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Introduction

This Thesis is devoted to give a description of the most significant statistical prop-
erties of the observed Large Scale Structure in the Universe and the methods to
investigate them. In this framework we present our original contribution concerning
biased models for the formation of cosmic structures and the investigation of the
statistical properties (on galaxy scales) of the background matter distribution.

Observations of the Universe on scales comparable to the typical galaxy di-
mension, ~ 10 kpc, reveal large inhomogeneities and the current view is that down to
such scales non-gravitational forces are dynamically dominant. On the other hand,
scales R >> 10 kpc are considered relevant to the Large Scale Structure. The main
difference between small (galaxy) and the large scale lies essentially in the dynam-
ics giving rise to structure formation. In fact, the galaxy mass is determined by its
capacity to cool down during the gravitational collapse, as the density increases. A
quantitative analysis shows that, for masses M2 102M, the heat, produced during
the initial collapse, prevents a further compression [171]. Apart from the details of
the heat production and dissipation, it is clear that, while the efficiency of the dissi-
pation in a proto—object of dimension R is proportional to R2 (i.e., to the extension
of its surface), the heat production is proportional to R3 (i.e., to the mass of the
object). Then, it is easy to understand that a characteristic scale R* must exist, such
that above R* the rate of heat production is greater than the dissipation rate, which
prevents the gravitational collapse to proceed. The precise value of R* depends on
the geometry of the collapse process, on environmental effects, and on the dissipation
characteristics of the collapsing material. Detailed analysis give R* values that are
very similar to the typical scale of normal galaxies.

The study of dissipative processes, that determine the internal structure and
dynamics of galaxies, is then essential to understand the origin of galaxies. However,
such analys1s can be very difficult and the details of the genesis and evolution of
structures, below the galaxy scales, are widely debated.

On the contrary, on scales much larger than the galaxy ones, it is possible
to study the formation and evolution of cosmic structure only on the basis of grav-
itational interaction. Such evolution follows initially a linear pattern, while later,
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6 INTRODUCTION

when the fluctuation amplitude increases sufficiently, undergoes non-linear phases.
For this reason, the large scale dynamics could not be so easy to understand. How-
ever, on such scales the problem is much better determined and ones hope is to solve
adequately the dynamical picture.

It is also interesting to note that some phenomena on super—galactic scales
exist that can not be explained on grounds of gravitational interactions. Indeed, the
absorbtion and the emission in different spectral regions (i.e., microwave, infrared,
X, etc.) from groups and clusters of galaxies arise from dissipative phenomena that
are very similar to those determining the galaxy internal structure. However, the
dynamical relevance of such phenomena rapidly decreases as we consider larger and
larger scales, and their influence on super—galactic scales is completely negligible.

On such scales the essential observation is that galaxies have a spatial dis-
tribution with highly non-random characteristics. They show a strong tendency to
group together forming clusters, while cluster themselves cluster to give rise to “su-
perclusters” on even larger scales. This kind of hierarchical distribution of objects
is one of the most relevant characteristics that must be taken into account by any
theory concerning galaxy formation. Indeed, it constraints cosmological models and
the amplitude of the primordial fluctuation spectrum on different scales. (In this
thesis we will not be concerned with the formation of primordial fluctuations; how-
ever only some sketch will be given on the evolution of fluctuations after the epoch
of recombination.)

Quantitative measures of the large scale matter distribution can be extracted
either from the analysis of the observed distributions of luminous objects like galaxies
and clusters, or directly by investigating the effects of the gravitational field, gener-
ated by density fluctuations, on the galaxy peculiar motions. In the first case, the
statistical analysis of the distribution of luminous objects is mainly realized through
the determination of the correlation functions. For this reason, the use of functional
methods, based on path-integral techniques, probably represents the most natural
way to connect observational data and theory.

However, any comparison between the observed object distribution and the-
oretical predictions on the matter distribution should be made with some cautions.
In fact, the former is essentially determined by physical phenomena occurring dur-
ing the structure formation, that probably give rise to some segregation between
luminosity and background matter distributions. For this reason, the deduction of
the effective matter distribution from data concerning galaxies and galaxy clusters
is quite uncertain. Such a difficulty leads to the introduction of models that should
be able to predict the non-linear relation between the observed luminosity density
and the matter density, as deduced from the virial analysis of large-scale motions. In
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this context, the biased models for the formation of cosmic structures represents the
natural solution. Indeed, according to such models, we define the observed object
distribution as a suitable functional of the primordial density fluctuation field. In
this way, it is possible to determine, at least in principle, the correlation properties
of the background field (and consequently the statistics of the system) starting from
that of the luminosity distribution.

Instead of using positions of luminous objects, an investigation of the large
scale matter distribution in the Universe can be alternatively realized by observing
the effects of the background gravitational field on galaxy peculiar motions. A direct
estimate of the radial peculiar velocity of each galaxy can be obtained by subtracting
the Hubble velocity, H,d, at the distance d of the galaxy from the observed reces-
sional velocity, once a redshift-independent estimate of d is available. This kind of
distance measurement is usually based on intrinsic relations between intrinsic struc-
tural parameters of galaxies, such as the famous Tully-Fisher relation for spirals
[196] (relating the intrinsic luminosity and the observed rotation velocities) and the
Faber-Jackson relation for ellipticals [71] (relating the intrinsic luminosity and the
internal velocity dispersion).

It has been recognized for a long time that, under the assumption that a given
structure is completely virialized, the internal peculiar motions trace the matter dis-
tribution [72]. In this framework, the Peebles’ Cosmic Virial Theorem [149,150,151]
represented an important step towards the understanding of the existing connection
between galaxy peculiar motions and clustering. An exciting development in this
field has been the recent completion of large galaxy redshift surveys (e.g., ref. [86])
and the availability of redshift-independent distance estimates (see ref. [39] for a
recent review). As a consequence, a lot of theoretical work has been devoted to find
methods of extracting the large—scale three-dimensional velocity and mass density
fields from measurements of radial peculiar velocities [17,18]. Even though in this
Thesis we will not be concerned with the study of large—scale peculiar motions, we
will present a method for extracting detailed information on the background matter
distribution on galaxy scales from observed rotation velocities in spiral galaxies.

We decided to divide this Thesis into a background part and one in which
we present our original work. The first part includes a review of the observational
material on the large-scale distribution of galaxies and galaxy systems (Chapter 1)
and a technical description of the most important statistical methods which will be
used in the rest of the thesis (Chapter 2). The second part contains our original
contribution to the theoretical study of biased models (Chapter 3), their influence on
the statistical properties of object distributions (Chapter 4), and the description of a
new method for investigating the small-scale matter distribution by means of spiral
galaxy rotation curves (Chapter 5). All the most detailed computations are reported
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in the appendices.

In more detail, we present in Chapter 1 a qualitative description of the galaxy
distribution and clumpiness, as revealed by recently compiled homogeneous samples.
We also present the most important statistical properties of such a distribution.
In this framework, we review the main results obtained in the last twenty years
from the correlation analysis of galaxy and galaxy cluster samples. Furthermore, we
describe previous investigations of the object luminosity distribution by means of the
luminosity function (relevant to galaxies) and the multiplicity function (relevant to
galaxy systems).

‘ Chapter 2 is devoted to the description of the statistical algorithms that will
be widely used in the following chapters. To this aim we furnish a detailed definition
and presentation of the correlation functions. Then we give a brief review of some
fundamental concepts of functional methods and describe how such methods find a
very useful application in the analysis of the correlation properties of a statistical
system. A complete determination of the statistics of the large—scale matter distri-
bution in the Universe is possible only once the spectrum of the fluctuations and their
probability distribution are known. For this reason we briefly describe the two most
popular dark matter spectra, the cold dark matter (CDM) and the hot dark matter
(HDM) ones, and show, as an example, how to work out correlation properties in the
simple, but most important case of Gaussian fluctuation field. We end the chapter by
introducing the concept of a smoothed density field, that is of fundamental relevance
in the study of the statistics of finite-size object distributions.

In Chapter 3 we introduce the concept of biased models for the formation of
cosmic structures. After a description of the main motivations for such models, both
of theoretical and observational origin, we discuss some physical mechanisms occur-
ring during the galaxy formation processes, that are likely to give rise to substantial
differences between object and background matter distributions. In this framework,
we assume that the distribution of a given class of objects is defined through the
so—called biased field, which represents a suitable non-linear functional of the back-
ground fluctuation field. In the original formulation of the biased model of galaxy
formation the observable structures are identified as those peaks of the density field
that exceed a fixed threshold value. In this picture, the threshold function for select-
ing fluctuations coincide with a Heavyside §-function (#-threshold case). In general,
the specific shape of the threshold function does depend on the physical phenomena
leading to the object formation, so that a step function seems to be inadequate to
describe the effective object distribution. In this chapter a general formalism is de-
veloped to deduce the statistical properties of the biased field in terms of that of the
matter field, in the generic cases of non-# threshold and non-Gaussian background
fluctuations. Moreover, we show that in the so—called high-threshold approximation



INTRODUCTION | 9

all the peculiarity of the n-point correlation functions, that are related to a non—
¢ threshold, gradually vanish. Viceversa, the effect of the shape of the threshold
function is still present in the expressions of the object number density.

Chapter 4 is entirely devoted to the study of the influence of non—6 thresholds
on the statistics of galaxy clusters. In particular, we take tentatively into account
some effects, like non-sphericity in the gravitational collapse process and merging
between different scale fluctuations, by means of two suitable choices for the threshold
function. As a first application, we consider the data on the multiplicity function for
groups and clusters of galaxies. Such data have been already interpreted in the
literature by means of the so—called Press & Schechter [167] approach, but only at
a qualitative level. After reproducing these results, we discuss the possibility of
interpreting observational data in the framework of our general biased models in a
CDM background field. Taking a non—f threshold, that accounts for non-sphericity in
the gravitational collapse, enable us to get a good fit to all the data on the multiplicity
function with the introduction of only one phenomenological parameter. After that,
we analyse the effects both of non-spherical geometry and merging on the evolution
of fluctuations by assuming two suitable shapes for the threshold function. We also
compare the results of our models with observational data, taking both a CDM and a
scale—free background spectra. In our analysis, the CDM spectrum has difficulties in
reproducing the data, even for different choices of the threshold. A better agreement
is obtained for a scale-free spectrum. In any case, the predictions of our models
are sensitive to the shape of the threshold and corrections to the #~bias case lead to
systematic improvements of the fit. Indeed, we attain a satisfactory fit by assuming
a scale—free spectrum and by allowing for merging effects.

In Chapter 5 we describe a new method to investigate the distribution of dark
matter surrounding spiral galaxies. Such a method is essentially based on the fact
that observed rotation velocities can be used as tracers of the background gravita-
tional field, as well as for the large-scale peculiar velocities. We apply the Persic &
Salucci [158] mass decomposition method of splitting spiral galaxy rotation curves
into the contributions of dark (halo) and luminous (disk) matter. We find that the
background 2-point correlation function is well modeled by a power law and extends
its galaxy counterpart with the same slope down to scales of few kiloparsecs. This
supports the conjecture that galaxies and background matter have closely related
clustering properties. A similar analysis for the disk matter reveals different correla-
tion properties and suggests that any such difference, between the clustering patterns
of luminous and dark components, are to be ascribed to their different dissipation
properties. The extension of the investigation of the 2-point function to higher-order
correlations shows that functions up to the sixth order can be detected and fit the
so—called hierarchical expression. Moreover, from a comparison between the cluster-
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ing amplitudes of the background and galaxy functions two different cosmological
scenarios emerge: an open Universe where light is a good tracer of mass, or a flat
Universe where an excess in light is ~ 3 times larger than the corresponding excess in
mass. We discriminate between these possibilities by formulating the Cosmic Virial
Theorem, which involves the amplitude of the three-point function, on galaxy scales.
Once such amplitude is independently deduced for the same sample of galaxies, a
low-density, no-bias Universe is virtually ruled out.



Chapter 1

The observational data

1.1 A “by eye” description of galaxy clustering

Starting from the first investigation of the galaxy distribution in the sky, it has been
recognized that galaxies in our neighborhood are distributed in a very inhomogeneous
way. Indeed, they are found to form double systems, groups with up to 100 members,
rich clusters with more than 1000 members and diameters of ~ 5 — 10 Mpc, up to
superclusters involving scales of ~ 30 — 100 M pe.

Figure 1.1a,b, that represents the distribution of galaxies on portions of the
sky surveyed by Zwicky et al. [208], shows that galaxies are clearly clustered and
reveals some well known structures. For example, the Coma cluster is the dense
concentration at o = 13" and § = 28°, while the Virgo cluster is centered at o = 12.5"
and § = 12°5. A decrease in the galaxy density west of 9" and east of 16" is due to
galaxy obscuration. In the southern hemisphere the most relevant structure is the
Pisces—Perseus chain which runs across the sky in the declination interval 30°-40°.
Again, the apparent absence of galaxies at 21" and 3" is due to galactic absorption.

More recently, the availability of a large amounts of galaxy redshifts made
it possible to have a three-dimensional picture for some regions of the Universe.
In this way, Kirshner et al. [115] discovered the Bodtes void (see Figure 1.2), a
region where the density of bright galaxies is < 20% of the mean, and that has
a diameter of ~ 6000km s~! (let us observe that, due to the well known Hubble
relation between recession velocities and distances of galaxies, linear dimensions can
be equally expressed in units of km s~* or k™' Mpc; here h is the Hubble constant in
units of 100 km s *Mpc~! and, because of observational uncertainties, 0.55 hS 1).

More extended surveys revealed an even greater variety of structure in the
3-dimensional pictures of the Universe. In Figure 1.3, surfaces of constant densities
from the first CfA catalog are shown [78]. The contours correspond to 4 times the
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Declination

Declinatlon

Right ascenslon
Figure 1.1: Position of galaxies in the Zwicky catalogue, with m < 15.5 in the northern
galactic cap (panel a) and in the southern galactic cap (panel b). The coordinates are carte-

sian.

mean density. This picture indicates that 90% of all galaxies are in clusters or strings,
while the volume occupied by these structures is 10% of the total sampled volume.
Then, 90% of the Universe seems to be empty, in the sense that these regions do not

contain appreciable quantities of luminous matter.

A specific attention was devoted by Giovannelli & Haynes [103] in a survey of
the Perseus—Pisces filament. In their redshift survey over the declination interval 30°
to 40°, they showed that many of the galaxies in the region lie in a narrow redshift
range around ~ 5000 km s~ (Figure 1.4a). Then, as well as in the angular projection,
the Pisces—Perseus filaments turns out to be a thin structure in the redshift direction
too.

Instead of investigating the details of the galaxy distribution in a specific re-
gion, the extension of the CfA survey [59,108] is an attempt to map the general
galaxy distribution, rather than to explore a particular feature on the sky. The re-
sults of such an investigation are shown in Figures 1.4b, ¢, d. One of the most relevant
feature is the presence of several large regions that appear to be almost devoid of
galaxies, while galaxies seem to be distributed in elongated structures. De Lappar-
ent et al. [59] suggested that “the apparent filament is a cut through boundaries
of several bubble-like structures”. The pronounced radial “finger” along the line of
sight in b and ¢ is the Coma cluster. If we could map the actual position of galaxies
rather than their redshifts , this feature would be approximately spherically symmet-
ric, with a radius ~ 1 h™*Mpc. The elongation in redshift space occurs because of
peculiar velocities of galaxies inside the cluster, that affect the determination of the
distance, if simply based on the Hubble relation. Although gravitationally bound

systems produce local peculiar motions on scales of few megaparsecs, the removal of
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Figure 1.2: Cone diagram for the BoStes survey. The circle shows the location of the void;
the galaxies within the circle are outside the right ascension range of the void (after [115]).

Figure 1.3: Surfaces of constant density from the CfA catalogue. The northern hemisphere
map contains 1130 galaxies (after [78]).
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Figure 1.4: (A) Cone diagram for galaxies in the region of the Perseus—Pisces chain. (B)
Cone diagram for a complete sample of galaxies with m < 15.5 in the declination range
269 < § < 3295. (C) Cone diagram for a complete sample covering the declination range
26°5 < § < 44°5. Note the “Great Wall” that runs across the survey. (D) Cone diagram for
a nearly complete sample covering the declination range 8?5 < § < 14% (after [86]).

such effects is not expected to change the global picture very much on scales of tens
of megaparsecs. The slice of Figure 1.4b demonstrates than filamentary structures in
this region are cuts through two—dimensional sheets, not one dimensional filaments.
Indeed in contrast to Figure 1.4a, that samples the apparent filaments of Figure 1.1a,
there are no detected filaments on the sky in the region covered by Figure 1.4b. Thus,
it being difficult to expect that the intersection of a slice with a 3—dimensional net-
work of filaments give rise in turn to a network of filaments, a sheet-like distribution

of galaxies around the voids can account for the data.

Despite the great amount of observations devoted to enlarging the sampled
volume by means of three-dimensional surveys, there 1s up to now no evidence for
an upper limit to the scale of structure discernible in the redshift analysis. One
such very large scale feature is the so—called Great Wall revealed by the slices of the
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&" n

7h 8

Figure 1.5: A 360° view that shows a relation between the “Great Wall” and the
Perseus—Pisces chain. The slice covers the declination region 20° < § < 40° and contains
all the 6112 galaxies with detected redshift cz < 15,000 km s~!. The regions that appear to
be almost devoid of galaxies are obscured by the galactic plane (after [86]).

extended CfA sample [86]. The apparent extension of the Great Wallin both right
ascension and declination is only limited by the extension of the survey. The detected
spatial extent in these two dimensions is ~ 60 R~ Mpc x 170 A" Mpc. The typical
thickness, approximately along the redshift direction, is S 5h7*Mpc. The density
contrast between the wall and the mean of the survey is Ap/p ~ 5. The 360° view of
Figure 1.5 indicates the geometrical relation between the Pisces—Perseus chain and

the Great Wall.

A further remarkable result, that seems to confirm the sheet-like structure of
galaxy distribution, has been obtained by Broadhurst et al. [38]. They combined
data coming from four distinct surveys at the north and south Galactic poles to pro-
duce a well sampled distribution of galaxies by redshift on a linear scale extending
to 2,000 R~ Mpc. By analysing their pencil-beam survey, they found a remarkably
regular one—dimensional distribution with most galaxies lying in discrete peaks sep-
arated by ~ 128 A= Mpc (Figure 1.6). The finding of one-dimensional structure of
such periodicity might be understood in terms of a cellular distribution of galax-
ies. The cross section of a pencil-beam with such three-dimensional structure could

generate structure with form strongly dependent on the direction of the beam itself.

As a concluding remark, let us observe that all the above qualitative descrip-
tions of the observed pattern in the galaxy distribution give a quite good idea of the
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Figure 1.6: Redshift distribution for the four surveys at the galactic poles. Circles indicate
a best—fit constant comoving separation of 128 h™*Mpc (after [38]).

way in which galaxies are arranged to form large—scale structures. However, such
features can hardly constraint by themselves any theoretical model on the origin and
evolution of cosmic large—scale structure. Rather, in order to test theoretical predic-
tions against observational features, a detailed statistical description of the galaxy
distribution is required. In the following sections of this chapter, we will describe and
review the main results that has been obtained from quantitative analysis of galaxy

samples.

1.2 Data on the clustering of galaxies

This section is devoted to the description of the galaxy clustering pattern as de-
ducible from the statistical analysis of homogeneous samples. In particular, after
a brief description of the most important galaxy samples, we summarize the main
results obtained in the last twenty years on the correlation properties of the galaxy

distribution.

1.2.1 The data samples

The statistical investigation of the distribution of galaxies has been initially realized
by means of bidimensional homogeneous samples, in which angular positions of the
objects on the sky are reported. An angular sample contains all the objects of a given
class (e.g., galaxies or clusters of galaxies), whose apparent luminosity exceeds a fixed
value. For historical reasons, apparent luminosities are expressed in logarithmic units,
by means of the apparent magnitude

m = M+ 5logr +25. (1.1)
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Here r represents the distance of the object from the observer, while M is the absolute
magnitude (i.e., the apparent magnitude of the same object, if placed at the fixed
distance r = 10 pc).

Another important quantity that characterizes a galaxy sample is the depth
of the survey. In fact, galaxies selected by apparent magnitude are found to have
fairly definite absolute magnitudes, M, with a standard deviation about this value of
about one magnitude. Thus, according to eq. (1.1), M* and m define a characteristic

distance
D = 10%*m=M")=5 prpe, (1.2)

that defines the depth of the sample.

Among the most important (apparent) magnitude-complete angular samples
of galaxies, there are:

i) the Zwicky sample [208], that contains the angular positions of 3753 galaxies,
having apparent magnitudes m < 15.5 and coordinates with declination 6 > 0
and galactic latitude b > +40° (see Figure 1.1);

ii) the Lick sample [183], that includes galaxies with apparent magnitudes m <
18, each belonging to an elementary cell of 10’ x 10’. In turn, these cells are
grouped in sets of 36 x 36 to form maps, that have an extension of 6° x 6°. The
centers of each maps are separated one from each other by 5° in declination,
from 6§ = —20° up to § = +90°. In addition, the separation in right ascension
is such that each map is overlapped to adjacent one at most for 1°;

iii) the Uppsala Catalog [140], that contains all the galaxies with magnitude m <
14.5, in the region of sky characterized by § > 0° and b > +40°;

iv) the Jagellonian field [176], that includes more than 10,000 galaxies comprised
in a small angular region of 6° x 6°. This sample turns out to be almost 8 times
deeper than the Zwicky sample in such a way that, even though the angular
extension of the latter is ~ 10 times larger, the spatial dimension of the two
sampled regions are almost the same;

v) the ESO/Uppsala Catalogue [120],’ which is considered complete for those
galaxies of the southern hemisphere having declination § < —17%5 and major
diameters greater than 1';

vi) the APM Galaxy Survey [129] that has been realized by using an automatic
plate scanner. With such a procedure, there have been detected about 2 millions
of galaxies, covering the area of the sky § < —20° and b< 40°. This galaxy
sample is 95% complete in the magnitude range 17 < m < 20.5 and corrections

for plate overlapping and galactic obscuration have been included.
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Other than the above angular samples, there exist also some spatial samples,
that, in addition to the angular coordinates, give for each object the redshift too.
As for the two—dimensional samples, also the three-dimensional ones are limited
in apparent magnitude. waever, because the distance of each object follows with
good accuracy from its redshift, the three-dimensional samples allow to to work out
homogeneous subsamples, that are limited by a fixed absolute magnitude.

The spatial samples usually considered are the following:

i) the CfA1 (Center for Astrophysics) survey [106], that includes all the 2400
galaxies having magnitudes m < 14.5 and angular positions characterized by

(6 > 0%, b > +40°) and by (6 > —2%5, b < —30°);

ii) the Southern Sky Redshift Survey (SSRS) [139], that includes 1657 galax-
ies, selected from the ESO Catalogue [120], in an area of 1.75 s7 with declina-
tion south of —17°5 and galactic latitude below —30°. The sample diameter
is limited with all galaxies having log D(0) > 0.1, where D(0) is a “face-on”
diameter, in arcminutes, that is related to the galaxy morphological type and
to the angular dimension;

iii) the CfA2 survey that is now slowly emerging. It extends the original CfA
redshift survey to include galaxies brighter than m = 15.5. When completed,
this survey will include all galaxies between 8" and 17" in the north galactic
cap, and between 20" and 4" in the south cap. A first slice, that contains 1057
objects in the declination range 265 < § < 32% (Figure 1.4b), was completed
in 1986 [59], while the data has been recently published [108]. Other two slices
have been completed [86] and contain 1443 galaxies with 32% < § < 44%
(Figure 1.4c), but the data are still unpublished. A fourth strip, that includes
1462 galaxies with 835 < & < 1495, is nearly completed (Figure 1.4d).

1.2.2 The two-point correlation function

The investigation of the galaxy clustering by means of angular samples is mainly
based on the determination of the angular 2-point correlation function w(d,2). Its
definition is related to the joint probability

§OP = n?80; 60, 1+ w(dhs)] (1.3)

of finding two objects in the solid angles §Q; and §{,, respectively, at angular sep-
aration 9. The value of the correlation function mirrors the non-randomicity of
the distribution (see §2.1, below). In particular, the object positions are said to be
correlated if w(9y3) > 0, anticorrelated if w(¥12) < 0. In general, for greater and
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greater values of |w(?12)|, the distribution of galaxies turns out to be less and less
random.

A huge amount of work has been done in order to detect the correlation prop-
erties of the galaxy distribution, starting from the pioneering paper of Totsuji &
Kihara [193], and, most importantly, through the analysis of Peebles and coworkers.

Making use of the Zwicky and Lick samples, Peebles & Hauser [157] yielded
an estimation of the angular 2-point correlation function.

Peebles [148] analysed all the 6° x 6° area of the Jagellonian field, comparing
the results also with those obtained from the Zwicky sample. In this analysis, the
expectation values of the number of galaxies contained inside cells of size 3.75 x 3.75
were considered. In this way, he obtained 98x98 cells with an average of one galaxy
per cell. No corrections for vignettature and galactic absorbtion effects have been
introduced, the region described by the sample being small and at high galactic
latitude.

Afterwards, Groth & Peebles [97] used the Lick catalogue for a further de-
termination of w(¥). They considered 476 maps having the galactic latitude of the
central points |b.| > 40° and introduced suitable corrections to the sample. In order
to eliminate overlapping between adjacent maps, they took only the regions of an-
gular dimension 5° x 5° around the center of each map; correction factors were also
introduced to make the sample formed by all the maps truly homogeneous, as well

as to take into account galactic and atmospheric absorption.

All these analyses converge to indicate that the angular 2-point function is
well represented by the power law

wy(¥) = A, ' (1.4)

with v = 1.77 4 0.04 and amplitude 4, dependent on the depth of the sample, with
a break from the power-law behaviour in the case of large angular separations (see

Figure 1.7).

From the analysis of the APM sample, which is particularly suitable for in-
vestigating correlations at large separations, Maddox et al. [129] found an angular
2-point correlation function having the same slope as eq. (1.4), in the range of valid-
ity of the power—law. The break they found from the power law occurs roughly at the
same physical separation as found by Groth & Peebles [97], but with a decline much
more gently from a power law on larger scales. Consequently, they argued that Groth
& Peebles may have removed some intrinsic clustering in correcting for large-scale
gradients in the Lick sample.

In order to extract information on the spatial properties of the galaxy distri-
bution from eq. (1.4), we need a method for deprojecting angular data, so to obtain



20 Chapter 1. THE OBSERVATIONAL DATA

100 T T T T

*
\
.
Q. B
o 1
b [
<.
o,
%y
e} Q*Qg i
"3, 0 e
2
5\% \‘ —415
% i
. Y
— A
cDom i *
Z oo~ | ~ -
- g = s [
\
i .
! i
i [ Hos
0.00%- l 4 ol t+
i
I
]
. : } il
0.1 1.0 10.0 \ 5 v 2'0 T
8 (degrees) ( )'° 50
sh(Mpc

Figure 1.7: Left panel: estimate of the galaxy 2-point angular correlation function from
the Lick sample; the solid line represents the best—fit power—law (1.4), with ¥ = 1.734 and
A, = 0.0684 (after [97]). Right panel: estimate of the galaxy 2-point spatial correlation
function from the CfA1 redshift survey; crosses on the right represent the quantity {(r) + 1,
while the dashed line is a power—law with exponent vy = 1.8 (after [52]).

the spatial 2-point correlation function. Such a function is defined, in analogy with
eq. (1.3), by means of the joint probability

§OP = n?8Vy 6V, [1 + &(r12)] (1.5)

of finding an object in the small volume §V; and another one in §V;, at separation
712. In this case too, the spatial 2-point function £(7;2) is a measure of the non-

randomicity of the spatial galaxy distribution.

A suitable deprojection method, that allows us to derive the expression of {(r)
from that of the angular function, is provided by the Limber equation [122]. Such
an equation, that holds under the hypothesis of absence of any correlation between
position and luminosity of objects, permits us to express the angular function w(?)
in terms of the spatial function (7). The inversion of the Limber equation, in which
we are interested, is also possible in several cases [73]. Indeed, in the case of the
power-law model (1.4) for w(¥), the spatial 2-point function turns out to be

&) = (22, (1:6)

T

with the same value of v and with the value of the clustering length r,, depending
on the amplitude of w(v). All the investigations of the spatial correlations by means
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of angular data indicate 7, , ~ 5 A" Mpc, with some scatter around this value, in the
range of separations 0.1 Mpc < rh < 10 Mpc [157,148,97], but with a break in the
power law for larger separations. Some evidences have also been found [94,119] that
support the validity of the power-law model (1.6) down to r ~ 3h™kpe.

Such results on the spatial 2-point correlation function follow naturally from
the analysis of three-dimensional samples. By using the CfAl sample, Davis &
Huchra [51] deduced the galaxy spatial number density, while Davis & Peebles [52]
obtained the expression (1.6), for the 2-point function, with r,; = 5.4+ 0.3~ Mpc,
in fairly good agreement with angular results and for the same range of separations
(see Figure 1.7).

An analysis of the CfA sample for the region centered on the Virgo cluster leads
Einasto et al. [67] to find a shoulder in the 2-point function at » = 4 — 5h™' Mpe.
Such a discrepancy with respect to the Davis & Peebles’ result indicates that, in
some cases, the system under study may have specific properties — such as transition
from clusters to strings in rich clusters — which disappear when a larger sample is
considered. In a further analysis of the CfA Catalogue and dividing the full sample
into subsamples of different volumes, Einasto et al. [68] found that the value of the
galaxy clustering length turns out to vary with the volume of the subsample itself. In
particular, the conventional value 7, , = 5 A"'Mpc is obtained for a sampling volume
containing not more than one supercluster, while the estimated correlation length
for a fair sample of the Universe is 7, , = 10 "' Mpc. The authors argued that such
an effect could be related to differences in relative volumes occupied by large voids;

samples chosen from larger volumes have usually larger relative volumes of voids.

