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PREFACE

Everything is a
lagrangian submanifold

A. Weinstein

The aim of this work is to study some questions related to the intersection theory of
lagrangian submanifolds in a symplectic manifold. This theory originates from a conjecture
of V.I. Arnol’d on the number of fixed points of a symplectic diffeomorphism, but it is now
a vaste subject, related to many other problems (not only in symplectic geometry).

We will focalize our attention to the more ”geometric” aspects of these things, for
example we shall not speak about the variational calculus arising from Arnol’d conjecture.

After recalling some basic facts, we shall study lagrangian submanifolds in a cotangent
bundle and their intersections. A lagrangian submanifold in a cotangent bundle may be
seen as a generalization of the notion of function (on the base of the cotangent bundle);
the corresponding intersection theory may be seen as an extension of Morse-Lyusternik-
Schnierelmann theory from the usual functions to this sort of generalized functions.

The main problem is then to pass from cotangent bundle to more general symplectic
manifolds. We shall do this in the third chapter, in some particular (=local) situations.

In the last chapter we shall enlarge the discussion to a more general context.

We will deal always with the smooth (=C*) category. Function spaces, unless other-
wise stated, will be given with the Whitney C'*°- topology.

Last but not least, we express our gratitude to A. Verjovsky, for stimulating conver-

sations about this subject.




INTRODUCTION:
FROM SYMPLECTIC FIXED POINTS TO LAGRANGIAN INTERSECTIONS

We recall some definitions from symplectic geometry ([Arn-Giv], [Wein 2], [Chal).

A symplectic manifold (M,w) is a manifold M equipped with a closed, non degenerate
2-form w. A diffeomorphism ¢ : M — M is symplectic if it preserves w (¢p*w = w), a vector
field v : M — T'M is symplectic if L,w = 0; equivalently, v is symplectic if 7,w is a closed
1-form. If, moreover, i,w is exact, then v is said to be hamiltonian.

We will use the notations:

Diff,(M)= group of symplectic diffeomorphisms

Vec,(M)= symplectic vector fields

Vecp(M)= hamiltonian vector fields

A symplectic isotopy {¢+}1ef0,1] is a smooth curve in Diff,(M), t — ¢; € Dif fo,(M),
that starts at idas: do = 1dps. Here ?smooth” means that ¢ — #+(z) is a smooth curve on
M, Ve € M. To every symplectic isotopy there is associated its infinitesimal generator,

i.e. the smooth curve of symplectic vector fields {vi}1ep0,1) defined by
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Conversely, from a smooth curve of symplectic vector fields {vt}te[o,l] we can construct

a symplectic isotopy {¢t}te[0,1] by integrating the (non-autonomous) differential equation
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¢ = vy(z) (if the flow is defined up to the time 1). So, if M is compact, we have a 1-1
correspondence between curves in Dif f,,(M), starting at idar, and curves in Vecy,(M).

The symplectic isotopy {¢¢}+e(o,1] is said to be hamiltonian if v, € Vecu(M) Vit € [0,1].
A symplectic diffeomorphism ¢ is called hamiltonian if there exists a hamiltonian isotopy
{#:}ic(o,1) such that ¢1 = ¢ (in other words, ¢ is the time-1-flow of a non-autonomous
hamiltonian vector field).

We will write Dif fzz(M) for the space of hamiltonian diffeomorphisms of M. Clearly
Dif fzr(M) is a subgroup of Dif f,,(M)o (=connected component of Diff,(M) containing

idar), and a theorem of Banyaga ([Banl]) asserts that
Dif frr(M) = [Dif fu(M)o, Dif fu(M)o]

If {vt}sepo,1] is the infinitesimal generator of the symplectic isotopy {@:}te[0,1), then
fol (i5,w)dt is a closed 1-form and the following definition makes sense.

Definition:
({8} = / iywdi] € H(M, R)

is the Calabi class of {¢¢}+eo,1]-
If {4}, {¢:} are two homotopic symplectic isotopies with the same endpoints, then
I({%:}) = I({¢:})- I I({¢:}) = 0, then there exists a hamiltonian isotopy {t:}+e[0,1) such

that 91 = ¢1. If the symplectic form w is exact (this is the case of cotangent bundles) then
I({¢+}) depends only on ¢;.

