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Summary

We review the main results on embeddings of Riemannian
manifolds in higher dimensional flat spaces of interest for
general relativity. Among others, the main theorems on
local and global isometric embeddings and the equations
determining them, the Gauss-Codazzi-Ricci equations. Then
we apély the embeddings to general relativity. By means of
a particular parametrisation of the embedding we are able
to decompose the metric and the affine connection of
space-time in their inertial and gravitational parts. The
steps towards a variational formulation of this approach

are sketched.
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0. Introduction

Embeddings of Riemannian manifolds into higher dimen-
sional flat spaces start to play an important role both in
mathematics and in physics.

In mathematics they are as o0ld as intrinsic Ri€mannian
geometry. In the physics of gravitation they are as old as
general relativity.

In mathematics they are conceptually important since
they allow to establish the eguivalence between the intrin-
sic and the extrinsic approaches to Riemannian geometry. In
physics it is expected they provide a better understanding
of the physics of gravitation.

We start reviewing the main theorems on local and glo-
bal isometric embeddings of Riemannian manifolds into high-
er dimensional flat spaces.

As a result of these thecrems any Riemannian manifold
Vn(t,s) can be considered as a local submanifold of EN(T,S)
with N=n(n+1)/2, T=t, S=s.

Then we consider a set of equations describing the
embedding, the Gauss-Codazzi-2icci equations. These consti-
tute necessary conditions for the embedding.

Then we study the cases in which one neéds only one or
two extra dimensions to do the embedding.

Finally, making use of the Euclidean global character
of EN(T,S) we introduce a particular parametrisation of the
embedding. This consists in writing EN(T,S) as a direct

product of two manifolds, EN:M 2B , with M being a maxi-
n

mally symmetric space. In the case of general relativity,
the space-time V4(l,3) is obtained by a dimensional reduc-

tion of M4®B6 into M4° This dimensional reduction is in

term of six fields #, which behave as scalar fields both in



Mn(t,s) and in Vn(t,s).

With the use of this parametrisation of the embedding
we are able to decompose the metric and the affine connec-
tion in their inertial and gravitational parts. The gravi-
tational part depends only on the fields introduced pre-
viously.

Having been able to identify the fields respcnsible
for the gravitational interaction we look for a variational
formulation for them. Einstein field equafions in term of
these fields look structurally very similar to Maxwell ones
" when written in terms of E and B fields.

As an example, in the Appendix we consider the embed-

ding of Friedman-Robertson~Walker spaces.




Part I. The Geometry of Embeddings

I.1. Introduction

The concept of an abstract Riemannian manifold arises
inmathematics as the result of the evolution in mathematic-
al attitudes. In the earlier period mathematicians thought
more concretely of curved surfaces embedded in a flat Eucli-
dean space(Gauss, 1827). The concept of an abstract Riemann-
ian manifold defined intrinsically was first explicitly for-
mitlated by Riemann(1868). Almost inmediately after the abs-
tract view of manifolds came into favor, a question natural-
ly arose, the isometric embedding problem, the gquestion of
the existence of concrete realisations as submanifolds of
higher dimensional Euclidean spaces of abstract Riemannian
manifolds. Today, we know that the answer is yes: any
intrinsically defined Riemannian manifold can be isometric-—
ally embedded, locally and globally, in an Euclidean space
of appropriate dimension and signature.

The embedding problem was first considered by Schldfli
(1873) just after Riemann presented his famous thesis.
Schlafli discussed the local form of the embedding problem
and he conjectured that a Riemannian manifold with positive
defined and analytic metric can be locally and isometrical-
ly embedded as a submanifold of a Euclidean space EN with
N=n(n+1)/2.

In 1926 Janet described a method of proof based on a
power series development, so it was limited to local
results. Furthermore, he required the metric to be analytic.
This proof however, as Janet himself noticed, was incom-
plete. He solved only the local problem for two-dimensional

manifolds with analytic metric. In 1927 E. Cartan extended



the Janet's proof to n-dimensional manifolds treating it as
an application of his theory of Pfaffian forms. The dimen-~
sionality requirement was N=n(n+1)/2, as conjectured by
Schlafli.

In 1931 Burstin completed the Janet's proof and also
extended it to the case in which the embedding space is a
given Riemannian manifold VN Wwith positive defined and ana-
lytic metric. In 1956 Leichtwesiss gave a new proof based
more substantially than Burstin in the Gauss-Codazzi-Ricci
equations of Riemannian geome*ry. His proof is more involved
than that by Burstin. In 1961 Friedman extended the theorem
to Riemannian manifolds with iIndefinite metrics, such as
that from general relativity. For semi-positive definite
metrics see(Lense, 1926).

The first global isometric embedding theorem of Vn into
EN were established by Nash(1956). The results depend cru-
cially on the compactness of Vq. For Vrl compact he obtains
N=n(3n+11)/2; for non-compact manifolds N=n(n+1)(3n+11)/2.
The first global results for indefinite metrics were obtain-
ed by Clarke(1970) and by Greez=(1970).

Therefore, any intrinsiczlly defined Riemannian mani-
fold has a, local and global, isometric embedding in some
Euclidean space. Then one can consider the two approaches,
intrinsic and extrinsic, to Riemannian geometry as complete-
ly equivalent.

In the mathematical literature there exist many results
on local and global isometric embeddings, but only a few of
them are useful for applications in physics, more particu-
larly in general relativity. Our selection of topics has
been guided by what people think is promising for an even-
tual application in physics. Since physics is normally a

local affair, the study has been mainly restricted to local



results. Today we know that global properties are as impor-
tant as the local ones, therefore, some global results are
also included.

The material of this part is arranged as follows. We
start defining what an isometric embedding is. Then we con-
sider the corresponding local and global isometric embedding
theorems. We introduce the concept of class of the embed-
ding; this is the minimal number of extra dimensions requi-
red to satisfy the Gauss-Codazzi-Ricci equations. Then, we
consider some results for class one and two isometric embed-
dings and finally we introduce a particular parametrisation
of the embedding.

The most complete reviews focused towards physics exis-
ting up to now are (Goenner, 1980; Kramer et al., 1981; Ro-

binson and Ne'eman, 1965).




I.2. Isometric Embeddings

Let Vnz(Mn,g) and §N=(EN,E) be Riemannian manifolds
of dimension n and N2 n, with metric g and G, respective-
ly. A differentiable map f:Mn—>ﬁN is a Ck(C“i analytic),
k=1, inmersion if (Choquet-Bruhat et al., 1982)

i, £ is of differentibility class Ck(Cw, analytic).
ii. rank(df)=n at all points péMn. Here df is the diffe-==:
rential of f.