A statistical investigation of the CfA2 sample led to quite large uncertainties
in the determination of galaxy number density and 2-point correlation function. De
Lapparent et al. [60] found an indetermination of ~ 25% in the galaxy number
density. In this analysis the galaxy 2-point function was found to have a slope y ~ 1.6
and a correlation length 7, , >~ 7.5 R~ Mpc, in the ~ 3 — 14 h"' M pc range. Because
of the large uncertainty in the mean density, the ranges in the slope and amplitude
are respectively ~ 1.3 — 1.9 and ~ 5 — 122! Mpec. On scales larger than 20 A~ Mpc,
the correlation function is indeterminate.

Several attempts had been also devoted to the investigation of the clustering
properties of galaxies having different morphology. The importance of such an in-
vestigation lies in the fact that different clustering for different morphological type
galaxies can be due to a difference in the physical processes that gave rise to their
formation, other than to environment effects. Indeed, it has been recognized from
long time that small groups tend to contain more elliptical galaxies than do looser
groups [75]. On the contrary, the central regions of rich compact clusters appear to
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be dominated by elliptical and lenticular galaxies and contain few normal spirals;
irregular, less dense clusters, which have a composition similar to that of the field,
contain many spirals [141].

By analysing the Uppsala Catalog, Davis & Geller [50] determined the angular
2-point correlation function for the distribution of galaxies of various morphological
types. They found that elliptical galaxy clustering is characterized by a power law
with a slope ( 7s =~ 2.1) steeper than that for spiral clustering (vs ~ 1.69), while
the lenticular slope has an intermediate value (v, =~ 1.71). Dressler [65] studied the
galaxy populations in 55 rich clusters. He found that a well-defined relationship
exists between local galaxy density and galaxy type, which confirms an increasing
elliptical and SO population and a corresponding decrease in spirals with increasing
density inside the cluster. Still by using the Uppsala Catalog, Giovannelli et al. [89]
revealed evidence for continuous morphological segregation in a wide range of galaxian
densities in the Pisces—Perseus supercluster. Furthermore, evidences of significant
differences in the slope of the angular 2-point function for different morphological
types are found, in agreement with previous results. From the analysis of the three-
dimensional CfA survey, Borner & Mo [36] obtained a correlation length for elliptical
and lenticulars that they estimated to be ~ 1.7 times that of spiral and irregulars.

1.2.3 Higher order correlations

The determination of the 2-point correlation function does not give in general a
complete description of a given statistical system. Indeed, further informations can
be obtained when one goes to higher—order correlations. At the third order, the joint
probability

6(3)1) = TL3 6Q1 6“2 593 [1 -+ w(1912) -+ ”(U('ﬁlg) + "LU(’1923) -+ 2(1912,1913, 1923)] . (17)

represents a generalization of eq. (1.3) and defines the angular 3-point correlation
function z(¥13, %13, ¥23). In the case of the large-scale galaxy distribution, the analysis
of the 3-point function in the Zwicky, Lick and Jagellonian samples has been discussed
by in a series of papers by Peebles and coworkers [156,97,148]|. They concluded that
data on the 3-point function can be well fitted by assuming the so-called hierarchical
model

2(1912, V13,P23) = Q[w(P12)w(Va3) + w(F1z)w(ds) + w(1913)w(1923)] (1.8)

with Q = 1.29 4 0.21.

However, Bonometto et al. [26] repeated the analysis of the Zwicky sample,
interpreting the presence of a limiting magnitude as the effect of an optical bias.
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Consequently, it has been shown that a better fit to the angular data on the 3-point
function can be obtained by assuming

z(P1a,P13,P23) = Q1 [w(P12)w(V2s) + w(P12)w(P1s) + w(P13)w(Pas)] +
+Q2 w(P12)w(Paz)w(P1s) (1.9)

with Q1 ~ @, ~ 1. Such results have a problematic interpretation, because it seems
to imply that the expression for z(¥1z,%13,723) depends on the definition itself of
magnitude-limited sample.

In a similar fashion, it is also possible to consider correlation functions for n
(> 3) points. An estimation of such high-order function is however quite difficult,
because of the increasing noise in the sample with the increase of the correlation
order. Fry & Peebles [82] made an estimation of the 4-point correlation in the Lick
Catalog. Sharp et al. [184] analysed the higher-order correlation properties of the
Zwicky sample, by means of the so—called moment method *. They found a signal for
the 4-point function, while an attempt to estimate the 5-point function gave results
that were completely lost in the noise. More recently, an analysis of the Lick sample
by means of the moment method revealed signals of correlation up to the eighth order

[191].

1.2.4 Fractal analysis of the galaxy distribution

Some criticism in the use of the correlation function £(r) for the analysis galaxy
samples has been made by Pietronero [162]. He claimed that a definition for a
dimensionless ¢ includes normalization with respect the mean density n (see eq.
(1.6)). Thus, if the real distribution is such that the average density depends on
the size of the sampled volume, the same set of object appears to have different
correlation lengths, depending on the volume considered. In fact, if we postulate a
(self-similar) fractal structure where the number density of objects within r is

N(r) = Br® (1.10)

(B is a constant and D, also a constant, is the fractal dimension of the system), the

average density inside a sphere of radius Rs,

N(Rs) 3 > 3
= (—)BR™® 1.11
V(Rs) <47r s (1.11)
turns out to be a function of the sample size Rs. Accordingly, the 2-point function
is given by
D/ r\—G-D)
= — | = -1. 1.12
e = 5 () (112)

1See §5.4 and Appendix C for a detailed description of such a method.
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Then, while the exponent of the power law, v = 3 — D, is an intrinsic property of the
distribution, the normalization of ¢ depends explicitly on Rs. Alternatively to &(r)
we can consider the quantity

I'(r) = n[é(r) +1] (1.13)

that is independent of Rs. Making use of such a quantity, Pietronero analysed the
CfA Catalog, dividing the whole sample into two volume-limited subsamples. He
found that galaxy distribution can be described by a simple fractal which extends up
to the sample size, without any evidence for a homogeneous distribution.

However, alternative interpretations of the observed scaling of £ with the size of
the sample volume have been also proposed. Indeed, clustering properties of galaxies
may not be independent of luminosity. Such segregation of luminosity is a natural
consequence of galaxy formation processes and is in agreement with the detected
differences in the clustering of different morphological types [28,35].

In order to investigate the fractal structure of the galaxy distribution, Martinez
& Jones [131] divided the CfA sample in 10 volume-limited subsamples. They found
that, despite the scale invariance on length scales less than ~ 5h~'Mpc, the Universe
is not a single fractal, but a more complicate structure, a multifractal. On larger scales
the Universe breaks away from this scale-free behaviour and tends to homogeneity
and isotropy.

1.3 Data on the clustering of galaxy clusters

In analogy with the previous section, we describe now the clustering properties of
galaxy systems like groups and clusters. Again, after a description of the most impor-
tant samples, we review the results of correlation analysis applied to the distribution
of galaxy systems. Some attention will be also devoted to the existing relations
between clustering properties of different structures, namely galaxies, groups and

clusters.

1.3.1 The data samples

Galaxies does not represent the only claass of cosmic structures that can be used
to investigate the large scale statistics of the Universe. Indeed, galaxies themselves
tend to group together to form structures on larger scales, such as groups or clusters.
In turn, such structures can be considered as single objects and, then, the statistics
of their distribution can be analysed in full analogy with the case of galaxies. In
order to use galaxy clusters and groups as tracers of the large-scale structure in
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Figure 1.8: All-sky distribution in supergalactic coordinates of the 4073 Abell clusters
contained in the Abell and ACO samples. The symbol size has been scaled by distance class:

the D = 0 clusters are represented by large open circles, while D = T clusters corresponds to
small dots (after [3]). '

the Universe, complete samples that describe their distribution over a wide volume
are required. In general, different samples use quite different selection criteria for
identifying clusters to be included in the catalog, so that different it can be also
the respective distributions. The most important angular samples of clusters are
described as follows.

i) The Abell Catalog [1] includes a total of 2712 clusters that are the richest,
densest clusters found on the Palomar Survey plates (see Figure 1.8). Of these
rich clusters, 1682 constitute Abell’s complete statistical sample and are dis-
tributed over 4.26 steradians. The Abell selection criteria can be summarized
as follows: (a) a cluster must contain at least 50 members in the magnitude
range ms to ms + 2, where mg is the magnitude of the third brightest galaxy;
(b) all these members should be contained within a circle of radius 1.5 h='Mpc
around the center of the cluster; (¢) the cluster redshift z should be in the range
0.025 25 0.20; and (d) the cluster should lie north of declination —27°. The
1682 clusters in the sample are divided in 6 distance classes (D); 104 clusters
belong to the first 4 distance classes (nearest clusters), while the remaining
belong to the subsample D = 5+ 6. For each cluster, it is also given a richness
class, R = 1 through 5, that is related to the number of members belonging to
each cluster. '

ii) The Zwicky Catalog [208] contains 9700 clusters of galaxies visible to the limit
of the Palomar plates (m =~ 20). The criteria for including clusters in the
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sample are less restrictive than Abell’s; (a) The cluster must contain at least
50 galaxies in the magnitude range m; to m; + 3, where m; is the magnitude of
the brightest galaxy; (b) these galaxies must lie within the isopleth, where the
projected density of galaxies is about twice that of the neighboring field; (c)
no limits on the redshift are specified, but structures such as the Virgo cluster
(which cover very large areas) are not included; and (d) the clusters must lie
north of declination —3° and within well specified areas. Cluster richness is
defined as the number of galaxies, corrected for the mean field count, that
are located within the isopleth of twice the field density. In general, Zwicky
clusters differ in size from Abell’s, the former being mostly larger, lower density
systems. These differences arise mainly from the different criteria used in the
identification process.

111) The Schectman Catalog [181] identifies 646 clusters of galaxies, based on the
Lick counts in 10’ bins and using an automated procedure. The clusters are
located at galactic latitudes |b| > 40° and declinations § > —22%5. The selection
was based on local density maxima of the galaxy distribution above a given
threshold value. A selected threshold of five galaxies per count bin was used;
this threshold is considerably higher than the tail of the background distribution
of galaxy counts, which has a median of 1.3 galaxies per bin. Such a threshold
of five galaxies succeeds in detecting 70% of Abell’s D < 4 clusters and 10% of
the D = 5 clusters. Moreover, the Schectman procedure selects clusters that
are considerably poorer than the Abell B > 1 clusters.

iv) The ACO Catalog [3] represents an extension to the southern hemisphere of
the Abell sample. It contains 1635 clusters of richness class R > 0 and in-
cludes clusters in the —27° < § < —17° overlap region with the Abell clusters.
Together with the Abell Catalogue, it constitute an all-sky sample of 4073
rich Abell clusters (see Figure 1.8), nominally complete to a redshift z = 2 for
clusters with populations of 30 or more galaxies in the magnitude range ms to
ms + 2.0.

As in the case of the galaxy samples, the detection of redshifts for clusters
included in angular catalogs permits the compilation of 3-dimensional surveis. We
describe in the following the most relevant spatial samples of clusters and groups.

i) The Hoessel, Gunn & Thuan (HGT) sample [105] includes the redshifts of
all Abell clusters with distance class D < 4 and richness class R > 1, that are
located at galactic latitude |b] > 30°. A total of 104 clusters belong to this
sample.
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ii) The Bahcall & Soneira (BS) sample of superclusters [10], that is complete
to a redshift of z < 0.08 and defines superclusters as density enhancement of
the cluster distribution deduced from the HGT sample. The selection process
was repeated for different overdensity values f, from f = 10 to f = 400. In
particular, a total of 16 superclusters are cataloged for f = 20, 12 superclusters
for f = 40 and 11 superclusters for f = 100.

iii) The Struble & Rood (SR) Catalog [186], that contains all the 583 Abell

clusters (including richness class R = 0) with measured redshifts.

iv) Geller & Huchra (GH) deep redshift survey [85], that consists of the 145
Abell clusters with R > 0, D < 6 and with redshift z< 0.2, in the area 10" <
o < 15", 58° < § < 18°.

v) The Ramella, Geller & Huchra (RGH) sample [169] that identifies groups
of galaxies in the first two complete strips of the CfA redshift survey [108].The
group catalog is produced by applying an algorithm with searches for “friends of
friends” in redshift space [107]. Galaxies in a groups are separated by limiting
values of the line—of—sight velocity and of the projected separation. The catalog
contains 128 groups with at least three members and 56 with at least five

members.

vi) The Southern Hemisphere Group (SEG) sample [48], contains 87 groups
with 3 or more members and with a surrounding density contrast greater than
20, identified from the SSRS galaxy catalog. The groups are located south-
wards of declination —179%5, below galactic latitude —30° and have mean radial

velocities less than 800 km s~ 1.

1.3.2 Correlation functions for galaxy systems

Many attempts has been devoted in the last years in order to trace the large-scale
structure of the Universe on the basis of the observed statistical properties for the
cluster distribution [7]. Indications that the cluster distribution on the sky is not
random was already found several years ago by Abell [1,2]. Further evidences of
super—clustering in the Abell survey was also detected by Bogart & Wagoner [21],
Hauser & Peebles [102], and Rood [173] by means of nearest-neighbor distributions
and/or angular correlation functions.

Bahcall & Soneira [23] and, independently, Klypin & Kopylov [118] deter-
mined the rich (R > 1) Abell cluster 2-point correlation function from the HGT
3-dimensional sample. They found strong correlations in both the D < 4 redshift
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sample and in the larger and deeper D = 5 + 6 sample. Moreover, the spatial corre-
lation function was found to fit a power-law relation of the form

(r) = (T"’“)W, (1.14)

r

with r,. ~ 25h™'Mpc and v ~ 1.8, for the distance range 55 rS 150 A~ Mpe.
Thus, the rich—cluster autocorrelation function exhibits the same slope as the galaxy
function, but with a greater value of the correlation length. (Such difference between
the clustering lengths of these two kind of cosmic structure is a very crucial point
that will be discussed in detail in Chapter 3.) They also noted that ¢, is elongated in
the line-of-sight direction and thus deduced large peculiar velocities (~ 2000 km s~1)
between clusters. A similar conclusion was also reached by Postman et al. [165] and
by Batuski et al. [13] in the analysis of the Zwicky sample and of the ACO southern
catalog, respectively.

However, Sutherland [189] showed that random peculiar motions cannot ex-
plain the line of sight correlations at separations & 50 A" Mpc. On the contrary, he
claimed that such anisotropies in the redshift space correlation function are to be
ascribed to spurious line-of-sight clustering. Such kind of clustering suggests that
the richness of an Abell cluster could be apparently enhanced by background galax-
ies, so to produce significant line-of-sight correlations in a richness-limited sample.
By analysing the SR spatial sample of Abell clusters and after correcting for the
anisotropies in the redshift space correlations, Sutherland found that the power-law
(1.14) for the rich—cluster 2-point function is still satisfied, but with a reduced corre-
lation length, r,. ~ 14 h™* Mpc. A numerical simulation of such contamination [56]
allowed the construction of a “decontaminated” sample of D < 4, R > 1 clusters,
with the result that the correlation are reduced of a factor ~ 2 (in agreement with
the conclusions of Sutherland). A similar conclusion was also reached by Sutherland
& Efstathiou [188]. In their analysis of the deep GH survey, they found further ev-
idences of line—of-sight contamination and a resulting value of the clustering length
Toe =2 13h " *Mpec. In addition, effects of projection contamination on the angular
cluster correlation function has also been found by Olivier et al. [143] in the analysis
of the Abell and ACO catalogs. After removing these effects by means of a suitable
model for the galaxy distribution around clusters, the correlation strength for small
angular separation is reduced by a factor 2-3, in agreement with the results obtained
from the spatial samples.

Differently from rich clusters, the analysis of samples of galaxy groups reveal
that such structures are less clustered than galaxies. Indeed, from the investigation
of the SEG sample, Maia & da Costa [130] showed that groups are characterized by
a 2-point function of the type (1.14), with the same slope v ~ 1.8 in the range of
separations 2-10h™! M pc, but with amplitude 2.5 times smaller than that of galaxies.



§1.3. Data on the clustering of galaxy clusters 29

In a similar analysis of the correlation function for groups defined in the RGH sample,
Ramella et al. [170] found v ~ —1 and 7, = 6 h=* Mpc, over the range 3-10h"! Mpe,
but with very large uncertainties.

A further extension in the study of the large—scale structure of galaxy distri-
bution is possible by investigating the spatial correlations between superclusters of
galaxies (i.e., groups of rich clusters). Bahcall & Burgett [8] analysed the BS sample
of superclusters. They found a correlation on scales ~ 100 A~ Mpc, that is significant
at about 95%-99% confidence level. The correlation appears to be stronger than that
of galaxy and galaxy clusters (see Figure 1.9).

All these determinations of the 2-point correlation function for galaxy systems
seem to suggest a dependence of the clustering strength on the richness, that is quite
similar to the discrepancies found in the investigation of the clustering for galaxies
with different morphology. In particular an increase in the clustering is observed for
richer systems. A detailed description of the dependence of the correlation amplitude
on the richness of galaxy groups and clusters will be given in the following.

As in the case of the galaxy distribution analysis, some attempts have also

been devoted to the investigation of higher order correlations for galaxy clusters.

Toth et al. [192] analysed the northern Abell, the southern ACO and the
Shechtman angular samples or rich clusters. They found that the angular 3-point
correlation function is still consistent with the hierarchical expression (1.8), as in the
galaxy case, with @ = 1.0 + 0.1 for Abell clusters and a systematically lower value
@ = 0.64 + 0.04 for the Shechtman groups.

An investigation of the spatial 3-point function has been recently performed by
Jing and Valdarnini [111], that considered a sample of 227 Abell clusters with known
distances. They found that a hierarchical expression with Q =~ 0.7 give a reasonable
fit to the data, without, however, ruling completely out the Kirkwood model (1.9).

1.3.3 Galaxy—cluster cross correlations

Similarly to what we have seen up to now for the correlation properties of galaxies
and galaxy clusters separately, it is also possible to investigate the cross—correlations
between the positions of one galaxy and one cluster. Such an investigation is very
useful in order to study the galaxy distribution inside cluster halos. In order to
introduce the angular cross—correlation function wey(¥), let us consider the joint
probability

§OP = nmng6060[1 + Weg(TP12)] (1.15)

of having a cluster in the solid angle element 6{; and a galaxy in 6();.
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The joint statistical investigation of the distribution of galaxies and clusters
was performed by Seldner & Peebles [182]. In this analysis, the distribution of galaxy
is that of the Lick Catalog, while the Abell Catalog is used for the cluster positions,
characterized by |b| > 40° and § > —22%. In this way about one fourth of the sky
was covered, by including 1339 clusters. An appreciable precision for the fit to the
data was found by using for the cross—correlation function the expression

wey(9) = AV~ + B9, (1.16)

with p ~ 1.4 and o ~ 0.2. In the above relation, the first term, that is dominant for
small separations, is essentially due to the galaxy density around each cluster, while
the second term, that dominates for larger angular separations, takes into account
the contribution of the clustering between clusters.

A further investigation of the cross—correlation properties for the distributions
of galaxy and clusters was realized by Lilje & Efstathiou [121], that used the same
catalogs as before both for galaxies and for clusters. They used redshifts for Abell
clusters to compute a cross—correlation function w.4(o) , where o = vd/H, is the
projected separation between a cluster with recession speed v and a galaxy at angular
distance ¥ from the cluster center. They evaluated the amplitude of the spatial cross—
correlation function {.4(r) by means of more recent determinations of the galaxy
luminosity function. Their results show that on scales r < 20 A™*Mpc the shape of
the spatial cross—correlation function is well described by

-1 2.2
8.8h Mpc> ' (1.17)

ulr) = (=
Differences with respect to the Seldner & Peebles’ results are probably due to the
different assumption for the galaxy luminosity function.

The concept of cross—correlations can also be generalized for investigating the
relative statistical properties of any two different distributions of cosmological inter-
est. Indeed, in Chapter 5 we will discuss in detail a new method to study cross—
correlations between the distribution of galaxies and the distribution of the back-
ground matter. In particular, such a kind of analysis will be very useful in order to
test whether galaxies are good tracers of the matter distribution and, if not, what is
the relation that links such two distributions.

1.3.4 Relationship between the clustering of different cosmic
structures

In their analysis of the spatial correlation function for Abell clusters, Bahcall &
Soneira [23] discussed the decrease of the correlation amplitude with cluster richness.
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Figure 1.9: Spatial correlation of superclusters. Different symbols indicate samples of differ-
ent overdensity. The dashed line indicates the supercluster correlation function if it follows
the power—law r=1-%. The solid line represents the R > 1 cluster correlation function of Bah-
call & Soneira, while the short—dashed line is the galaxy correlation function of Peebles and
coworkers (after [8]).

They classified individual galaxies as N = 1 systems (where NV is the Abell’s criterion
for richness classification) and suggested that galaxies have a correlation function
amplitude that falls on the richness relation for clusters. From a physical perspective,
it would however be misleading to treat individual galaxies in the same way as galaxy
systems, the processes governing galaxy formation probably being different from those
relevant for groups and clusters.

Indeed, Szalay & Schramm [190] pointed out that galaxy clustering may be
intrinsically different from cluster clustering. They discuss a possible universal cor-
relation function characterized by a slope v = 1.8 and by a dimensionless amplitude

pr = &r) = (%) (1.18)

Here L = n™'/? (n is the mean spatial density of objects) represents the average value
of the separation. They derive § ~ 0.35 for Shechtman clusters and for Abell R > 1
and R > 2 clusters, while 8 ~ 1.1 for galaxies. Such a result suggests that galaxies
are relatively more strongly correlated than clusters (see Figure 1.100).

Bahcall & Burgett [8] extended such analysis to include also the correlation
function of superclusters. They argued that the increasing of the clustering amplitude
with the richness of the system is valid for supercluster clustering too (see Figure 1.9).
Moreover, by using the adimensional correlation amplitude (1.18), they found that
superclusters have § =~ 0.3, in agreement with the value for clusters (see Figure
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1.10a).

Such properties of scaling of the correlation function with richness and mean
spatial density highlight a deep connection between physical processes relevant for
the formation of different cosmic structure, from groups to superclusters. In our view,
these regularities in the correlation amplitude for the distributions of distinct class of
objects represent a significant observational constraint; any theory for the formation
of the large-scale structure in the Universe should be able to predict such peculiar

features relating clustering properties of vastly different galaxy systems.

1.4 The luminosity distribution of cosmic struc-
tures

From the analysis of homogeneous samples of galaxies and galaxy systems it is pos-
sible to obtaine not only as their angular or spatial distributions, but also their
luminosity distribution. This section is devoted to the description of observational
data concerning the luminosity distributions for galaxies and galaxy systems. We
will also discuss how the luminosity distribution can be related to the so—called mass
function, that describes the aboundance of cosmic structure in a given mass range.
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1.4.1 The galaxy luminosity function

An essential statistical tool for the investigation of the luminosity distributions of
cosmic structures is the luminosity function. This is defined as the comoving number
density of galaxies with luminosity between L and L+ 6L (see, e.g., §49 of ref. [151]).
Accordingly, we introduce the luminosity function by means of the probability

§P = ®(L)SL6V (1.19)

of finding an object with luminosity between L and L+ 4L in the volume element 6 V.
Following the definition of luminosity function ®(L), the number density of galaxies
can be expressed as

ny = /0“ ®(L)dL. (1.20)

In order to extract the galaxy luminosity function from observational data, it is useful
to introduce the luminosity distribution ns(L). This is defined so that ns(L) AL gives
the number of galaxies contained in the sample S, in the luminosity interval of width
AL centered on L [180]. Let V(L) the volume sampled at luminosity L by the sample
S. Then, the luminosity function ®s(L) of a galaxy sample can be expressed as

ne(L) AL

d(L)A(L) = VL)

(1.21)
Assuming large—scale homogeneity for the Universe, in the limit of large, randomly
chosen sample volumes, all luminosity functions approach a universal limit defined
by

oL) = lm ®s(L). (1.22)

We shall henceforth refer to this limit as the luminosity function for galaxies. In
practice, one can only determine the luminosity function for finite samples. Sample
luminosity functions will show deviations from the universal luminosity function that
decrease as sample volumes increase. The size of these deviations depends on the
nature of the processes that give rise to the distribution of galaxies in space and
luminosity. For a randomly chosen sample volume, the luminosity function yields an
expected luminosity distribution

ne(L) = ®(L)Va(L). (1.23)
Luminosity functions (and distributions) may be obtained for each subclass of galax-

ies which can be identified with criteria other than luminosity.

A first attempt to find an analytical expression of the galaxy luminosity func-
tion was due to Schechter [180]. He used the galaxy sample by de Vaucoleurs &
de Vaucoleurs [62]. This sample includes galaxies with magnitude m < 11.75 and
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b > 30°, without including all the galaxies having angular distance < 6° from the
center of the Virgo cluster (in fact, the high velocity dispersion in this region is such
that redshifts are not good distance indicators). In such analysis, he determined
both the general luminosity function and the luminosity function only for galaxies
contained inside clusters and found that the latter differs from the former only by a
multiplicative factor. A good fit to the data was obtained with a luminosity function
of the type '

no(L)dL = & V(-—f—) e-L/L‘d(ZL—*), (1.24)

with a = —5/4 and L* corresponding to an absolute magnitude M* = —21.4 (taking
for the Hubble parameter o = 1/2), and with & V* = 216 £ 6 for the general
luminosity function, while & V* = 910 £ 120 for the cluster galaxies.

After Schechter’s investigation of the galaxy luminosity function, many at-
tempts have been devoted to obtaine an analytic expression for the general luminosity
function. All such investigations converge to indicate the validity of a Schechter-like
expression (1.24), with some differences in the deduced values of the parameters (see
ref. [74] for a review).

Recently, de Lapparent et al. [61] calculated the luminosity function for two
complete slices of the extension of the CfA redshift survey. They found that the
shape of the luminosity function can still be approximated by a Schechter function
with M* = —19.2 +£ 0.1 and @ = —1.1 & 0.2. Because of the large-scale inho-
mogeneities in the sample (comparable with the size of the sampled volume) they
used an inhomogeneity-independent technique. Nevertheless, such large-scale inho-
mogeneities introduce large fluctuations in the derived amplitude of the luminosity
function; ®* = 0.020 + 0.005 R Mpc™3. A comparison with the luminosity function
deduced from the first CfA survey [106] shows consistency at the ~ 20 level (see
Figure 1.11).

The luminosity function of galaxies inside clusters has been analysed by Lugger
[128], who considered nine Abell clusters. He found that in three clusters there
appears to be a deficit of bright galaxies in the inner regions with respect to the
outer regions. In the composite luminosity function of all nine clusters there is
evidence for an excess of bright galaxies in the high—density regions relative to the
low—density regions. Moreover, the faint end of the luminosity function is flatter in
the high—density regions than in the low—density regions.

1.4.2 The multiplicity function of galaxy systems

The concept of luminosity function of galaxies can be generalized to include galaxy
systems. For this aim, Gott & Turner introduced the group multiplicity function
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[93]. In order to define such a function, let us consider a region of the Universe,
that can be considered a fair sample, and determine the mean luminosity density.
An estimation by Gott & Turner [92] gives p, = 3.76 x 108 Lgh*Mpc~2, while some
different values have been found by other authors (for example, Kirshner et al. [116]
found p, = 2.4 x 10°Loh?Mpc™®). For a fixed density enhancement factor X, let
us consider the largest possible sphere such that the mean luminosity density inside
such sphere satisfies

PL, sphere > XPL (1.25)

The objects inside that sphere constitute the first group of galaxies, with total lumi-
nosity Ly. Next, let us consider the second largest sphere satisfying eq. (1.25) and not
overlapping with the first sphere. Continue the process until every galaxy is assigned
to a group. Some groups may consist of only one galaxy. We define the multiplicity
function ®4,(L) as the luminosity function of groups in such a group catalogue.

A first determination of the multiplicity function from a data sample has been
performed by Gott & Turner [93]. They built their group catalog [194] by considering
all the galaxies of the Zwicky catalog with apparent magnitude m < 14 and angular
position characterized by |b] > 40° and § > 0. The resulting angular density of
such this distribution is & = 180 gal deg~%. The group catalog is then determined by

selecting the structures with an angular galaxy density
g, = 7.955. (1.26)

The factor of 7.95 seems to be high enough to identify real physical association in
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most cases. In this way, Gott & Turner were able to detect 283 groups, including 199
single galaxies.

A further investigation of the multiplicity function has been carried out by
Bahcall [6], that found a universal multiplicity function holding at the same time for
rich Abell clusters and Turner & Gott groups [194]. However, in doing such analysis
there are several difficulties due to the ambiguity in the definition of single galaxy and
to the uncertainties in the determination of the galaxy number density for very small
(< 10'Ly) groups. The Turner & Gott sample contains 350 single or ‘field’ galaxies.
It is however possible that such galaxies belong to groups that are under the detection
threshold. In any case, even though many single galaxies are luminous members of
a group, these must represent the most part of the luminosity of the group itself.
Consequently, such galaxies are not expected to cause appreciable modifications of
the multiplicity function for groups and Abell clusters. In this analysis, Bahcall firstly
determined the expression for ®(L) that represents the best fit to the data on rich
Abell clusters,

I\ -2
B(L) = 5.2 x 10—7(L—> e~HLo Mpe3 (102 Lg)? (1.27)

o

with L, = 0.8 x 10'Lg. Then this fit has been extended to include the groups of the
Turner & Gott sample, finding

L -2
®(L) = 1.6><10’7(—L——) e~ I/To Mpe=® (102 Lg) 7Y, (1.28)

o

with L, = 1.6 x 10®Lg. A further generalization to include groups formed by only
one galaxy leads to

1.6 x 1077 ( L

-2
®(L) = =) e L/le pMpe~? (1012Lg) 7T, 1.29
(L) (1 + 1.6 x 1010/L)-075 ) € pe ( o) (1.29)

L,

with the same value for L, as in eq. (1.28). The additional term in the denominator
of eq. (1.29) has been introduced to take into account the lowering of the multiplicity
function in correspondence of L < 10'°Ly and makes such expression quite different
from the usual Schechter function.

As a final comment, let us observe that the shape of the multiplicity function,
as deducible from data samples, is very sensitive to the different techniques and
definitions that are used for identifying galaxy systems on different scales. This show
the necessity of realizing homogeneous samples in which groups of galaxies are defined
in an objective and scale-independent way.
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1.4.3 The mass function for cosmic structures

In analogy with the luminosity and multiplicity functions that describe the distri-
bution in luminosity for galaxies and galaxy systems, we can also describe their
distribution in mass by means of the mass function n(M). In analogy with (L),
this function is determined by the number of objects that have mass between M and
M + dM.