Arnol’d conjecture

In the middle of the sixties V.I. Arnol’d, starting from the last geometric theorem of
Poincare, stated the following conjecture on fixed points of hamiltonian diffeomorphisms

([Arn1], [Arn2]):



Conjecture 1: let (M,w) be a compact symplectic manifold and let ¢ M — M,
t € [0,1], be a hamiltonian isotopy, then the number of fixed points of ¢; is not less then
the number of critical points of a function on M.

Here ”number” may be understood both geometrically and algebraically (i.e. counting
multiplicities).

As a consequence of this conjecture, we get that #Fiz(¢,) satisfies Lyusternik-
Schnierelmann inequality and, if the fixed points are non degenerate, Morse inequality.
These estimates are sharper then those given by Lefschetz formula, valid for any diffeo-
morphism. In particular, it is conjectured the existence of at least one fixed point, for any
compact symplectic manifold M and any hamiltonian diffeomorphism ¢;.

A situation in which Arnol’d conjecture is trivially true is when {#t}1e[0,1] is generated
by an autonomous hamiltonian vector field v,i.e. {vs}se[o,1) s constantint: if H: M — R
is the hamiltonian of v (1,w = dH), then the critical points of H are fixed points of ¢;.

Using the Calabi class, it is easy to generalize conjecture 1 to symplectic diffeomor-
phisms which are still in Diff,, (M), but not in Diffuy(M):

Conjecture 1”: let (M,w) be a compact symplectic manifold and let ¢ M — M,
t € [0,1], be a symplectic isotopy, then the number of fixed points of ¢; is not less then
the number of zeroes of a closed 1-form on M, whose cohomology class is I({¢:}).

Again, conjecture 1’ is trivial if {d’t}te[o,l] is generated by an autonomous vector field
v: if v is a symplectic vector field and ¢, is its flow, then I ({#¢}) = [1ow] and the zeroes of
the 1-form ¢,w are fixed points of ¢;.

From the point of view of concrete estimates of #Fiz(¢1), conjecture 1’ leads to the
use of Novikov inequality instead of Morse inequality.

Remark: given ¢ € Diff,(M), we can choose different isotopies {¢:}4¢p0,1] such
that ¢; = ¢ and (if H'(M, R) # 0) we can obtain different classes I({¢:}) € HY(M, R); if

we define

D={I({¢:}){dt}ecpoy st 1 =1ddy}C H'(M,R)
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(it is a sugroup), then the set of Calabi classes obtained from ¢ by considering all the
possible isotopies ending at ¢ is of the form v+T', for some v € H*(M, R). Hence conjecture
1’ gives different estimates for the number of fixed points of the same diffeomorphism ¢,

depending on the isotopy choosen.
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This unsatisfactory situation may be bypassed by considering in conjecture 1 or 1’
not merely the fixed points of ¢;, but more preciéely the only contractible fixed points, i.e.
those fixed points z¢ of ¢; such that the (closed) curve t — ¢+(zo),% € [0, 1], is contractible
in M. The number of contractible fixed points depends on {¢:}+¢[o,1], and not only on ¢;.
In fact, the results obtained up to now about Arnol’d conjecture give an estimate of

the number of contractible fixed points.

Givental’ conjecture

Let ¢ € Diff,(M)\ Diff,(M)o, then it is not possible to apply conjecture 1,1’
in order to bound #Fiz(¢); however it seems that also in this case it is possible to say
something about the fixed points of #. Givental’ suggests ([Givl], [Giv2]) that if ¢ is
obtained by deforming with a hamiltonian isotopy some ”special” ¢ € Diff,(M), then
#Fiz(¢) can be bounded below in terms of the topology of Fiz(1). More precisely:

Conjecture 2: let (M,w) be a compact symplectic manifold, let 1 : M — M be a
periodic symplectic diffeomorphism (3* = idps for some k), let N = Fiz(3); let ¢ : M —

M, t € [0,1], be a hamiltonian isotopy, then the number of fixed points of ¢; 0 is not less
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then the number of critical points of a function on N.

Arnol’d conjecture follows from Givental’ conjecture with ¥ = idy. Remark that
Givental’ conjecture is not trivial when {#t}1efo,1) is generated by an autonomous hamil-
tonian vector field. In fact, the proof of conjecture 2 in such a situation, joined with the
theorem of Banyaga that states the simplicity of Dif fi(M) ([Banl]), would imply the
complete proof of conjecture 1.