An inmersion is not necessarily injective, there--u-
fore, f(Mn) is not necessarily a manifold. An injective
inmersion is an embedding. The set f(Mn) with the diffe-
rential structure induced by the embedding is a manifold.
It f(Mn) has a submanifold structure equivalent to the
manifold structure induced by the embedding, then f is
regular. Thus, if f is a regular embedding, f(Mn) is a
submanifold of MN.

The embedding f:Vn*%VN is isometric at a point péMrl

if ]
<al>ngv>:4;(A?~u/;;.v>

for every U, V in the tangent space Tp(Mn)' If (2.1)
holds only in an open neighbourhood of a point p—Mn, then
the isometric embedding is local. If (2.1) holds for all
points of Mn , then the isometric embedding is global.

Let x™, u=0,...,n-1, and XA, A=0,...,N-1, be local
coordinates on Mn and MN’ respectively. The map f is
given by

(2.2) X" = XM«

where rank(XAﬁ):n, XAW=2¢XA. The information about the

intrinsic geometry of Mrl and that about its situation as

a submanifold of M , the extrinsic geometry, are both
. . A . ' o
contained in X'=X (x#). With local orthonormal bases ﬁﬁ&s
(M), respectively, the com-
f(p) N pect v
ponents of the metric tensors of Mn and MN are defined by

and 92 1 of T (M ) and T
- A~ p n




(2.3) %(Qﬂjgu>:%y»\// G&QA/QB>:G/\B'
Equation (2.1) in local coordinates is

- B
(2.4) %/w) = GP«& 7<\Pr/w X S

with g:det(gMu)#O.
When talking of the embedding of Riemannian mani-= -
folds we will, generally, imply the local, or global,
isometric embedding of Mn into a flat space Eﬁ with
Euclidean global topology. Eventually one can consider
Riemannian manifolds which are, among others, (i) of

constant curvature, (ii) conformally flat, (iii) Ricci

flat, etc.



I.3. Local Embeddings

Now Vn(t,s)=(Mn,g#U(xk)) denotes a Riemannian n-
dimensional manifold with analytic and non-degenerate u
metric gpy(xk) with t positive and s negative eigenva-
lues, respectively, t+s=n. ﬁN(T,S) denotes a flat space
with Euclidean global topology with analytic and non-
degenerate metric @AB(XC) with T positive and S negative
eigenvalues, respectively, T+S=N. Finally, Vn(n,O)=Vn
denotes a Riemannian manifold with analytic positive
definite metric.

The first result concerns positive definite metrics
and is due to Janet(1926), Cartan(1927) and Burstin
(1931).

Theorem. Any Riemannian manifoid Vn can be analytic-
ally and isometrically embedded in EN with N=n(n+1)/2.

The proof consists in a power series development.
The generalisation to indefinite metrics is due to Fried- ’
man(1961). -

Theorem. Any Riemannian manifold Vn(t,s) can be ana-
lytically and isometrically embedded in EN(T,S) with
N=n(n+1)/2, T=t, = s,

This theorem can be stated in an egquivalent and more
illuminating way as follows.

Theorem. Let g#;(xk) be analytic functions in a
neighbourhood of x =0 and let @AB(XC) be analytic func-
tions in a neighbourhood of X =0. If N=n(n+l)/2, then
there exist analytic functions XA=XA(XP) in a neighbour-

hood of x"”=0 satisfying the conditions

WA= rere XEL =

J

B )= Grs (K] XA, ) X

The proof by Friedman, as that by Burstin, is based
in the general sketch by Janet but in the rest is a new
proof even in the case of positive definite metrics.

Sketch of the Proof. By mean of an analytic trans-



formation(Eisenhart, 1926) it is always possible to
obtain new GAB'S and new coordinates XA‘s which are
Euclidean in the origin

Gral) = e * ‘\i 9%@%@ XExP o+ OU@)
P = X0 L XE () e LX) e+ o)
xﬂﬁubrxmﬁvs«-xﬁMAQxV+gfx%maubex +0),
9= My 4 a8V NS+ 002),

Comparing to order 0(x°) one obtains

= T as XL XE (o)

T A\

-1 A 3\

& — B
T W U A KT La ) Pl e o) Aol
i“\g!\\y‘jpyko) «——g— “"'A“/\ N)\\)}V\ ,,:].,\)Ti A‘:‘X\fdf Nl >J
5 T e K0 RE ) = P X g (A7 LD

The proof proceeds by induction looking at an embedding
of Vn in>V£+l, etc. The interested reader is referred to
the original work(Friedman, 1961).

Thus, the theorem assures the existence of a local
analytic and isometric embedding of Vn(t,s) into EN(T,S),
with N=n(n+1)/2, T=t, S=s.

The proof by Friedman shows that the embedding is
not uniquely determined and that the number of free para-
meters is independent of the signature of the metric ten-
sors involved. For positive definite metrics this number
of parameters was computed by Leichtweiss(1956).

Both metrics, that of Vn(t,s) to be embedded and
that of the embedding space EN(T,S), can be chosen quite

arbitrarily, except for some dimension and signature con-

ditions. For axample, no additional restrictions are




imposed over the signature of the remaining, non-null,
N-n eigenvalues of EN(T,S). Based on a work by Rosen
(1965) and other results in the literature(Goenner, 1980)
one can conjecture the following.

Conjecture. Any analytic Riemannian manifold Vn(t,s)

is a local submanifold of EN(T,S), with N=n(n+1)/2 and

T =1t + tQt—Q/Z.sts—O/zy
S =5+ s,
For the space-time V4{1,3) of general relativity one

obtains Elo(a,a) which fits very well with recent propo-

sals in Kaluza-Klein theoriss(Aref'eva et al., 1986).



I.4. Global Embeddings

The first concrete result on global embeddings is
due to Nash(1956).

Theorem. Any compact(non-compact) Ck, k=3, Riemann-
ian manifold Vrl has a Ck global isometric embedding into
EN with chn(3n+11)/2(NnC=n(n+l)(3n+1l)/2).

In the proof of this theorem the positivity of the
metric plays an indispensable role and, in fact, the
proof breaks down if the metric is indefinite. The exten-
sion to indefinite metrics was given by Clarke(1970)
which in the case of non-compact manifolds is also an
improvement on Nash's resulzt,.

