  of problem
o,d

~

—/LLZ_\.u—deivu+k76‘ = F(fv,T,p)
(4.27) { mdivu+vV +6divv=g |, inQL

ul =0

]"l

and a unique solution d.e W)™ of the problem

(4.28) - Xad = Hhy,t,p) in O,
oél =0 .
r

Moreover

) 2 LS 2
(429) !udlull‘h_&'P + k\\(ﬂ\jﬁ‘? £e (ft.;./%*;ﬂ)[ “f“jﬂ,v + \\v\ljﬁl‘) + l\t\\j+l.\>+ \\@\\J“,P)

vl
+c, w;nv I\gumlp ,

(4210) Kbl ¢ Il o+ ey by, , el
+ %, S, (v
m

+ SR KUV,
+ gy,

)

e 7

j+l‘p

Nzl

j-‘u‘p 3'*"l’(’



In the sequel the solution {u, &, ) of problems (4.27), (428) with data (v,t @)
is denoted by (u,o,x) = T(v,t,p).
Let us write (4.2.9), (4.210) in the abbreviated form

WUl + MO0 QUL+ ngly,, + wvig, o+

J+ap J¥ap
* “t“.;'z\p + 0 (s“z“"-?.l" ) }
(4.211)
3 2 2
T AL T AT T L R T
Set
i j 1
(4212) r,=min{ vk, 1 , LYy, 1 .
L s 5S¢, ¢y 5¢
Let re]0r, ] and assume that
(4.2.13) WEl, . < rt | Ilhllj“,P L, “g“&«z,\p re
and that
(4.2.14) Wrl,, <1, Wi, €T, Wk, < 5cr”

Under this assumpiions the conditions (413), (422) are satisfied. So from
(4.2.11) we obtain for (u,6,«) = T(v,c,p) the following estimates

(4.2.15) Wul Wl ST Tl € 5¢%,1”

Jrap £r,
Consequently T(B,.) ¢ B, , where B, is the subset of Wj::“’ x Wie g Wit

defined by equations (4.2.14).

To complete the proof of theorem A we show that T is a contraction in B, respect to the

norm W," x L
Let (u,0,4) = T(v,T,p), (u,,5,,4,) = T(v, ,z, B W F o= F(f,v,r,(},),

F, =F(fy, ,7,,3) H= H(hyv,T,p), H, = H(hyv, ,t, » By ). One has

X W, if r is sufficiently small,
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(4216) | - pA(u-u,) - ¥V divlu-u,) + kV (6 -@,) = F-F, ,
m div(u-u, ) + v,V (6 ~-6,) + (v-v, )-Vo + G, div(v-v, ) + (6 —-5, )div v =0

in 2, and
(4.217) -XAl-d,)=H-H, ,inQy .

Here we use the notation I W, =1 W, . By multiplying both sides of equation
(4216), by m{u-u, ), both sides of equation (4.216), by k(& - &, ), by integrating the

resulting equations in & and by adding side by side we show

(4.2.18) m/u— MY u—u 1 € miF-Fl_ lu-ul, =+

+ cklglj,,  lv-ul, We -6, +cklvl, No-gl.

JHyp
Note that in proving (4.218) we use the Sobolev embedding theorems , in
particular, w1 , where 2% = 2n/(n-2). Furthermore, we L, ~-Ge i +)p €< 0,
and then 1/2 + 1/2" + [n—(j+1)p}/np < 1.
Arguing as on proving inequality (312) in reference [3] we show that
(4219) tu-un; + & (i liviy, J15 -6

NG, Wv-v);  + ¢ IF-F, I,

+3,p

Moreover
(4.2.20) Wl —o,\, & ¢WH-H,I_,

We will establish on the end of this section the following estimates (4.2.21),
(4.222) :

(4221) \F-F|_, <o (WY, - \wqu},gu, Jht—-TH, +
+¢' (1 + Ty, ) @A + Wyl o Nv—v,\, -