A small generalization of conjecture 2 is obtained by considering a quasi- periodic
symplectic diffeomorphism instead of a periodic one: 1 : M — M is called quasi-periodic
if it generates a precompact subgroup of Dif f(M). For example, if v € Vec,(M) is
the generator of a S'—action, then the time-T-flow of v, T irrational, is a quasi-periodic
symplectic diffeomorphism.

The case of symplectic non hamiltonian isotopies leads to:

Conjecture 2’ let (M,w) be a compact symplectic manifold, let ¥ : M — M be
a periodic symplectic diffeomorphism, let N = Fiz(); let ¢: : M — M, t € [0,1], be a
symplectic isotopy, then the number of fixed points of ¢; o0 9 is not less then the number
of zeroes of a closed 1-form on N whose cohomology class is i*I({¢:}), i : N — M being
the canonical inclusion.

Remark: let 2z € M b.e a fixed point of ¢; o, then v : ¢ — ¢¢(¢(zo)) defines
a curve on M starting from v(z¢) and ending to zo; on the manifold M(3) ©r M x
[0,1]/(%(=),0) ~ (z,1) the map T : ¢ = (¢:(1(20)),%) defines a closed curve, and if this
closed curve is homotopic to one of the form t + (y,t), v € N fixed, we shall say that v is
¥-contractible. For example, 1dps-contractible = contractible. We shall say also that the
fixed point zg is - contractible. Probably, ¥-contractible fixed points play in conjectures

2, 2’ the same réle as contractible fixed points in conjectures 1, 1°.



Lagrangian intersections

It is useful to translate the above conjectures in the language of lagrangian intersec-
tions.

Recall that if (M,w) is a symplectic manifold, the submanifold L <y M s lagrangian
if dimL = %dimM and i*w = 0.

We denote by M the symplectic manifold obtained from M by reversing the sign of
w; if (My,w:1), (M2,w,) are two symplectic manifolds, we will consider on M, x M5 the
symplectic structure given by 7fw; + Tjws, where mj : My X My — Mj are the projections.

The diagonal A C M x M is then a lagrangian submanifold, and so is the graph G(¢)
of any symplectic diffeomorphism.

If {$:}¢e[0,1) is a hamiltonian (symplectic) isotopy of M, then {id X @i}ig,y is 2
hamiltonian (symplectic) isotopy of M x M; the graph of ¢; is the deformation of A by
{id x ¢:}: G(#) = (id x ¢1)(A); fixed points of ¢1 correspond to intersections between the
two lagrangian submanifolds A and (id X ¢1)(A).

More generally, if 1 : M — M is a symplectic diffeomorphism, then the fixed points of
$10% are in 1-1 correspondence with the intersections between the lagrangian submanifolds

A and (id x ¢1)(G(%)). Observe that non-degenerate fixed points correspond to transverse

intersections.
N 4
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In this way, we are motivated to study the following problem: given Lg,Ly C M

lagrangian submanifolds and ¢; : M — M, t € [0,1], hamiltonian or symplectic isotopy,
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estimate ¢1(Lo) N L; in terms of the topology of Ly N Ly. Clearly, it is necessary to make
some additional hypotheses on Lg, L;.

The submanifolds A, G(¥) C M x M are fixed points of antysymplectic involutions of
MxM: A= Fiz(o0), 00(z,y) = (y,2), G($) = Fiz(o1), o1(z,y) = (¥~ (3),%(z)). The
diffeomorphism ¢ is periodic (quasi-periodic) if and only if o9, o generate in Dif f(M x M)
a finite (precompact) subgroup. This fact leads Givental’ to state the following general
conjecture ([Giv1]).

Conjecture 3: let (M,w) be a symplectic manifold, Ly,L1 C M two lagrangian
submanifolds of fixed points of antisymplectic involutions oy ,01, generating a precompact
subgroup in Diff(M); let ¢, : M — M, t € [0,1], be a hamiltonian isotopy, then the
number of points in ¢1(Lg)N L is not less then the number of critical points of a function
on Lg N L.

As conjectures 1 and 2, also conjecture 3 has a symplectic fiersion.

Firstly, it should be remarked that if ¢, : M — M, t € [0,1], is a symplectic isotopy

and N C M is a submanifold, then

FI({¢e}) = 7 I({id x p4})

where i : N — M, j: N — M x M are the canonical inclusions (4(=) = (i(z),i(z)),Vz €
N). Hence if N = Fiz(%), ¢ periodic symplectic diffeomorphism, then *I({¢:}) (ap-
pearing in conjecture 2) is equal to the restriction of I({id x &+}) to the intersection
ANG(p) (x~N).