Theorem. Any C” Rieman=:an manifold Vn(t,s) with Ck,
k=3, Riemannian metric can oe globally and Ck isometric-

ally embedded in E_(T,S) wi=a N=T+S, S=t+1 and

N
P /..
T =uidn H()/z,

for compact Vn(t,s) and

M= bw v 8 W r 2%, 4|

3 Z 4

for non-compact Vn(t,s).
The next result, due tz %reen(1970), uses a stronger

differentiability assumptiorn.
Theorem. Any C* Riemannian manifold Vn(t,s) with ¢*
Riemannian metric can be globally and C* isometrically

embedded in EN(T,S) where N=T+S and

T= 5 = ulvsy)/z.

for compact Vn(t,s), and
T= 5= 20 ne) (as)

for non-compact Vn(t,s).

In the non-compact case the improvement over
Clarke's result starts only for n = 20.

All the previous numbers are only best bounds.

One unpleasant aspect of Clarke's theorem is the



dependence of N on the signature of Vn(t,s). Local isome-
tric embedding theorems do not do it. By the other side,
the Green's theoremkintroduces an artificially augmented
number of time- and space-like dimensions to guarantee
the possibility of hosting the time- and space-like
dimensions of Vn(t,s).

In many cases, N is wely@elow the minimal value
required by the local and global isometric embedding
theorems. This is the reason to introduce the following

definition.




I.5. The Embedding Class

The local and global isometric embedding of Vn(t,s)
in some EN(T,S) produces arithmetic invariants characte-
rising the intrinsic geometry of Vn(t,s). One of these 1is
the embedding class defined as follows. First, one looks
for a minimal embedding, i.e., a local or global isome-
tric embedding in a EN0 with the minimal possible dimen-
sion, N=N,=2n, and appropriate signature. The embedding
class of Vn(t,s) is defined as the number N_ -n. There-
fore, the embedding class runs from zero to N-n. For the

local isometric embedding of a space-time V _(1,3) the

embedding class runs from zsro to six. !

The invariance of the =nbedding class gives rise to
a classification scheme of Riemannian manifolds which is
on the same footing with the classifications with respect
to groups of motion or Petrov types in general relativi-
ty.

The equations constituting necessary conditions for
an isometric embedding f:Vn(t,s)4>EN(T,S) are the Gauss-
Codazzi-Ricci(GCR) equations. The embedding class e 1is

the minimum number of extra dimensions enabling to satis-

fy the GCR equations for a given Vn(t,s).



I.6. The Gauss-~Codazzi-Ricci Equations

Now, we describe a set of equations constituting
necessary conditions for an isometric embedding f:Mn-ﬁﬁN
The space Vn is considered as already embedded in V&, with
N sufficiently large, not necessarily flat. The curvature
tensor ﬁ(ﬁ,§)W€T(M) with 6,§ET(M) restricted to T(M) is
denoted by R(U,V)WeT(M).

The covariant derivative V%? on M is restricted to X=X

and Y=Y in T(M). Then the decomposition of V& into. tangen-

tial and normal(to Vn) componeants
(6.1) 7, V=T Y+ (X,Y)

defines the symmetric, bilinsar map LL:T(M)xT(M)-N(M),
called the second fundamental form of Mc¥; N(M) is the nor-
mal complement of T(M)eT(M) restricted to M. The condition
G(&(X,Y),Z)=0 is equivalent to Vzg(X,Y)zo. VXY is a linear
connection in the tangent bundle T(M), the usual Riemannian

connection. If f&N(M) a similar decomposition of §%§ leads

to

(6.2) Gx% = bx% + A\Xé)

ng is the covariant differentiation of a linear connection
in the normal bundle of M.
The linear map A:T(M)xN(M)-—T(M) provides the tangen-

tial(to Vn) component of ﬁxg and 1is connected to £l through
(6.3) C(A(X/ig), Y)'{’ C'—(-Q-(X/Y),%>: 0.

In local coordinates

(6.4a) VU\/: wt ('Vv//u +'[1U’A>\Vl>9;/



a 2 b\ ¢
(6.4b) DU%:LU‘ (N;,u +t,°, )éa
where

(6.5) U:U-MQ/A/ V:—‘ VMQIA, é: Naga

For what follows it will be necessary the following result
(Eisenhart, 1926).
Theorem. If the metric tensor of Vn is non-degenerate,
then the~§a canbe chosen as non-null vectors.
This theorem was originally established only for N=n+1l
but, by recurrence, it can be generalised to an arbitrary
A

N2>n. Therefore, the g are a local, orthomormal basis of
a

N (M) and
p

Yy

(6.6a)

Y,

a/éb :FL“’L: 4299 (= s B

)
s, 9

o

{

Jmp

(
(6.6b) é(
With

A
3

(6.7) ﬂ_(gﬂjgy): -1 /4,«1/‘%-5

it follows the expression

(6.8) A(Qﬁ;ga>:-ﬂ—-éy—y QV

—n?’*vare the components of N-n symmetric tensors in Tp(M)
which are also called second fundamental forms, or Gauss
tensors; they are the generalisation to higher dimensions
of the Gauss tensor of the quadratic second fundamental

——

form of a Vn embedded in a Vn 1 used in the theory of
+
N-n
hypersurfaces. tHab are the components of ( ) antisymme-
tric vectors in Tp(M). They correspond to the normal part

of the connection in M and are called torsion vectors,

because t’vl =0.
(ab)



The tensorsjiéﬂvand t';b cannot be prescribed arbitra-
rily, they must satisfy the Gauss-Codazzi-Ricci(GCR) equa-
tions, the integrability conditions for the embedding.
These are obtained as follows.

By combining the connections V&Y in T(M) and DX§ in
N(M) the covariant derivative of £ and A with respect to

the connection in T(M)+N(M) is defined

(6.9) VoL (¥,2)=Dy L (Y, 2)-5L(v, ¥, 2) =51 LY, %?)

(5.10) T ALY, = Ve A (Y, 6) - AT Y, €)= ALY, D6 ).
Also, the curvature tensor K(X,Y)é%N(M) is introduced by

(6.11)K{‘?{,\(>§ :<.DD< b\(‘] "D"D{l\’j)g.

Now, making use of the vanishing of the torsions of M
and M the projections parallel and normal to the tangent
space T(M) of ﬁ(X,Y)E} 2=Z+§, ZéT(M),éG’N(M), are obtained.