Jrap J+3,p
+¢ (\\t\\dﬂ\p + \\T‘\\J’flm + \\@\\jﬂ‘? + “(54\‘\%1‘9 X fe-Th, +\p -{51\\0 )
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and

(4222) 1H-HI., < (uvl jap Ml

ap T Wl v B, Jhv-va, +
+c’ [“h“JHlp * “g“jmp * (%“ju\v * Rt“:\ﬂd’ )uv“jﬂ-\’ +

+ [+ oy, * Mo, *EE,, T 1B, )l\n\\;nl‘:]“‘f«‘&o *
I
+c(nguw + W)

(1< 1 * “"«“m.v Yol T
+ v‘nj-ka‘p )“l% —ﬂ’«&o

\f*la? Jra.p

Now by using (4.213), (4214) it follows that the coefficients of fv-v,i, , it —T,l, ,
Wb —-p, in the right hand sides of equations (4.2.21), (4.2.22) are polyncmials on r,
vanishing for r = 0, and with coefficients which are positive constanis of type ¢’

Also the coefficients c’suvlld-,,m, and ¢ 1\54\\’;’2‘? which appear in the inequality
(4.2.19) are polynomials on r of the above type. Since the exact form of these polynomials
is not important here we denote them by the symbol ¢ = ¢ (r).

Using this notation the estimates (4.2.19), (4.2.20), (4.2.21), (4.2.22), yield
2
4

(4223) lu-u,l, +[c-¢hs AT v—vﬂ‘s\i + el + g— 3,03

(4224) W07 ¢ elv-wnl + elv-g} + el g,-—@_g.\‘o

By adding this results one gets
(4225) tu—u, It + (-e)le -6 1) + N —L L) g

¢ elv=rly + elT-TUE + elp- Ll

Hence for a sufficiently small value of r, T is a contraction in B, with respect to a
suitable norm in W x L x W .
To complete the proof of the theorem it remains to proof the estimates (4.2.21),
(4.2.22).




50

We start by proving {4.2.21). Recalling (46) one has

WF-F, 0, ( “(t_t*)f“« + “(r&—t)(‘l'V)\"\L,‘ + ut[(vq "V)~V}‘I, ., +
+ Ne(v-w)v, -v)W, =+ Umllv, =v)-vlv i, + Umlv-v)lv, -v)\., +
+ lofle, ,p)ve — ofle,plvel + Voo, 89 - olc,g)980,.

Recall that the Sobolev embedding theorems imply T,T,e C° (Q). Then t,T,e L hold.
We have also from those theorems for we WY*'" that we I, if (j+1p > n; we L“L%‘“FP, if
((+1p < n ; in the last case it follows also 1/2 + 1/2* + [n—(j+1)pl/np < 1.

Since fe Wit , using Holder’s inequality one gets
Me-T, U, < ehTt-T0 Wik, .

Under our assumptions the Sobolev embedding theorems imply v, v, e C' ().

2 2%
Therefore v, v,e W <, L°.

Hence making a suitable use of Hdlder’s inequality we have

I, = v Il <clwlf,, 1T -Td, |
Wellv, =v) v, € e0Thjuap WVl 1 V=Y0,
by o)y, —v)JU, celTij, LR AT e A
Wml{v, =v)- Vv, < € WVak s, BV-Va0,

im(v-V)v, —vJh_, byl Ly, -vi,

Taking in account B, 134 e L, it follows

“(")4(149 (‘)’4)vt1 - Q«(t)é]vt“-d \<

Tulx)
< SQ,\(Y1@4) dyll, = Nale B)V0 - nlz,p)veh 0 (
Tlx)
e (“t“\i“ﬁ’ + “ti\\d"ru[’ )“td“m‘\o +c \\"Cuja-i,\’\\(% —{3«Y\a