The very importance of such a function lies in the fact that any theoretical
model for the formation of cosmic structures gives predictions directly on the mass
spectrum of the objects. In turn, the luminosity distribution can be deduced once
the mass—to—light ratio, M /L, for each object is known. If we assume a flat Universe
with , = 1, % the value py = 3 x 10** Mgh®Mpc~2 for the mean mass density gives
a mass—to-light ratio of the order

~“ — 1500. 1.30
- 500 (1.30)

Evaluations of the M/L ratio are usually performed by measuring the discrepancy
between luminous mass and dynamical mass, that is deduced from the virial analysis
of galaxy motions [90,52,14]. The results of such an analysis suggest that /L ~ 100-
200k~ on galaxy scales, while M/L ~ 200-500h~! on the scales of rich clusters
[20]. Agreement with the value in eq. (1.30) can however be achieved by taking
into account a large amount of mass that can be present in galaxy voids and is not

detected by dynamical analysis.

The first and, maybe, most popular approach to a theoretical determination
of the mass function for cosmic structure was provided by Press & Schechter [167].
In their famous paper, the authors studied the growth of the clustering, starting
from a primeval Gaussian distribution for the density fluctuations, that was assumed
to have a power spectrum with constant spectral indez n (the precise meaning and
the significance of such assumptions well be better explained in following chapters).
Under such assumptions, they found a mass function of the type

3 1

n(M) = 1 pu <1+E)(JW)—(5‘%)X

Jon M, 3) \aL
1/ M2 dM
1 1.31
x e“’p[ 2<Mo> JMO (1.31)

(here M, represents a suitable mass—scale that we will define in the following). A
remarkable feature of the expression (1.31) is that it is given by a power-law shape
times an exponential cut—off and looks quite similar to the Schechter function (1.24).

*Here the density parameter Q, = p,/p. represents the ratio between the present mean matter
density p and the closure density p. = 1.9 x 1072°Qh2 g cm 3.
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Such an agreement between the Press & Schechter results on the mass function
and observational indications on the luminosity function is however valid only at
a qualitative level. In fact, a comparison between the above expressions for the
luminosity function of galaxies and galaxy systems, as deduced from data samples,
and the Press—Schechter model (1.31) shows that for a constant M /L ratio, no value
of the spectral index n give the correct values for a. In Chapter 4 we will give an
expression for the mass function that is proved to be valid for any galaxy systems
and that is deducible on the basis of a more general theoretical ground.



Chapter 2

Statistical methods

2.1 Deunsity field and correlation functions

Let us consider a reference frame in the Universe for which the homogeneity and
isotropy hypothesis holds. In this case, the line element turns out to be
dr?

d.sz pand C2 dtz — az(t) m + 7‘2 sz (21)

(see, e.g., refs. [202,104]). In eq. (2.1), the quantity
dQ? = sin’p d9? + dp? (2:2)

represents the solid angle element, while R™? is a constant. With a suitable redefini-
tion of the units of r, we can need to consider for R~? only the values 0, 1. Moreover,
in eq. (2.1) we introduced the scale factor a(t), that describes the behaviour of the
expansion of the Universe. Integration of the Friedmann equations

a\? 8 k
(5) =5z

a

R %WG(,O-FSP). (2.3)
gives the expression for a(¢), once the equation of state, that relates the pressure p
and the energy density p, is specified. From a heuristic point of view, the Friedmann
equations (2.3) can be seen as the relativistic equivalent of the energy conservation

principle and of the second law of dynamics in classical mechanics.

In the frame of a Friedmanian universe, let us consider a set of point-like
objects. We indicate by z; the position vector of the i—th object, as deducible from
its spatial coordinates (r,7,¢) at the time ¢. In order to describe the large-scale

39
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structure of the Universe, the objects to be considered are cosmic structures like
galaxies or galaxy systems (groups, clusters, superclusters).

In view of the following considerations, such objects are taken as identical to
each other and, in particular, as having the same mass. Thus, it is convenient to
express their spatial density by means of a point-like distribution

ple) = 28z — =) (24)

[not to be confused with the energy density introduced in eqs. (2.3)], and having
dimensions [L®]. Consequently,

<plz)>=1T" = n (2.5)

represents the mean value of the distribution, i.e. the object number density [in eq.
(2.5) < - > indicates a spatial average|, and

§P = IWsv (2.6)

expresses the probability of finding an object in the volume element 6§V [151]. Such a
volume can be considered infinitesimal in the same way that we consider the objects
as point-like. This is completely analogous to what is usually done in the study
of a macroscopic fluid, where, despite the existence of a microscopic structure, only
infinitesimal volumes or points are considered. In our case, the microscopic struc-
ture is chosen to include galaxies or galaxy clusters as points. Consequently, such
assumption permits us to treat in eq. (2.6) the probability of finding more than one
object in §V as an infinitesimal of higher order.

In analogy with section 1.2, let us introduce the joint probability
§OP = I®(zy,2,)6V; 6V, (2.7)

that each of the two volumes §V; and §V; (centered at z; and z» respectively) contains
an object. Taking
' O (2, 2,) = n?[1 4 (2, 22)], (2.8)

the adimensional quantity £(3)(zy,z,) represents the 2-point correlation function.
Under the hypothesis of a homogeneous and isotropic Universe, this depends only
on the separation r = |z; — z3|. The physical meaning of ¢®) lies in the fact that it
indicates how much the distribution differs from a completely random (Poissonian)
process. In fact, for a Poissonian distribution the probability of having an object in
§V; does not affect the probability of having another object in §V, so that eq.-(2.8)
becomes

I®(zy,2,) = [IW]? = n’. (2.9)



§2.1. Density field and correlation functions 41

Thus, a completely random distribution is reflected in a vanishing two—point corre-
lation function, for any value of the separation 7. On the other hand, if the positions
of 2 objects are correlated (i.e., the presence of one of them influences positively the
presence of the other), it follows that £(2) > 0, while —1 < ¢(®) < 0if the two positions

are anticorrelated,

In a similar way, from eqgs. (2.6) and (2.7) we get the expression

§3P(1,2) n®(1,2)
(2) - O A\Le) BTN 2) o
oUP(12) = §MOP(1) T (1) 5V2 (2.10)

for the conditioned probability of finding an object in §Vi, given the presence of
another object in §V;.

More generally, we can define the N—-point correlation function through the
joint probability
§MPp = IW(zy,...,zx) 6V1...6Vy (2.11)

that each of the volume elements §V3, ..., §Vy contains an object.

For N = 3, this is
§OP = T2y, zy,235) 8V, 6V, 6V5. (2.12)

In order to study the structure of the 3—point correlation function, let us suppose
that the object in z3 is sufficiently far away from z; and z, so that the probability
of finding an object in §V; does not depend on the presence of the other two objects
in 6V and §V,. If this is the case, eq. (2.1) modifies into

§OP = [M®(zy,,)6V16V;) x [IM §V3). (2.13)

Hence, requiring symmetry for the exchange of z; with z; and with z,, according to
eqs. (2.8) and (2.11) the 3—point probability can be expressed in the form

H(S)(mlyxZ)wS) =
= n°[1 461, 22) + € (a,23) + €D (23, 21) + ((z1, 22, 28)] . (2.14)

In eq. (2.14), ¢((z1,%,,x3) represents the adimensional term connecting the 3 points
all together. Consequently, it must have the property

C(:ci,mj,a:zqoo) =0 1# 7 #1 : 1,7,0=1,2,3. (2.15)

A graphic representation of eq. (2.14) is

H(3)(m1,$2,1:3) = n® 14 ; + /. -+ \ + A ], (216)
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where each leg represents a £(?) term, while the triangle corresponds to (.

Notice that all the above considerations are completely general and hold for
any statistical system. For example, in the case of a dilute gas, the typical situation
is that 1 > ¢(®) > (. Viceversa, for the distribution of galaxies we have seen in
Chapter 1 that the dominant term at small distances in eq. (2.14)is ¢ > ¢®) > 1,

On the basis of the same considerations that led us to eq. (2.14), we can write
the 4-point joint probability in the form

H(4)(m1,m2,:c3,a:4) = n*{1+ [5(2)(231,3:2) + ...+ 6 terms] +
+ [¢(z1, T2, T3) + oo + 4 terms] + EW(ay, 25, T35, 24)} (2.17)

Here the fourth—order correlation function

5(4)(2131;-’132,5'33,$4) =
= (2)(331,:32)5(2)(503, 334) =+ 5(2)(32, 933)5(2)(171, $4) + fm(fch 933)5(2)(?02;3:4) +
+n(z1, T2, 3, 24) (2.18)

represents the term connecting the 4 points. In more detail, it contains 3 terms
connecting separately two pairs, and the 5 term connecting all the four point together.
Graphically, eq. (2.18) takes the form

£ (21,22, 3, 24) = : +] ] + >< + ] - (2.19)

In general, for the N—point correlations we have that
O™ (zy,...,zx) = n°[l + (n < Npoint) + §§Z)(w1, vy )] (2.20)

where the disconnected N-point correlation function is

gﬁi)(mh wozy) = (N — point disconnected terms) + 0 (zq, .., ey).  (2.21)

(V)

con

In such expression €{,)(z1, ..., zy) represents the connected N-point correlation func-
tion that links all the N point simultaneously. For N = 3 eq. (2.14) becomes
fg?,)(ﬂil,ﬂtz,ws) = &ggl(mlvm%wﬂ = ((@1,22,23), and, for N = 4, 6521)1(331’332)‘33’ ) =
n(z1, T2, T3, 24).

The importance of the correlation functions lies in the fact that their expres-
sions, deducible from observational data, determine completely the statistics of the
(V)

o can only be

system under investigation. Viceversa, the explicit expression for £
written once the distribution function of the system is known.

An example of N-point disconnected correlation function is given by the so-
called Kirkwood superposition [114]

N\
M2y, onzy) = [1+EP(zy,z,)] ¥ (2) terms, (2.22)
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Figure 2.1: Tree graphs contributing to the hierarchical expression (2.23) for N = 2 to 7.
The pair of numbers below each N indicates the number of free trees and the number of
labeled trees (see Table 2.1); a number in parentheses next to a graph indicates the number
of distinct labelings (after [81]).

that was originally introduced in the study of rarefied gases.

Another popular expression in cosmological context is the hierarchical pattern

(81]

tn (N-1)
S One Y I €3 (2.23)

N—trees a labelings edges

€(N)

o (Z1y e ZN) =

in which the N-point connected function is expressed in terms of products of (N —1)
2-point functions. In eq. (2.23), distinct “trees” designated by a have in general
different coeflicients @,, but configurations that differ only in interchange of labels
1,...,N all have the same amplitude coeflicients, and AB is a single index which
identifies links (see Figure 2.1). The number of trees ¢ty with IV vertices is a result of
combinatorial analysis [172], while the total number of labeled trees is Ty = NV -2,
Thus, eq. (2.23) has ¢y amplitude coefficients (¢ = 1,...,ty) and Ty total terms.
Table 2.1 lists values of ¢ty and Ty up to N = 10. This shows that the 3-point function
has one amplitude @ and three total terms; the 4-point function has two amplitudes,
R, and Ry, and 16 total terms. [The hierarchical pattern (2.23) will be widely used
in Chapter 5 for the investigation of the correlation properties of the background
matter]. Such a hierarchical pattern is quite interesting, because it is also predicted
by several dynamical models of gravitational clustering such as the BBGKY equations
in the statistical relaxation regime [53,151,79,80,100], or perturbative analysis for
non-linear evolution of the fluctuations [81].
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Table 2.1
Counting tree graphs

N (trees) ty (labeled trees) Ty = NV -2
1 1 1
2 1 1
3 1 3
4 2 16
5 3 125
6 6 1296
7 11 16807
8 23 262144
9 47 4782969

10 106 100000000

As a concluding remark, it is to be stressed that for increasing correlation
orders it becomes more and more difficult to detect signals for €MV)(z1, ...,zx) from a
homogeneous galaxy sample, so that it is often hard to distinguish between different
statistical models.

2.2 Elements of functional methods

In this section we will introduce some fundamental concepts of functional methods
that are widely employed in statistical mechanics. In particular we will emphasize
their application to the study of the distribution of galaxies and clusters of galaxies.
For this aim, in the following we give a series of definitions and relations having

immediate applicability, instead of describing an extremely rigorous formalism.

2.2.1 The concept of functional

Let us consider the space F of the real functions ¢(z) belonging to L*(D) (i.e., having
a Lebesgue-integrable square modulus over the domain D) [206]. For what follows,
it is useful to introduce in F the concepts of norm and of scalar product.

Thus, let

¢ = /Dci’f/ﬂlq(w)l2
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be the square of the norm of ¢(z), while, given ¢i1(z), ¢2(z) € F, let

GG = /Ddicfh(x)fh(w)

be the scalar product of 2 functions. Moreover, let {¢,(z)} be a complete orthonormal
basis for F, such that

/D dz n(z) pm(z) = Sum (orthonormality),  (2.24)

Z ¢n($)¢n(y) = §(z —y) (completeness). (2.25)

Then, ¢(z) can be expanded according to
Q(x) = Z Gn an(m) ’ (226)
where the coeflicients of the expansion are

(@) = [ drén(a)q(). (2:27)

We define functional Fg(z)] as a mapping from F to the space of the real or
complex numbers. Particularly simple examples are the linear functional

F = d 2.28
[q(m)} /D1 :cf(:c)g(a:) ( )
and the bilinear functional

Flg(z)] = /Dl de /1)2 dy q(z) K(z,y) q(y), (2.29)

being D;, D; C D. Many properties of the functionals can be deduced from those of
ordinary functions of several variables. In particular it is possible to introduce the
concept of functional starting from a description in which we refer to a finite number

of independent variables, that form a discrete set.

If it is possible to introduce in F a discrete basis, from eq. (2.26) we get
Flg| = F[Z . ¢>n(w)} Bty ey Gy ). (2.30)

Then, the choice of an orthonormal basis {¢,} determines uniquely the expansion
coeflicients ¢, and, consequently, the representation of F[g(z)].

For the linear and the bilinear functionals (2.28) and (2.29), we obtain

ﬁ’(ql,...,qn,...) = anfn (2.31)
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and
F(Qh'--aan") = Z anmgngmu (2'32)
respectively, where the coefficients of the expansions are
fo = [ deén(e) f(2) (2:33)
knm = / dz / dy ¢n(z) K(z,Y) dm(y) - (2.34)
Dy D,

Alternatively, we can divide the domain of definition of ¢(z) into small cubes
having volume 7. If we choose a point z; inside each such cube, the function g(z) will
be approximately specified by the values ¢(z;) = ¢; that it takes at these points. In
the limit 7 — 0, such a representation for ¢(z) becomes exact, and

Flg] = mF(.y i) (2.35)

2.2.2 The functional derivative

In order to introduce the concept of functional derivative for Flq(z)], let us con-
sider a small function §¢(z) € F, so that g(z) + 8¢(z) differs from ¢(z) only in a
neighbourhood of z = y. Moreover, let

bw = /dméq(w) (2.36)

be the volume element in F contained between ¢(z) and g¢(z) + d¢(z).

Then, we define the functional derivative of Fq] as

oF . Flg+éq] — Flg]

— = . 2.37
bq(y) Jlilllo dw (2.37)

Taking 6q(y) = éwé(z —y), eq. (2.37) becomes
§F . Fla(®) + 8w é(z —y)] ~ Flo(x)] (2.38)

Saly) T e ¥
that, in the particular case F[q(z)] = ¢(z), reads
8q(z)

= §(z—v). 2.39
safy) Y (239

In a similar way, higher order functional derivatives can be introduced.

As an example, let us consider the functional

Folq = /dml.../ dzp f(@1, 00 2n) a(21)or(2n) (2.40)
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where f(z1,...,Z,) is a symmetric function with respect to the variables z1, ..., Zn.
Differentiating the functional (2.40), we get

/dwz /dmn Y, @2y ey ) @(22)onna(zn) +

5¢J(y

. / dzy.. / dzn_1 f(z1y ey Tno1,Y) ¢(21).0-q(Tn-1) . (2.41)
Making use of the symmetry of f(z1,...,z,) and relabeling the integration variables,

we finally obtain

5‘; i n [ dore [ doac f(21, e 20m,9) 9(@1)-g(0) (2.42)

Similarly, the higher order derivatives are -
sMF, n!
Sa(u)-8q(um)  (m—m)l
% [ der [ donm F(@1, s By Y1y o Y )2(@2) (@) (M <)
§tm F
6q(y1)-+-69(ym)

The concept of functional derivative allows us to introduce the expression of
the functional Taylor expansion for F[g]. In fact, under the hypothesis that F'[q] has

=0 (m >mn). (2.43)

derivatives of any order, we can write

Flg+46q] = F[tz]

s
/d:cl /dmn FaloT el o ()bl (2.44)

Such expressions for the functmna,l series expansion will be of fundamental relevance

in the next section, where we define correlation functions as coefficients of the Taylor

series of a suitable functional.

2.2.3 The functional integral

Let us consider the function F(...,q,...), defined in eq. (2.35), and the multiple
integral

- /{H dg}F (.o giy ) (2.45)

In such expressions, the dominion of variation for the variables g; is uniquely deter-
mined by the dominion of variation of ¢(z) inside the functional space F. Let us
suppose that the limit

tim [{T] dg:}F(s0i,) = [ Dlgle)] Fla(=) (2.46)
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exists and is unique. The above relation defines the functional integral of F{g(z)]
over F, with measure D[g(z)]. Notice that the limit 7 — 0 is completely equivalent
to passing from an integration over a discrete infinity of variables ¢; to an integration

over a continuous set of variables ¢(z).

As an example, let us consider the Gaussian functional
F[Q] = N e—%f da:f da:'q(:c)A(z,m')q(m’)’ (247)

where A(z,z') is an hermitean operator acting on F. We show how the integral of
the functional (2.47) can be evaluated in analogy with the integral of a n~dimensional
Gaussian function. In fact, in one dimension it is

“iMdg = = (2.48)

712:7?[?6 Vol

while the n—dimension case gives

1 +oo +oo 1
— d / d ne—iz'v’c watk — (det A)7Y?, 2.49

(27T)n/2 /—-oo Q1 o q ( ) ( )
In this equation, the matrix elements ay, are real and symmetric under the exchange
of the indices, and Y aixqigr is a positive—definite quadratic form. Moreover, the
ar’s are the entries of the matrix representation of the operator A with respect to
a finite basis of a subspace of F. In order to prove eq. (2.49) let us consider the

integral

7(j) = /+°° dql.../+°° dgn ™7 Loux wABF D e (2.50)

where the quantities b; are real numbers. Let us now introduce the notation (g1, .-+, ¢»)
=, (J1,.--yJn) = j, (aix) = A and define the vector y = i47'j. With the position
q =y + z and after some calculations, the exponent in eq. (2.50) becomes

1 e 1 1. 1.
- '2_(q7A7q) +Z(J,CJ,) = ——_2_(Z’A’Z) - 5(.]714 le)' (2'51)

After substituting in the integral (2.50), we have

CZ(5) = e F Lk /+°° dzl.../m dz, €77 Loun AT (2.52)
Let us now diagonalize the matrix (a;x) by means of the orthogonal transformation
z; = Y biwa, in such a way that S anzize = S Nof, with A, the eigenvalues
of A. The Jacobian of an orthogonal transformation being equal to one and since
1=, A = det A, the integral Z(7) becomes

1 -1
+oo +oo 1 . "EZl‘k Qg JLTk
1 / dq / dgn 6_52”‘ anqigr+l ), qia €

(27!')”/2 e e m(detA)l/z (250)
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Then, eq. (2.49) follows, taking 7; = 0 in the above expression.

In analogy with these results, the functional integral of the Gaussian functional
(2.47) becomes

/ Dlg(z)] e~ 3 &= [ &' s@)Al=0a=) ~ (det A)71/?, (2.54)

In this expression, the substitution of the sums over the discrete indices [,k with
the integrals over the continuous variables z,z’ is due to the fact that the func-
tional integral has been obtained as a limit starting from an ordinary integral over n
variables.

2.3 Functional methods for correlation functions

Other than the density field p(z) introduced in Section 2.1, let us consider the relative
fluctuations described by the contrasi-density field
— <
§(x) = px)=<p> (2.55)
<p>

According to this definition, the fluctuation field (2.55) has the properties 6(x) > —1
and < §(x) >= 0.

It is easy to show that the n—point disconnected correlation function for the
density field p(x) is directly related to the contrast—density field, according to

N @1y ey @) = < 8(1).6(0) > (2.56)

In fact, let us consider the space F of the functions §(x) that satisfy the two above
properties. Moreover, let P[§(x)] be the probability that the density fluctuation field
is described by a given §(x) € F. By definition, such a probability distribution in the
functional space must be be normalized so that the total probability is unity, that is

/D[(S(:c)]P[é(a:)] = 1. (2.57)

Given a generic function J(z) with finite norm, we define the partition func-
tional

Z[J] = / D[6(z)] Plé(z)] &' 428@)e) (2.58)
It is easy to show that, such a functional represents the continuum limit of the integral
(2.50), once we substitute the Gaussian functional (2.47) with a generic P[§(z)]. In
eq. (2.58), J(z) play the role of an external source, which perturbs the distribution
P[é(z)] [80,134]. Then, according to the definitions of P[§(z)] and of Z[J(z)], we get

< 6(z)> = /D[(S(:c)]P[&(a:)] §(a) = i1Z = 0. (259
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The above relation ensures the vanishing of the first derivative of the partition func-
tional, evaluated in absence of external source. It should be observed that in eq.
(2.59) we used the symbol < - > to indicate an average over the space 7. However,
under the hypothesis of ergodicity, the averages taken over the (physical) configu-
ration space are completely equivalent to the expectations taken over an ensemble
of universes, i.e. over the functional space F. Thus, from now on we will use the
symbol < - > to indicate indifferently one or the other kind of average.

Let us now consider the n—point joint probability

O™ (zy, .y zn) = < p(21)ep(zn) > =

= [ DI&()) Pl6(2)] p(1)-..p(zn) (2.60)

that at the points @i, ...,z, the density field takes the values p(z1),...,p(zn). Then,
according to the definition (2.55) of density—contrast field,

I (zy, ..., 2n) = / D[5(2)] P[6(z)] < p >™ [1+ 6(z:)].[1 + 6(zn)] =
= <p>"{l+[<8z1)é(z2) > +...] + ...
(< 8(21)eeb(Tnor) > +.. ]+ < 8(21)...6(zn) >} (2.61)

Taking into account the definition (2.21) for the disconnected correlation function,
we finally obtain the fundamental relation

Mz

8J (x1)...8J (zn) (2.62)

t(i?a)(wh"')mn) =< 5(%1).5(:2”) >= ¢ "

J=0

According to eq. (2.62), the McLaurin functional series for the partition func-
tional reads

il 4o sz
Z[J] = - . T (zn) =
L] 1+:4;2n! - /_oo o T )8 T (w) lymo” ) J(@n)
X N atoo +o0
- HZ% d:cl.../ dzp € (2ay oy 2n) T (21)o T (20) . (2.63)
n=2 '¢* V= —oo

Thus, Z[J] fepresents the generating functional of the disconnected correlation func-
tions, in the sense that such functions can be defined as the coeflicients of the McLau-
rin expansion of Z[J] itself.

In a similar way, we can also characterize the connected correlation functions
as coefficients of the McLaurin expansion of a suitable generating functional. In fact,
let us consider the functional

W(J(z)] = InZ[J(z)]. (2.64)
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According to an important theorem of combinatorial analysis [163], it is possible to
express the connected correlation functions as

. §(n)
§J(z1)...6 7 (zx) s J=0

) (@1, 0y ) = 07 (2.65)
The proof of this theorem is rather tricky and will not be reported here. However,
in order to show how this theorem works, we check the validity of eq. (2.62) for
the particular case n = 4, that represents the lowest order at which connected and
disconnected correlation functions differ. Indeed, differentiating explicitly W[J], we

have
54 1 §4z
WI[J] = +
5J(331)6J(224) J=0 Z[J} 5J(€B1)6J($4) J=0
1 §2z sz -
(zz[J] §7(21)87(22) 57 (29)67(@2) " erms) gm0

= &id(ar, 22,25,20) — [(O(21,2:)6P (25, 24) + .3 terms] =

= 6&:1)1(1:1’ T2, T3, Ta) - (2.66)
Thus, the effect of differentiating W[J] instead of Z[J] is to subtract all the lower—
order disconnected terms from 5((;2(51:1, veey T )

Accordingly, the McLaurin functional expansion

-

X 4N pdoo + oo
nZ[J] = 3 %/ dml.../ i €0 (21, vy @) T (1) () (2.67)
n=3 'v° YT

can be considered as completely alternative to the one for Z[J].

The functional series (2.63) and (2.67) show that correlation functions deter-
mine uniquely the partition functional and, consequently, the statistics of the system

too.

2.4 The spectrum of the fluctuations

It is often very useful in the analysis of the density fluctuation modes to give a
representation of the correlation functions in the momentum space. For this purpose,
let us define

§(k) = / (2i)€/25(x) kX (2.68)

as the Fourier transform of the field §(x). In eq. (2.68), k = 2ma(t)/) is the comoving
wave number, expressed in terms of the wavelength A of the fluctuation. Under the
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hypothesis of homogeneity and isotropy, we will have dependences only on k = |k|.
According to the expression (2.62) for the 2—point correlation function, we have

<6k > =
dBky &Pk,
/ (27 )3/2 (27)3/2

/D[‘S(x)]P[5(X)] 5(x1)6(x2)e“i(k1-xz+k,.x2) _

- /D[(S(x)]P[é(x)]/(:;;c;/z (;;%/25(x1)5(xz)6_i(kl'xl+k2'x2)- (2.69)

In the above relation, we introduced the power spectrum < [5(k)|2 > as the Fourier
transform of the 2-point correlation function. Such a quantity is of fundamental
importance, any theoretical prediction on its shape being directly comparable with
the observed ¢(?), according to eq. (2.69).

However, the evolution of density fluctuations turns out to be dependent both
on epoch and on scale, so that the resulting fluctuation spectrum will change its slope
as the cosmic expansion goes on. For this reason, the theoretical determination of
the power spectrum at the present epoch starts from the assumption of a primordial
spectral distribution at a given redshift z,,. In particular, we take z,, > zey (Zeg:
redshift of the equivalence epoch, at which the non-relativistic matter density starts

to dominate the cosmic expansion) and assume
< |ope(B)? > = Ak™. (2.70)

The value n = 1 for the spectral index (Harrison-Zel’dovich spectrum [101,207])
is usually preferred, according to the idea that primeval perturbations originated
at the inflationary stage [99,123,124] (see, however, refs. [164,126] for generalized
inflationary models that predict n < 1). Moreover, in eq. (2.70) the proportionality
constant A represents the amplitude of the fluctuation spectrum and its value is fixed
once a suitable normalization prescription is assigned.

The power law (2.70) for the spectrum gives in turn a power law for the 2-point
correlation function. Indeed, inverting eq. (2.69), we get

A ~ ik A e nip SILET
5(2)(7') = (27&')3\/d3kk ekr = 57—15 o dk k +27 =
o ne) 2.71
97 n+2 sm[ 2 |7 (2.1)

However, due to the successive evolution of the fluctuations, the slope of the power
spectrum (2.69) is left unchanged only for k < keq, where k., is the wave vector
corresponding to the size of the horizon at the equivalence [19]. On the contrary,
the shape of the spectrum at grater wavenumbers k > k., crucially depends on the
kind of dark matter (DM) particles dominating the mean density of the universe. In
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general, over the scales where linear gravitational evolution still represents a good
approximation, the power spectrum can be expressed in the form

< [6(B)? > = T(k) < |6pe(R))® > . (2.72)

Here < |6,,(k)|?> > corresponds to the primordial power spectrum (2.70). The trans-
mission function T(k) is such that T'(k) =1 for k < ke,, while its shape for k > ke,
depends on the weakly interacting particles which dominates the DM content of the
Universe. In fact, the most important characteristic of such particles is the value
of their thermal velocities. This is because all density perturbations with scales less
than the horizon size damp completely at the relativistic stage due to free streaming
[63]. In contrast, once nonrelativistic, DM particles begin to slow down and become
a dust-like medium. At this stage, surviving density perturbations grow at the rate
§p/p « a if nonrelativistic particles dominate the cosmic mean density [151]. Other-
wise, perturbations, while not completely damped, remain stagnant (Meszaros effect,

[137]) up to the equivalence epoch corresponding to the redshift
142, ~ 4x10*QA*1 + 0.68N,) (2.73)

(N, is the number of massless neutrino species). To summarize, all perturbations
on scales smaller than the horizon damp when weakly interacting particles become
nonrelativistic, and the spectrum of perturbations acquires a sharp cutoff at short
wavelengths. This shows how important it is to distinguish between scenarios domi-
nated by DM particles that derelativize at largely different cosmic epoch. The value
of the cutoff scale is a very important parameter characterizing the formation of
large scale structure, as it determines the scale of the first structure that undergoes
non-linearity and the time-sequence of the formation of large scale structure.

In the following subsections we describe the main features of the fluctuation
evolution in the two popular scenarios of hot dark matter (HDM) and cold dark
matter (CDM) dominated universes. However, we will not enter in the details of the
computations and the physical motivations, that are at the basis of such scenarios
(see, e.g., refs. [168,20,19] for detailed reviews).

2.4.1 Hot dark matter (HDM)

DM particles are defined to be hot if they derelativize when the mass contained inside
the horizon is much greater than the galaxy mass-scale (~ 10" Mg). Neutrinos are
an example of HDM, because they become non relativistic at a rather low redshift

my

30eV’

1+z ~ 6x10* (2.74)
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Figure 2.2: Left panel: density fluctuation spectra as a function of the wavenumber k for
isothermal white noise (n = 0), and adiabatic Zel’dovich (n = 1) neutrino and CDM spectra;
right panel: mass fluctuation within a randomly placed sphere containing mass M for CDM
spectrum (after [20]).

m, being the neutrino mass in eV. It is interesting to note that z. is close to z, for
m, several tens of eV. Thus, in a neutrino~dominated Universe, the spectrum has in

practice only one characteristic scale.