The result can be expressed by the maps

(6.12a) G TKTXT —> T
(6.120) (. : TxTxN — |

(6.12¢) & - Tx T T — N

(6.124) ¥K: TxTxN —= N

defined as follows

(61320 GLI Y B)=REGY) - RUVIZ - Al aly 2+ A ez

(6.13b) C (X, Y,%‘):E'\X,Y\)é\ﬂ—%xpﬁk\(;z§>+§7YMﬁﬁ)



(6.13c) E(X,Y,E) =R (¥, Y)E\l—'ﬁxiu\{fz)*%\{ﬁ-(x’gz
(s.130) K%, Y, §)= R (V)" - K% V)& - L, A E) £ (Y, ALY, E))

Then, the decomposition of ﬁkX,Y)E leads to

(6.122) G (X, Y, 2)=0

(6.1a0) € (X, Y,%): O

(6.14c) K ()(l Y/‘Z—) = 0

These equations are called the Gauss-Codazzi-Ricci(GCR)
equations. The map C does not appear in these equations

because C and € are equivalent due to

(s.150) (R UNEN B) + S (R, V21, g):o ,
sas GLTALYE), D) + E(Ralry), =0

Here we give the locdl form of GCR equations only for the
special case of ﬁ(X,Y)E:O, i.e., for a Euclidean embedding

—

space E
P N

(6.16a) gki‘&vf :ﬁ;la(ﬂ,a )yﬂb,ﬁ.? "Ra)\?ﬂ.b’p\v)j
(6.16b) _wa,j.k ._Qfﬂk.v = (ta,’}\ﬂg, V- t“yﬂbﬁkl

i b bd L d
(6.16c) %9 oy T tal)/,f\__ ‘/LC Léc. A ”tacy t P)

A set of real SLF”” tp;b’ solving the GCR equations for

given metrics g and G is called an implicit embedding of

V (t,s) into E (T,S).
n N



A
In an explicit embedding the functions X (x™) solving

(2.4) are known while the second fundamental forms and tor-

sion vectors are calculated by the use of

(6.18) N2, = G (?‘;’/_Q_ (9.,9,)) = G (E2 ¥ "9)
= GasN2 (X3, +T0 5 X5 XP)
(6.180) ¢ 51, = E(éa,%»g;):@ (£, Vo E0)
= @AB NA& (Ngb/p*ﬁgw NCBXD/)

Here

A , A
(6.19) %a: M 39?«) ;/;: X IMQA

and IM(x) is the connection of Tf( )(M) restricted to T (M).
P P
In order to obtain egs.(6.18) one introduces N vectors
- A A
in EN, in any point of Vn; these vectors are X P N . By

considering the change of these vectors along Vn' i.e.,
their covariant derivatives wi*h respect to x”, the
eqs.(6.18) are obtained.

If Vn is of class e, th=sr it must admit e tensorsglikw
and e(e-1)/2 vector fields t%ab satisfying the GCR equa-

tions. For e7>1, the tenSors.ﬂfﬁ@.and the vectors t»ab are
not defined uniquely by the embedding, due to the possibi-
lity of doing pseudo-rotations at every’point of Vn, of the
vectors NAa orthogonal to Vn. These degrees of freedom can
be used to simplify the GCR equations in some special
cases.

If one consider Vn(t,s) as a submanifold of EN(T,S)
with N=n{n+1)/2 then, the existence of a solution of the

GCR equations 1s guaranteed. Then we must only use the

Gauss equation defining the Riemanntensor in terms of the



Gauss tensors. The other two equations, the Codazzi and
Ricci ones, appearing as integrability conditions for the
embedding, do not bring new information.

The GCR equations are not completely independent among
themselves. In fact, they are interrelated by the Bianchi
identities for R(X,Y)ZeT(W) and R(X,Y)Z€T(M), involving
derivatives of the Gauss tensors. As a consequence of these
identities part of the Codazzi equations are trivially

satisfied. These identities are

(6.20a) Q\"g %w G(x/\{‘z) -C ()(,Y,Sl(_u{,?)) +A W, e (‘X/Y;?))i'z [0
(6.20b) q‘{%wc (.Y,8)- @(,',{‘Y/AUJ\J‘,%’}}%?& (WK X v,E)j=0
(6.200) 47, & (64,2)- K WY, (w,B) =5 (W, 60, Y, B =0

(52000 TAY, W 0Y, E) -€ LY, ALE) + S (w, C (Y, D§ = ©

where Q denotes cyclic permutation of X, Y and W.

Because of

—4’{4’ ,"‘\

(6.21) G (CL4, V¥ & Et}*ﬁ’&s‘fg\x.i{,? §)=90
/277

the equations (6.20b) and (6.20c) are, again, equivalent.

Then, we can rewrite

(6.222) T{Z (V,,€04Y,2),0) =G (¢ (%Y, sUw)) D)+ G (C(x, Y, suwp)), 2) = 0
(5.22b)¢{@(%’7wggx,\{,§)/g)-G\ L6 (¢, 120, )+ G (A (k) B = o,

(5.220) T{C (¥, KK, ) )+ C (g(xp;/@/,u\w,%}j-a (Y8, Al )= G.

In local coordinates these equations were given by Blum
(1955). In some exceptional cases it is only necessary to

satisfy the Gauss equations to assure the embedding proper-




ty of a given Vn' A particular application of these identi-
ties to the case in which the rank of one of the N-n second
fundamental forms is =2 3 is found in (Goenner, 1977; Gupta
and Goel, 1975). The results include the Thomas's theorem
for class one embeddings, cf. sec. I.7.

In the general case, for arbitrary class, a practical
algorithm to solve the GCR equations, either in the sense
of determining all the solutions of Einstein field equa-
tions of a given class, or in the sense of determining the
class of a given metric, is not known. The tradition is to
look for necessary algebraic conditions replacing the GCR
equations. The purposes are to determine the class by means
of algebraic manipulations with the metric, the curvature
tensor and, if necessary, its covariant derivatives.

Up to now the progress made has resulted in

i. The connection between class and other properties of
the metric, e.g., special vector and tensor fields,
groups of motion, etc.

ii. Exact solutions of class one and two.
iii. Explicit embedding of csrtain metrics or kinds of me-
trics.

In what follows we are going to present the few gene-
ral results concerning the class of embedding of Vn into
E&. It is trivial to check if e=0 or not, because one must
only check if the Riemann tensor is or is not identically
zZero.

The embeddings of class one and two are the subject of

the next sections.



I.7. Class One Embeddings
d

Class one embedings providesthe simplest case to
start. Furthermore, they are of interest for cosmology
since several cosmological solutions of Einstein field
equations, in particular the Friedman-Robertson-walker
metric, are of class one.