In this last estimate we have used the fact that VT e W'™P
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Finally, proceeding in a similar way as above one gets
Voo, 898 = o e,p)vpi, < (ho-Th, + 4p—plo Jipilj,, -+

TS, S‘sz(c,(é)(ﬂ—p, )41 dx  Su. g\coz TENp-A Ve ldx g
KU, &4 Wi, <1

< C’ (“T _-C-i“(’ -+ “6,‘-[6“0 ]“(54“5*\3'?
* O 0T, + Ve J1B = pl,

This proofs (4.2.21).
Now we proof (4.2.22). One has

IH-HM, ¢ Wlt-t i, +c l(t-t, wVBL, + Wlm+T, Wv—v, ) IpL_, +
+ Wm+T v V(- + WY (vy) - Yy, v, 0,
+ W(p=pdm+ )" wfe,p)v-VT gy, +
+ W2+ AT, —Om+ 1) (m+ 1, w,(c,p)v-Tc - g, -
+ W+ g )me ) [0y(7,) ~ wyle,, )Y — g, +
+ W+ plmeT, ) aft g -y, ) o, +

* Mg, + p)me 7)) ot p v -T O,

Recall that under our assumptions in this section one has |tri, <1 \t,l. <,
Ble <1, , \(AAN < 1, . Moreover recall the Sobolev embedding theorems mentioned in
the beginning and the observations leading (4221). So similarly to above one has
immediately |
Ir-7, )bl Lelhl, N, —Th, ;
cyllt—olv-v61, <(cyc Wi wayp 1B Nt—-tT,\, 5

- WMmeT, Jv-v, JVBI_ < e(m+luen;, W v-vil

JELp
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Furthermore, one gets

mT 0 9@ -0 € S jl(vc,)v (- g0l dx -

\\*e\\«

+ é&?‘ Sl(m+ T, J(div v, )(@‘ﬂq)‘?l dx +
Wl &4

- gup g(mm W, (v NB-pldx <
Hl\,é1

AT Vi, o 0B B, c{m-+1)( | v,} iusp L\m\jw) VS =,

Using again the fact that v, v,¢ c'), W Lﬂ, the Holder's inequality implies

BY(vv) - Yy, v, b, (X +X ) Wiy, = MWWy, ISR
Besides we have

Wp- N+ ey, 8)v-ve - g, < CTz(\\V\\ It -+ el I B =B,
JE2,p Jrdyp Jrap

Wz, +p,)e-g, )m+ 1) " (meT, ) ey (T, p)vve - g, <

\iic(iqr;h)T (v oneh,, , + el e-tal,

g+ f)m+,) " oy(z,8) —w (T, , g )r-ve — g,

<ot 1S, (MVhy Ty, * BB L, XAT-T, + W =B )

+2
m ¥

“(?;o )(m'*'t oo(t“(&](‘l—v STh, (B 1 )T, wely,, hv-v g

m



Finally it follows

I 5, (&4 Jm+T, )'4 m.z,(tA Py )‘I,"V(’C -T, )“-4 €

£ \esu ), SW@‘- , (m+ L‘,)'4 o, (T, , N T—T )4 dx =+
eWom 5
el <4
+‘{§u W2 Sl(t)o+ ﬁ*m &2.( ‘E'l’ﬁq )[t - .C1 )\H dx +
wen o4 & (m -+ T)
+\éu ItX Sl(t;" + (6’ Xm-'- .C‘\]"1 V‘A.z(t’\ ] ﬁq )'v4 (t —tq )\f\ dx +
U1 L2
- sup, g\(l’ﬁ 4meT ) o, g )=t R T dx g
“fu;« fel
€ e [ 14 + “\(?"\\\j-u‘p Ji/m + (i, “J-\—.z\? }/m)-
(T, + STy, o+ 8, Wy, My, - VT, -t

This proofs {4.2.22).

The proof of theorem A is accomplished. : o
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5. THE INCOMPRESSIBLE LIMIT (PROOF OF THEOREM B)

In this chapter we study the incompressible limit of the compressible Navier—Stokes
equations in the case WP , 1 > —1 (see theorem B in the introduction).