At the redshift z,, the mass contained inside the horizon,

M, ~ 2x 1015(%> M, (2.75)

represents the mass of the smallest surviving structure and is several orders of mag-
nitude above the galaxy mass scale. This means that HDM cosmological models lead
to the so—called top~down scenario in which the first structure to form are pancakes of
supergalactic sizes, while galaxies are originated later by fragmentation of pancakes

(64,185].

Detailed numerical computations for the evolution of adiabatic fluctuationsin a
massive—neutrino HDM scenario were performed by Peebles [152], while an analytical
expression for the numerical data on the transmission function was suggested by Bond
& Szalay [23] in the form

T(k) o 1072k
k, ~ 0.40Q,hR*Mpc". (2.76)

As shown in Figure 2.2, such an expression for the transmission function provides an
exponential cut-off for wavenumber & > k,.
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2.4.2 Cold dark matter (CDM)

In the CDM cosmology, the scale of cutoff in the spectrum is too small to be of
any importance for large-scale structure formation. A cutoff on small scales can
happen for either of two reasons. First, the mass of particles can be so large that
they become nonrelativistic very early. Candidates for such kind of DM particles are
supersymmetric particles, such as gravitinos and photinos [69], with masses above
1GeV. Second, there can be particles like the axion that never were in thermal
equilibrium and have a very low thermal velocity dispersion despite their small masses
(~ 10-%¢V) [166].

In CDM models, the formation of structures follows the bottom-up scenario.
It starts with small-scale structure, having mass ~ 10°M. Later galaxies form and

finally clusters and superclusters.

Also for CDM scenarios, accurate numerical calculations of the spectrum of
density perturbations after equivalence were performed [153,154,168]. The most pop-
ular expression for the CDM transmission function is given by Bond & Efstathiou

[22] in the form
1

1+ ak + bk 4 ck?
[a = 1.7(Qoh*) T Mpec, b = 9(Qoh?) 1 Mpct®, ¢ = 1(Qoh?)"2Mpc?]. According to
eq. (2.77), it results T'(k) ~ 1 for small k values, due to the fact that perturbations
on scales larger than the horizon grow as a?, also during the radiation dominated
era. In contrast, the growth of perturbations of nonrelativistic particles inside the
horizon suffer stagnation [137]. This effect produces a bend in the spectrum from the
initial spectral index n to n — 4 in correspondence to the scale of the horizon at the

T(k) = (2.77)

equivalence (see Figure 2.2).

As a concluding remark, let us observe that the importance of following the
evolution of the DM spectrum lies in the fact that it determines the spectrum of the
ordinary baryonic matter, after the equivalence epoch. In fact, as the temperature
goes down to T}.. ~ 4000 K at the redshift z... ~ 1400, neutral baryonic gas decou-
ples from radiation, the Jeans mass falls to about 10°My and all perturbations on
larger scales could grow due to gravitational instability [202]. As a consequence, the
amplitude of baryonic perturbations after decoupling grows rapidly to match that of
the DM fluctuations [96].
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2.5 Gaussian fluctuations

Particularly interesting is the case in which the fluctuations in the matter distribu-
tion are approximated by a random (Gaussian process. This means that the density
fluctuations for the matter contained inside a sphere of fixed radius and centered
on a randomly chosen point has a frequency distribution of the Gaussian type [151].
Consequently, the distribution of the fluctuation amplitudes also turns out to be
Gaussian, with variance determined by the 2—point correlation function.

The very important role of Gaussian perturbations in the matter distribution
lies in the fact that they originated from quantum fluctuations of a free scalar field
during an early phase of the expansion of the Universe. In fact, the classical scenario
of inflationary expansion gives rise to primordial perturbations initially having Gaus-
sian nature. However, several mechanisms had been also suggested for originating
non—Gaussianety, still in the frame of inflation [5,117,144], or due to different physical
phenomena, such as accretion of matter around cosmic string loops [201,197,16,4],
percolation of cosmic explosions [145,203,205] or non-linear dynamics [81].

In the Gaussian case, the probability distribution in the functional space F is
given by

Pls(z)] = (det K)/? e:cp{——;- [ [ dm'&(m)K(m,x')&(m')}. (2.78)

Here K(z,z') in an invertible operator acting on F and symmetric with respect to
the variables z,z’. From eq. (2.78) it follows that such an operator determines
the variance of the distribution and, more generally, the correlation properties of
the fluctuation field. Let us observe that the above expression of the distribution
functional is such that the normalization requirement (2.57) is satisfied. Indeed,
making use of eq. (2.54) for the integral of a Gaussian functional, we get

(det K)1/? / D[§(z)]e~3 ) & [ &= i@K@EN6E) 1 (2.79)

Expressing the 2—point correlation function as the second derivative of the partition
functional Z[J], evaluated for J(z) = 0, we can show that the operator K determines
the 2—point function according to

dk ezk(zl —T2 )

£ (zy,22) = /(271_)3 I (2.80)

Here R(k) is the representation of the operator K in the momentum space, where it
acts as a multiplicative operator. In order to prove eq. (2.80), let us observe that the
partition functional Z[J] relative to the Gaussian distribution functional (2.78) is

2] = (det K)'? et 4= V@RI [ pls(a)] et b J o
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_ i [ [dal @K (2.81)

Differentiating two times this expression, the 2—point function reads

6 6 1 ! — !
(2) - _ ~% [dz [ da' J(z)K I (")
&, 2) §J(z1) 6J(z2) ¢

J=0

= [K78(21 — 21) = K720 (21) ] (@a)] e 3 2 ] @I

J=0
= K '6(zy — z2). (2.82)

Eq. (2.80) follows from this expression of { (?), after performing the Fourier transform.
Moreover, from eq. (2.80) we immediately obtain that the inverse of K (k) coincides
with the power spectrum < [§(k)[? >.

Let us finally observe that from the expression (2.81) for the partition func-
tional we derive a fundamental property of the Gaussian distribution. In fact, ac-
cording to the definition (2.64) of W[J], the generator of the connected correlation
functions reads

W(J] = _% / dz / dz' J(2) K™ T (') . (2.83)
Then, following the expression (2.65) for the connected functions, we get

£ (29, .0y ) = 0 if n#2. (2.84)

con

Thus, if the density fluctuation field is characterized by a Gaussian distribution, its

statistics is completely determined by 2-point correlations only.

2.6 The smoothed fluctuation field

In the study of the large scale distribution of cosmic structures (galaxies or clusters
of galaxies) we do not consider the details of such distribution on too small scales.
In the case of galaxies, by avoiding to go down to scales of the order R, ~ 0.1 Mpc
we can neglect all the strongly non-linear dissipative processes, that dominate the
dynamics on such small scales. Moreover, when we consider larger structures, the
relevant scale R is suitably fixed in such a way that details on scales < R do not
influence the overall statistics. For example, in the case of the rich Abell clusters,
their distribution can be described by a density field that does not involve fluctuations
having wavelength less than R, ~ 10Mpc.

In order to describe fluctuations on scales exceeding R, let us introduce the
smoothed fluctuation field ‘

fa(x) = [ &yo(x) Qullx —¥1), (2.85)
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that results from the convolution of the field §(x) with the window function Qy(|x|).
The effect of Qn(|x]) is to select the Fourier components of §(x) that have frequency
> R~'. According to the requirement that the window function suitably weight the
harmonics of §(x), the normalization constraint

+oo
[ @eau(x) = 1 (2.86)

[eo]

follows.

Typical examples of window functions are given by the Gaussian filter

Qu(lx]) = Vile 5 (2.87)
and by the top-hat filter
Qu(|x]) = VR~19[1 - '—E—'} (2.88)

In the above expressions, the constant V; represents the characteristic volume asso-
ciated with each window. By applying the normalization requirement (2.86) to each
of the two above filters, we get

Ve = / Preim = (27)2R? (2.89)
and i .
X
VR = /dz39{ —"R—:I = "3“7TR3, (290)

respectively. On the other hand, the expression of the Fourier transform for the
Gaussian filter,

Qn(k) = e, (2.91)
and that for the top-hat filter,

3(sinkR — kRcos kR)
(kR)? ’

show explicitly that the windows (2.87) and (2.88) act as infrared cutoffs, depressing
with different efficiency the fluctuations with wavelength A\ < R.

Qn(k) =

(2.92)

Associated to the smoothing scale R, we can also introduce a mass scale My, as
the expected mass contained inside the characteristic volume V;. Then, the quantity

My =<Myg>=<p>W (2.93)

turns out to depend not only on the scale R, but also on the shape of the window
function. More generally, the mass contained inside a sphere of radius R and centered
at x reads

Ma(x) = [ &2 p(y) Qullx —y]) = Vapa(x), (2.94)



§2.6. The smoothed fluctuation filed 59

where pn(x) represents the smoothed density field, defined in analogy with eq. (2.85)
[in all these consideration p(x) and < p > refer to the matter density and not to the
object density].

The statistics of the field 8z (x) is described by the smoothed correlation func-
tions
€ a(Xay oy Xa) = < 8a(¥1)oba(xn) > =
- / DI8(x)] P8(x)]6n(51)--62 (%n) - (2.95)

Then, according to the definition (2.85) of the smoothed field and after exchanging
the functional integral with the 3—dimensional ordinary ones, we obtain

) aGerr o) = [T & Qullns = 7, ) €20 ¥0). (2.96)
=1

Eq. (2.96) relates explicitly the correlation properties of the smoothed fluctuation
field to that of the unsmoothed one. In particular, according to eq. (2.94) the mass
variance over the scale R turns out to be

= (P52 -

= < 6a(x)8a(x) > = P (x,x) (2.97)
and coincides with the smoothed 2-point correlation function evaluated for null sep-
aration. In turn, the behaviour of 51(3) is easily obtainable taking eq. (2.96) for n = 2.
In fact, after eliminating the Fourier modes with wavelength A < R, we get

@(p) = L
€R ( ) - (271_)3/2

~1/R 5 ,
/0 dk < |6(k)2 > & (2.98)

For r < R, the exponential term in eq. (2.98) is practically constant (~ 1) in
the integration range, so that, for r < R any dependence on R disappears and
1(12)(7' < R) ~ ¢(@(R). As a consequence, the mass variance (2.94) depends on the
smoothing scale according to o2 ~ ¢?)(R). Viceversa, for 7 > R eq. (2.98) gives
I(Lz)(r > R) =~ £@)(r), and, on greater scales, the effect of the smoothing becomes

negligible.

Figure 2.3 shows the shape of 5&2)(r) for two different values of the smoothing
radius and assuming a power law for the power spectrum. In particular, for a power

spectrum with spectral index n,
o o 7", (2.99)

Accordingly, for n > —3, the mass variance is a decreasing function of R, as can be

reasonably expected.
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Figure 2.3: Smoothed 2-point correlation function for two different smoothing radii. The
unsmoothed function (solid line) is assumed to have a power law behaviour.

Following eqs. (2.94) and (2.97), we can explicitly work out the dependence
of the mass variance o, on the mass scale < M, >, according to

2

Opy X< My >7% a=(n+3)/3. (2.100)

The above result has been obtained with the underlying assumption that dif-
ferent scales R are considered at the same cosmic time. In an alternative way, we
can also refer to the epoch at which a fluctuation on a given scale enters the horizon.
In this case, the variance on the scale M that is just crossing the horizon, reads

hrthor) = <<6—g—)2> o MP B=(n-1)/3 (2.101)

(see, e.g., [27]). In particular, if n = 1 according to the canonical predictions of the
inflationary paradigm [12], we get 3 = 0. In this sense, the Zel’dovich fluctuation
spectrum originated by inflation does not present any characteristic scales when these
cross the horizon.



Chapter 3

Biased models for galaxy formation

3.1 Motivations for bias

The statistical investigation of the large—scale structure of the Universe represents
a powerful test for any theory concerning the formation and evolution of primordial
density fluctuations. However, even though such theories are able to predict the
statistics of the background matter distribution, the analysis of homogeneous samples
of galaxies and galaxy systems are relevant to the statistics of the object distribution.
Differences between such two kinds of distribution probably exist and they origin lies
in physical mechanisms and environmental effects occurring during the formation of
cosmic structures. For this reason, it is of crucial importance to understand which
kind of physical processes are relevant to the formation of observed structures and
which is their impact in determining a possible segregation between luminous object
and background matter distributions.

As we have already seen in Chapter 1, the analysis of homogeneous samples
of galaxies leads to the detection of the 2-point galaxy correlation function

Tog\
&) = (22) (31)
7
with v ~ 1.8 and 7,y ~ 5h™'Mpc, in the range 0.1 7S 10A™ Mpe [151]. In a
similar way, observational data on the distribution of rich Abell clusters indicates
that

&) = (22) (32

T

in the range 55 7S 100 A~ Mpe, with the same value of the slope «y, but with a
greater clustering length, r,. = (3 — 5)7,,. Several evidences also exist that the
amplitude of cluster correlations does depend on their richness [23,165]. Moreover,
clusters shows signals of strong correlations on scales much larger than those relevant
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to the galaxy distribution. As a consequence, the large-scale distribution of matter
in the Universe can not be traced with the same efficiency both by galaxies and
galaxy clusters. On the contrary, such results seem to suggest that neither galaxies
nor clusters trace the actual matter distribution. The large correlation amplitude
for rich Abell clusters was the main reason that lead Kaiser [112] to introduce the
concept of bias. According to this model, he postulated that rich Abell clusters arise
only from exceptionally high peaks of the background field and, cosequently, exhibit
an enhanced clustering with respect the underlying matter.

Further supports in favour of a biased distribution of cosmic structures come
from detected correlations between galaxy types and environment (see Section 1.2).
Then it would the surprising if galaxy formation were not significantly affected by
environmental effects segregating galaxies from the underlying matter. In the follow-
ing we describe the main motivations for this suggestion and put into evidence the
principal cosmological consequences.

3.1.1 Flatness of the Universe

Since the first dynamical investigation of the mass distribution in the Universe, several
evidences have been found that the dynamically deduced mass exceeds the luminous
matter by a factor ~ 10. Mass is in general estimated by using a relation of the
type M ~ v?R, being v some observed velocity involved in a structure of size R.
Accordingly, while a typical value of the mass—to-light ratio for the stellar content
of galaxies is of the order M/L ~ 10, data on the virial analysis of groups and
clusters of galaxies suggests M/L ~ 200-500k [20], so that a value £, ~ 0.1-0.3
for the cosmic density parameter follows. On the other hand, if the matter were all
baryonic, 2, ~ 0.1 would be compatible with the Big Bang nucleosyntesis constraints
[204]. Thus, although the deduced amount of dark matter exceeds that of luminous
matter, it is short by a factor ~ 5 from giving Q, = 1, as predicted by canonical
inflationary models [99], and leads to the suggestion of a Universe dominated by
non-baryonic dark matter.

In order to reconcile the dynamical evidence for ), ~ 0.2 with the theoreti-
cally preferred (2, = 1, we are forced to suppose that the rising trend of M /L should
continue on scales greater than that of rich clusters (~ 10 h™*Mpc). The mass es-
timates on such scales are based on the application of the “cosmic virial theorem?”
[149,150,151] to pairs of galaxy. Such theorem, that expresses the condition for hy-
drostatical equilibrium of a self-gravitating system of collisionless particles, gives for
the density parameter

Qo o &(r) H(v/r)?. (3.3)

In such expression, v is the mean pair-velocity and &(r) is the 2-point correlation
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function. The application of eq. (3.3) together with the observed amplitude of the
galaxy 2-point function again seems to suggest that 2, ~ 0.1-0.3 [52]. If, however,
galaxies cluster more than the underlying matter, the corresponding 2-point function
turns out to be amplified with respect that of the background according to

o(r) = bzﬁp(r). (3'4)

Here {,(r) represents the background 2-point correlation function, while b > 1 is
the so—called biasing parameter. Then, by using £, instead of ¢, in eq. (3.3), the
resulting value of £, turns out to be amplified by a factor b? and agreement with a
flat Universe is achieved for b = 2-3.

3.1.2 FEvacuation of voids

Observational data on the three—dimensional distribution of galaxies shows that
“voids” of size ~ 50 A~ Mpc in such distribution are quite common. A typical num-
ber density of galaxies in these voids is < 10% of the mean. Assuming that matter
is distributed like galaxies, such an underdensity corresponds at recombination to a
contrast density |§] > 1072 if Q, = 1 and to |§] > 5 x 1072 if 2, = 0.1, in contrast
with the isotropy of the microwave background on angles 10’~1° [57].

Also in this case, the situation can be improved by assuming that galaxies are
more clustered than matter. In fact, let us take as typical density contrast of galaxies
in superclusters and voids the values §, = 2.5 and §, = —0.9, that are appropriate
to the Local Supercluster (LSC) and the Boote void, respectively. Then, assuming a
bias factor f ~ 3, that gives Q, = 1, the real mass density in the LSC is § ~ 0.85,
while the mass deficit in the void is § ~ —0.32. Such values for the contrast density
are compatible with |§] ~ 9x10™* and with 6T/ =~ 3.5x1075(Q,h%)1, if most of the
mass is assumed to be non-baryonic. The above value of the temperature fluctuation
is compatible with observational constraints unless Q,h? is much less than one. Thus,
an open Universe with 2, ~ 0.2 is in trouble because it predicts no biasing between
matter and galaxy distributions (f = 1) and, consequently, too large temperature
fluctuations in the Cosmic Microwave Background.

3.1.3 Problems with CDM and HDM models

In a Universe dominated by CDM, the fluctuation spectrum after the equivalence
epoch is determined by the assumptions of adiabaticity and scale-invariance of the
fluctuations as generated by inflation, and by the cold nature of the DM, which
prevents small-scale fluctuations to be damped by free-streaming (see Section 2.4).
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Results from N-body simulations of a Universe dominated by CDM led to the con-
clusion that, if , = 1, the large scale distribution of galaxies cannot be reproduced,
unless the galaxy formation is biased [49]. In such simulation, the resulting 2-point
correlation function steepens in time as steeper parts of the initial fluctuation spec-
trum become non-linear. If mass traces the galaxy distribution, the stage of the
simulation to be considered as the present time is reached when its logarithmic slope
matches that (y = 1.8) observed for galaxiés. However, such evolutionary stage
corresponds to a value of the clustering length only ~ 1(9,h?)"! Mpc, too small if
compared with 7, ~ 5 ™' Mpc observed for galaxies, unless Q,AS 0.2. Thus, assum-
ing a flat Universe dominated by CDM requires an enhanced clustering of galaxies
with respect to the background, such that &(r) = (5 — 20)¢,(r) (for A = 0.5 and
h = 1), which is consistent with the values of b deduced above on the ground of
general considerations.

In the case of a Universe dominated by hot particles, such as neutrinos with
mass ~ 10eV, free streaming washes out all the small-scale Auctuations. Conse-
quently, the first objects to form are pancakes on supergalactic scales, that sub-
sequently fragment to galaxies. The resulting neutrino correlation function rapidly
steepens in time during the pancake formation and as sub—clustering develops. Fixing
the slope to v = 1.8 requires that the first collapse of pancakes must be occurred very
recently, at z ~ 1if Q, = 1 [44]. In this case, the requirement that the slope of the
2-point function is v = 1.8 implies a correlation length for neutrinos 7, = 8 A~1 M pc.
Hence, the bias required here is in opposite sense because the resulting galaxies must
be less clustered than the DM background (antibiasing).

All the above considerations argue for some kind of segregation between galax-
ies and background matter. On the other hand, such bias can be the natural conse-
quence of physical processes occurring during the formation of cosmic structures and
will be discussed in details in the next section. Another kind of bias, that has ob-
servational origin, is related to the fact that galaxy or cluster sample are magnitude
limited (optical bias; see ref. [26]). As a consequence, objects in such samples are

identified with peaks of the luminosity field, that have height greater than a fixed
threshold.

3.2 Physical mechanisms for bias

In this section we describe some cosmological scenarios in which a biasing in the
distribution of cosmic structure arises (see also refs. (54,57 as reviews on biased
galaxy formation). The bias mechanisms we will describe in the following can be
classified in two general types.
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Figure 3.1: Enhancement of the clustering of peaks higher than a fixed threshold with
respect to the background peaks for a one-dimensional fluctuation field.

i) The Universe is dominated by one kind of DM, while the baryonic component
is segregated from non-baryonic DM even on scales ~ 30 A" Mpc. This can
provide supply for galaxy formation only in certain regions.

ii) Large—scale baryon distribution does trace the DM on scales > 1h~!Mpe, but
the efficiency with which baryons turns into luminous galaxies depends to other
environmental effects, such aslocal background density or it may be the result of
feedback from other galaxies. The effect may be destructive, suppressing galaxy
formation, or constructive, enhancing galaxy formation in the neighborhood of
other galaxies (e.g., explosions).

3.2.1 Bias in hierarchical clustering

An enhanced clustering of galaxies over the background matter can arise in a bottom-
up scenario, if galaxies formed only from those peaks of the density distribution,
smoothed on the galactic scale R, that have amplitude at least v times the r.m.s.
value og. It was shown by Kaiser [112] that, if the power spectrum has sufficient
amplitude in correspondence of small wavenumbers, high peaks occur with greater
probability in the crests rather than in the troughs of a large scale fluctuation mode,
so they display an enhanced clustering (see Figure 3.1). In particular, correlation
functions arising from N~body simulation in a CDM-dominated Universe reproduce
the observed ones if galaxies are identified with peaks at v ~ 2.5.

In this picture, the crucial point is however to understand what physical mech-
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Figure 3.2: Gas number density vs. virial velocity; the formation of dwarfs vs. “normal”
galaxies in CDM halos, and the origin of biased galaxy formation (after [57]).
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anisms can provide a sharp cutoff in the efficiency of galaxy formation for density
fluctuations 8, < voy.

A possible mechanism is represented by the so—called natural bias. In order to
describe such scenario, let us observe that for a galaxy to be visible at the present
time, we must ask that the baryonic matter has been able to dissipate and turn into
stars. In order for dissipation to occur, the redshift of collapse clearly needs to be
sufficiently large that there is time for an object to cool between its formation at
redshift z.,,;, when the density fluctuation attains the critical value § = 6. (it is &8, ~
1.69 in the linear model for spherical collapse) and the present epoch. More massive
objects take longer to cool. Then, the requirement for a fluctuation on a given mass—
scale M to have enough time from t.., (corresponding to Zeool) t0 cool down can be
traduced in the existence of a mass—dependent threshold v(M)oy = 6c[1 + zeot(M)).

Such situation is described in the density-temperature plot of Figure 3.2. The
cooling curve, above which tep < tgyn (here tay, ~ 1/4/Gp is the gravitational free—
fall time), confines the region where the gas can contract and form stars (171,20]. The
cooling curve is calculated for a primordial gas composition and under the assumption
that the mean baryonic gas density is 10% of the total mass density. Each of the
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dotted diagonal lines indicates in the n — T diagram the positions of all the structures
having the same Jeans mass My ~ 100 T%/?2n~Y/2Mg. The almost vertical line V.,
which has been introduced by Dekel & Silk [58], divides the permissible region for
galaxy formation in two; a protogalaxy characterized by a virial velocity > V..
cannot expel a large fraction of its original gas content and form a normal galaxy.
A protogalaxy with V < V. can produce a supernova—driven wind, which would
drive a substantial fraction of the protogalactic gas out, leaving behind a diffuse
dwarf. The dashed curves labeled by vo (v = 1,3) refer to fluctuations with § M /M
equal to v times the r.m.s. value, for a CDM spectrum. The corresponding parallel
dashed curves refer to the protogalactic gas clouds, after a contraction of a factor
10 inside isothermal halos, to densities that are comparable to the halo densities
such that star formation is possible. The two vertical arrows indicate the largest
galaxies that can form out of a 1o and a 30 peaks, respectively. Let us observe
that the most part of galaxies arising from 1o peaks have V < V., so that they
would turn into dwarf galaxies. Instead, the shaded area represents the locus were
normal galaxies are expected to be found. It is also evident that most of them are
originated from 20 and 3¢ peaks. According to such predictions, normal galaxies,
arising from exceptionally high peaks are expected to be much more correlated than
the background fluctuations and lie preferentially in rich clusters. Viceversa, dwarf
galaxies form from typical (i.e., 1) peaks, consequently they are expected to be
better tracers of the matter distribution.

Even though the natural bias prescription leads to the prediction of a mass-
dependent critical threshold above which galaxies form, it is not clear if this effect can
produce a cutoff sharp enough at vog. In this chapter we will investigate the effect
of taking a cutoff in the fluctuation field different from the sharp one. This would be
expected if one takes into account more complicated physical effects occurring during
the processes of galaxy formation.

3.2.2 Bias in a top—down scenario

A bias is generated automatically in any top—down scenario, where the fluctuations
on scales S 30 A" Mpc are erased by free streaming, as in a neutrino dominated
Universe. As a consequence of the resulting large-scale coherence length, there are
motion from proto—voids to proto—pancakes. Collapse into flat pancakes is accompa-
nied by streaming toward their line of intersection (filaments) and toward the knots
where rich clusters form. The gas then contracts dissipatively into high—density re-
gions within which it cools. Galaxies are thus expected to be limited to very specific
regions.

However, as we have seen in the previous section, the resulting clustering
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length for neutrinos at the present time is larger than that observed for galaxies.
Consequently one is forced to require an antibiasing, so to suppress galaxy formation
in high—density regions or to enhance their formation in low-density regions.

3.2.3 Bias in the explosion scenario

Differently from the gravitational instability picture, in the explosion scenario positive
energy perturbations of non-gravitational origin drive material away from the seeds
of the explosions, sweeping primordial gas into dense, expanding shells that cool and
fragment into galaxies [145,109]. The explosion scenario naturally accounts for the
“bubbly” appearance of galaxy distribution, as revealed by the CfA redshift survey
(see §1.1). Since shells enclose an appreciable amount of space, their dynamical
interaction play an important role in the formation of clusters, superclusters and
voids. Results from N-body simulations to study clustering in a universe formed by
interacting shells [177] indicate that the explosion scenario may be able to reproduce
the observed galaxy correlation function, in addition to producing large voids and
bias. By identifying rich clusters of galaxies as the knots where three shells intersects,
it is possible to reproduce several statistical feature of the superclustering, like the

amplitude of the correlation function for rich—cluster and their richness distribution
[203]. '

A variety of physical mechanisms might generate such perturbations. Explo-
sions of supermassive stars [42] or supernovae from the earliest galaxies could acts as
seeds [145]. However, it is at present not clear whether or not such energy sources can
be sufficient to create the large voids that are observed. Holes on scales of some tens
of megaparsecs would require a fantastic amount of supernovae exploding coherently.
Moreover, initial conditions are needed for generating primordial galaxies that act as
seeds of the explosions.

From all the above considerations about possible mechanisms for a biased
galaxy formation, it looks quite obvious that the simple sharp cutoff applied to the
density fluctuation field can hardly account for highly non-linear phenomena occur-
ring during the formation of structures. For this reason it is necessary to understand
the way in which different bias mechanisms affect the shape of the cut—off and check
the effect of more general biased model on the statistics of the resulting object dis-
tribution.
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3.3 The statistics of the biased density field

In this section we introduce the concept of biased field to model the observed object
distributions of galaxies and galaxy clusters as suitable functionals of the background
fluctuation field. In particular, we deduce the expression of the N-point joint proba-
bility for the biased field, and relate it to the statistical properties of the background
fluctuations.

3.3.1 The concept of biased density field

In order to describe the distribution of objects, let us define the biased density field

pva = flba(z) — vos] (3.5)

as a generic functional of the background matter field. In eq. (3.5), éx(z) represents
the density fluctuation field, smoothed on the scale R (see §2.6). The threshold
function f(o) turns out to depend, other than on the smoothing radius R, also on
the biasing level v, that is related to the height of the fluctuations of the background
field that correspond to observable objects. In this way, we identify different classes
of objects, such as galaxies, groups and clusters, by means of different choices of v,

R, and also of f(a).

In eq. (3.5), the shape of the threshold function does depend on the physical
meaning that we give them. A possible choice is that of considering the class of
pur(z) with values between 0 and 1, so that eq. (3.5) can be interpreted as the
probability that a fluctuation with amplitude &y (z) give rise to an observable object.
In this case, the simplest example of biased field is the so—called §-threshold,

pon = 08a(e) = voul, (3.6)

that selects only those fluctuations with amplitude éz(z) > voy, while give zero prob-
ability to have observable structures in correspondence of fluctuations with amplitude
below the critical value voy.

The case of the #-threshold is the original biased model, that was introduced
for the first time by Kaiser [112] for explaining the large correlation length of rich
Abell clusters. He assumed that galaxy clusters arise from exceptionally high peaks of
the density fluctuation field, that was assumed to have Gaussian distribution. Several
other authors extended this idea to n-point correlation function [164,110], identifying
objects either with the maxima of the density field [147,11] or with regions with
density exceeding a limiting value [190]. Generalization to non—-Gaussian background
was also considered in the literature, either analitically [134,95,47], or vie N-body
simulations [136].




70 Chapter 3. BIASED MODELS FOR GALAXY FORMATION

In the following of this chapter, we will describe a general analytical method
for investigating the statistical properties of non-# thresholds, with non—Gaussian
background. In particular, we evaluate the N-point joint probability, ng(wl, ey Tn ),
for a generic biased field (3.5) and, consequently, the expressions for the disconnected
N-point correlation functions

Hf,],\f?(a:l g eeny QZN)
[~

N
L(iiag,v,R(wl’ 3 wN) =

~1. (3.7)

We note that in a paper by Szalay [189], an expression has been deduced for the 3-
point function for a generic threshold, but still in the case of Gaussian background. In
any case, such results are obtained under some approximations that severely restrict
their applicability.

3.3.2 The N-point joint probability

Let us consider the expression of the N-point joint probability

(21 e @) = < pua(@1)eepun(ay) > = /D [6(z)] P[6(=)] pr, (z) (3.8)

that the biased field (3.5) takes the values p,z(z;), .oy Pur(zy) at the points zq, ..., zy,
respectively. Here P[é(z)] represents the probability distribution in the functional
space of the configurations §(z) for the fluctuation field (see §2.3).