Vn(t,s) is of class one if and only if there exists

a symmetric tensor satisfying the Gauss

(7.1) R)\/A\/’? ol H/ (Q/\\)Qﬁ“? “&%‘)’ Q/IUV)

and Codazzi

7 o 2 Y '_‘} N Pad
( ) A%mmy <gLwaﬂ:u

equations, where :i=*1 is conveniently chosen. The Ricci

tensor 1is given by

(730 g L= LS, vQ,,_L)\l’\u)

{!

For positive definite metrics Thomas(1936) and
Rosenson(1940, 1941, 1943) gave an algebraic criterion to
determine whether or not the embedding class is one.
While the work by Thomas is non-covariant, Rosenson deri-
ved necessary and sufficient conditions in the form of
tensor equations. This criterion involves long calcula-
tions, namely, the evaluation of a big number of determi-
nants. This criterion is extended with minor changes to
indefinite metrics. In (0'Neill,1959) a modern and gene-
ralised version of Thomas's result is given. Thus, always
there exists a sure, but long, criterion to check if e=1
or not. However, there exist some examples where one can
apply a necessary and sufficient condition to check if
e=1 or not.

The first result on this line is due to Kasner
(1921b) and involves a necessary condition.

Theorem. There are no vacuum solutions of class one.

All the components of the Ricci tensor cannot be zero




at the same time, and if Rﬂv=o, then e#1. This theorem
was also derived independently and contemporarily by
Schouten and Struik(1921). However, the proofs given by
Kasner and by Schouten and Struik depend on the diagona-
lisation of a symmetric tensor through a local rotation,
an invalid procedure for indefinite.metrics. The correct
proof for this theorem for normal hyperbolic manifolds
was given by Szekeres(1966). Even more, the Szekeres's
proof fails to be valid if the signature of the metric
has more than one plus sign. The Szekeres's proof makes
use of the method sketched in the next section.

For general relativity, n=4, there are no non-flat
vacuum space—-times having an embedding in five dimen- &
sions. The embedding of a non-vacuum metric in five
dimensions is minimal; the embedding of a non-flat vaccum
metric in six dimensions is minimal.

The next result is due to Eisenhart(1926).

Theorem. Any Vn(t,s) of constant scalar curvature
has class one embedding.

Therefore, any Vn(t,s) of constant curvature 1is
locally isometric to a portion of a hypersphere in
E ,,(T,8),T>t, S=s. v
The next result is due to Collinson(1968).
Theorem. There are no solutions of the Einstein-
Maxwell equations of class one with non-null electromag-
netic field.

The following result, concerning the relation bet-
ween tha Gauss and Codazzi equations, is due to Thomas
(1936).

Theorem. If Vn(t,s) is embedded in En+l(T’S) and if
rank;yy2:4, then the Codazzi equations follow from the
Gauss ones.

The proof makes use of the Gauss equations and of
the Bianchi identities(Goenner, 1977). For n= 4, the

condition on the rank of can be expressed intrinsic-

'Q"/‘ :
ally as



(7.4) Cpeny e —2 R RYTH ZRT4O.

In general relativity, n=4, the theorem is applica-
ble only if the equality holds, rankﬁwpz4, i.e., daot
det%mﬁo. Therefore, for general relativity one can esta-
blish the following result.

Corollary. If there exists a non-singular symmetric
tensorﬂgﬁu satisfying the Gauss equations then the space-
time is of class one.

Another, quite interesting result is the following.

Theorem. Any Riemannian manifold Vn with analytic
metric, locally, can be isometrically and analitycally

embedded into a certain(unigue) Ricci-flat space Vn+1'

This theorem was provei 2y Campbell(1926). Its

extension to arbitrary signzture seems trivial.




I.7.1 Canonical Forms of the Gauss Tensor

Because of the algebraic simplicity of the Gauss
equations for class one embedding, all possible Gauss
tensors corresponding to a given Ricci tensor can be
determined starting with an adequate tetrad representa-
‘tion of Ry, and uv. This method is due to Szekeres(1966)
and it gives also a criterion to know if a space-time 1is
of class one or not.

We assume the space-time to be of class one, then
(7.3) is valid and |R,%1=0. Then R, and {.u admit the

same set of eigenvectors. Let (v( “) be this set,

o)

X=0,1,2,3. Let (ﬁ%%)) and (A(x)) be the corresponding

eigenvectors.

; ]) . '\\ ; N
( 7. 5) R//\ > \/ n’\u\\) - /l/{‘ L)?"—) v z- /“IL/‘

Y VR
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The set of simultaneous eigenvectors of R, 6 and §H#Vpro— .
vides a tetrad for the space-time. If all the eigenvec- :
tors (v
( ()
’ Y
Voo™ ey Vier

pectively, and in this way they constitute an orthonormal

) are non-null, then they can be normalised to
=V =21, if they are time- or sﬁée—like, res-—
tetrad. The generalisation to the case in which one or

more of the eigenvectors are null presents only technical
difficulties. The metric, the Gauss and the Ricci tensors

can be written, in terms of the tetrad, as

3 e = Z o G_(g) \/(;?C) M \ ) v

N T T Ay Ve, Ve
(7.7) )x/u P o Mie ) Tule) v \,}\/_, e
_ =7 — A /N
R}’w S - o N [Soa ') / s J v /UL \/ =) J

(=)

or space-like character of v( ;*. The trace of the Gauss

P

The factor U is included to give account of the time-

tensor is



(7.8) Q. = ﬁmﬂﬂuz erli_x)s:
Then, eq;(7.3) can be written as

(7.9) | X@Q(Z‘/’a /1(/3) «1@):/-%«).

It may happens that these equations have not a solu-
tion at all, then e>1. If a sclution exists, this is in
general not unique. The correct solution is selected by
~putting back the solution in the Gauss equation (7.1).
This may also lead to no solution, then e>1. If a solu-
tion survives, then we must check the condition detﬁwu#O,

but in terms of the eigenvalues this 1is
(7.10) T Ay F0.

Therefore, if one of the eigenvalues is zero the Codazzi
equations (7.2) must also be used. Again it may happens
not to have a solution, then e>1. If a solution manages
to survive, then e=1.

Equation (7.9) can alsc be used to determine the
class one solutions of Einstein field equations when the
energy-momentum tensor is given. For perfect fluid and

Maxwell type energy-momentum tensors cf.(Stephani, 1967).



I.8. Class Two Embeddings

The concrete results for class two embeddings are
not so abundant as for class one.

For space-times of class two there are some alge--
braic relations needing to be hold. The first result is
due to Yakupov(1968a,b).

Theorem. A necessary condition for a space-~time to

be of class two is
e ¥\ * ; T A~
(8.1) ¥RV RG’?;V?P\%/AT =0.