As in references [3][4], we study the system

o Au-vVdivu s+ Vp(g) = §If - (7],
(5.11) { div(fu) =0 , in Q. ,
ul| =0,
- I

describing the barotropic motion of a compressible, viscous fluid. We are interested to

study the limit of the solution u when k = p’g (m) —»+o0 .

Therefore it is necessary to state an existence result for problem (51.1) in which:

i) the dependence of some suitable structural constants of the state function p( ¢ )
in terms of k is given;

ii) the dependence on k of the constants appearing on the estimates is shown. Assume

that k » k, > O ( the constant k, has no special meaning since we let k — +).

Let p(§ ) e o ([m-1/k,m+1/k]}, where 0 < I/k £ m/2, and write p’g(g’] in the form
p’g (m+6) = k + o(&). We assume that there exists o & (0,1] such that

(512) lo(e)lg. < Slsl w6 e [H/kl/K],
and we denote bydlp a positive constant for which

(5.1.3) S¢ dk

We show so the following theorem:
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Theorem 511, Let peJl,+=[ and j> -1 verify (j+2)p > n. Let the above assumptions
on the state function p(¢) hold, let vewjf*" verify (41.3) and let

(514) kTl < Ve, .
If fe WP , there exists a unique solution (u,5)e Wi:'i"’ x W of the problem

- pAu - yVdivu+kVs = F(fy,c)
(5.1.5) mdivu+ vV + adivvy =0 ,in Q|

u/ =20
r

where F(fv,t) = (z+m)[f - (v.V)v] - w(z)ve

Moreover

Ated t.
J¥p

(5.1.6) lul

sy ukﬁﬂjﬂ“’ £ o L +c, 1yl

frap + ) 4) Ikt

2
j‘i'l\?

oy ma)i=1.3

where ¢; = ¢’ (n,p,j,

Lroof From our assumptions it follows immediately that Fewi““"_ Hence theorem
411 implies the existence and uniqueness of the solution (u,ﬁ}erff“’ x Wine o

problem (5.1.5). Moreover, using lemma 422 and our assumptions above one gets

HT+m)fly, . < cB/2mMflj,, |,
Mo mlv Vv, o < elB/2m v, 1T vl < el2viy,

Jrup
o atel
hole)vel,, € StTwwey, o < colklt

The estimate (41.4) then implies (5.16). This completes the proof of the theorem. o
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As in section 42 we denote by (u,5°) = T(v,t ) the solution of system (515). We

define

(517) ro =min{gk,_1_, t ( t j“},
[ 3(.‘{' 3l (P

and assume that fe W' is fixed and verifies

(518) I £ /8 ,forrelor, 1

fi [,

Under this assumptions using (5.1.6) one easily verifies T(B,. ) ¢ B_, where B, is

r o

defined by the inequalities

(51.9) vl <1, kTl

tp <r.

J.‘* Ay

Taking in account that k » k, and proceeding as in proving inequality (4.2.18)

)

there exist positive constants ¢, ¢, , ¢, ,depending at most on n, p, j, /»L , Y , m,
k, ,€1, such that

(5.110) Nu-uly + ¢, (i~c,ivl

A ke - kg iy <

J*3.p )

: o ud rA ' nd
< Sike ko hvv )+ JUF-FL,

id

where (u, ,6,) = T(v, ,7, ), F = F{fv,t), F, = F(f,v, ,z,). Again from our assumptions

and the fact that k » k, > 0, arguing as in proving (4.2.21), it follows

(GLit) WF-El < ¢ (Wl +0vii,, )ikt — ko), =

+ ¢ (L +0kTh, o Jhvhjs, + 0 Vil JUv-wl, o+
A
+ey o0k, o+ Mk ikt kT,

Using (5.1.9)-(51.11) and arguing as in section 42 one verifies that there exists a
positive constant r, 1, , depending only on @0, p, j Yo, m, L, &, k, O,
such that T is a contraction in B, for r £ r, with respect to a suitable norm in Wo"z x LF