Assuming non-Gaussian probability distribution and general shape for the
threshold function, after a series of non trivial calculation (see Appendix A1), we get

Hg{g‘)(wl,...,wN) =

o eNHO) 5 Z[ﬁ I (W;

7[3,,] Todral 1 oW ~1/2
] ) m |] H arn(r)(2 V) ’ (39)
L=0 [mL] n=1 [1-."_]_—_]_ ‘ n 7'7']'

where

" h(n) 0 n—1 ;
W}‘E,[y)»"] = N ( ) H 67’L Th1 + UJ( [) "] . (3-10)
k=1

(ion )"

The dependence on the shape of the threshold function is expressed through the
derivatives of h(¢#) and the integer [, both defined according to

(i) M® = de f'(a) e¢ (3.11)

=l



§3.3 The statistics of the biased density field 71

(I is the order of a possible zero of the Fourier transform of f/(a) in the origin).
Instead, the statistics of the background is taken into account by means of the quan-

tities )
wR’[rn] —_— écon,R(a:;-lrz ety m"'n.) ?:f n > 2
R
(2)
Wofra] = M%’g_’_ﬁz} if @ £ ., (3.12)
R
Wa,fra) = 0 if =

Here &m r(Zr, ...y T, ) Tepresents the background n—point connected correlation func-
tion, smoothed on the scale R. The set of non-negative integers my,.,] = mn .
appearing in eq. (3.9) are related to the summation indices m,, by means of E (7] T[]
= m,, while $X_ nm, = L.

Furthermore
al)(z) = 275 e H,1(2) (m+1>1)

(3.13)

d(e) = \Fersels)

where H,(z) are the Hermite polynomials and er fe(z) the complementary error func-
tion. To notice also that the integers

N

NG

(mn,rl,rz,...,rn + mn,Tz,T]_,;..'T‘", + o + mn,r,,,,rg,...,rl) (3']—4)

n=1 [7'77,27‘1]31

([rn : 7] = 71,0,7j21,Tj41, .., 7} the Tole Of 71 can be played by any ;) are different
from m, and must satisfy the constraint ¥, m(r) = L.

For N =1, eq. (3.9) gives the mean value of the field p, 5

(”) n 1
) = <ppa>= o5'e® Z S [H( ) ] aP(271%). (3.15)

i
L=0[my] n=1 M

Here we introduced the pseudo-cumulants

R(M(0 :
Wi = ———(—) + wl™, (3.16)
(ion)”
where the cumulants w{™ = wl(}")( .., ) vanish for Gaussian distribution, according

to the definition (3.12).

If the threshold function f(«) represents the probability for a fluctuation to be
selected, then HS, 3 can be interpreted as the fraction of volume occupied by objects.
Consequently, eq. (3.15) expresses the dependence of the number density of galaxies
or galaxy clusters on the shape of the threshold function.
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3.4 Correlation functions of the biased field

According to egs. (3.9) and (3.15), that describes the statistics of the biased field, we
use the definition (3.7) to express the correlation function of the object distribution
in terms of those of the background distribution.

To this purpose, let us write eq. (3.9) as

(V) o7tV &N R(0) L Rn[, nrn] P lrn]
HV,R ($1,...,IBN) = Z Z I:H < ) : %
L= 0 mL n=1 rn]=1 mn,[r,,]-
X v 1+ o). (3.17)

Here, the constant OI(,N)(V‘Z) contains all the terms of order > 2 in v~!, coming from
the productories of Hermite polynomials. After summing at the zero-th order in v~?
the series appearing in eq. (3.17), we obtain

Hf/{p(ml,...,mN) = "IN V-1

{e:cp[z i < R[r" )] + O(N)(ml,...,a:N)} . (3.18)

X

1

Here, all the terms of higher order in v~! are factorized into the quantity

TLW( ) ) nrn] 1
my

OM(zy,yzy) = 3 Z[ILI I (-——-—-—-— ,]ogN)(u-z). (3.19)

n! ]!

Similarly, in the case N =1,

o = O'_lylﬂe—%eh(o) ex 3 nWé") o) 3.20
vR T R P ZV TZ' + ) ( . )

n=2

where
1

my!

o = 5% [ f1 (k)™

L=0[mg] 'n=1

]0“)( ) (3.21)

and with obvious meaning of O£1)(V—2).

As already remarked, in deducing eqgs. (3.18) and (3.20) we summed the series
over the index L only to the zero-th order in v~ . In fact, due to the dependence on L
of the terms of higher order in v~!, it is impossible to factorize terms of the type v~2",
in such a way to obtain only quantities coming from the Cauchy products between
series expansions on exponential functions. In any case, the evident complexity of

eqs. (3.18) and (3.20) is the price to be payed for their full generality (i.e., general
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shapes for background distribution and threshold function). In the Gaussian case
(n)

too, when Wy o] =

0 for n > 2, we do not have much simplification. However, as
we will see in the next chapter, the expression of HV{\Q becomes more handleable for

particular choices of the biased field p, 5.

3.4.1 The two- and three-point functions

We will now deduce the 3-point correlation function of the biased field and express
it in terms of the 2-point function. This is interesting because, as already seen in
Chapter 1, observational data on the clustering of galaxies and clusters allows one
to deduce the 3-point function as a suitable combination of the 2-point ones. In this
way it is possible to check whether or not the hierarchical expression (2.23) or the
Kirkwood superposition (2.22) can be predicted by our general biased model.

According to the definition (3.7), the 2-point function can be expressed ac-

cording to
(2)
(2) . HV,R(:B17$2) .
dis,u,R(wl?mz) - [Hglg]z
=) 2 (”)
= -1+ 0(2)(-'31,332) + S”zemp[z v Z ——E—Eﬂ} . (3.22)
n=1 [rn]=1 g
Here we introduced the constant
S = aﬁtyl'leVTH&){ (3.23)

as well as the function

CI)(zy,.yzy) = SN0 (24, ... 2y) (3.24)
evaluated for N = 2.

Moreover, for the 3-point function we get
Hz(/?lz(Tl y L2, 333_) B
IR

According to eq. (3.18), the 3-point joint probability, that appears in the above
expression, takes the form

(3.25)

3
5§i3,u,n($1,7327933) =

Hx(/?z)t(ml? L2, 333) =

3p? b "
oA e‘q’h(o){ewp [Z ~V—T ( + >+ ) VVIETELL] — 3Wé”)} X
n=2 n. [r,,]=1,2 [7'11]=2)3 [7'“-]=1’3

n=3 j=1 k=1

oo . n-2n—j—1 . 1
X ea:p[z v (Z Z w‘("[)j’k'””f“k]>j!k!(n - k)‘] + 0(3)(m1,xz,w3)}. (3.26)
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In the above relation, we introduced the quantities

k
hkneiot = o (1_11 o @alzs 1)) (1T s @alle — w))
n—j—k

( IT dye Qn(lzs —ycl)>€§?%,n(y1,---,yn)- (3.27)

c=1

X

Then, after substituting eq. (3.26) in eq. (3.25), taking into account the expression
(3.22) for the 2-point function and rearranging the sums over the indices [r,], we
finally obtain

B(s)(w17w27z3)
BOF
x {[-1+C¥(zy,z,) + f,(,,zfz(azl,mz)] X .3 terms}. (3.28)

ggz,u,ﬂ($17m27$3) = =14+ 0(3)(171,:132,:)33) -+

This represents a sort of generalization of the Kirkwood superposition (2.22). The
above expression of the 3-point function contains the functions

B(N)(:cl,...,wN) = S"NG(N)(wl,...,wN)ewp{ [N - (];)} Z %TWIEN)}, (3.29)
’ n=1 ""*

where, in turn, the quantity G(V) appears, to be evaluated for N = 3:

G(3)(m1,'£2,€c3) :' ea:p[z (‘; z:: ,[J,m i k) '!k!(nij—k)!] (3.30)

n=3

It is easy to show that, in the case N =2, G®)(z;,z;) = 1, so that B®) = const.

3.4.2 The N-point functions

The generalization of the above calculations to higher correlation orders enable us to
work out the expression of the N-point correlation functions in terms of the 2-point
function. Indeed, according to eq. (3.18) we express the N-point joint probability as

H,(/]:;)(wl,...,:nN) =

= _Nl N1 =55 Nh(o){e:cp[z Z;( Z +<‘Z> terms) WPETEZ )+
(N e
[rn]=1,2

n=2

N N-1
- (2)W1§,n) + ( > +.N terms)W(") — NW{ )} F 2y, .y zy) +
[ra]=1

+ O(N)(zcl,...,z:N)}, (3.31)
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that is completely analogous to eq. (3.26). Here, the functions
(n)

FM (2, .yzy) = ewp{z ny il } (3.32)

n=N ji 1=1 ]1'

contain sums over the non—negative indices [7;] = 71, ..., Jn, that satisfy the condition
SN ji = n. Moreover, in eq. (3.32) it appear the functions w( )

with the quantities (3.27), can be written as

wl) = /H(H Y Qn(|2i — Yo,

1=1 ‘ay=1

+,)» that, in analogy

)Rty npa) (333)

Taking into account the deduced expression for ,(,?}2, we can finally express the V-

point function for the biased field in terms of the 2-point function according to

BM)(zy,....zN)
(B@)(%)

x [=1+ C’(z)(wl,mg) + 5,(,2(1:1,3:2)] X (

M (21, enzn) = =14 CW @y, ay) +

N

2) terms (3.34)

In the expression (3.29) for B(N) it appears the function GV) that is the generalization
of the quantity G(®) and that can be written as

N
G(N)(:cl,...,:zN) = {G(?’)(QSl,iBg,iL'g) X <2> terms} X e
X [G(N'l)(:vl,...,mN_l) X N terms] F(N)(azl,...,wN). (3.35)

By comparing eqgs. (3.34) and (2.22), it is easy to see that the N-point correlation
function for the biased field takes a form that looks like a generalization of the
Kirkwood superposition.

Let us finally observe that our general procedure for investigating the statistical
properties of a generic biased field, in the presence of a non—Gaussian background,
allows us to deduce rather complex expressions for the correlation function. However,
as we will see in the next section, there exist some physically relevant cases in which
the above relations for 5%) can be written in a much more simple way.

3.5 The high—threshold approximation

According to the original idea of bias proposed by Kaiser [112], an enhancement of
the clustering of galaxies and galaxy clusters with respect to the background matter
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naturally follows from the assumption that observable cosmic structures arise from
exceptionally high peaks of the density field, smoothed over a suitable scale R.

From an analytical point of view, assuming that f[éy(z)—voy] acts only on the
very high maxima of the background is equivalent to taking v > 1 in the argument
of the threshold function. In this high-threshold approximation, the expression (3.13)
for the coefficients a,(rg(z), that appears in the N-point joint probability, modifies into

al)(z) ~ (2Y2z)mtleF (3.36)

Here we used the asymptotic expression for the Hermite polynomials, H.(z) =~ (22)".
As a consequence of the high—v limit, all the terms of order > 2 appearing in eq. (3.18)
vanish, so that OW)(zy,...,zy) = 0, C™)(zy,...,zy) = 0 and the joint probability
takes the much simpler form

M 2y, z) = o VN1 Nh(o)emp{z Z W } (3.37)
[1‘ =1

Taking into account the definition (3.10) for the functions 1A [3, we get

R

Hl(/{g‘)(wl,...,mN) -

o) N
~ v n
e 7 )

n=1

PGV emp{z K_[N

oo N
= o Vv e (“’R)e:cp{zz— > wg?[)r"]}. (3.38)

In the case N = 1, the fraction of volume occupied by objects in the high—;threshold
limit is

Hfj& = ol te” eh(*:ﬁ)eazp{z %'wgn)} (3.39)

n=3
Let us observe that the above expressions for the joint probabilities coincides with

those obtained by Kaiser [112], once we assume Gaussianety for the background
distribution.

Particularly interesting are the expressions for the 2-point correlation functions
f%(l‘l,wﬁ = -1+ el‘P{Z [ Z u - 2‘w§{‘)” (3.40)
n=2

and for the disconnected 3-point function

§L(,'312(931,w2,a:3) = —14+G®(zy,25,23)[1 + fl(,?g(ml,mz)] X ...3 terms. (3.41)
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As it is easy to show, the relevant properties of the correlation functions evaluated
in the high-v regime are that any dependence on the shape of the threshold function
different from the sharp one has completely disappeared. This interesting feature
is essentially due to the fact that, in the limit v >> 1, the details of the selection
criterion for the lower peaks are completely lost. '

In the case of Gaussian distribution for the background matter, eq. (3.40)
takes the even simpler form

55,72(&:1, zy) = —1+ exp{( R) f,{l )(:z:l, 182)} (3.42)

and for large separations, when 5(2) <1,

55,2;2(581,932) = <a ) ()(931,932) (3.43)

R

Thus, in the limits of validity of such approximations, the effect of a biased distribu-
tion of object is that of amplifying the clustering and, consequently, the correlation
strength of the background by a factor (v/oy)%.

In particular, if we assume the power law El(,,z)(r) = (7,/r)" holds, as suggested
by observational data (see Chapter 1), eq. (3.43) gives

) . o
@(p) = li.) (L) = (”_) ‘
£ (r) (GR : =), (3.44)
where the correlation length for the biased field is

v

ro= <~>%ro. (3.45)

On

This relation shows how an increase in the clustering, due to the effect of the bias,
implies an increase of the correlation length r,. In particular, if the galaxy distribu-
tion and the cluster one are characterized by different values of the biasing level v
and of the smoothing radius R, the respective clustering lengths also turn out to be
different, as suggested by observational evidences.

As far as the 3-point correlation function is concerned, from eq. (3.41) we can
extract its connected part in the form

(1, 25,35) =
= GB )(331,5132,{133) [§,(/212(m1,:c2) £?E2(m2,w3) +...3 terms] +
ER (21, 22) € (22, ) €2 (23, 1) +
+ [G( Nz, 20, 23) — 1] [1 + §VR(:B1,:C2) +...3 terms]. (3.46)
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The above expression is completely identical to that deduced in the literature for the
f-threshold case [134]. It is easy to show that for a non—-Gaussian background we
have G®) # 1. In the Gaussian case, G®) = 1 and we recover the scaling relation

f,(frz(wl,mz,ccg) = [1+ f,ﬂ?(ml,mz)] X ...3 terms (3.47)

deduced by Kirkwood [114] in the study of the distribution of the molecules in a real
gas. If {®(r) < 1, the cubic term in eq. (3.47) becomes negligible. However, for
the distributions of galaxies and clusters there results £(3)(7) > 1 for the range of
separations r where £() is investigated, so that the cubic term should be dominant.
However, as we have already seen in Chapter 1, analysis of homogeneous galaxy
samples indicates that

Cég)(wl,mz,mg) = Q[fy)(ml,a:z)ﬁgz)(mz,mg)+...3 terms] | (3.48)

with @ =~ 1, in contrast with eq. (3.47). (Let us however remember that a good
fit of data on the 3-point function in the Zwicky sample has been also obtained by
assuming the Kirkwood expression [26].) Several lines of evidence also exist that a
relation similar to eq. (3.48) holds for the statistics of the distribution of galaxy
clusters. Such discrepancies between the observed distribution of objects and the
predictions of the biased model could indicate that the limits in which we deduced the
relation (3.47) (i.e., v > 1 and Gaussian background distribution) are not satisfied.
In particular, the distribution of galaxies can arise from the distribution of matter
only after a moderate bias (v ~ 1) has been applied, while non-Gaussianity in the
background statistics can also play a role.

3.6 Galaxy—cluster cross—correlations

As we have seen in §1.3, the joint analysis of homogeneous samples of galaxies and
clusters gives informations about the relative distribution of the two classes of objects
by means of the galaxy—cluster cross—correlation function. In order to see how cross—
correlations arise in the biased model described in the previous section, let us consider
the two biased fields py(z) and p.(z), that represent the distributions of galaxies and
clusters respectively. The two fields involve different choices for the biasing level v,
for the smoothing radius R and for the threshold function f(a), because different
scales and physical formation processes are involved.

Accordingly, let us assume that the biased field
pe(@) = folbn,(z) — vgon,] (3.49)

describes the spatial distribution of galaxies, while

pe(z) = felbn,(2) — veow,] (3.50)
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represents the distribution of clusters. Then, the joint probability of finding a cluster
at the point z; and a galaxy at z; is defined by

O (21,22) = < pe(er)pgle2) > = / D[8(2)] P[8(z)lpe(z1)pg(2) (3.51)
while the galaxy—cluster cross-correlation function is

H:(:g)(wl ) :Bg) _

ED(z1,22) =
o (Z1 O

(3.52)

Following the calculations reported in Appendix A.2, we get for the joint probability
(3.51) the expression

n (n)

L n maj; 1
Tlenza) = eglooe @m0 5 5[] ] (Spimet)™ ]

L= O mL n=1 j=0

X am(27Y%0) ap_m(27Y%,). (3.53)

Here, the quantities

h)(0) h(n (0)
(n) — (n) c .
W[Rc:jing!n"j] - w[RC)j§Rg»n"’j] + (ZO-F.r)J ™ (ZO'Rg) 50J (3'54:)
and
(n)
w(n) _ écon R JiRgn—j]
[Re,diRyg,n~j] O'R, Ugga
wflzi)pg Rymn—j] = 0 7'f Lry = Ty, (355)

represent the generalizations of the analogous quantities defined in the previous sec-
tion by egs. (3.10) and (3.12), respectively. Moreover, in eq. (3.53) there appear the
integers m., ;, such that 3%, m, ; = m,, while m = L, 21 I M5

In this case too, the evident complexity of eq. (3.53) is a direct consequence
of its generality. In order to simplify the expression of the cross—correlation function,
let us consider the high—threshold approximations v, > 1 and v, > 1, for both the
galaxy and cluster biased fields. In this limit, eq. (3.52) becomes

oo n-—1 (n)

§£§)(m1,m2) = —~1+e:cp[22221v iz J——R(J—R“’T]l—)—fl} (3.56)
n=2 j=

so that the high—threshold approximation still gives a result that is independent of
the non—# shape of the threshold function.

As already seen in S1.3, the galaxy background cross—correlation function has
been used in literature for investigating the distribution of galaxies around Abell
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clusters [182,121]. In fact, the joint probability Hg)(wl,mz) evaluated for z, = =z,
represents the probability that at a point we find a galaxy contained inside a clus-
ter. Then, II{!) being the fraction of volume occupied by clusters, the quantity
Hgg)(m, z)/II{Y, that describes the fraction of cluster volume occupied by galaxies, is
tightly related to the galaxy density inside clusters.

A generalization of cross—correlations to higher orders is also possible. For
example, at the third order, we can define

1) (21, 2,2) = 0 (VP

cgg

X [+ ED (21, m2) + €D (22, 23) + ED (23, 21) + Ceggl@1,@2,33)]  (3.57)

as the joint probability of having a cluster in z; and two galaxies in ¢, and z3. The
dependence of eq. (3.57) on the threshold function f(), on v and on R can be
deduced in a similar fashion to the procedure reported in Appendix A.2 to obtaine
e,
cg

The concept of cross—correlations can be generalized to include any joint sta-
tistical analysis of two different distributions. In Chapter 5 we will describe a method
for investigating the cross—correlation properties of galaxy and background matter
distributions that is based on the analysis of spiral galaxy rotation curves.

3.7 Two examples of threshold functions

In this section, we shall consider two distinct threshold functions from the analytical
point of view. The shapes of these thresholds, that are shown in Figure 3.3, are
chosen in view of their possible physical meanings, to be considered in the next
chapter, where we also investigate their effects on the mass function and on the
2-point correlation function of galaxy clusters.

3.7.1 The erfc-threshold

A first example we shall treat is given by

1 _?

bp(z)—vor
PV,R(CE) = \/T—A—Z,/_‘_oo dye 282 | (358)

We indicate this threshold as erfc-threshold. It is clear that, for A — 0, the erfe-
threshold gives back the usual §-threshold. For A = 0, this threshold describes
a situation with non-zero probability for fluctuations below vog to turn into real
objects, and with a symmetrical probability that also fluctuations exceeding voy be
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Figure 3.3: The shapes of different threshold functions. The solid lines represents the
§-threshold 3.6, the dashed curve correspond to the erfc-threshold 3.58, while the dotted
line is the Gaussian threshold 3.64.

sterile. Owing to eq. (3.11), we find

Aty
\/_/ (a)e™® = 5%_\-/:" dz e~ Fartivs % (3.59)
Hence | = 0, while the expression of
W) = —3in(2m) — L%
turns out to be fairly easy to handle and yields
h(0) = -—%ln(%‘) ; R7(0) = =A% 5 A™M(0) = 0 for n#£0,2. (3.60)
Therefore, W) | = w(")  for all n > 2.

In the high~threshold limit, the N-point joint probability will then read

ewp{z Z w" } (3.61)

n=2

H&ﬁ)(wl, vy By) = (271.1/2)_1\7/26_

and, in particular, the fraction of volume occupied by obJects is

I = < puale) > = (2m0?) /2" 50 ]e’cp{T n‘,wﬁ")}. (3.62)

n=3

It should be noted that H,(}% turns out to be an increasing function of A. If we

Dl e[ X (42)]
[H%)]e = exp > (oo (3.63)

consider the ratios
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between the joint probabilities obtainable from erfc-threshold and #-threshold, we
see that, for A — 0 they give back 1, as expected.

3.7.2 The Gaussian threshold
A further significant example of threshold function is given by

pun(z) = ea:p{—-zlﬁ[&t(m) - m/an]z} , (3.64)

that we shall denote as the Gaussian threshold (not to be confused with the Gaussian
or the non-Gaussian nature of the background distribution). In eq. (3.64), x =
1+ (2 log 2)*/? is defined such that fluctuations with § = voy have probability 1/2
to develop into an object, in analogy with the er fc-threshold. The characteristic of
this threshold is to select fluctuations in a given range of amplitudes. This range
is centered on kvoy and its amplitude is fixed by the parameter 3. In this way,
further to exclude small amplitude fluctuations from generating observable objects,
very large fluctuations on a given scale are also supposed not to leave any visible
imprint on such a scale. In the limit ¥ — 0, the Gaussian threshold degenerates into
a Dirac delta—function and the only selected fluctuations are those with amplitude
exactly equal to kvoy. On the other hand, there are no limits where the 6-bias case
is recovered. Possible physical meaning of the Gaussian threshold will be discussed
in the next chapter.

As for the er fc-threshold, the shape of

obtained according to eq. (3.11), is such that Wf(ltl[) = wgl[)r"] for all n > 2. The

Tn

behaviour at the origin, instead, gives | = 1. Accordingly, the joint probability
expression in the high—threshold limit reads

py N _Ns2 vn (e 2_ > n n
Hgﬁ)(ml,_,_,mN) _ <_> . Ne® 2 ((2) ﬂe:cp{z(m}) Z 'l"gz,[)r,,]}v (3.65)

Op

while the ratios

M gauss o /2 (VEY -2 () -1enr ()]
o, (2) €
VR

are increasing functions of (vX/oy).

For large v, the fraction of volume occupied by objects reads

o) = (P_)e—%gﬁ—[(%)z—ﬂm{i (_'ig'iwlgn)}, (3.67)
' On n=3 &
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In the Gaussian background case, the exponential factor becomes 1.

As a final remark, let us observe that, according to egs. (3.62) and (3.67), it
is possible to relate in a simple way the number densities obtained with the erfc and
Gaussian thresholds to the #-threshold expression. These relations read

< > < > K va )2] (3.68)
v erfe — v €T H .
p R f p R 6 p \/ian
v vy \?
< Pvr > Gaussian = < Pur >¢ ( ) eiBP[(\/—J ) } (3.69)
R

and hold for both Gaussian and non—Gaussian background matter distributions.

3.8 The exponential biased field

Even though the class of threshold function we considered in §3.3 is quite general,
however it does not contain all the possible choices for the biased field. From a
technical point of view, the restriction lies in the fact that eq. (3.11) requires the
existence of the Fourier transform for f'(«), the first derivative of the threshold
function. However, there exist also particular threshold functions of physical interest
for which such a hypothesis does not hold. A significant example is represented by
the biased field

pon(z) = Aem’™® (3.70)

that was introduced by Kaiser & Davis [113] for relating the luminosity field generated
by galaxies to the underlying matter distribution. It is easy to show that for the field
(3.70) it is not possible to define the function h(¢) and the integer [ according to eq.
(3.11).

In this section we generalize the procedure introduced in the previous sections
to a more general class of threshold functions that includes the exponential threshold
(3.70). Let us consider the class of threshold functions that can be written in the
form

pon(z) = e fl5 (2) — po). (3.71)

Here f(c) is such that its first derivative can be Fourier-transformed. In the field
(3.71), the parameters 4 and v both play a role in defining the selected fluctuation.

According to the definition (3.8) for the N-point JOlIlt probability, after some
calculations (see Appendix A.3), we get

2 .
~IN "‘NELBNh(l&L}’{) 5

I

UpR(m17 J’N) = 0Oy
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oo L N W( ) ] z ,
> T I () ] [T 402746 - ). 672
L=0[mz] n=1[r,]=1 n [rn]
In this expression, we used the functions
n h(n) 7:1//0' n-l n
;5,[3,‘] = —————( - n) H Orirign T w}(l’[)m]. (3.73)
(ZO.R) k=1

that represents the analogous of the quantities (3.10). Moreover, in eq. (3.72), we
introduced the coefficients

AW = m(r)! a? z). (3.74)

From the expression (3.72) for the joint probability, it is possible to reproduce the
same results obtained in Sections 3.4 and 3.5 for the correlation functions of the
biased field. Let us observe that, in this case, the high~threshold limit is given by the
condition z = p — v > 1. Under this condition, the asymptotic form of eq. (3.74) is
Al )(r)(z >1) ~ alY (z2>1) ~ (21/22)““(’)4'1“1e""2 . (3.75)

m(r

Consequently, the joint probability (3.72) becomes

H({\[‘R(ml,...mN) =
© . n N

oI N (1=1) - Nh(O)emp{Z _V_,_ ) an[rn]}7 (3.76)
n=2 . [rn]=1 ’

so that the correlations of the biased field turn out to be independent of the shape
of the threshold function also in this case. This result generalizes what previously
obtained by Kaiser & Davis [113] and by Szalay [189]; indeed, they found that, in the
high threshold limit and for Gaussian background distribution, the 2-point correlation
function for the field (3.70) coincide with that of the #—threshold.

The contents of this chapter, with the exception of the first two sections, are included
in two papers that have been already published in Astronomy & Astrophysics [30]
and in the Astrophysical Journal [31].



Chapter 4

Observational tests for biased
models

There can be little doubt that the bias paradigm has marked a significant step for-
ward in our understanding of the relation between matter and light large—scale dis-
tributions. Indeed, the success of the bias approach in accounting for the observed
different clustering length of galaxies and galaxy systems suggests that a functional
relation should exist that relates the background matter distribution to the object
distribution. However, tentative applications of the Kaiser’s original bias prescrip-
tion [112] (i.e., only peaks with amplitude above a fixed threshold are identified with
observable objects) to the study of the correlation functions and multiplicity function
of cosmic structures seems to indicate a possible agreement with observational data
only at the zero-th order level.

In this chapter we shall pursue the idea that this is mostly due to the need
of perfecting the analytical tool. In particular we will use the technical background
described in Chapter 3 for general biased models to include the effects of non-linear
phenomena, that probably occur during the formation of the observable structures

(see §3.2).

In what follows we restrict our analysis only to statistical properties of galaxy
systems (i.e., groups and clusters). Indeed, a comparison between predictions of
biased models and observational data does not involve serious problems on cluster
scales, while it gets more difficult on galaxy scales. In fact, on the latter scales, the
evolution of fluctuations can be widely non-linear and the only adequate approach
seems to be based on N-body simulations [66,49,135,198].
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4.1 Tentative analysis of non—sphericity and merg-
ing effects

In this section we tentatively relate the erfc and the Gaussian thresholds introduced
in §3.7 to non-sphericity in gravitational growth and to merging among different
scale fluctuations.

The smoothing operation of the fluctuation field, that we discussed in §2.6,
tends to erase all morphological details of primeval fluctuations below the smoothing
scale R. The eventual growth of their amplitude, due to self-gravity effects, is how-
ever known to show traces of such features. Pancake formation in non-spherical col-
lapses has been widely discussed. The formation of caustics and fragmentation effects
are however not so relevant in the present discussion. In a hierarchical bottom—up
scenario, in which we are primarily concerned, smaller scale objects need not form
during a larger scale collapse and the dynamics of collapses above galactic scale is not
substantially affected by dissipative effects. Attention should be rather focused on
the alteration of the time and density scales occurring because of non sphericity. It
has been known for years (see, e.g., [91]) that a fairly precise schedule characterizes
spherical collapses. If ¢; is the time at which an overdense lump of matter reaches its
maximum expansion, collapse is expected to follow until a time ¢, ~ 2¢; and virializa-
tion is reached at about ¢3 ~ 3¢;. The density contrasts at the times t;, t,, t5 depend
on the present density parameter {,, and, for Q, = 1, are § = 4.55,~ 300,~ 400
respectively. This time and density sequence is however connected with the assump-
tion of sphericity. Numerical experiments [55] show that substantial discrepancies
arise when non-spherical geometries are considered. It is also interesting to compare
the above value for the density contrast with those obtainable extrapolating a linear

theory. They are much smaller and, for the times ¢, and ¢,, amount to 1.06 and 1.69
respectively.

The degree of evolution and the value of the density contrast, that a luctuation
on a given scale has reached at the present time ¢, cannot be therefore uniquely related
to its primeval amplitude at — say — recombination end. Let us assume that, under
pure sphericity assumption, an object on scale R would have formed if 6, > voy.
A-sphericity gives place to a spread around the critical value voy, so that an erfe-
threshold is the simplest way of correcting for alteration of the time-density-contrast
sequence.

It is however clear that the importance of the correction will be strictly related
to the average height of the peaks considered over each mass—scale. Very large fluc-
tuations tend to be increasingly spherical and the dependence of the A parameter,
that specify the shape of the erfc-threshold, on R or on the related mass-scale M
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should make this point evident. Thus, assuming
MNP
A = | — 4.1
() = (57) (4.1)
with B > 0 seems therefore reasonable. In eq. (4.1) the normalization of A is
provided by the reference mass scale M. In §4.2 and §4.3 we shall report the result of

an approach to observational data on multiplicity function and rich~cluster 2-point
correlation functions, respectively, based on the erfe-threshold.