The left and right duals are defined by

* S B L= DAY L
R e !-.5 :( 3 s 3 \( (} Co ’,"t /«x») K é{ k\5 J
(8.2)
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The next result is dus to Matsumoto(1950).

Theorem. A necessary condition for algebraically
special space-times to be of class tﬂe is

PR IR _

(8.3) ¥ QM >RM_V‘§__Q‘

If two spaces are conformally related, then theilr
classes are also related. The next result is due to
Brinkmann(1923).

Theorem. Any conformally flat Vn has embedding class
at most two.

An example of a class one conformally flat space are
the Friedman-Robertson-Walker spaces.

A stronger result is due to Szekeres(1966).

Theorem. If Vn is of class e and Vn:is conformally
related to Vn then & s e+2.

! From Brinkmann's explicit embedding of a conformally
flat manifold a slightly more general result is obtained
(Goenner, 1980).

Theorem. If Vn is of class e and Vna:EN is conform-

ally related to Vn’ then & % e+2.

Further results for class two embeddings are related



with Petrov types. The interested reader is referred to
the literature(Goenner, 1980; Kramer et al., 1981).

Some examples of space-times of class two are, among
Géthers, the interior(Fronsdal, 1959) and exterior(Kasner,

_1921a) Schwarzschild sclutions, the Reissner-Nordstrém

and the Reissner-Weyl{charged particle) solutions.

Eisland(1925) proved e<2 for any spherically sym-
metric Riemannian manifold and gave a necessary and suf=:Z
ficient condition for class one formulated covariantly

by Takeno(1966) and rediscovered by Karmarkar(1948) and
by Kohler and Chao(1965).



I.9. A Parametrisation of the Embedding

The maximal mobility of the flat embedding space allows
the introduction of a particular parametrisation of the
embedding. Since E&(T,S) has Euclidean global topology, it

can be decomposed as
(9.1) EN&T) 5) =M, &, s) ®BN—U\ &T—t, S—s)

with M_(t,s) being a maximally symmetric space. The reason
n
for this choice will be done clear in the section II.2. This
parametrisation corresponds to choose Gaussian coordinates
A
in the embedding space. The first n coordinates X are
internal coordinates in Vn(t,s}. The coordinates in Vn(t,s)
a
are denoted by x®, those in BV a0 by<# , in such a way that
-

. . . A ®oLa

the coordinates in EN(T,S) can be written as X =(x ,# ). For

A
X m one obtains N :

A \ . '
(9.2) XAM:(S:) ct;akj this is not a

tensor index

a a
with 7, =2.3%.

In general relativity the maximally symmetric spaces
are Minkowski, de Sitter and anti-de Sitter. We deal sepa-

rately with each case.
The Minkowski case

The first results in this direction are partially due

to Krause(1973, 1975, 1976). In this case M and BN are
n -n

both Minkowski spaces. The metric tensor of EN can be

written as



RS
(9.3) GA'B—, - - TaT_T 7
0 I (Y

with Rie(%):O. Quantities with a ° are associated with Mn'

The metric tensor of Vn can be written as
o 2 L
9.4 o~
The affine connection takes also a simple form

(9.5) F)/p;v = ‘%}/My-}' FlaL CP)\ 4‘/1',&1/

A i b
with {?a”i/: &Qy{‘/a. The vectors Na are given by

(¢.6) D&QA = ('AIQC,¢EM,1QE§LB
with Nab satisfying

— o b —ab
(0.7 (RE4 +§#V4C, ¢4, ) N3 N"a = B2

For the Gauss tensors one obtains

° © b
(9.8) 0% = NEbV’%@’p :Nej, Q‘#i\y "‘?X;‘ycb )L)

=L

The de Sitter case

In this case Mn is the de Sitter, or anti-de Sitter,

space and B is of the form m+®B , such that
N-n N 1

(9.9) B (T,5) = Mult, HQIRT D) @ Byt (T-1 - AL, S-5-BH)

-nN-

with A(1)=1, A(-1)=0. The metric tensor of EN can be written

as



where Rie(g)=( )(éé £8); £ is the metric of a pseudo-sphere
of radius §, R=1 is the de Sitter space, [l=-1 is the anti-de
Sitter one. Q is a radial-like coordinate, andrlab=(hi...i).
The index associated with the radial-like coordinate is
denoted by a=r. Careted quantities arehassociated with Mn.

The metric tensor of Vn can be written as
_($\*4 = 3 b
(9.11) 3}”/,&;[ 3”\/&2\'}1/1»3‘; ,*4 Y
The affine connection takes =zZne form
IRV ARV S I I E 7 B TR SN

(129 Ty L, = Moo T Bl 48 B JH L 0
The vectpps NaA are given by

3 . 3;_)-2 2 [ 2 )
(9.13)N A,( kg N ch IM‘/N b

a
with N b satisfying

— i ; !c
oo [Rete(F)H 770505 TN = B8

For the Gauss tensors one ob=Tains

(9.15)Si‘_akv:blab{q>)a[~v~ﬁh v }\ % (fi;é 1"*’\0 ’M)_’ﬂ:" h}prﬂ'&\y]

In both cases, Minkowski and de Sitter, the quantities
éa behave like scalar fields both in Vn and in Mn. There-
fore, the decompositions of the metric and of the affine
connection are invariant.

For class one embeddings the Gauss tensor is given by

(9.16) Q ,» = [H‘rL gy %Aé)y’l-l/z 6}* (#y




for the Minkowski case, and

(0.17) Q) .\, = [H l’L(———)lA'N(l)‘b ‘}’14/2
LRty -2874, 6, -1 3, ]

. for the de Sitter case.



Part II. Embeddings in General Relativity

IT.1. Introduction

The use of embeddings in general relativity is as old
as general relativity itself. In fact, just after Einstein
presented the final version of general relativity(Einstein,
1915), Kasner(192la,b) and Schouten and Struik(1921) used
embeddings in their studies of general relativity.

General relativity is quite reasonahle in terms of the
intrinsic curvilinear coordinates of Lhe Riemannian space-
time itself. Nevertheless, embeddings have played some role
in it. In fact, from time to time some new interesting re-
sults are obtained using embedding techniques. An example of
this is provided by the work by Fronsdal(1959) on the com-
plete analytic extension of the Schwarzschild solution
through its embedding. The same result was contemporarily
derived and published after a short time by Kruskal(1960)
making use onlyﬂlntrinsic differential geometry techniques.

Until now the main application of embedding techniques
in general relativity has been as a mathematical tool. The
stronger developments have been in finding exact solutions
which cannot be obtained by means of other methods.