What we have seen above we can summarize in the following theorem:
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Theorem 512, Let pe Ji,+os[ and j > 1 verify (j+2)p > n. Let the above assumptions

on the state function p{ ¢ ) hold. Then there exist positive constants ¢’ , ¢, dependin
7 g

Only on n, p, j:/"’ Y, M, ls‘? :Q‘ and ko N such that if fe WJH‘P and
N, € ¢
there exist a unique solution (v, ¢ )e Woffm x WP of problem (5.11), (13), in the ball

Mulj, € ¢, 1§ - mly, < c;/k.

Next we will prove theorem B. The assumptions on the family of state functions

P, (9} Ye [, +=[, are the following:

Let Dp, (9) denote the derivative dp, (9)/dS . We set k, = Dp , (m), we assume
that k, > k, > 0, and we suppose that p, (¢ )e Qi3 ([m-1/k,,m+l/k, ]), where 0 < 1 < k,m/2 .
Moreover we assume that | Dp, (9) ~ Dp, (m) lgisva € S,18- ml*  for a fixed Le {01]
Hence, by setting Dp, (m+¢) = k, +«,(5) one has ©f0) =0 and

(5..12) I, (&0 < 5,161 Ne e [-lk k]

@irz

We assume that there exists a positive constant ¢ such that

(5..18) S, ¢ ¢k ¥ Az

Proof of theorem B. By applying theorem 512 we get immediately part i) of the

theorem.
Let us prove part ii). Recall that W'™" is a reflexive Banach space for 1 { p € + o,
o, d

Therefore from the estimate | u,\ s € ¢, in part i}, we have that there exist a
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subsequence u , (we use the same notation for the sequence and the subsequence) and a
function u_ e szf‘\’ such that u,—u_ , weakly in Wf‘l” . The convergence of all u,
follows from the uniqueness of the solution of (1110) which holds if ¢, is
sufficiently small.

From equation (1.19) ,using lemma 422 and the estimates in theorem 512 we get
Wmdivuly, o € 6 divugig, .+ Yy v, € e Cs /Ky |
This implies div u,—>0 , strongly in W™

Since I div u,¥j,., € ¢, , one gets the weak convergence in W . From these
last two convergences we get divu_ =0inQ. .

From the estimate in theorem 512 , 1§, - mlj,, < ¢ /k, it follows §, —m,
strongly in WP
Finally, we pass to the limit in equation (119), . One has from the convergences

T pit 4P

above that Vp, (QA) ~——>/Li3u + m{f—(u, -V Ju_, ], weakly in W . It follows also

x \ - . g .
i +miu, —u,l fu, +

ug’)(u,v)uk - mlu -V Ju, i, < 18, -ml Vu Seup eap

+mi(u v )y, —u)l,,,

Jryp

. strongly in WP

80

and therefore §>[u oV u, —smlu_- V)u

P

Recall that IV = X, ® G, , where X, = {ueCT(Q) :divu=0} - , and G, is the

closed subspace of If such that uel”, u = Vg with g eW '™  (see reference [11]).

Therefore there exists a function T e WY  such that Vp, (S, ) —= VT,

and so (1.1.10) is satisfied. ok
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APPENDIX

A. A PRIORI ESTIMATES OF SOLUTIONS OF GENERAIL ELLIPTIC SYSTEMS,

We report here a theorem regarding a study of estimates pertaining to solutions of
boundary problems for elliptic systems (for an equal number of dependent variables] (see
theorem 10.5 in [2]).

1} The dsfferentsal equatsons conssdered.