Besides a-sphericity effects, an important role is likely to be played by the
disruption of fluctuations during their collapse or virialization stages, because of their
merging within wider fluctuations which contained them, but whose gravitational
growth had a longer time-scale.

It is then likely that the possibility of observing an object on a given mass—
scale decreases if we consider systems which had a large time to interact with and/or
within other objects. The Gaussian threshold is an attempt to take also these effects
into account. That observable objects are those sufficiently old to reach an appre-
ciable contrast and sufficiently young not to vanish in wider structures is certainly
an appealing idea. Problems can rather arise from approximating the increase and
the decrease of the observational probability, around the critical value kvog, by a
strictly symmetrical function. Furthermore greater amplitudes are encountered with
smaller frequency, unless with are faced with very peculiar and highly non—-Gaussian
background distributions.

4.2 Comparison with data on multiplicity function

In this section we consider the impact of non-sphericity on the shape of the multi-
plicity function (see §1.4). After a review of some theoretical models for describing
the mass spectrum of galaxy systems, we propose a tentative fit to the general mul-
tiplicity function for Turner & Gott (TG) groups and Abell clusters, by considering
the erfc threshold to select background fluctuations.

4.2.1 Theoretical approaches to the mass function

Detailed expressions for the mass function of cosmic structures, n(M), based on the
simple (i.e., with 8-threshold) biased theories, have been obtained by several authors
[190,142,133,127,46,45] (see also ref. [146] for a detailed review). Both Gaussian and
non-Gaussian background distributions were considered and objects were assumed
to be defined either by volumes above a critical density threshold or by peaks of the
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fluctuation field. A comparison with observed luminosity functions ®(L) was then
performed mostly under the assumption of a constant M/L ratio, allowing one to

assume ®(L) x n(M).

It is widely recognized that observational data that have been used for defining
the multiplicity function ®(L) are fairly inhomogeneous, being obtained with different
techniques and definitions over different scale ranges [180,93,6]. In spite of these
problems, it is usual to consider the so—called universal Schechter function

&(L) = & (é)ae-(z’*) , (4.2)

that we have already introduced in §1.4, as a good fit to observations.

Fitting ®(L) data by a product of a power-law times an exponential cut—
off was however initially suggested by the outputs of the classical Press & Schechter
model [167], where the growth of clustering in the Universe was studied, starting from
primeval Gaussian perturbation with mass-variance oy = (M,/M)? (8 = const).
According to this model, we can work out the expression (1.31), that can be rewritten
in the form

n(M) = n” (]]\\JJ )ﬁ—ze_(%)m . (4.3)

<

Here
n* = (1+ f)Bv7mps M]? (4.4)

(f ~ 1 accounts for a possible secondary matter infall; see, e.g., ref. [98]), while
M. = (6./v/2)YPM,; 6. is the critical density contrast allowing a density fluctuation
to become observable (if, for example, we assume that structures become observable
after the recollapse, then §, = 1.69).

It should be emphasized that the expression (4.3) for the Press & Schechter
mass—function already assumes the validity of a simple bias approach, discriminating
fluctuations after comparing them with a precise density contrast. A number of
possible effects are therefore excluded from this result: each mass scale is assumed to
have a separate evolution and all lumps of matter undergoing gravitational density
growth are assumed to follow nearly similar patterns, the only difference being a
possible shift in the time-scales.

The impact of such restrictions can actually be severe, as effects like merging,
tidal disruption, non-spherical collapses, etc. are likely to be important. Should they
be the dominant features, the Press & Schechter scenario should perhaps be aban-
doned in favour of the so—called kinetic approach to the mass function. Attempts in
this direction were performed by several authors (see ref. [128], for a review). Doubt-

less, these features are critically relevant in a top~down scenario. In the framework
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of this approach it is still possible to obtain an expression

-2
n(M) = n*(]\ﬁi) e~(3) (4.5)
for the multiplicity function, for M > M., and a more complex expression for low
M. The meaning of M, is however quite different from above, while A is assumed
to derive from the collapse/fragmentation dynamics, having nothing to do with the
primeval spectrum of fluctuations. If the real world is to be related to this latter
approach, tracing direct information on initial conditions from clustering data seems
to be difficult or even vain.

Here we plan to pursue an intermediate program. Still keeping within the bias
approach, we try to account for a number of other features through suitable forms
of the threshold function. As already outlined in the previous chapter, our idea is
that the threshold function can be used to account for effects other than overcoming
a given fluctuation level.

As a matter of fact, a comparison between egs. (4.3) and (4.2) easily shows
that, for a constant M/ L ratio, no value of 8 can furnish the observed Schechter func-
tion for galaxy groups and clusters. This fact seems to be independent of the nature
(Gaussian or non—Gaussian) of the background matter distribution. The question is
then whether effects like merging of different scale fluctuations, non—-sphericity m the
gravitational growth, etc. are responsible for the discrepancy between the shape of
®(L) and the expression of n(M) obtained starting from a -threshold function. If
so, an analysis of ®(L) could furnish significant informations on the above effects.

- 4.2.2 A fit to multiplicity function allowing for non—spherical
growing

In the following a tentative fit of data on the multiplicity function of TG groups and
Abell clusters will be performed. We shall assume a primeval fluctuation spectrum
|6(k)|> = Ak™ and the CDM transmission factor (see §2.4, eq. (2.77)). According
to eq. (2.98), they allow us to work out the dependence on the scale R of the mass
variance

ok = A(2r)"° /0°° dk kT (k) O4(kR) . (4.6)

Here QR is the Fourier transform of the window function Qg (see §2.6). The normal-
ization constant A is fixed by requiring that '

OR,=8h~1Mpc = 5;1- (4.7)

Here, the bias parameter b, is defined as the ratio between the 2-point correlation
functions for galaxies and background, evaluated at the scale R,. [Let us remember
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that, according to Davis & Peebles [52], the variance in the distribution of galaxies
is unity at By = 8~ Mpc.]

Then if Hfsi,)m represents the probability of finding an object of mass M (here
6. = voy is the value of the critical threshold), the number density of objects with
mass between M and M + dM is given by

< pp > dﬂgi)
M dM

In the above expression, the mass scale M is related to the smoothing scale R ac-
cording to M = (47/3) < py > R®, once we assume the top-hat filter (2.88).

n(M)dM = (1+ f)

}dM (4.8)

In order to introduce the effect of non—sphericity in gravitational collapse, let
us take the expression

(1) 1

e donleh)-
L) ) o). o

that represents the probability of having an object on the scale M, in the case of
erfe-threshold. In the r.k.s. of eq. (4.9) the first term coincides with the contribution
obtainable from a #-threshold. In the second term, the dependence on A(M) appears
[see eq. (4.1)]. It can be easily verified that this term vanishes for A — 0. Both
A(M) and the critical density contrast §, turn out to be always divided by the mass
variance oy. It is therefore convenient to keep the values of 6. and oy obtainable
from a linear theory.

After differentiating eq. (4.9) with respect to M and substituting in eq. (4.8),

we get
<pp> b doy
M /rol |dM

where the non-sphericity effects are expressed through the term

n(M) =

11+ A(M))| ea:p(~§) , (4.10)

M

S NCE
() (B ) 0]

For the critical density contrast, in general we shall take

6. = 1.69; (4.12)

and, in the sequel, the values j = 1 (recollapse at the time t;) and j = 1.3 [virialization
at t3 = (3/2)t;] will be considered.
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Figure 4.1: Multiplicity function for galaxy systems. The 6-threshold case and the
erfc-threshold cases are compared. The values of n and j are selected a—priori. The ra-
tio M/L and the bias parameter b are obtained fitting TG data with a @-threshold. The
effects of an erfc-threshold are quite relevant in the Abell cluster region.

In Figure 4.1 we report some fits of data obtained as follows. We assume given
a-priort values of j and of the spectral index n. Then we determine the best-—fit
values for the biasing parameter b, and for the M/L ratio, by considering the TG
sample only and assuming a #-threshold function. No attempt is therefore made, at
this stage, to fit also Abell cluster data and this avoids treating on the same footing
data obtained with different criteria. In the figures, however, also Abell cluster data
are shown and we can immediately appreciate how far from theoretical curves, based
on the TG groups, the Abell cluster data are apparently set.

Among the different cases we studied, we shall report in Figure 4.1 the case
7 = 1 and n = 1. The effect of passing from a f-threshold to an erfe-threshold
is clearly visible. One should notice that the correction due to A # 0 is almost
negligible in the mass-range used to fit M/L and b,. In the Abell cluster mass range,
instead, it allows the theoretical curve to rise up to 3 orders of magnitude, allowing
a fit which would otherwise appear very poor. The results plotted in Figure 4.1 are
obtained with the best fit values M = 107> M, and 8 = 0.035. They yield an
almost constant A ~ 0.2. Keeping such a constant value of A in eq. (4.11) would
still provide a good fit to data. While this means that the improved fit is obtainable
with just one extra parameter, we maintained the 2-parameter starting point in order

to show that a nearly constant A seems to be actually implied by observational data.
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Figure 4.2: Here the possibility of improving the data fit passing from j = 1 toj=1.31is
tested. The dashed curve (j = 1.3) seems however to indicate a worse approximation to data.
Accordingly, it seems reasonable to conclude that observed clusters are far from virialization.

All the above fits were ordinary least-squares fits, on a logarithmic scale,
obtained by giving all points the same statistical weight (points from individual
galaxies were never taken into account). A significant quantity is therefore

N

2= D (h - @)?, (4.13)

i=1
where t; and o; are theoretical and observational values on the N = 12 mass—scales
taken into account. The effect of keeping A £ 0 lowers B2 from 14.65 to 0.84.

The analytical reason which makes the correction so significant on large mass—
scales is connected with the behaviour of the ratio A(M)/ow. Just before the Abell
cluster mass-range, the transmission factor T(k) shows a significant bend-over, cor-
responding to a value of gy ~ 1071, [Let us remember that this value is controlled
by the bias parameter b,, while the mass—scale is determined by the M /L param-
eter; both were obtained on the basis of the TG sample.] Accordingly, A(M)/ay
approaches unity and, above this critical value, the enhancement of HglmM becomes
particularly significant.

Figure 4.2 shows the effect of passing from j = 1 to J = 1.3, for the same value
of b;. Although some improvement seems to be possible in the TG luminosity-range,

this surely makes the theoretical curve more distant from data, in the Abell cluster
regiomn.
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Figure 4.3: The relation between the smoothing radius R and the galaxy bias factor b, in the
0-bias case, for the CDM background spectrum, assuming a top-hat winwow function. The
solid line corresponds to j = 1 (end of recollapse), the dashed line to j = 1.3 (virialization).

A first point which seems to follows from the above fits is that taking a-
sphericity into account is significant and that fits of data obtained neglecting it might
be misleading. Also the fact that the correction seems to concentrate its effects on
the Abell cluster mass range, raising the abundance of such objects with respect to a
pure #-threshold model, might be connected with the observational relevance of the
Abell clusters themselves. Their aspect and abundance were such as to attract the
observer’s attention. The idea that is very tentatively suggested here is that their
peculiarities — as well as their connection with lower scale objects — is to be ascribed
to the dynamics of non-spherical gravitational growth.

A further significant pattern would be opened if a better observational defini-
tion of the multiplicity function ®(L) is reached. As already outlined, the definition
of Abell clusters [1] and of galaxy groups [194] are significantly different. In spite of
that, there seems to be some physical continuity between data concerning these two
kinds of samples (see Figures 4.1 and 4.2). This fact is doubtless remarkable, but
it is also reasonable to wonder how much it may be altered even by minor changes
in the very definition of groups and/or clusters. The Gott & Turner search, based
on the 2-dimensional Zwicky sample, assumed an angular density of galaxies o, that
must be 7.95 times the average density for defining-a group (see eq. (1.26)). It is
clear that no particular physical meaning is to be attributed to this value of og. In
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Figure 4.4: The relation between the smoothing radius R and the galaxy bias factor b, in
the 8-bias case, for different window functions and assuming a CDM background spectrum.

The solid line corresponds to the top-hat window, while the dashed line to the Gaussian
window.

this sense, it would be fair to outline the dependence of both n(M) and ®(L) on o,
replacing the above symbols by n, (M) and ®,,(L), or making clear the dependence
of theoretical and observational data on parameters like the density contrast.

In our opinion, however, a decisive step for a direct test of any theoretical model
would be possible only with the availability of a mass—function directly deduced from
observational data, without the need to pass through any assumption about the value

of the M/L ratio.

4.3 Comparison with data on cluster correlation
function

The possibility of using linear theory on the scales of clustering of rich clusters leads
some authors to test biased models vs the detected 2-point correlation function of
Abell clusters [132,47]. However, despite the simple feature of the rich-cluster 2-point
function, agreement with the predictions of the §-threshold biasing can be achieved
only at a qualitative level.
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Taking into account non-spherical gravitational growing and merging between
fluctuations on different scales by means of the erfc and Gaussian thresholds respec-
tively, we directly compare our model for the cluster 2-point correlation function,

I (21, 2,)
[H(l) }2

¢, R

& (21,23) = 1+ : (4.14)

with the corresponding observational results obtained by Sutherland & Efstathiou
[188] from the analysis of the deep cluster redshift survey of Geller & Huchra [85].

From a general point of view, let us observe that eq. (4.14), together with
the normalization requirement (4.7) for the spectrum, causes the cluster 2-point
correlation function to depend on the smoothing radius R (rather than on the shape
of the window function) and on the bias factor b,. However, a relation between these
two parameter can be found, so reducing the degrees of ireedom in our problem. In
fact, from the ratio between H,(si_,)a (fraction of volume occupied by the objects) and
the characteristic volume of each object [V = §WR3 for the top-hat window, or V3 =
(2w R?)*/2 for the Gaussian window], we obtain a prediction for the object number
density. The relation between R and b, is then found by constraining the predicted
cluster number density to be equal to the observed one, n, = 7 x 1073 Mpc~2.
However, Hgi’)a being dependent on the value of the critical density §., the form of
this relation turns out to be dependent on the evolution parameter j. In particular,
for a fixed value of R, the corresponding value of b, is a decreasing function of j
(see Figure 4.3). The functional dependence of the smoothing radius R on the bias
factor b, for different window functions is shown in Figure 4.4, while the effects of
taking different threshold functions f(«) and different background spectra are shown
in Figures 4.6 and 4.8.

Indications on the value of the smoothing radius, and, consequently, of the bias
factor too, are obtained through a comparison between the prediction of our model
and the observational data on the cluster 2-point correlation function (see Figures 4.5,
4.7, and 4.9). In the case of a top~hat window, a reasonable value for the smoothing
radius turns out to be R = 9 A~ Mpe, while R = 7.5 h~*Mpc for Gaussian window.
Indeed, while for smaller values of R the 2-point correlation function is too steep for
small separations r, for greater values the correspondent bias factor becomes < 1, in
contrast with the idea that galaxies are clustered at least as the background matter.
Moreover, corresponding to the above value of R, a reasonable galaxy bias factor b,
is obtainable only for j = 1, while j = 1.3 implies an anti-biasing (b, < 1) in the
galaxy distribution. This seems to indicate that clusters of galaxies are observed at
about the epoch of recollapse, still far from full virialization (this conclusion is in
agreement with other evidence from cluster X-ray emission [76,43]).
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Figure 4.5: Rich—cluster 2-point correlation function in the case of f-threshold for (a) CDM
spectrum, and for (b) scale-free spectrum with spectral index n = —1.2. The solid lines
correspond to the choice of the top-hat window with smoothing radius R = 9h~1Mpc [the
resulting galaxy bias factor is by = 1.06 for both (a) and (b) cases] and the dashed line to
the choice of the Gaussian window with smoothing radius R = 7.5h™'Mpec [also in this case
the resulting galaxy bias factor is by = 1.06 for both (a) and (b) cases] The observational
data refer to the 2-point cluster correlation function obtained by Sutherland & Efstathiou
[188] from the analysis of Geller & Huchra’s [85] deep redshift survey, while the dotted curve
represents the best fit power law {.(r) = (7, ./r)'8, with Toe = 13~ 1 Mpc.
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4.3.1 Cluster correlations with the erfc-threshold

In order to evaluate the 2-point cluster correlation function from eq. (4.14), let us
consider the quantities

- REE AL e

and

ma1,1+m2;2,2 1

Mon(ere2) = %iLZ[ (202)' | *

m2;1,1! mz;z,z!

(2 )(331 -'132) mai1,2+me2 1 5
(g L (), e
( 202 Mg1,2l Mo 2! “m(1) V205 m(2) V2o /)’ ( :

which can be deduced from eqs. (3.15) and (3.9), respectively, evaluated for the :rfc-
threshold, and taking a Gaussian background. In eq. (4.16) the sum over the indices

M [r,] has been written explicitly. According to the properties of such indices, we
have '

L g
Mo, + Mo + Mo + Maze = My = 5 (4.17)
while, according to eq. (3.14), it is
m(1l) = 2mau1 + man2 + Mo
m(2) = 2ma; s+ Moz + Moo (4.18)

Following eq. (4.14), it is now easy to obtain the 2-point correlation function
for the erfc-threshold. From a numerical evaluation of the egs. (4.15) and (4.16), we
obtain the shapes for ffsf)n(r) reported in Figure 4.7a (for a canonical CDM spectrum)
and in Figure 4.7b (for a scale—free spectrum with n = —1.2). A comparison with the
data and with the best—fit power law shows that in the CDM model the correlation is
too steep for small separations, while a better agreement is reached with the scale—free
spectrum. However, in the 6—threshold limit there are some problems for both spectra
in reproducing the small scale behaviour of the cluster 2-point function. As shown in
Figure 3, the situation is even worse assuming a Gaussian window, which increases
the correlation strength on small scales; for this reason, in the following we will take
the top—hat function as the window acting on the background field. Some marginal
improvement is however obtained taking with A = 0.4 in the erfe-threshold, which
has the effect of reducing the excess of correlation for small separation (see Figure
4.7). Further improvement can be obtained with larger values of the parameter A,
the only problem in this case being the difficulty in getting numerical convergence of
the series (4.15) and (4.16) at small separations.
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Figure 4.6: The relation between the smoothing radius R and the galaxy bias factor by, in
the case of erfc-threshold for (a) CDM spectrum and for (b) scale-free spectrum with spectral
index n = —1.2. The solid line corresponds to A = 0 (§-threshold), the dot—dashed line to
A = 0.2, and the dashed line to A = 0.4.
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Figure 4.7: Rich—cluster 2-point correlation function in the case of erfc-threshold for (a)
CDM spectrum, and for (b) scale-free spectrum with spectral index n = —1.2. The smoothing
radius is R = 9h~' M pc in all cases. The solid lines correspond to A = 0 [the resulting galaxy
bias factor is by = 1.06 for both (a) and (b) cases] and the dashed line to A = 0.4 [with
by = 1.18 for (a) and b, = 1.20 for (b)].
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4.3.2 Cluster correlations with the Gaussian threshold

Following the same approach as in the case of the erfc-threshold, let us evaluate the
fraction of volume occupied by objects

DI 3 1 K6
o _ ( _) <1>( c ) 4.19
et C’RJ;; 202/ LI 20y (4-19)

and the 2-point joint probability

(2) ' 712 N\ M2 tmagz, 1
M) = 222 )

IR [=0'ms s, mz;1,1!m2;2,2!

(2 )(.’B m2;1,2+M251 2 b
13332)> = ‘ 1 ] o) < K. ) 1 (.~ > 4.90
X< 2‘7;2( m212’m212 m(1) \/—0' m(z)\\/ . ( ' )

After numerical calculation, we get the shape of the 2-point correlation function. This
is represented in Figures 4.9a and 4.9b (together with the §—bias outputs), respectively
for CDM and scale—free spectra, with the value T = 0.12 for the selection parameter.
Taking too large fluctuations out by means of the Gaussian threshold results in
an even greater reduction of the value of the 2-point function at small distances.
However, in this case too CDM model appears to be inadequate to describe the
observed cluster 2-point correlation function, which is positive up to r ~ 60 A~ Mpe.
A significant improvement is obtained with the scale-free spectrum, which provides
a quite good fit to the data, (see Figure 4.95). A further approach to the power-law

shape is obtainable for smaller values of ¥, which however leads to the undesirable
case b, < 1.

4.3.3 Discussion of the results

By comparing our general biased models and observational data on the 2-point cor-
relation function of rich Abell clusters, we obtain the two following results.

First, the CDM model for the background spectrum seems to have trouble
in reproducing the behaviour of the data (see Figures 4.7a and 4.9a). In fact, the
predicted 2-point cluster function is too steep and rapidly goes nearly to zero for r ~
30 h"'Mpc, while the data show no significant anticorrelation up to r ~ 60 A~ Mpe.
This should not surprise us, as it is a direct effect of the non-scale-invariance of
the CDM spectrum, as shown in §2.4. Because the correlation functions for the
CDM particles steepen with time, the shape of the spectrum is fixed by requiring
that its slope on galazy clustering scales at the present time reproduce the observed
shape of the 2-point galazy function. As a consequence, the clustering scale of rich
clusters will be characterized by an effective spectral index 7, f# = 1, which is however
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Figure 4.8: Relation between the smoothing radius R and the galaxy bias factor by, in the
case of Gaussian-threshold, for (a) CDM spectrum, and for (b) scale~free spectrum. The

solid line corresponds to the 6-threshold case, the dot-dashed line to £ = 0.1, and the dashed
line to © = 0.3. |
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unable to reproduce the observed power—law for the rich—cluster 2-point function. On
the other hand, a scale-free spectrum with spectral index n = —1.2 (independent of
scale) avoids these difficulties. In fact, as shown in Figures 4.7b and 4.95, the resulting
cluster 2-point function turns out to reproduce quite well the smooth behaviour of the
power law fit up to small separations. Strictly speaking, even though the scale-free
spectrum provides a fairly good fit, the large uncertainties in the data do not permit
us to rule out any dependence of n on the scale. Indeed, no significant modifications
of the 2-point function occurs for —1.55 nS — 1.

Second, the introduction of non-sharp thresholds does give substantial modi-
fications to the 2-point correlation function. This shows how misleading it can be to
ignore physical effects in the formation of cosmic structures. Taking tentatively into
account non-sphericity and merging by means of the erfc and Gaussian threshold
respectively leads to a systematically better agreement with the data. In particular,
the excess of correlation strength on small scales turns out to be sensitive by an
amount which depends on the threshold parameters. Indeed, a good fit is obtained
by taking the Gaussian-threshold with selection parameter & = 0.12 (see Figure 4.9).

In our opinion, the outputs of the general biased models described in this
chapter can be useful to parametrize non-linear dynamics relevant to structure for-
mation and to investigate the influence on the large-scale distribution of objects. Our
method replaces a fully dynamical treatment which should instead fix the values of
those parameters which we actually leave free and to be compared with observational
outputs. On the other hand, there can be little doubt that an improvement on the
observational side would also help to clarify the situation.

However, already in the present context, we think that one conclusion can be
reached. Although the fluctuation spectrum is expected to change its slope between
galaxy and cluster scales (as in the CDM model), nevertheless non-linear dynamics
could offset the difference and produce 2-point functions of similar slopes on both
scales. Our investigation, however, suggests that no reasonable non-linear effects
can cancel features which are rooted into the primeval fluctuation field. This real-
ization avoids the introduction of unpleasant fine~tuning requirements to obtain the
same correlation—function slope in both galaxy and cluster regimes. Let us suppose
however that non-linear dynamics cancels primordial spectral features. In this case
no primeval features can be inferred from observations and no bias is warranted.
Alternatively, if a primeval mark is imprinted on the observed clustering features,
one would be compelled to conclude that observations suggest a virtually scale—free
post-recombination spectrum.
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Figure 4.9: Rich-cluster 2-point correlation function for (a) CDM spectrum, and for (b)
scale-free spectrum with spectral index n = —1.2. The smoothing radius is R = 9h~' Mpc
in all cases. The solid line corresponds to the §-threshold case and the dashed line to the
Gaussian threshold with ¥ = 0.12 [the corresponding galazy bias factor is by, = 1.0 for both
(a) and (b) cases].
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The content of §4.2 is a part of a paper already published in the Astrophysical Journal
[31], and it has been presented at the Durkam Symposium on the Epoch of Galazy
Formation [24]. Moreover, the content of §4.3 is included in a second paper, that is

in press in Astronomy & Astrophysics [29].



Chapter 5

Galaxy halos and matter statistics

The statistical analysis of homogeneous samples of galaxies and galaxy systems fur-
nishes a precise description of the clustering pattern of luminous matter on large
scales (see Chapter 1). There exists however several indications, both of observa-
tional and theoretical origin, that a great amount of dark matter (DM) should exist,
that is not traced by the distribution of observable objects. In this frame, the biased
theories for the formation of cosmic structures, that we formulated in Chapter 4,
constitute a statistical tool for relating the different correlation properties of back-
ground matter and galaxy distributions. However, up to now the lack of a method for
investigating the DM clustering pattern made no possible a direct test of a possible
segregation between galaxies and background matter.

In this chapter we describe a new method to explore matter correlation prop-
erties at galaxy scales. In particular, we investigate the statistics of halo matter
surrounding galaxies rather than studying galaxy number counts, as is usually done
in the analyses of homogeneous samples. It should be pointed out that the features of
mass distribution in individual galaxies follow from rotation curves, while the statis-
tical properties of matter distribution are derived from extended sets of objects with
different radii, peripheral velocities, luminosities. The latter quantities are used to
formulate a statistics for the expected density enhancements within given distances
from galactic centers.

5.1 How to investigate the matter distribution

If we require that the clustering pattern of galaxies, as inferred from their observed
distribution, be stable over a Hubble time (H!), then we conclude that large-scale
peculiar motions trace the distribution of matter in the Universe [72]. Quite similarly,
circular velocities in spiral galaxies trace the gala.xiés’ internal mass distribution.

105
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Though on different scales, both sorts of motion highlight some degree of clumpiness,
or clustering, in the distribution of matter.

The analysis of peculiar velocity fields over very large scales, R ~ 100 Mpc !,
leads to precise predictions on the amplitude of the mass excess § M /M associated
to a given mass concentration [17]. Peculiar velocities are in general obtainable from
redshift surveys, where they make the galaxy clustering pattern appear elongated
along the line of sight [87]. Peebles [155] extended such arguments down to the scale,
R ~ 1 Mpc, typical of close galaxy pairs. If the mass distribution within the pair
is modeled as the linear sum of spherical halos of radius R and mass § M, centered
on each galaxy, and the r.m.s. peculiar velocity dispersion within the pair is oy(R),
then the mass excess is 6 My ~ 0,(R)? R/G. Since the mean mass density in a FRW
Universe is p = 3H2Q,/87G, the associated mass fluctuation is

M, 2 (UU(R))Z

M, ~ Q, \ H,R

(5.1)

[Mr = (4/37) p R® is the mean mass within R].

In the same paper, Peebles stressed also the importance of comparing the
mass fluctuations, § My /My, with the galaxy number fluctuations, 0Ny /Ny, which
represents .he mean number of galaxies in excess of random within a distance R of
a galaxy, and is given by

6N 3 R s, _ 3 To,gg)7
Na 47rR3/o boalr) d'r = 3_~ ( R/ (5.2)

In eq. (5.2) we indicated with ¢,, the two-point galaxy correlation function measured
from galaxy number counts and, as already seen in Chapter 1, on scales 0.2-20 M pcis
modeled as a power law, £, = (r,,4,/7)" with v = 1.77 £ 0.03 and Togg = 1015 Mpc.
On the other hand, the analysis of galaxy peculiar motions in the CfAl redshift
survey leds Davis & Peebles to detect a pair velocity dispersion o,(r) = (310 £
35) (r/Mpc)®13£%% km s=1 [52]. Then, we see fron eq. (5.1) that §M/M and 6N/N
both vary with = in about the same way, as 717909 supporting the hypothesis of
a stable clustering pattern. From this similarity in the » dependences, Peebles (155
argued that “whatever gathered galaxies together to make the present clustering
pattern gathered mass in the same proportion”.

If mass and number counts fluctuations do coincide, so that
SN/N = §6M/M (5.3)

then from egs. (5.1) and (5.2) and related quantities one estimates the galaxy contri-
bution to the mean mass density to be 0.35 Q,< 0.6 [155]. On the other hand, the

'In the following of this chapter we use a value H, = 50 km s~ Mpc=? for the Hubble constant.
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already discussed observational evidence for different clustering properties of galaxies
and clusters of galaxies [118,23,8], as well as the need for reconciling the observed
velocity dispersion within binary galaxies with the theoretical prejudice for Q, = 1,
motivate the possibility that

SN/N = b6M/M, (5.4)

where b > 1 is the biasing parameter (see also §3.1). Thus, the galaxy contribution
to the mean mass density can still be reconciled with a flat Universe (2, = 1),
provided that b~ 2-3. In general, for a biased distribution of galaxies eq. (5.4) gives
the bias parameter b once a particular value of {2, is assumed.

If the Universe is dominated by dark matter on the larger scales, then, on
the scale of galaxies, continuity arguments invite us to consider only their dark mass
components rather than their overall mass distribution in order to meaningfully com-
pare the clustering properties of matter at small and large scales. To this purpose
we use the rotation curves of spiral galaxies instead of the r.m.s. velocity dispersion
within galaxy pairs. In fact, although both galaxies within pairs and the stars within
galaxies (from which rotation curves come) behave as equivalent test particles in the
background gravitational field, the relevant radial distance scales are substantially
smaller for the stars (R ~ 5-50 kpc) than for binary galaxies (R ~ 500 kpc-1 Mpc), so
rotation curves provide a deeper probe into the distribution of matter than velocity
dispersion measurements. ' '

In order to study the background (dark) matter statistics starting from ob-
served galaxy rotation velocities, a proper general technique for decomposing rotation
curves into the contributions of luminous and dark components is required. By apply-
ing such a technique to a sample of galaxies spanning a broad range of luminosities,
the knowledge of the physical parameters of DM in the halos would permit to in-
vestigate the correlation properties of dark matter surrounding galaxies. Until quite
recently, however, a general mass decomposition technique was not available, so direct
investigations of background statistics on galaxy scales could not be attempted. A
suitable method, which extracts the DM content of spiral galaxies at the optical disk
radius from the profiles of rotation curves, was recently devised by Persic & Salucci
[158,161] and constitute the key starting point for the present study.