Conjecture 3’: let M, Lo, L; be as in conjecture 3 and let ¢; : M — M, tel0,1],
be a symplectic isotopy, then the number of points in #1(Lo) N Ly is not less then the
number of zeroes of a closed 1-form on Lo N Ly, whose cohomology class is 1*I({¢:}),

1:LoNL; - M being the canonical inclusion.



Some results

Arnol’d conjecture was proven by Eliashberg in 1978 in the case M = surface, with a
method which seems not generalizable to higher dimension ([EL]).

In 1983 Conley and Zehnder proved the same conjecture in the case M = T?™, using
a variational approach (a Lyapunov-Schmidt reduction of the hamiltonian action, whose
critical points are the fixed points of the hamiltonian diffeomorphism, followed by an
application of Conley’s theory on isolated invariant sets of flows on locally compact spaces).
The ideas of Conley and Zehnder, joined with those of Chaperon about ”broken geodesics”,
lead to the results of Laudenbach and Sikorav ([Lau-Sik], [Sik1], [Sik2], [Sik3]) about
conjectures 3, 3’ in the case M = cotangent bundle, Ly = L; = null section. As a
corollary, Sikorav extended the result of Conley and Zehnder to the case M = compact
symplectic symmetric manifolds with non-positive curvature ([Sik3]).

In all this works the main step of the proofs is a finite dimensional reduction of
a variational problem, in order to apply Conley theory to estimate critical points of a
function defined on a non-compact manifold but with a nice behaviour at infinity.

But since 1987 Floer developed a suitable Morse-Conley theory for the hamiltonian
action, starting from the fact that the space of bounded trajectories of the gradient of
this functional ”is” a finite dimensional compact manifolds, and avoiding in this way any
reduction. This fact is related to the compactness theorem of [Gro2]. In [Flol], [Flo2] (see
also [Sal]) Floer proves Morse-estimate and cup-lenght-estimate for ¢(L) N L, where ¢ is
a hamiltonian diffeomorphism and L C M is a compact lagrangian submanifold such that
w(M,L) = 0. It should be remarked that there is not the hypothesis on antisymplectic
involutions.

Other results on ¢(L) N L are due to Hofer ([Hofl], [Hof2]), again with a variational
approach. ‘ A

Conjecture 2 is proven in [Giv2] for the case M = surface. In the same paper there
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is a proof of conjecture 3 in the case M = T?™, Ly, L; = affine lagrangian submanifolds,
and M = CP™, Ly = L1 = RP™. |

Other contributions of Arnol’d school can be found in the survey [Arn2].

In the next chapters we shall be concerned with local versions of the above conjectures.
Related results are due to Weinstein ([Wein1], [Wein3]), Laudenbach and Sikorav, Givental’
([Giv1]); for example, if ¢; is small in the C? - topology then conjecture 3 with Ly = L
is a trivial consequence of a classical theorem of Weinstein (corollary: Arnol’d conjecture
is true if ¢ is a hamiltonian diffeomorphism C'- near to the identity).

There are not many results about the non hamiltonian case; we don’t know other then
[Sik3]. In some situations (for example, the local ones) it is easy to pass from hamiltonian

to symplectic results, but in other situations it is not clear how to do this.
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GENERATING FUNCTIONS AND FORMS

Results about intersections between lagrangian submanifolds of a cotangent bundle
can be proven using generating functions or generating forms.

Let ¥ C T*M be the null section; T*M is equipped with the canonical symplectic
structure wps = dApy, Aps = Liouville form; wpr : T*M — M will denote the canonical
projection.

If¢:T*M — T*M is a diffeomorphism C? - near to the identity, then ¢(X) C T* M
is the image of some 1-form 8 : M — T*M, and if ¢ is hamiltonian then £ is exact, § = df.
Hence ¢(X) N X ~ critical points of f, and points of transverse intersection correspond to
Morse critical points.

However, if ¢ is not small in the C?' - topology then #(Z) may be not the image of an
(exact) 1-form and the above arguments fails.