The systems of partial differential equations considered will be represented as

(A1) LD = Bl i = 1N,

=%

where the I (x,D), linear differential operators, are polynomials in D = (D, aDa ) With
coefficients depending on x = (x, ,.x,. ) over some domain {) in R" .The orders
of these operators will be assumed to depend on two systems of integer weignts s, .84
and t, .ty attached to the equations and to the unknowns, respectively, s;
corresponding to the i-th equation and t; to the j~th dependent variable u;. The manner

of dependence is expressed by the inequality

(A-Q) deg lLJ (x: E) 'é S{_, + tJ ’ isj = 1:---:N:

"deg" referring of course to the degree in ¥ = (2, s E4). [We use the symbol =% to

Sn

; . s,
abbreviate monomials ' .- &

that ILJ =0 if S + th <0.

of degree ¥l =§8, + . +&, ] It is to be understood
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Adding a suitable constant to one system of weights and subtracting the constant from

the other we readily achieve, as a normalization, the condition
(A.3] s, £ 0.

Since, for fixed j, not all l;j vanish and since s; + &; » 0 for non-vanishing |

J g0

we thus also have
(A4) 0Lty g,

v being the maximum of the by
Only elliptic systems of the form (A1) will be considered. These are defined as
systems for which

(A5) L(x,2) = det (I(x,2)) #0 for real £

2 40
where Pﬂj (x,%) consists of the terms in 1;3 (x,%) which are just of the order s; + t; .

We must assume a

Supplemeniary condiiton on L . L{(x,£) is of even degree 2m (with respect to Z, ).
For every pair of linearly independent real vectors Z, , €', the polynomial L{x, £+ t¥')

in the complex variable T has exactly m roots with positive imaginary part.

This condition is actually used only at points x of the boundary I' of O with & a
tangent and E’ the normal to ' at x .
If m =0, (Al) may be explicitly solve for the u, in terms of E and their

derivatives; therefore we require here that

(A.6) 2m = deg (L(x,£)) > 0.
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Tniform ellipticity will be required in the sense that there is a positive constant A
such that

(A7) AT Lz ¢ Algl™
for every real vector € = (%, ,., £,) and for every point x in the closure of the
domain Q).

We require from to now that our systems (A1) satisfy the conditions (A2)-(AT)

and the above Supplementary Condition on L,

s1) The Complementing Boundary Conditsons.

The boundary conditions we consider refer to a regular portion I' of () . They are

expressed as
N

(A8) 2 By(xDlujlx) =4,0) on T, h=1,.m,
J‘=’l

where B“j (x,¥ ) are polynomials in £ with complex coefficients depending on x.
The orders of the boundary operators depend also here on two systems of integer weights,
In this case the system t, ,.\t. is already attached to the dependent variables, The
new system r, .t corresponds to the conditions in (A8), h = 1,..m; in other words,
r, is associated to the h-condition in (A8), h = 1,.m The exact dependence is

expressed by the inequality
(A49) deg By (xE) <1, + b ,

it being understood that th = 0 when 1, + < 0

Let B;‘j(x,a] consist of the terms in th (x,£ ) which are just of the order r, + b;.

The boundary conditions must "complement" the differential equations in presenting a
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well-posed problem for both. To do this, an algebraic criterion involving the 13J (x,£) and

the B\'\J[x,g) must be satisfied. We describe this below.

At any point x of T let n denote the outward normal and £ # 0 any tangent to I" (g,
in particular, is real). Denote by <TJS(x,£), k = 1,.,m, the m roots (in — ) with
positive imaginary part of the characteristic equation L{x, £ + t©n) = 0. The existence of

this roots is assured by the Supplementary Condition on L. Set

M2 ) = T(c -tz
Let (ij (x, £ + Tn)) denote the matrix adjoint to (l’;j(x, £ + tTn)). The above mentioned
criterion for the boundary problem (Al), (A8) to be ccercive is that the following

algebraic condition is satisfied,

Complementing boundary condition: For any x €’ and any real non-zero vector £,

tangent to I" at x let us regard M+(X,E,”C) and the elements of the matrix
N i« .
(A10) A B)(x, £+ vl (x, £ + Tn)
J=4

as polynomials in the indeterminate T . The rows of the latter matrix are required o be

linearly independent modulo M+(x,§,t), ie,

m N

Z: ) i +
C. th L =0(mod M™) ,k=1._.m

h=4 J=4

only if the constants C,, are all zero.