Besides considering the embedding techniques only as a
mathematical tool, there exists the possibility of giving it
a physical interpretalion or derive new physical properties
of the embedded space-time. What it is lacking now is to
find a reasonable physical interpretation for the degrees of
freedom inherent to the additional dimensions and for the
geometrical objects induced by the embedding on the space-

time. This is the task we are going to take in the next sec-

tion.



IT.2. The Foundations of General Relativity and Beyond

In 1905 Einstein established the foundations of the
special theory of relativity. In this, the role of the Min-
kowski metric is to guarantee the covariance of the physical
laws.

By 1908 Einstein attempts to sep up a special relati-
vistic theory of gravitation adopting the Equivalence Prin-
ciple, the statement that all bodies fall with the same
acceleration in a gravitational field, as a fundamental cri-
terion that any sensible theory of gravilation must satisfy.
The main difficulty here was to see that gravitation has a
very special relationship to inertia. In fact, gravitation
and inertia are basically equal, they manifest in the same
way and produce the same effects. They are practically in-
distinguishable.

By 1913 Einstein concludes that no scalar generalisa-
tion of Newton's theory will suffice and that the gravita-
tion@l interaction must be described by a non-flat four-
dimensional metric tensor. The main difficulty here was to
see that a non-degenerate four-dimensional metric tensor
with Minkowski signature represents not only the space-time
structure(in some sense the. inertial frames), but also pro-
vides the potentials from which the gravitatiohal field can
b@ derived. More revolutionary than the intr®duction of a
non-flat space-time structure was the dynamising of this
structure: the metric tensor not only acts upon matter, but
is acted upon by it. Thus, the role of the metric becomes
double: by one hand it serves to guarantee the covariance of
the physical laws, and by the other one, it plays the role
of a dynamical field.

Since the affine connection is not a tensor, it




correctly embodies the gravitational-cum-inertial nature of
the metric field. Einstein often emphasized that there is
not a unique decomposition of the affine connection into an
inertial connection plus a gravitational tensor. We will
see, using embedding techniques, that this is not the case.
The following statement is independent of what was said
in the previous paragraph(a free quotation of Einstein
(1950)): "...what characterises the existence of a gravita-
tional field is the impossibility of finding an inertial
frame in which all the components of the affine connection

p) Y vanish, nol Lhe non-vanishing of the Riemann tensor
¥

Ry g

tement needs also a modification.

" We will see, using again embeddings, that this sta-

As a direct consequence of the Equivalence Principle
the fundamental field describing the gravitational interac-
tion is the metric of the space-time. The main criticism
against this is the fact that the metric is not a dynamical
object at all.

At this point it seems not only advisable, but concep-
tually strictly necessary, to have an invariant decomposi-
tion of the metric in an inertial part, guaranteeing the co-
variance of the physical laws and giveng account of the
inertia, plus a dynamical part giving account of the gravi-
tational interaction.

Now it comes the problem of how to obtain an invariant
decomposition of the metric in an inertial plus a gravita-
tional part.

We start writing Einstein field equations with a cosmo-

logical term
~Ll(p- I\B -
(2.0) Ry =7 (R-2) 9,0 _.'I;W

and the Riemann tensor as
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The inertial part of the metric is obtained by switch-
ing off all what have something to do with gravitation.

Since the Weyl tensor is not determined by the interac-
tion of gravitation with matter, it represents the pure gra-

vitational contribution. The first step is to put C>P“?:O'

(2.3) R"f’“’f =51(E;v3/uf>+ﬁng‘3Av - Kxg I — R 319)
»%(ﬂ}u%pf "%)f 3/”’).

No gravitation means no matter in the game, therefore,

for the Ricci tensor one obtains
A

2.4 = e

(2.4) R, ralk JN

or equivalently, for the Riemann tensor
- A

(2.5) P\}‘va - > (“3)\,/(3}«-? "%,\y %/»u/)

Therefore, quite formally, a maximally Symmetric space-
time defines the inertial part of the metric: Mink§wski
(AN=0), de sitter(A> 0) and anti-de Sitter(A<O). The rest of
the metric corfesponds to the dynamical, or gravitational
part. Any maximally symmetric space-time corresponds to the
absence of dynamical fields, i.e., only kinematics. Any
deviation of the metric from that corresponding to a maxi-
mally symmetric space-time is to be interpreted as the pre-
sence of gravitation. In this way the maximally symmetric
space-tmes play the role of the ground state of the geome-
try.

This gives the criterion to choose Mn(t,s) in sec.I1.9.



Mn(t,s) must be a maximally symmetric space.

From eqs.(9.4) and (9.8), and (9.11) and (9.15), one
sees that Rie:(ﬁ%)(gg~gg) implies, for each case, that the
¢a's are constant, and viceversa. Furthermore, since the
&a's behave as scalar fields, both in Vn(t,s) and in
Mn(t,s), the decomposition of the metric and of the affine
connection are invariant. Therefore, we have beeh able to
decompose the metric and the affine connection in their
inertial and gravitational parts.

The procedure is then the following. Take your metric

on the original metric fixing quite uniquely the value of A
(its sign). This is the part of the metric corresponding to
Mn(t,s). Then, with the use of embeddings, cf. eqgs.(9.4) and
(9.11), it is guaranteed that one can write the rest of the
metric in terms of six functions &a.

It could seem a ﬁittle bit artificial to consider Ein-
stein field equations with a cosmological term. This is Jus-
tified by considering the fbllowing fact. If we put A=0,
then the bagkground topology is Minkowski. However, Minkow-
ski space cannot be the ground state geometry for topologies
not diffeomorphic to it. Proceeding as before one introduces
a change in the signature of the metric of space-time. The
solution is, of course, to enlarge the set of spaces admis-
sible for the ground state of LlLhe geomebry. Bul lhis is
already done when considering a cosmological term in the
Einstein field equations.

Summarising, the metric of space-time has been decom-—
posed in a maximally symmetric part which is kinematic in
character corresponding to M4(l,3), and a genuinly gravita-
tional part of dynamical character coming from the dimensio-

nal reduction of M4®B6 into MA. Then, the dynamics of the




gravitational field, or equivalently of the space-time,
appears only from B6.

The coordinates of B6 written in terms of the coordi-
nates of M4, i.e., the fields ¢a’ can be considered as truly
dynamical fields responsible for the gravitational interac-
tion.

Now the components of the metric are no longer the
basic variables but rather derived objects constructed from
the functions ¢a describing the embedding of V4 into ElO’
According to this, the metric of the space-time is not a
fundamental, but more an effective field produced by the
gravitational interaction.