In doing such analysis, we take a sample of 58 spiral galaxies [159,160] (here-
after PS90 sample). These are all non—local galaxies for which both good (blue) pho-
tometry (r.m.s. errors < 0.05 mag) and high—quality, extended (out to R > 0.8 R,p)
rotation curves were available in the literature by the end of 1988. They span the
(absolute blue) magnitude range from —17.5 up to —23.2. Disk radii range between
about 3 and 55 kpc. Peripheral velocities range between about 120 and 400 km s~1.
They are of morphological types Sb through Sc, apart from two Sa and one Sab cases
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(see Table 5.1).

5.2 Dark matter in spiral galaxies

Dark matter has long been recognized as a fundamental component of the internal
structure of galaxies [70]. The overall matter distribution, as revealed dynamically
by observed rotation curves, is strikingly different from the distribution of luminous
matter in the optical disk region [175] and extends out to large radii where no velocity
falloff is observed [37,7,40,41]. Therefore huge amounts of matter, not traced by light,
dominate the overall dynamics and structure of galaxies. One may then naturally
expect a link between internal galaxy structure and background matter statistics.

In spiral galaxies, the optical disk radius, R, is both the only observable
lengthscale of their internal structure (R, is ~ 3 times the scale of the exponential
light distribution [77,200]) and the innermost radius where DM affects strongly and
systematically the observed dynamics [175,158]. For this reason, R, is the appro-
priate reference radius suitable for studying the statistical properties of DM at one
same radius (in galaxy normalized units) for all galaxies.

Let Voo = V(BRopt) be the value of the observed velocity at Rop, and Vi gp
the halo component of V,,; let also My, and Mpa, be the disk and halo masses
evaluated at R,,. Then, from the relation

ve: o = yr  Mhao
h,opt opt
P P Mduk + Mhalo

Viopt is obtainable as soon as the mass ratio at the right hand side of eq. (5.5)
is known. According to Persic & Salucci [158,159] the disk—to-total mass ratio in
spiral galaxies at the optical disk radius is directly obtainable from the profiles of
optical rotation curves. They use a two—component mass model including a spherical
dark halo and a luminous thin disk with exponential surface brightness distribution

(5.5)

I(R) = I, e ®/Fp  while no halo matter density profile is assumed. According to such
mass—decomposition technique for ordinary spirals, the disk—to-total mass ratio at
the optical radius is

d logV
M ;s . 0.8 —7 lo§R|Rop: (5.6)
Muise + Mpa, 0.1 3 ﬁiﬁlam +1.1

(see Appendix B). Therefore V; ,,; is obtainable from the observable qliantities Vopt
and its logarithmic derivative j—%LM Rope* (In this section velocities V and distances

R are expressed in km s~! and kpc respectively, unless otherwise stated. )

Based on eq. (5.6), an analysis of available data shows a number of systematic
properties of dark matter (hereafter DM) in spiral galaxies: a) the disk kinematics
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SlogV .
alogR-lRom ~ 0.6) hencael 1sV mostly
og

halo—dominated (Mg;sr /Mot ~ 0.2), while in brighter galaxies (whereby ml Rope ™
—0.05) the kinematics is mostly disk—-dominated (My;,,/Myo: ~ 0.8). Between these

extremes there is a continuous distribution of My;,./M;o; values; and b) the My;or /Mo
SlogV.
8logR

of fainter galaxies shows steeper velocity gradients (

distribution, owing to the correlation between galaxy luminosity and 22| Rope) TRAPS

into the luminosity sequence of galaxies [158].

Let us now consider the condition of centrifugal equilibrium for the halo at
Ropt7 i.e. Mhalo - G 1V2

opt Flopt- 1t implies that the volume-averaged density in the

spherical halo is

ﬁhy'??t = 4% 10—27 (VhyOPt/km S—l) 2

gem™? (Ropt/kpe)
Owing to eqs. (5.5) and (5.6), prop: is therefore directly obtainable from velocity
data.

(5.7)

According to the Friedman equations, the critical density of the Universe reads

Pe

H 2
~ 1 —27 ° ) .
(g em—3) 1910 (km s“lkpc*1> (58)
Dividing eq. (5.7) by eq. (5.8), we obtain
- 7 2 )
Ph;?t — <§Ot) (5.9)
op .

where p = (), p. is the actual density of the Universe. In eq. (5.9)

R, _ ciyya_ (Vhepe/kms™)
(Mpc) = (2197 (H,/km s=1Mpc-1)

Vi ,opt ) —1/2 ]
— —_— . 5.1
7K25Okms—1 h (5.10)

Egs. (5.9) and (5.10) are true for each individual galaxy. If no statistical
correlation existed between R,,, and Vi, eq. (5.9) would define the correlation
between pp ope and R,y (correlation length fi’o, given by eq. (5.10) with V}, o, replaced
with < Vi ope >, and slope 4y = 2). From Table 5.1 and eq. (5.5), however, we test
that a correlation between Vj, ¢ and R,pe does exist (see also Figure 5.3), so that

Phopt  _ ( R, )7 5.11
p Ropt ( * )
with R, ~ R, and v < 2.

A procedure of linear regression analysis of the PS90 sample (see Table 5.1)
through egs. (5.5), (5.6) and (5.11) yields v = 1.76 4 0.12 and R, = (8.5 £1.5) Mpc
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in the 3-50 kpc distance range (see Figure 5.1), quite in agreement with the above
arguments. The match of v with the canonical value of the two-point galaxy—-galaxy
correlation function slope is a consequence of the underlying link between eq. (5.11)
and the clustering properties of the background matter.

Table 5.1
The PS90 sample of spiral galaxy rotation curves

Object My Ropt Vopr sk logfnee  Object My Ropt Vo sk

logﬁh,opt

N 488 -22.52 33.3 379 0.52 -24.51 N 4682 -20.85 154 179 0.49
N 7563 -22.60 20.8 209 0.66 -24.77 N 4800 -20.00 4.2 165 0.56
N 1035 -19.69 74 138 0.31 -23.92 N 5033 -21.30 384 219 0.59
N 1085 -22.55 32.0 310 0.70 -24.86 N 5055 -21.55 18.9 200 0.71
N 1300 -21.47 20.8 200 0.71 -24.88 N 5290 -21.51 17.6 220 0.62
N 1325 -20.87 18.2 209 0.27 . -24.32 N 5371 -22.60 32.6 240 0.67
N 1417 -22.28 25.6 308 0.50 -24.45 N 5383 -22.,50 19.2 209 0.77
N 1421 -20.80 26.6 225 0.30 -24.61 N 5426 -21.24 20.2 157 0.71
N 1620 -21.90 28.5 265 0.36 ~24.56 N 5673 -20.50 11.2 125 0.50
N 2336 -22.50 50.6 252 0.69 -25.41 N 5905 -21.84 52.8 250 0.58
N 2708 -20.60 13.8 283 0.21 -23.78 N 5908 -22.00 29.8 350 0.68
N 2715 -21.21 285 177 0.34 -24.89 N 7083 -22.40 38.4 223 0.67
N 2742 -20.54 12.2 190 0.34 -24.10 N 7171 -21.25 23.7 227 0.58
N 2815 -22.00 29.4 286 0.65 -24.78 N 7331 -22.40 33.9 226 0.66
N 2997 -21.19 21.1 160 0.71 -25.09 N 7531 -21.14 12.2 180 0.71
N 2998 -22.00 26.6 214 0.58 -24.86 N 7537 -21.23 11.8 137 0.72
N 3054 -21.63 17.3 239 0.50 -24.32 N 7591 -21.21 20.5 195 (.71

! necA OA O one aan A e o o n o4
I\I 3145 "22.58 35-8 276 V.04 ~Lk.TH I\J 7UUU ThL.O% &4U.0 p2I N U.0%

N 3198 -20.60 13.8 158 0.56 -24.53 N 7631 -21.17 17.9 208 047
N 3200 -22.87 47.4 288 0.58 -256.12 N 7664 -21.60 11.2 183 0.71
N 3223 -22.64 37.1 255 0.69 -25.14 N 7723 -21.57 154 209 0.71
N 3672 -21.75 19.8 190 0.65 -24.80 1467 -20.65 15.0 143 0.1
N 3963 -22.37 23.7 177 0.69 -25.07 U807 -21.80 37.1 211 0.71
N 3992 -21.70 28.2 277 0.61 -24.73 U 2259 -17.50 5.1 89 0.23
N 4062 -19.50 13.1 201 0.21 -24.04 U 4375 -20.02 10.6 189 0.57
N 4254 -21.51 14.1 204 045 -24.24 U11810 -21.10 28.2 182 0.58
N 4321 -21.53 22.1 227 0.50 -24.58 U12417 -20.06 11.2 165 0.14
N 4565 -23.20 422 254 (.71 -25.29 U12810 -22.40 35.8 225 0.62
N 4605 -18.59 3.2 95  0.08 -23.39 WR 66 -20.77 25.6 171 0.62
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Figure 5.1: The mean halo matter density at the optical disk radius, Ph,opt s a function of
the optical disk radius, R, for the PS90 sample of 58 Sb—Sc spiral galaxies with extended
rotation curves. .

The comparison between eq. (5.11) and the two-point galaxy—galaxy corre-
lation function should be made with some caution, as the latter is known over the
significantly different 20 kpc—10 Mpe distance range [97]. Therefore, although we can
obtain a valid measure of the correlation function at the physically meaningful radius
R,p¢, we need to sample the density-radius correlation farther out in the halos, i.e.
at radii B >> R,p,, in order to extend its radial overlap with the galaxy function.

To this purpose let us define an effective halo radius, Ry, as the radius en-
compassing an amount of DM 7 times greater than My;,,. Consequently the mean
halo density at Ry is g, = nMdigk/(gwRi). Observed rotation curves are nearly
flat for R > Ry, with a value ~ V,,; [37,15]. Therefore, the centrifugal equilibrium

condition at Rj reads
V2
prn o= 4x107% -hj—gi. (5.12)
h
The halo radius, appearing in eq. (5.12), is not directly observable. However, by our
definition of R;, and by eq. (5.6), it can be related to the observable quantities R,p

dlogV BRI
and "—‘”dlogR‘Ro,,n being

__d logV
0.8 -3 logRlRopt )

d logV
0.1 $pe |, +11

Rh = nRopt< (513)

If one takes 7 = const for all galaxies, it is the variation of M,y | Mpa1, with luminosity
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Figure 5.2: The mean halo matter density, pp, as a function of the effective halo radius,
R}, (see text), for the same sample as in Figure 1. The three empty triangles represent the
galaxies NGC 4605, UGC 2259, and UGC 12417, which are not considered in the moment
analysis as they fall in a non—-contiguous and insufficiently populated radial bin.

which induces a range of R,. Here again, should the variations of V,, a.nd- Ry, be
statistically independent, in a sample of galaxies one would find p,/p = (R,/Rp)*
with R, ~ TMpc for Q, = 1, hgo = 1, and Vopt ~ 250 km s~!. However, arguments
similar to the ones made for the R,, case lead us to expect a softer slope, v < 2.
A rough estimate, neglecting the luminosity dependence of Myior /| (Maisk + Mhato)
(which would increase v) and using the Vopt-Hopt correlation given by Rubin et al.

[174] alongside egs. (5.12) and (5.13), yields

ph Ro v
; ( Rh) | (5.14)
with v o~ 1.5 and R, ~ 10 Mpc for Q, = 1 and hgo = 1 [for 7 = 10, the correlation
between V,,; and R}, inserted in eq. (5.14), leads to values for v and 7, which are
consistent with the above estimates]. We remark that these estimates of the scale
R, are compatible with the actual value appearing in eq. (5.11). This circumstance
hints that quantities relevant to the DM distribution on intermediate scales can be
directly estimated from observed galaxy kinematics.

In what follows we take n = 10 [20,57]. We have verified that different choices
for 7 reflect very mildly on R,, and only to the extent that v # 2, according to
R, 7]177—2" [see egs. (5.12), (5.13) and (5.14)}; no variation of v is induced if 7 is
chosen to be uncorrelated with luminosity. Then we work out the extended halo
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parameters for the PS90 sample. By using eq. (5.13) and data from Table 5.1, we
compute Rj, and then pp accordingly. In Figure 5.2 we plot the computed halo
densities vs their respective effective radii. Then we calculate the moments of mass
distribution reported in Table 5.2 which will be used in the following to work out the
galaxy—background correlation functions.

5.3 Two-point function analysis

Let &u(7) be the 2-point background matter correlation function. According to the
definition of the 2-point correlation function we gave in §2.1, we can express the
amount of matter contained within a sphere of radius R centered on a randomly
chosen point, according to

R
<M >y = pVa+p 47r/ r2dr &w(r), (5.15)
0

where p is the average matter density (assumed to be equal to the critical density
p=>5x10"%%%g cm™3). ‘

If the point is not random, but is selected to coincide with [the center of] a
galaxy, then equation (5.15) modifies into

R
<M>a= pVatpdn [ rdr tlr), (5.16)

to give the mass contained within a radius R of the galaxy center. Here £(r) is the
galazy—background cross—correlation function.

Taking now {u(r) = (r,/r)" and for R < r,, from eq. (5.16) we obtain

<M >
— "2 = ¢4(R)K,, (5.17)
My,

with My = pVa (Va = 47R®/3) and K; = 3/(3 — 7).

Dividing numerator and denominator of the Lh.s. of (5.17) by V4, the ratio
pn/p is obtained. This is to be compared with relation (5.14) when R is the halo
radius. In spite of the approximate significance of eq. (5.14), it is worth to perform
a comparison, which shows that

R, = K!r,. (5.18)

Henceforth from the numerical value of R, given in (5.10) one could work out a
tentative value for the clustering length r, ranging around 6.2 Mpc and with an
error of ~ 40%. An actual value of the clustering length will be deduced from the
homogeneous PS90 sample in the rest of this section (see Table 5.2).
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Much of the simplicity of eq. (5.17) depends on the power-law assumption for
the 2-point function. We can compare the results of this assumption with observa-
tional behaviours. In the analysis of the 2-point function one might simply consider
the value of M, estimated for each single galaxy of the sample from its average
internal density and radius, as a function of the galaxy (halo) size R (see Figure 5.2).

However, in view of further applications, we prefer to collect actual objects into
5 bins, each having the same logarithmic amplitude, x = 1.74, and a characteristic
radius 7, = 17.0 k kpc which coincides with the logarithmic center of the bin itself
(see Table 5.3).

More in detail, from a theoretical point of view, the average performed inside
the k-th bin corresponds to the output of the integration

<M > TE+1
—-:-—-I-c- = K1/ §gb(r)p,dr (519)
Mk Tk
where p. is a weight function fulfilling the normalization requirement Lt pdr = 1.

Taking p. = N(a)r®, [N(a) is the normalization factor], we have

M
log—<——-—=—>—1’i = ®(a,y,7.,k), (5.20)
My

where

n“"‘l"—l a+1-—v
——F—F —log

@(a,’}’,'f'o,k) - 7109 —"_'l"log K1+lOg — - ——;:—1———-

(5.21)

Minimizing

5 o k 2
Z{ Trek) 1} (5.22)
= log[< M > [/ M] |

with respect to v and 7, does therefore correspond to an ordinary least-square fit
with unweighted points. (Although each < M >, /Mj ratio is obtained by averaging
different points and could be therefore attributed a formal error, such ’errors’ are
not random but systematic, and can be used to extract further information on the
matter distribution.) Indeed, it should be noticed that, quite differently from what
happens in usual correlation function analysis, the observational values coming from
each bin are statistically independent, being built from different objects.

Best~fit values of 7, and v and standard deviations (for = 10 and Q, = 1) are
reported in Table 5.2 for different values of a. We find v = 1.71 +0.03 independent
of o, and 7, ~ (6.4 + 0.6) Mpc only slightly dependent on .
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, Table 5.2
Correlation length and slope of the 2—point
function for different weighting in the bins.

a ro (Mpc) ~

1 6.28 4 0.58 1.71 £ 0.03
2 6.44 4+ 0.60 1.71 4 0.03
3 6.59 £ 0.62 1.71 £ 0.03

The value of r, we find here is somewhat bigger than the one, r, >~ 5 Mpc,
implied by our results at R,,: [see egs. (5.10) and (5.18)]. This difference is real and
can be explained in the framework of a pseudo-isothermal halo density law, pn(R) =
po [L—(R/a)?]™!, as an effect due to the different density regimes [i.e., pp(R) ~ const
for RS a, and pp(R) ~ R™? for R > a] where the density-radius correlation is
sampled. If, in fact, a ~ Rop; (see, e.g., [199]), then the flattening of the density profile
at RS R,y implies an estimate of the halo mass (at Rop), M5 ~ (4/3)7 p,a®. On
the other hand, if we do not take the density flattening into account and only consider
the ~ R~2 asymptotical profile, an estimate Mpsi7"" ~ 4d7p,a® ensues. The latter
mass estimate exceeds the former by a factor of ~ 2.5. The variation of the radial
density profile of course reflects into the data used for estimating the mean densities,
so it is not surprising to find a systematic difference between the zero-points of the
density-radius correlations computed at R,y and Fy. Such a difference turns into a
difference by factor of ~ 2.5/7 ~ 1.7 between the estimates of 7, in the flat- and
asymptotical- density regimes. Therefore we expect that the value of r, does depend
on the density regime where the density-radius correlation is sampled, being smaller
(higher) in the flat- (asymptotical)-density regime, that is at small (large) distances
from the galaxy centers.

A comparison between our results on £, and current results on the galazy
covariance function shows that both functions are well modeled by power laws having
virtually equal slopes (y = 1.77 & 0.04 for the galazy-galazy case). On the other
hand, the galazy-galazy correlation length is estimated to be 8 < r, < 15 Mpc
([151,33]; and references therein), therefore it is marginally greater than the value we
find. If this is the case, then our results suggest that on these scales the luminosity
distribution is the shadow of the matter distribution (or vice versa), the one being
obtained from the other through only a moderate bias.
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5.4 N-point function analysis

Let us consider the joint expected mass value in n infinitesimal volume elements

6V1,...,6V, at distances ry,...,7, from the center of a galaxy. This can be written as
<My SM, > = p" §Vi . SV [L+ €T, (5.23)
(nt1)

where £5;01 ., is by definition the disconnected correlation function between a galaxy
(chosen as the origin of the axes and labeled with zero in the following) and n points
lying in the background. The disconnected function contains all the lower—order
correlation terms that yield the (n — m)-point function when m points are removed,
and the connected terms that vanish when one point is sufficiently far away (see §2.1).

Integrating n times over a sphere of radius R centered on the galaxy, we obtain
R R (1)
<M= [TV [Cevai+ i) (5:24)
We average eq. (5.24) over each bin and obtain the quantities < M™ >;. These
generalize the quantity < M >, defined in eq. (5.19), to higher correlation order.
Introducing now the central moments
g = ([A My
k Mk Mk k
and using the binomial expansion, it can be shown that
n (4))d
= X o m 2 (5.26)
=0 n"]) (<M>k/Mk)-7

The importance of eq. (5.26) owes to the fact that it gives the connection between

the observational value of s{" (reported in Table 5.3 up to n = 5) and the (n + 1)-
point correlation functions. Due to the large—clustering (e.g., £ > 1) regime, in what

follows we forget the non-leading contributions from disconnected terms in fdu

(5.25)

< M™ >,
<M >}

Table 5.3
Central moments and population of the radial bins.

Bin limits (kpc) 5—%?& s 5P s s¢) | Galaxies/bin
20-40 46400 | 17552 | 16740 | 21288 | 21704 4
40-70 10100 | 4584 | 2382 | 5109 | 3361 5
70-120 4350 | 1779 | 1759 | 2416 | 2627 14

120-200 1820 955 | 1125 | 1440 | 1604 18
200-350 808 | 285 272 387 413 14
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A priori, the hierarchical model leads to expecting that

< M™ >

~ K" 20Qna 5.27
<M >} @, (5.27)

where K, are geometrical factors and n"~? is the total numbers of graphs of order
n. Figure 5.2 shows that the scatter AM about < M >, in each radial bin is
small. Thus, < M™ >,~< M >7. This is in agreement with eq. (5.27) provided it

is Qnao =~ K7 'n?"". One can therefore state that a hierarchical pattern is consistent
with the data.

This general conclusion can be refined by means of a more detailed analysis,
based on the comparison between the values obtained for @, and those predicted
in different realizations of BBGKY hierarchy. We shall show that it is possible to
fit the relations expected amongst different order Q.. by one of these realizations,
while another case is farther from the outputs of our fit.

Following the procedure outlined in the Appendix C, it is possible to work out
suitable combinations of the hierarchical coefficients (up to the sixth order):

Q = 0.43 +0.02,

Q4.0 +0.36 Qsp = 0.18£0.02,
Qso+11.43 Qs +9.90 Q5. = 0.67£0.11,
Q6,a+18.06 Qs p+13.39 Q6. +49.50 Q6 4+43.59 Qg +52.04 Qs ; = 0.4440.12. (5.28)

No distinctions is made here between the terms, entering in 5&?2, which come from
galaxy-background and purely background correlations respectively. We shall return
to the effects of bias in the following.

It is however important that, according to egs. (5.28), the galaxy-background
correlation functions turn out to be safely detectable up to the sixth order. It is
through such outputs on high-order correlations that, in the next section, we compare
the predictions of the BBGKY equation with the actual distribution of matter in
halos.

5.5 Discussion of the results

The range of scales considered in this paper has already been sampled by studying
galazy correlations at short distances (see Chapter 1). Groth & Peebles [97] extended
the canonical behaviour £,,(r) = (10/7)'"" of the two-point function deduced from
the Lick catalog down to 20 kpc. Gott & Turner [94] and Lake & Tremaine [119]
claimed the canonical form to hold down to ~ 6kpc. (Three-dimensional data do
not pertain to the scale range being considered here.)

A comparison between our results on the iwo-point galaxy-background cor-
relation functicu and the coiresponding galaxy—galaxy function shows that the two
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functions have strikingly similar slopes. The respective clustering lengths, however,
seem to be somewhat different, being 7, 55 < 75 4,- If such discrepancy is real, then the
lower value of 7,4, can be interpreted as the signature of a biasing in the distribution
of galaxies. The amount of bias, measured by the biasing parameter

b = §gg/€gb7 (5'29)

can be evaluated by comparing 7,4, ~ 10 Mpc and 7,4 =~ 6.4 Q" Mpc. Then,

Id Y
b = ( ‘“’g) ~ 220, (5.30)
To,gb

with a ~ 20% uncertainty. The above value of b is consistent with that deduced
in §3.1 on the basis of very general (and different) grounds, whereby b ~ 2-3. Due
to the very mild dependence of r, 4 on 7, our inferred value of b is hardly affected
by the choice of 7. We emphasize that eq. (5.29) is the first direct estimate of the
biasing parameter b on the scale of galaxies, and is uniquely related to our capability
of investigating the background (dark) matter statistics.

Thus, we can push our investigation to the (yet unknown) purely background
functions. By analogy with eq. (5.29), the background and galaxy-background two-
point functions are related by £, = b &,. Consequently, the clustering length of the
DM distribution, 7,4, turns out to be

Topp = b7 70, = (3.94£0.7) h;olMpc, (5.31)

that is about one half the (canonical) value of the clustering length of galaxies. We
similarly link our n-point (1 galaxy and n — 1 background points) function to its
background counterpart (i.e., n background points). Indeed, due to the differences
in the galaxy and background correlation properties, the 3-point correlation function
we deduced in the previous section can be expressed in terms of the purely background
one according to background one

e = < 8,86 > = bely) (5.32)

(with a transparent meaning of symbols). By assuming a similar rescaling for all the
higher—order functions, and assuming the hierarchical pattern (2.23) to strictly hold
only for the purely background functions, the corresponding hierarchical coefficients
becomes

Q® = 0.99+0.16
R® £ 035R" = 0.92+0.25
QY] +11.43Q%) +9.90Q¢) = 7.0 £ 3.2
QS +18.06Q) + 13.79QL) + 49.50Q() + 47.96Q%) + 43.59Q%) = 9.4+5.7 (5.33)

[due to the very structure of the hierarchical pattern, the coeflicients appearing in
eq. (2.23) are affected by the presence of bias when going from galaxy—background
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to background statistics]. Thus, according to eqgs. (5.33), we are able to safely (i.e.,
at > 30 level) detect background functions up to the fourth order.

Moreover, to obtain the n-point correlation function for the purely galaxy
case requires a rescaling of the actual values of the corresponding galaxy—background
functions by a factor "~! However, due to the very structure of the hierarchical
pattern, the coeflicients appearing in eq. (2.23) are left unchanged by the presence
of bias when going from galaxy-background to purely galaxy statistics.

Finally, the statistically significant signal for the combinations of hierarchical
coefficients allows a comparison with Fry’s [79,80] and Hamilton’s [100] hierarchi-
cal solutions of the BBGKY equation in the fully relaxed regime (see, e.g., [53]).
According to Fry, all the trees in eq. (2.23) have equal amplitudes

4Q

@Qna = Qn = (—;)H znn_ 5 (5.34)

On the other hand, Hamilton argues that eq. (2.23) can be taken as a solution of
the BBGKY equation when only contributions from snake graphs are considered.
Consequently,

Qn,snake = Qn—Z, Qn,non—anake = 0. (535)

In Table 5.4 we report the value for the combinations of hierarchical coefficients
(5.28) on the basis of the two solutions (5.34) and (5.35) of the BBGKY equations,
and compare them with our results. There are indications that Fry’s solutions are in
significantly better agreement, as they predict values of those combinations remark-
ably well up to the fifth order, and still within ~ 1.5 for the sixth order. It is rather
surprising that quantities of vastly different magnitudes entering in the combinations
(5.28) concur to values of the combinations themselves which nicely compare with
our computed values. In the case of purely background functions, however, we can
not discriminate between Fry’s and Hamilton’s solutions. In fact at the fourth order
both solutions overlap with our signal, and no meaningful comparison is allowed at
higher orders.

Table 5.4
Values of combinations of the hierarchical

coefficients, from observations and from Fry’s
and Hamilton’s solution of the BBGKY equation.

Correlation order 4th 5th gth
Observations 0.175 4+ 0.015 | 0.675 £ 0.107 | 0.44 +0.12
Fry 0.167 £0.015 | 0.567 +0.081 | 0.70 £ 0.13
Hamilton 0.123 £0.011 [ 0.7874+0.110 | 1.49 + 0.28
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Figure 5.3: The r.m.s halo components of the observed velocity as a function of the optical
radius for our sample of spiral galaxies.

Comparing our higher-order results with BBGKY predictions is particularly
relevant in that the BBGKY equation predicts a hierarchical pattern for higher—order
correlations only in the statistical equilibrium limit [53]. Statistical equilibrium is in
fact expected on the scale of galaxies, where relaxation processes have already taken
place, while it is hardly expected on the much larger scales of galaxy clustering.

We conclude this section by pointing out that the PS90 sample, upon which
our analysis is based, does not involve any obvious bias other than the requirement
that its galaxies should have good—quality photometric and kinematic data, to insure
a reliable determination of both the luminous and the total mass distributions. Any
possible error coming from inaccuracies in the rotation curve data and data analysis
is not included in the quoted formal errors.

5.6 The Cosmic Virial Theorem inside spirals

Instead of deducing the amount of halo matter contained inside the optical radius
by imposing the condition of centrifugal equilibrium (5.7) to each galaxy, we can
alternatively require a stability condition that is valid in statistical sense. To this
purpose, let us observe that, at dynamical equilibrium, rotation velocity supports the
action of the gravitational field. This implies that the ezpected mass excess for the
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halo component inside the radial distance R is
§M, = G V2, (R)R. (5.36)

The corresponding mass fluctuation (in a FRW Universe) associated with this scale,

6MR 2 (Vhalo>2
3

= ., \H,R

Sl (5.37)

is the analogous of eq. (5.1), that holds for the relative motions of galaxy pairs. In eq.
(5.37), R is the optical disk radius, and Vhai is the halo component of the observed
rotation velocity in the plane of the disk, V.

According to eq. (5.37), §Ma/Mz can be obtained by searching our sample of
galaxies for a correlation between Viaio and R. From the data plotted in Figure 5.1a

we derive the correlation
Vhalo 2 R &
-4
(k'm st ) kpc

A= (6.941.4) x 10°%, a = 0.30+0.07. (5.38)

We notice that eq. (5.38) can be read as Viao = 2307130 (r/ M pc)0 15003 fm s,
This expression is consistent, to within less than 1o, with the galaxy-pair result [52].
We can then conclude that the relation between peculiar velocity and scale, originally
found to hold on the Mpc scale, does in fact extend down to the kpc scale. Inserting

eq. (5.38) in eq. (5.37) we finally get

oMy B( R >*7
M. Mpc

B = (43.8+8.9)Q;", 4 = 1.70 £ 0.07, (5.39)

with a slope ~ that is perfectly consistent with that found in §5.2. So we find that,
as a consequence of eq. (5.39), excess in mass does scale with distance like excess in
number, eq. (5.3), all the way down to the scale of faint spiral disks (2 3 hgg kpc),
thus vindicating Peebles’s [155] arguments about the continuity in the clustering
pattern down to galaxy scales. The key realization is that the galazy-pairs technique
applies to scales where the mass fluctuations are anyway largely driven by dark
matter, while our spiral-galazy technique applies to scales where dark matter and
Juminous matter concur to the total mass fluctuations (and associated steady circular
motions) in comparable fashions. Therefore, if any underlying continuity in the
clustering properties of matter on different scales has to be uncovered, dark and
luminous matter should get decoupled on the kpc scale.

Moreover, by comparing eq. (5.39) with eq. (5.17), we get for the galaxy-
background correlation length e

Creg M7 = (5.741.2) Mpc, (5.40)
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that is still consistent with the analogous result found in §5.2 at the optical radius.
Thus, assuming r, 5, ~ 10 Mpc for the galaxy-galaxy correlation length, we find

Q,b6™" = 0.37+£0.13. (5.41)

Such relation gives the relevant cosmological parameters in two particular scenarios.
If we postulate that light is a fair tracer of mass (namely, b = 1) on the scale of
spiral disks, then we estimate the contribution to the mean mass density coming from
matter distributed like galaxies to be Q, = 0.37 £ 0.13. On the other hand, if we
allow for a biased distribution of galaxies in an 2, = 1 cosmology, we obtain a biasing
parameter b = 2.7157.