We report now a theorem which gives global estimates for solutions of a system of
partial differential equations (A1) that satisfy the Complementing Boundary Conditions
(A.8).

We consider a bounded, sufficiently regular domain €L . We assume that [ is coverable
by a finite number of n—dimensional open set Ug such that each intersection U—ﬁnf_)_. is

the image under a 1-1 mapping T\@, of the closure of a n—dimensional hemisphere Z

Rp
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Ry (1, the flat face of the hemisphere corresponding to Tf(b nT ; each Te and its
inverse have continuous derivatives of orders up to I + t' bounded by a constant x .

Let 1, = max{Or, + 1), h = {,_m, and let | denote a fixed integer » I i

Theorem A.L Let Q be a bounded open set in R as above; let IF, “L—SL

3

I &, lytnetey be finite for i =1, N, h =1_ m.
If Wul.ge is finite for j = 4,.N, then lu;l L+ p 2lso is finite and there exists

a constant ¢ such that

[~z

haa) o
(A1) Nujlie, <o WFl, , ~+ ;1\¢h\\wn-rh-%'P<r) M éiuj\r ).

=4 4

-

where ¢ is dependent on p, I, n, N, ¥, r, , A, k (which denotes here a bound in the
norm W'  of the coefficients in the differential equations and a bound in the norm
W L—\""F“’( ) of the coefficients in the boundary conditions), on X , on the domain ) ,and

the modulus of continuity of the leading coefficients in the l;j .

N ~

Remark. The term Z:iuj"'.r, on the right may be replaced by Z ly;\, or may be omitted
J=4 J=1

altogether when the solution in question is the only one for which u; has I derivatives

up to 1, + by, j=1..N.
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B. SOME PHYSICAL CONSIDERATIONS

Let us present in a concise way the physical considerations which bring us to the
system (1.11) (for more details we refer to [23]),
It is rather well known that the equation

(B1) f.j_%_ = Qf +div T

is the mathematical formulation of the fundamental principle of the dynamics of fluid
motion in a domain ), namely, of the principle of conservaison of ihe limear momentum
for a fluid (= the rate of change of linear momentum of a material volume of fluid
equals the resultant force acting on the volume) with %? = g—-€ + ,;:. u; Dy

We suppose here that the fluid possesses a density function ¢ = § (xt), where xe Q.|
and t is the time variable. u(xt) denotes the velocity field of the fluid, f(x,t) the
external force field per unit mass. We indicate by T the stress tensor of the fluid
associated to the stress principle of Cauchy (each component of T has a simple physical
interpretation, namely, T is the j-component of the force on the surface element with
outer normal in the i—direction).

The eguation of motiwon (B) is valid for any fluid regardless of the form which
the stress tensor may take. In order to complete this equaiion in the case of a
compressible and viscous fluid, which is our case, it is necessary to express the
siress tensor T in terms of other kinematic and thermodynamic variables. Such a
relation between T and other flow quantities is called a constitutive equation, For a
compressible ,viscous fluid some physical considerations get the classical constitutive

equation (Cauchy-Poisson law)

(B2) T =[-p+ (& - g/u,) div u]§; + Q/LDij ,
where ¥, - are the viscosity coefficients (2 » 0, /-L > 0) and D is the deformation

tensor D-Lj = (1/2)(D. uj + DJUL )
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For a compressible fluid p is the thermodynamic pressure and can be formulated as

(B.3) p=p(¢.2) ,

where 7 denotes the absolute temperature, The dynamical equation which results from
inserting the Cauchy—Poisson law in (B} is known as the Navier-Stokes equation for a

compressible fluid

du - - — ; ;
(B4) fek =§f- vp+ Vg §p)divu]+div(2pD)
Ir z , p are constants (this is not a strong assumption) this equations finds the

following formulation

(B.5) g =9f - Vp+(g+ 5/0.) (div u) /.LAu

Taking ¥ = & + %/.L we get for stationary, compressible and viscous fluid the following

equation of motion
(B.6) §u-Vu=§f - Vp(§,2) + »V(div u) /xAu ,in 00,

which corresponds to (1.1.1), .