The impossibility, up toc now, of obtaining a consistent
gquantisation of general relativity can be traced back to the
fact of considering the metric as the fundamental field to
be guantised. In this case one is, at the same time, gquanti-
sing dynamical and kinematic guantities. Quantisation of
kinematic quantities is a non-sense.

Now that we have been abls to identify the fields res-
ponsible for the dynalics of tThe gravitational interaction

we must set up a variational formulation for them. This is

the subject of the next section.



IT.3. The Embedding Approach to General Relativity

The first attempt to give a physical interpretation
to the geometry of embeddings in general relativity is
due to Regge and Teitelboim(1976). These authors use an
analogy with the string model of elementary particles.
Rather than the components of the metric tensor, the
basic fields of the formalism are taken to be the func-
tions describing the embedding of the four-dimensional
space-time in the ten-ldimensional flat space. Here we
consider only the Minkowski case. Other interesting
approaches are being followed by Maia(1986) and pPavsid
(1986).

The Einstein theory of gravitation takes as its

starting point the Hilbert action
3.0 o= \R |7 d1x

which, regé&rded as a functional of the metric tensor g 00

under variation gives the vacuum Einstein field equations
(3.2) (;/Au = 0.

For the action, Regge and Teitelboim use the same action
but regarded this time as a functional of the fields P.

By requiring the action to be stationary under variation
of the fields & one does not obtain Einstein field equa-

tions, but rather the weaker set
MY oy -
(3.3) " (L ey = O,

As a way out to this difficulty, Deser et al.(1976)
proposed to find another action functional l\ﬂ] whose
Euler-Lagrange equations be equivalent to Einstein ones,
(3.2). However, under variation I[ﬂl gives rise to six
equations instead of the ten ones of Einstein. Therefore,
the equivalence is hardly established without introducing
some arbitrariness in the game.

As a first step towards a correct solution of this

problem we rewrite the Einstein field equations, in the




form RPvzo, in term of the fields b

l\ ) 7"'}; . ! - "
(3.4) R,u\u: 3 Ql L ( )\64 JYNNE - " s l L,H\") =L

where Mabzﬁ_ NCaNdb. A 1+3 decomposition of these equa-

tions gives

(3.52) Roo =93 Hun(he0 470, = 4" 470 ) =0,
(3.5b) Rop = -9 Map L& 0o 4’ V'Q -4 e i ‘ ’k\)
+3wrugmfﬁqkwwmxﬂ¢m)v%
(3.5e) Ry =" My (P ~\’L’f¢ - ‘~\"l’,\3)
FP Mo (24 e oo - L AP 70)

3 L e b )
Jr’ad M sl (fJP Ly Li“ wl — ¢ A.%B =0,
Only equations (3.5c) are truly dynamical ones. The other

four are constraints and can be rewritten as

(3.6a) 2 gos« ‘SN Hak (.‘P g "\’bo@ ,(‘{,ém/ (_\)Ljdm’) i
‘ - g LN
Gyt L, (8 At ) = o
L ()L-" ,(\‘@ (l;b: >
oy (g g W 1 4
2 e
lagojﬂwgtﬂgbk\qékﬂlkbnl“'L - l JQ)‘“

These equations correspond to a constrained Hamilto-
nian system; what characterises a constrained Hamiltonian
system is the laclt ol having more cqualions than _
unknowns, not the order of the equations. [For a Lagran-
gian system the number of equations and the number of
unknowns are the same. The strategy to solve eqgs.(3.5)
and (3.6) is quite the same as for Maxwell equations when
written in term of f and B fields. The aim is to reduce
the previous equations to a Lagrangian system. This gua-

rantee the existence of a variational formulation for




them. The fields + are analogous to E and ﬁ fields and
one must look for the fields analogous to Ap'
This is the status of the art of the embedding

approach to general relativity;



Concluding Remarks

We feel that embeddings techniques may become a power-
ful tool to understand the geometry and physics of the most
current theories in physics. In fact, for example, string
theories are dealt with, mostly, in an extrinsic way.

Even when we have not been able to obtain more concrete
results in the application of embeddings to general relati-
vity, we believe that any new approach must be welcome in

physics.



Appendix. Embedding of Friedman-Robertson-Walker Spaces

Friedman-Robertson-Walker (FRW) spaces are a quite sim-
ple and interesting example to start with.

First of all it is convenient to study the embedding
geometry of maximally symmetric space-times. The interest is
due to the key role they play in the embedding approach to
general relativity.

Maximally symmetric space-times are of class one. Their

Gauss tensor are given by
A
(A’l)~SLP“): ﬁlEbAV

2
where 1/2 =RA/12, and A is the(constant) value of the scalar
curvature. If‘A:O, the space-time is flat with Euclidean
global topology. For A#0 the solution of eqg.(A.1) is, in

polar coordinates
2z Z
(n.2) ¢ =51 ¢ mr‘*ﬂ)

h=1, AT>0, is the de Sitter space described by the hyperbo-
2 2 2 2
loid ? +t =1 +r . h=-1, AL O, is the anti-de Sitter space
. ) 2 2 ,2 2 .
described by the hyperboloid ¢ +r :R +t. In both cases K is
the constant value of the radial-like coordinate introduced

in sec.I1.9. Therefore, the field ¢]<xnw%sponding to the

. . . 2 2 2 2
radial-like coordinate is %Qz* +hﬁt -r ).
FRW spaces are of class one (Robertson, 1929,1933).
Their line element can be written as

(h.3) dst= d2r- SZCT)[U—R?I/Q"Y'J?Z ‘*914&1’]

S(Zﬁ is the cosmic scale factor; k takes the three discrete
values X1, 0. It is convenient to choose the background
metric as that corresponding to polar coordinates. This is

done by the transformation of coordinates (T,0)—=>(t,r)



defined by

(A.4a) 2.; Z:('t/ I'> /
(A.ab) § = l"/s(?f(,‘t;")) .

Then, using g#V=§”v+kL%M4bwe arrive to a set of differential
equations for & and ¥ having the following solutions:

a. k#0. Then one can choose ﬁlzo, and

2 k.
e Tos e

with the additional relation -}k >0. For ¢'one obtains
2 e B
@ = ArsT-rr®.
b. k=0. Then jt.=-1. tfand & are given by

(e t= 2Dy scr) L)

(A.8) CP:&S—-"C

The fields ¢&‘describing the gravitational interaction

are, k=1:

(h.9) Fg =2t -t* - X

k=-1:

S
(A.10) 4’1: \111%1‘4—'{;1 - X
k=0:

(A.11) 4’.0.':— Xs -t
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