In order to discriminate in favor of one particular model Universe, a further
step has to be made. To this purpose, we implement a different formulation of the
condition for dynamical stability which involves a three-point function, { ~ Q &2,
and the background-background correlation length, 7,4. This approach, known as
Cosmic Virial Theorem [149,150], requires that motion stability be consistent with
hydrostatic equilibrium, and provides a link between mass distribution and r.m.s.
velocity dispersion for a self-gravitating system of collisionless particles. In the case
of co-planar velocities, as for spiral galaxies, it implies

3 .Z‘/I'y Qo Q .Hg Tz,bb
4y =1)2—=7)4-7)

[This formula can be interpreted as follows: the relative motion of two particles in the
system (i.e., the halo) depends on a two-body pressure term, which involves ¢, and
on a three-body gravitational term with any other third background particle, which
involves (gu,. The quantity M., is a suitable numerical coefficient: Mz = 4.12,
M;i g0 = 3.70.] On the other hand, dynamical equilibrium [see egs. (5.37) and (5.17)]
also implies that

< thalo >r =

R*7. (5.42)

30, H2 7]
< thalo >R = 2 (3 i 70)’gb Rz_’y (5-43)

(in the £z > 1 regime). Equating eqgs. (5.42) and (5.43) yields

20 -2 -NE-]"
M, Q(3—7) e

Tobb =

(5.44)

By inserting in eq. (5.44) the value of the 3-point coeflicients, Q@ = 0.43+0.02,
that we found in §5.4, and taking into account eq. (5.40), it results 7o, = (3.3 &
0.7)Q;'/7. On the other hand, the definition of the biasing parameter (i.e., £,y =
b€ = b? &) implies 7,5y = 7,55 b*/7. Combining the previous two expressions allows
us to add to eq. (5.41) the equation we were looking for in order to close the system,

POt = 1.1t , (5.45)
By solving egs. (5.41) and (5.45) simultaneously, we get
Q,=1.04+0.2, b=2.772%. (5.46)
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Figure 5.4: The r.m.s disk components of the observed velocity as a function of the optical
radius for our sample of spiral galaxies.

Therefore, the internal structure and dynamics of spiral galaxies seem to require a
flat Universe where the distribution of galaxies is biased over that of matter.

So far we have implicitly assumed that dark halos are the only contributors
to the internal structure of spiral galaxies having a physical relevance to the spatial
distribution of galaxies. Our motivations for doing so were both continuity with the
procedure for probing the distribution of matter within galaxy pairs and homogeneity
of the information on matter statistics at small and large scales. However, it is
reasonable to ask what happens when we consider disks rather than halos. If the mass
contribution of luminous disks were the same for all galaxies irrespective of luminosity,
we should expect eq. (5.38) to hold (for the disk component of the rotation velocity)
with a different normalization but with the same slope. Actually, the progression
with luminosity of the shape of rotation curves on scales r< R [175] indicates that the
halo mass contribution rises systematically with decreasing luminosity, Muao/Myior ~
L;°7 [158,160,161], so for the correlation function of disk matter we expect a value of
7 substantially lower than ~ 1.7. Indeed, for our sample it turns out v =1.23+0.09
(see Figure 5.4). This striking difference between the autocorrelations of dark and
luminous matter highlights the fact that different properties of dissipation necessarily
involve different properties of clustering.
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5.7 A brief summary of the results

In this chapter we presented the first direct study on the correlation of (dark) matter
with galaxy sites. The procedure we adopted is based on the properties of dark
galaxy halos deduced from the observed kinematics of rotating disk galaxies. Our
method allowed us to investigate galaxy—background correlations with an accuracy
higher, even for a rather limited sample of galaxies, than for galaxy correlations
analysed through the usual number counts technique applied to large samples. In
fact, computing the density of one halo is effectively analogous to counting all the
objects within a given distance of a galaxy center; in addition, there is no intersection
among the information coming from individual galaxies.

The two-point galazy-background correlation function we obtained is a power
law with same slope as the two-point galazy function. A marginal discrepancy be-
tween the respective clustering lengths might be indicative of bias. If such is the case,
a biasing parameter b ~ (2-3)(), connects galaxy and background distributions.
The range of scales we sampled widely overlaps with the range sampled through
galaxy counts, our data extending to yet smaller scales. We find that at such small
scales {(r) lies on the extrapolation from its known behaviour at larger scales. This
seems to indicate that the fluctuation spectrum has the same slope on scales ranging
from ~ 10hgy Mpc down to ~ 3 hyy kpc, despite the expectation that non-linear
evolution and virialization of primeval structure may have modified the (original)
fluctuation spectrum on galaxy scales.

As for higher—order correlations, a significant point is that the hierarchical
pattern is allowed by observational data up to the sixth order. Suitable combinations
of the hierarchical coeflicients @, , are also obtained.

Moreover, by requiring hydrostatical equilibrium for the halos of our sample
of spiral galaxies with known rotation curves, we find that a flat Universe (2, = 1)
with a corresponding biasing parameter b ~ 2-3 seems to be favored by the internal
kinematics of galaxies. In addition, by requiring dynamical stability also for the
luminous disks, we find a strikingly different correlation function for the luminous
matter, with slope vy ~ 1.2.

We would like to emphasize that obtaining information on the dynamics of
dark matter on galaxy scales depends quite crucially on our capability of decom-
posing rotation curves into their (luminous) disk and (dark) halo components. If,
for example, we assumed that the relative disk and halo mass contributions were
identical for galaxies of all luminosities (i.e., if the halo velocity component were a
constant fraction of the observed rotation velocity), then we would obtain v ~ 1.4.
This, however, would disagree with the expectation, based on continuity arguments
with the galaxy-pairs technique, that £,, o< &s. Therefore, we regard our success in
showing that indeed on the scale of galaxies it is {54 x &, as a strong case in favor of
a systematic variation of the (percentual) dark matter content in galaxies with lumi-
nosity, Mpato/Maisr < L7%7, in agreement with rotation curve results. More generally,
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we can state that, for a stable clustering, the classic measurement of the galaxy two-
point correlation function [151] does imply that the dark-matter contribution to the
internal dynamics of galaxies increases with decreasing galaxy luminosity. Internal
structure and spatial distribution of galaxies seem to be inherently and profoundly
connected.

The content of §5.2 to §5.5 is included in two papers, the first already published in
The Astrophysical Journal [25], the second recently accepted by The Astrophysical
Journal [32]. Moreover, such results are also published in the Proceedings of Moriond
Astrophysics Meeting 1990 [33]. The content of §5.6 constitutes part of a further
paper [178] that will be soon submitted for publication.







Conclusions

In this Thesis we presented a description of various statistical methods for investigat-
ing the large—scale structure of the Universe with particular attention to the study
of the correlation properties of cosmic structures. After reviewing, in Chapter 1,
the observational material concerning the clustering of galaxies and galaxy clusters,
we described, in Chapter 2, the technical framework for the study of the correlation
properties of these distributions. Particular attention has been devoted in introduc-
ing the concept of the n-point correlation function and to describe the path-integral
formalism, relevant to the study of correlation functions.

We introduced, in Chapter 3, the concept of biased theory for the forihation of
cosmic structures and thereafter we presented our original results. Biased models are
particularly interesting because they are able to account in the different correlation
properties that are observed for different classes of objects. In its original formula-
tion a biased distribution of galaxies or clusters arises if these objects are identified
with those peaks of the primordial fluctuation field that exceed a fixed amplitude.
This amounts in selecting fluctuations by means of a sharp threshold (#-threshold
case). This threshold gives zero probability to fluctuations below a critical amplitude
to turn into observable structures and unity probability for a fluctuation above the
threshold level to give rise to an object. We argued that such a picture represents an
oversimplification; the strongly non-linear phenomena occurring during the structure
formation process are such that a sharp cut, operated on the density fluctuation field,
is probably inadequate to relate the distribution of the background matter to that of
galaxies and galaxy systems. In this context if we are able to take into account the
dynamics of galaxy formation, by means of suitable shapes for the threshold function,
the introduction of non-6 thresholds represents the natural solution. Chapter 3 was
devoted to the description of our general model used to express the correlation prop-
erties of the object distribution (in presence of an arbitrary shape for the threshold
function) in terms of those of a generic non-Gaussian background distribution. A re-
markable result that we found is that the n-point correlation function can be written
as a suitable combination of the 2-point functions which looks like a generalization of
the Kirkwood superposition (2.22). Moreover, in the high-threshold approximation,
when objects form from exceptionally high peaks, the effect of the threshold shape
vanish and the 6-bias case in completely recovered.

In Chapter 4 we tested our general biased models versus observational data.
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In particular we considered two specific thresholds, the erfc and the Gaussian ones,
whose shapes are related to non-sphericity in the gravitational collapse process and
to merging between different scale fluctuations. A comparison with observational
data on the multiplicity function of galaxy systems and on the 2-point correlation
function of rich Abell clusters showed the existence of a sensitive dependence on the
shape of the threshold. This represents a clear indication that neglecting the effects
of non-spherical collapse and merging in the formation of cosmic structures can be
very misleading. We found that a good fit to the observed multiplicity function is ob-
tained if non—sphericity in the gravitational collapse is taken into account. Moreover,
introducing the effects of fluctuation merging improve the fit of our models 2-point
correlation function to the Abell clusters. As an additional output, we showed that,
for any choice of the threshold function, the CDM model fails to reproduce the ob-
served very large scale clustering. Indeed, the CDM spectrum predicts a 2-point
function that goes to zero on scales 7 ~ 30 h™* Mpc while data shows no evidence
of anticorrelation up to 7 ~ 60 A~ Mpc. Better results have been obtained with a
scale-free spectrum with spectral index n = —1.2.

In order to make possible a test on the reliability of biased model, we presented
in Chapter 5 a new approach to directly investigate the correlation properties of the
background matter surrounding galaxies. Such an approach is essentially based on
the observation that spiral galaxy rotation curves can be used as tracers of the matter
distribution on galaxy scales, in the same way as galaxy peculiar motions are used
to trace the matter density on larger scales. However, since structures involving
typical scales of galaxy clustering are dynamically dominated by dark matter, a
meaningful comparison between correlation properties of galaxies and background
matter should be done by considering only the contribution of dark (halo) matter
to the observed rotation velocities. Indeed, we applied the Persic & Salucci mass
decomposition method [158,161] to a fair sample of spiral rotation curves and found
that the 2-point correlation function, for the dark matter, has the same slope as
the galaxy function. Any difference in the clustering amplitude is to be ascribed to
the presence of a bias between galaxy and matter distributions. On the contrary,
significant discrepancies in the slope of the 2-point function are found if we consider
the luminous disk component. The application of the Cosmic Virial Theorem to the
clustering pattern of dark matter on galaxy scales suggests a flat Universe (Q, = 1)
with a biasing parameter b ~ 2-3. The extension of this analysis to higher correlation
orders is also possible and shows that the hierarchical expression (2.23) for the n-
point function is satisfied. A quantitative comparison of our deduced values for
the hierarchical coefficients and the predictions of the BBGKY equations shows a
remarkable good agreement.

In our opinion, the results presented in this Thesis open also the possibility for
further investigations. For example, it would be interesting to compare the predic-
tions of biased models with the correlation properties of different samples of galaxy
groups, each characterized by different criteria, such as richness, to identify a phys-
ical group. In fact, different values of the galaxy density contrast used to identify a
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group or cluster is equivalent to different fluctuation threshold levels that give rise
to structures. A quantitative comparison between the increase of the correlation
strength with increasing group richness and the corresponding outputs of the biased
model for higher and higher threshold levels could be a crucial test for the theory.
Also interesting to check is the possibility of reaching the high—threshold regime, in
which the effects of a non—sharp biasing disappear, in correspondence of the richest
cluster distribution.

Important tests for the biased galaxy formation model can also arise from
numerical N-body simulations. Indeed, such an is approach particularly useful to
investigate the structure formation on scales relevant to galaxy clustering, where
highly non-linear evolution of fluctuations renders any analytical approach. In a
very recent paper, that has been not presented here (Valdarnini & Borgani 1990; ref.
[198]), we used a P®M code to follow the non-linear evolution of clustering pattern
for different initial spectra and biasing level. The analysis of the 3- and 4- point
correlation functions shows that they approach the hierarchical pattern (2.23) as we
consider smaller and smaller scales and more evolved configurations (in accordance
with the models of gravitational instability). Another interesting result is that the
effect of introducing a biasing in the background distribution strongly depends on
the shape of the primordial spectrum. In particular, amplification in the correlation
strength occurs only for spectra having sufficient power on large scales, while such
differences are not found for a scale—free spectrum with n = 1 (which has small
amplitude on large scales).

As a concluding remark, we would like also to stress the importance of our
method, presented in Chapter 5, for investigating the small scale clustering of dark
matter. In fact, such a method could probably open a new window in our under-
standing of the connection between background and galaxy distributions, once new
rotation velocity data become available. Especially interesting could be observations
of spirals in different environments and of low-luminosity (i.e., optically small) galax-
les. In fact the investigation of the distribution of matter around galaxies in different
systems (clusters or groups) would test whether differences in the galaxy clustering
pattern, within different environments, reflect similar differences in the clustering
properties of the background matter. We point out that faint galaxies highlight the
smallest observable clumps of matter on galaxy scales and are dynamically dominated
by dark matter. For these reasons low-luminosity galaxies seem to be ideal tools for
probing the distribution of (dark) matter down to scales r ~ 1Ay kpe. In general
it would be interesting to apply our analysis to spirals having different morphology.
In fact, from the analysis of homogeneous samples, substantial differences have been
found between the 2-point correlation function of Sa, Sb and Sc galaxies (see also
§1.2). Finding such differences also in the clustering of dark matter would represent
a clear indication of a deep connection existing between small-scale matter clustering
and large-scale galaxy distribution.







Appendix A

Correlation properties of the

biased field

In this appendix we describe in detail the calculations to deduce the statistical prop-
erties of the biased field, that have been described in Chapter 3. In particular, we
will obtain the expressions (3.9) for the N-point joint probability (see §3.3), (3.53)
for the joint probability between the galaxy and cluster distributions (see §3.6), and
(3.72) for the N-point probability of the ezponential threshold (see §3.8).

A.1 The N-point probability

For a given threshold function f(«), the expression
' N

)7 dofle) (A1)

r=1YVY9R

I(e1,yan) = [ Dle(2)] Ple(2))

for the joint probability will be clearly equivalent to eq. (3.8). This allows us to
make use of eq. (3.11) and to obtain A
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~which, according to the definition (2.58) of partition functional, reads
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In the above expression, the quantity

T(2) = 304 Qnlle — ) (A.4)

play the role af an external source. Let us expand In Z[J}] in functional McLaurin
series, making use also of the definition (2.96) of smoothed correlation functions. This

enable us to obtain the expression
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and take into account the formal relation
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holding for any constant S and function ¢, eq. (A.5) also reads
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Let us recall that the functions wg [) ] are defined according to eq. (3.12). By using

the expression for the Fourier transform of a Gaussian function and performing the
integration over the variables ¢,, eq. (4.8) simplifies into
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Integration over «. will then be possible only after expanding the exponential factor
in eq. (A.9) in order to separate different order derivatives. This requires making re-
course to the clustering expansion technique [138], that has been originally introduced
in real gas statistical thermodynamics. In this context, the multinomial expansion
theorem shall be used, simply stating

n

(yi+y+oty)” = 3

[ni]=1

n!

YT Y (A.10)
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In such expression, the integers [n;] = ny,...,n; fulfill the condition

> = m. (A.11)
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This leads to the expression
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r=1
from which eq. (3.9) can be easily obtained, once the definitions of the coefficients
al (z) are taken into account [see also egs. (3.13) and (3.14)].

m(r

A.2 Joint statistics of galaxy and cluster distribu-
tions

Following the same calculation scheme as in the previous subsection, the galaxy—
cluster joint probability expression (3.51) can be written as

Hﬁg)(a:ua:z) = —/ dal/ daZ/ d¢1/ dp, x
2m VeO R, Vg0 Ry —c0 —co
% (igf)l)ZC(iqu)ly oM@1)+h(¢2) e~ ilenditazds) o Z[J*] ) (A.13)

Here the external source takes the expression

J(2) = ¢1Qn. (|21 — z]) + $2Qn, (22 — z]). (A.14)

The McLaurin functional expansion of [n Z[J*] gives
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where the correlation functions between fields that are smoothed on different scales
read

ortmaingns = [ [ﬁ;dkaRc<1w1—yk;>] [:ijjdyzc;agmwz—yA)] Uty )

(A.16)
By expanding the functions h(¢) in McLaurin senes and after rearranging the terms
of such expansion, we get

Au(0) haldn) = he(0)+ho(0)+ 32 3B (0)8ns + 7 (0)60) "z "“’)!, (a17)

Thus, the substitution of eq. (4.17) in eq. (4.15) permits us to reproduce the same
calculations as in the previous subsection ant to work out the expression (3.53) for
the joint probability between galaxy and cluster distributions.

A.3 Statistics of the exponential threshold

According to the definition (3.8) of N-point joint probability and (3.71) of exponential
biased field, we get

N
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In the above equation, the expression for the external source J; is quite different
from the previous one and reads

N
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However, if we make the replacement
e — G — i, (A.20)
%]

a large part of the calculations given in the previous subsection can be easily repro-
duced. This leads to the expression
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The expansion of h(¢) must be performed from the point iv/oy. Accordingly,

H,(J{z?n(wl, vly) =
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where the quantities Wg}ln] are defined according to eq. (3.73). Here the substitution
a, — o U (A.23)

ought to be performed. Using the multinomial expansion theorem in the form

m(r)
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and the cluster expansion, we finally obtain the expression (3.72) for the N-point
joint probability of the exponential biased field.






Appendix B

Mass decomposition method in
spiral galaxies

This appendix is a brief review of the Persic & Salucci’s method [158,159] of mass
decomposition to split the observed rotation velocities in spiral galaxies into the
contributions of luminous (disk) and dark (halo) matter. We model a spiral galaxy
as a stellar disk embedded in a spherical dark halo. We assume that a) the stellar
surface density, Iy, follows the exponential thin disk law I = Le ®/Ep (R is the
disk length—-scale), and &) in the region of interest, between 2.2 and 3.2 disk length-
scales, the bulge and the HI disk give negligible contributions to the circular velocity
V(R). In this appendix we also assume the relation R,,; = 3.2 Ry to hold exactly.
No density profile is assumed for the halo.

Taking the first moment of the condition for centrifugal equilibrium,
VA(R) = V/(R) + V}(R) (B.1)

[Va(R) and V4(R) are the disk and halo contributions to the circular velocity], we
obtain

dV(R) _ dVy(R) . dVi(R)
The halo and disk masses within a radius R read
Mp(R) = G'VZ(R) R (B.3)
M4(R) = G"lfI;IVJ(R) R, (B.4)

where fr accounts for the disk’s departure from spherical symmetry and is expressed
in terms of the modified Bessel functions I,,(z) and K,.(z) as

fo = [42°(I,(2) Ko(2) - Li(=) Kl(w)]} v (B.5)
For an exponential thin disk [77] it is
dlogVy(R) _ I(z) Ko(z) 4+ @ [I1(z) K,(z) — L(z) Ki(z)] (B.6)
dlogR I(z) K,(z) — Ii(z) Ki(z) 2=R/2Rp .
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By combination of the previous expressions, the disk-to-total mass ratio [with M;(R) =

My(R) + My(R)) is

My(R)  [dlogVu(R) dlogV(R 3T — Iz )] x
M(R) " { diogR ~  dlogR ]X{“’ (2) Kolz) = (=) Fle)

(dlogV(R) L(z) Ko(z) + z[l1(z) Ko(2) — (m)Kl(w)])+

dlogR I(z) Ko(z) — Li(z) K1 (z)
dlogVn(R)  dlogV( )]“ . (B.7)
dlogR dlogR e=R/2Rp
We now compute the mass ratio at R,,. In order to simplify the notation, we also
define Mhalo = Mh(Ropt), Mdisk = Md(ROPt)7 MtOt = Mt(ROPt) - is%i.‘;;i) R and
logVi(R

Vi = —dﬂ—%—l . Then

Maise Vi =V (B.3)

M, Vi + 01V + 0.3

is a function of the (observed) slope V of the rotation curve, and of the (unknown)
slope of the halo velocity field, V). Even though V} is not directly observable in
individual objects, in the case of a sample of galaxies we can estimate its sample—
averaged value, Vj, arguing that for such a value the correlation between luminosity
and disk mass has the smallest scatter. Let us now assume the relationship

log Ly = a + blog Mg, (B.9)
where My, is given by
V-V
is =G 'V¥R,p) ——————— R B.1
Masst (Vi) = GV (Fopr) 1.1V, +0.3 % (B.10)

and Ly, V, Ry and V(R,yt) are direct observational quantities. The parameters a,
b and V}, instead, are obtained by searching a sample of galaxies for a relationship
of the form (B.9) and minimizing the corresponding quantity A? = ¥ (log L, — a —
b log Mi,,.(V4))? with respect to a, b, and V. We find ¥V, = 0.8 &+ 0.1 [158 161],
that inserted in eq. (B.8) yields

Myg 08 — V
M., 01V + 1.1

(B.11)

which coincides with eq. (5.6) in the text. (A suitable halo density distribution is,
e.g., p(R) = po/[1 + (R/a)?] with a ~ 2R, ~ 4 Ry.) Then equation (B.11) allows
the decomposition, from the profile of a rotation curve, of the total mass M, ~
GV Ropt) Rope into its dark [Maark =~ G™ V3(Ropt) Ropt (0.28 + 0.95 V)] and
luminous [Miym =~ G7' V(Ropt) Ropt (0.72 — 0.95 V)] components. The estimated

uncertainty is few percents for Myi/Mio: =~ 0.7, and < 30% for My /Mo ~ 0.2
[159].



Appendix C

The moment method

Starting from the analysis of the PS90 sample of rotation curves of spiral galaxies
(see Chapter 5), in this appendix we work out the values (5.28) of (suitable combina-
tions of) the hierarchical coefficients for correlation functions between galaxies and
background matter, by means of the moment method [see egs. (5.24), (5.25) and
(5.26)]. :

C.1 Analysis of the three-point function.

At the third-order in the correlation analysis, the hierarchical expression (2.23) con-
tains summations over only one tree and 3 total terms. Thus

S = [€01602 + &10612 + E20€21] (C.1)

with obvious meaning of the two-point functions’ indices. Inserting eq. (C.1) into
eq. (5.24) and also taking into account the disconnected terms, it easy to show that

<M?>, = p? /Ravl /R6V2 X
x [1 + 67'1 + 6"2 + 67‘12 + Q (67‘167'2 + €T1€T12 + 67‘257‘12)] ’ (0'2)

where 713 = |r; — r3|. On the other hand,

R R
<M= [T [l e+ b+ 6kl (G3)

By averaging eqs. (C.2) and (C.3) over the k-th bin and taking eq. (5.24) with n = 2,
and including only € terms (in the £ >> 1 regime), we get

<M2 >k Kg
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The quantity K, is

7 3\2 r1 3 1 3 —
I{Z = \'4';) /(; d.’Bl A d 332(:21(312) . (C-5)

The multiple integral in eq. (C.5) can be evaluated numerically and the value it takes

for v = 1.71 is reported in Table C.1. The fit to eq. (C.4) with the observational siz)
values gives '

Q = 0.43 & 0.02. (C.6)

The error in eq. (C.6) corresponds to one formal standard deviation.

C.2 Analysis of the four-point function.

In this case, the hierarchical pattern (2.23) provides summations over two different
trees, corresponding to two different amplitudes R, = @3 and R, = Q32, and 16
total terms. Then:

(()‘;)23 = Ra[f@lfnfzs + .. (12 :1 terms)] +
+ Rb[fmfozfoa + .. (4 Z terms)]. (C.7)

By averaging eq. (5.24) over the k-th bin, for n = 3 we deduce

M3 Ksa Kz> ( Ksbﬂ <<M >k>3
= = oy 2 Ry(1 = : C.8
<<Mk) >k [6 R“(Kf zz) T T8 g 7 (G8)

The constants K3, and K, come from the triple three—dimensional integration in eq.
(5.24). Their full expressions are:

3\° R 3 R 3 R 3 -
I(ga = ('4‘;) /(; d 151/(; d Itg/l; d $3($1ZE12$23)

3\3 R 3 R 3 R 3 _
Kg = (E) /0 d:c1/0 dmg/o d°zs(ziz12213) 77, (C.9)

and their numerical values are reported in Table C.1.

Comparison between the left hand sides of eqs. (5.24), as can be deduced from
the data, and (C.9) allows us to obtain the value of a suitable combination of R, and

R,. We find
R, + 0356 R, = 0.175+ 0.015. (C.10)
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Table C.1
Integrals for higher—-order moments*

n=2: Ky = (&) [} Pzya]” = 1.326
n=3: K, = (f;)z Jy d®zq [ dPzy(my2es)”7 = 4.531
n=4: Kga = (:1%;)3 fol d3:cl fol dsfcz fol dgil!g,(illl:1(312(1323)—‘Y = 8.992
Ky = (5 fy e Jy Pzs [y Pra(mizines) = 9.696

n=>5: K4a = (4—:3'_—)4 fol d3:c1... fol d3$4($1€812$13$14)—7 = 18.410
K4b = (%)4 fol d3m1... f(} d3$4(.’81$12$23$24)—7 = 15.836

K4c = (4%)4 fol d3:c1... fol d3x4(a:1312m13m34)"’7 = 16.762

K;d = (Z%r-)t* fol dsiBl... fol d3$4($1$12$23$34)*7 = 11.358

n=2=6: K5a == (4%)5 f(} d3:c1... fol d3x5(m1m12m13m14m15)”7 = 38.245
K = (%)5 f dPey... fol Prs(z1212T23T24T25) 77 = 30.441

Ksc = (4—3;)5 fol d3a:1... fol dsws(w1$12m13w141}45)~7 = 34.691

K5d = (Z%;)s fol d3aj1... fol d3$5($1$12$13$34$35)~7 = 31.684

D Kse = (£) [y Prre fy Prs(ziziawaazaarss) = 28.883

I{5f = (f_"r‘)s fol daiEl... fol d3$5(€81$12$23$14$45)_7 = 30.723

Ksg = (&)° Js @zi. f Pas(ziziazasesazss)™ = 27.800

Ksh = (;%;)5 fol d?’l!l... fol d3$5($1$12$13{[¢34$45)‘1 - 30358

KS{ = (4—3;)5 fol d3;z:1... fol d3m5(w1m12m23w34w45)”7 = 27.204

! Such values of the integrals correspond to y = 1.71.
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C.3 Analysis of the five-point function.

For n = 5, the hierarchical expression (2.23) gets rather cumbersome. By using the
helpful graph technique (see Figure 2.1), the contributions from the three different
trees and 125 total terms can be written as

(()E.S.)A = Esa [501502603504 + .. ( 5 >< terma>: +
+ Qs.z[fmflzfzsfzc; + .. (60 I/< terms): +

S

+ Qs,s{ﬁm&zfzs{u + .. <60 ,_l terms>: . (C.11)

In the right hand side of eq. (C.11) the first contribution comes from star graphs,
while the last one comes from snake graphs. The middle term takes into account the
presence of one differently rooted tree. In this case too, we substitute eq. (C.11) in
(5.24) and obtain the fourth moment of the mass distribution:

MN\¢ Ky, (Kz Kz Ky K4c>
<(Mk> >k [Q5’1<1+4K{‘)+1 G\t g TR PRt
1{22 Kga I(4d>} (< A/,[ >k>4

— L2 2 =
%R TR I,

4 12Q5,3< (C.12)

The four K4 quantities come from the quadruple volume integration occurring in the
computation of < M* >,. Their full expressions and numerical values are reported in
Table C.1. Following the same pattern as in the previous sub-sections, we compare
eq. (C.12) with observational data. In this case, the combination of the Q@s’s reads

Q5,1 +11.43Qs, + 9.90Q5 5 = 0.675 =+ 0.107. (C.13)

Eq. (C.13) is relevant because it represent one of the very first pieces if information
on fifth-order correlation. Indeed, there is strong evidence for the hierarchical pattern
to hold up to the fifth order, with a ~ 6 ¢ signal.

C.4 Analysis of the six-point function.

The growth of the number of terms to be added in eq. (2.23) leads us to consider, for
n=~06, contributions from six different trees and 1296 total terms. Then, the expression
of the six-point correlation function is

Eés)s = Qe :501502603&4505 + .. ( 6 % terms): +
+ Qs :501512523524525 + ... (120 f terms>- +
+ Qo3 :501512513534535 + ... ( 90 fg] terms>- +
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+ Q6,4[501512§23§24f45 + .. (360 t‘_Ij terms): +
+ Qs [501512523534535 + .. (360 2‘ terms>: +
+ Qe,e[fmflzézafz:;&s + .. (360 S term:;):. (C.14)

Due to the complexity of such expression, the form of the fifth moment of the mass
distribution does not look friendly. In fact

M \3 K, K, Kiq K Ksc)
“ - a4 g it) 3
<(Mk) >k [Q6'1<1+5K{‘) * 0Q6’2<Kf TRt R TOgRs) T

K st) (ng K. K. st)}
—_— 2= —= 4+ 2 2
+ 30Q6,3(Kf,+ R ) 600 (g1 g 2+ )] +
Ki, KyKa, Ka  Ksy Ky, )
2
+ GOQG,S(Kf, + Ie; + i % + e, +

K:K3, Kug Ksi)] << M >k>5

o C.15
+ 120Q6'6( K5 Ki T KS M, ( )

Expressions and numerical values of the Kj coefficients are given in Table C.1.

By fitting the data on central moments to eq. (C.15), we get
Qﬁ,l + 18.06@5,2 + 13-79Q6,3 + 49-50Q6,4 + 47.96@6,5 + 43.59@6,6 =

= 0.44 +£0.12. (C.16)

Similarly to eq. (C.13), eq. (C.16) is important in view of the paucity of data on
sixth-order correlation. In this case again the hierarchical pattern shows up with a
4 o signal. '
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