The equation (111}, for g = 0 is the mathematical formulation of the premesple

of comservaiton of mass (= the mass of fluid in a material volume does not change

as the volume moves with the fluid) in the stationary case. {1.11), for g = 0 is
called the eguaiton of continusty for a stationary fluid. The case g % 0 is only
interesting from a mathematical point of view.

The number of unknown quantilies in the equations (111), - (111), is greater
than the number of equations, so that these equations are not themselves sufficient for
a complete description of fluid motion. This situation is remedied by the introduction
of a {oial emergy eguaison based on the principles of classical thermodynamics,
and later by the use of certain constitutive equations. Let us so deduce (111), in

the physically significant case when g = 0,
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We define the total energy of a material volume V as the sum of its kinetic energy

and its internal energy e . We postulate that the total energy is conserved, ie,
(B.7) 22 - 9h=TD - divq,

where h is the assigned external heat source per unit mass, q the heat conduction
vector. We indicate by T:D = é:; T4 Daj . The equation {B.7) follows from the energy
transfer equation (it describes the physical principle that the rate of change of
kinetic energy of a moving material volume is equal to the rate at which work is being
done on the volume by external forces, diminished by a "dissipation" term involving the
interaciion of stress and deformation) together with the first law of thermodynamics
(Q = Ae + W , where @ is the total external heat supplied to the fluid during a
process in which the physical system passes from one state to another, Ae is the
increment of internal energy and W is the amount of work done by the physical system
during this process).

In order to complete the system of equations of classical fluid mechanics it is
necessary to give a constitutive equation for the heat conduction vector q. We follow
the commonly accepted formulation and postulate that q is an isotropic function of the
temperature gradient and thermodynamic state. From the condition of isotropy it follows

that q must be parallel to VZ, ,whence follows the classical Newton—Fourier law

(B.8) q= —V(?(z’,\} .

X is the coefficient of heat conduction and can be assumed constani. The
thermodynamical condition q-VZ 0 implies %> 0. Taking in account (B.8) we get from
(B.7)

(B.9) S’[&- +uVe-h]=TD+ YdivVg =

ot n
= —pldiv u) + (£ - 2 )div W'+ %j (Duy; + Dyu S+ X Az.
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On the other hand, for a compressible fluid we assume that e is a thermodynamical state

variable e = E({,7) satisfying the relation

(B.10) ZdS = de - ?dg ,
where S is the specific entropy (it follows from the second law of thermodynamics) ,and
therefore
- (2E _ oE
(B.A1) Cds (.5?. _%Z) & + 2 dg .
It follows
B.12 E = A(p-7£2
(B12) = Lo-ok)
Hence
(B.13) ?[3e+uVe]—§[a?g+ Z +?95uv? +3§u‘72:]-

= S’J' d1vu+ g’aE[f,-'-uVZ,]

by taking in account the continuity equation %f- + div(u) = 0.
By comparing equation (B.13) with (B.9) and by using (B12) together with cy = ( t,) (c, is

the heat capacity) we get in the stationary case the following equation

-XAY + ¢, fu-VE +z;§P_d1vu— Ch +§-Z[Du +Du (E——/u Ndiv u)”,

ty=1

which corresponds to (L11), when X=£ ,%X=(g - %/L ). This equation together
with (111), - (L1.1), then gives a complete description of fluid motion.
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