Definition: let L C T*M be a lagrangian submanifold; a generating form for L is a

closed 1-form

a:Mx RN — T*(M x RN) ~T*M x T*RY

such that:

a) « is transverse to T*M x RN (RY is identified with the null section of 7*RY)

b)if a; : M x RY — T*M, a3 : M x RN — T*RY are the components of a along T*M
and T*RY:

L={{eT"M3X € RY : ar(ra(£),)) € BN, €= on(mam(),A)}
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if ais exact, a = dS, then S : M x RY — R will be called generating function for L.
A more general definition of generating functions and forms can be found in [Wein2],
[Gir2], but we will not need such a genera.]ization;

Explicitly, if S is a generating function for L:
oS
L={¢eT"M3A € BY : o= (mu(€),0) =0, &= d(S(-1))(mae(£)}

L is the image of the differentials of S(-,A) in those points (z, ) which are critical along
the fibre {z} x RV,

Example: if L = df(M), then f: M — R is a generating function for L.

If L C T*M has a generating form a € A*(M x R), then there is a 1-1 correspondence
between (Morse) zeroes of a and (transverse) intersections of L with %; this correspondence
is given by the projection from M x RN to ¥ ~ M.

Moreover, let X C M be a submanifold and let Rx C T*M be the conormal bundle:

RX = {f & T*M|1TM(§) & X, 62 0 on TWM(S)X}

Rx is a lagrangian submanifold of T*M (remark that Rx N ¥ ~ X) and we have:

Proposition 1: if L C T*M has a generating form o € A*(M x B¥) and X ¢ M
is a submanifold, then there is a 1-1 correspondence between points in L N Rx and zeroes
of i*a € A'(X x RM),i: X x RN — M x RV being the canonical inclusion; points of
transverse intersection correspond to zeroes of Morse type.

The proof is straightforward. []

The above proposition is not useful if we are not able to give an estimate of the number
of zeroes of 1*a. In general a closed (or exact) 1-form on X x RY can have no zeroes,
unless we impose some growth condition at infinity.

Definition: let M be a manifold, a 1-form a € A*(M x RY) is said to be quadratic
at infinity if « = p*(B) + dS where B € AY(M), p : M x RN — M is the projection,
S : M x RY — Ris a function equal on each fibre {z} x RY and outside a compact set to

a fixed non-degenerate quadratic form.
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Proposition 2([Cha-Zeh], [Sik3]): let M be a compact manifold;
a)if @ € AY(M x RY) is an exact 1-form quadratic at infinity, then the number of zeroes

of a, #Z(a), satisfies the following inequalities:
#Z(a)> CL(M)+1 CL(M) = cup — lenght of M

#2Z(a) 2 r(H.(M, Z)) + 29(H.(M, Z))

if all the zeroes are of Morse type, where r(H.(M, Z)) and q(H.(M, Z)) are the rank and
the torsion of the Z-module Hi.(M, Z).
b) if @ € A} (M x RY) is a closed 1-form quadratic at infinity, @ = p*(8) + dS, with

[B] € H(M,Q), and if all the zeroes Z(a) of « are of Morse type, then #Z(a) satisfy:

#Z(a) 2 r(H.(M, [B]) + 2¢(H.(M, [8]))

here r(H.(M,[B])) and g(H.(M,[B])) are the rank and the torsion of the module H, (M, [3])
defined by Novikov ([Nov], [Sik3]) in his generalization of Morse inequalities. [

Remark 1: the meaning of this proposition is that a closed or exact 1-form on
M x RN | quadratic at infinity, is like a closed or exact 1-form on M from the point of view
of concrete estimates of #7(a).

Remark 2: if in b) 8 is not rational, we can replace  with a sufficiently near B
rational and, by transversality, we obtain the same inequality with 3 instead of § (& near
a=H#Z(a)=#Z(a)).

The property a) was proven in [Cha-Zeh] using Conley ideas in order to avoid the non
compactness of M x RM: the set B C M x RY of bounded trajectories of the gradient
of a function quadratic at infinity is an isolated invariant set and Chaperon and Zehnder
proved (for example) that a connected component By of B satisfies CL(Bg) > CL(M);
the restriction to By of the gradient flow is a flow of gradient-type and hence it has at least
CL(By) + 1 zeroes. This idea is recognizable also in Floer’s work, in a infinite dimensional

context: the hamiltonian action is something like a function quadratic at infinity. It
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is remarkable that in [Cha-Zeh] there is no use of Morse - Lyusternik - Schnierelmann
inequalities.

Property b) was proven in [Sik3] using a compactification of M x RY and an extension
of a to this compactification, thanks to the quadraticity at infinity of « (see the appendix).
If o is exact ([8] = 0) then H.(M,[B]) ~ H.(M,Z) and b) = the second inequality of a).

Corollary: if L C T*M has a generating form a € A*(M x RY) quadratic at infinity
(¢ = p*(B)+dS) and X C M is a closed submanifold, then #(LN Rx) satisfy the following
inequalities:

a) if B is exact:

#(LNRx)>CL(X)+1

b) if B is exact and all intersections are transverse:

#(LN Rx) > r(H.(X, 2)) + 2q(H.(X, Z))

. . . def . . . .
c) if all intersections are transverse and [v] f 7*18], 7 : X — M inclusion:

#(L N RX) 2> "'(H*(Xa ['7])) + QQ(H*(X7 [7]))

Proof:

let i : X x RN — M x RY be the inclusion (i = j x id) and let ¢ : X x RN — X be
the projection, then i*(a) = ¢*(v) + d(S 014) is a closed 1-form quadratic at infinity and
the proof follows from propositions 1 and 2. [J

The main result of this chapter will be the proof that the existence of a generating
form quadratic at infinity is a property invariant under symplectic isotopies, i.e. if ¢; :
T*M — T*M is a symplectic isotopy and L has such a generating form, then so has ¢, (L).

As a consequence, we will obtain estimates of #(¢$1(X)N Rx) in terms of the topology
of X ~¥NRx.
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Existence of generating forms

A necessary and sufficient condition for a lagrangian submanifold to have a generating
form has been recently stated by Giroux ([Girl], [Gir2]). He considers the more general
case of lagrangian immersions ¢ : L — T*M (the image i(L) may have selfintersections);
the definition of generating form is the same as in the case where ¢ is an embedding.

For any symplectic manifold N let A(N) — N be the fibre bundle whose fibre over
z € N is formed by the lagrangian planes of the symplectic vector space T, N. A lagrangian

immersion ¢ : I — T M induces the following sections of the bundle :*A(T*M) — L:

1) the Gauss map:

G(): L — i*A(T*M), =z (Toi)(T,L)

2) the vertical map:
V(E): L - i"A(T* M), =z Ker(Ty)Tn)

If k € N, there is a natural extension i), : L — T*(M x RF), by means of which it is
possible to define two sections G(3), Vi(i): L — i} A(T*(M x RF)). The maps G(3), V(3)
are said to be stably homotopic if for some k G (2), Vi (i) are homotopic.

Theorem 1 ([Gir2]): let L be a compact manifold and let ¢ : L — T*M be a
lagrangian immersion, then L has a generating form if and only if G(z) and V (7) are stably
homotopic. []

A regular homotopy of lagrangian immersions is a smooth deformation of a lagrangian

immersion in the space of lagrangian immersions).
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Corollary: the property to have a generating form is invariant by regular homotopy

of lagrangian immersions . [

-

This corollary was previously found by Laudenbach ([Laull]). It is not true if we

replace ”generating form” by ”generating form quadratic at infinity”.

Remark: an isotopy of lagrangian embeddings is a smooth deformation of a lagrangian
embedding in the space of lagrangian embeddings; such an isotopy may be always induced
by a symplectic isotopy of the ambient space ([Chal]), hence the theorems of the next
section will ensure that the property to have a generating form quadratic at infinity is

invariant by isotopy of lagrangian embeddings.

Existence of generating forms quadratic at infinity
We first consider the exact case.

Theorem 2 ([Sik1]): let M be a compact manifold and let L C T* M be a lagrangian
submanifold with a generating function S : M x RN — R quadratic at infinity; let ¢, :
T*M — T*M, t € [0,1], be a hamiltonian isotopy, then ¢1(L) has a generating function

quadratic at infinity.

The idea of Sikorav’s proof relies on the fact that the hamiltonian action may be

considered, at least formally, as a generating function of a lagrangian submanifold (cfr.
also [Lau-Sik], [Sik2], [Vit]).

In order to clarify this idea, suppose that L = X, so we can choose S = 0. Let
{vi}tef0,1] be the infinitesimal generator of {¢:}+cpo,1) and let {Hi}ieo,1) be the corre-

sponding family of hamiltonians (i,,war = dH;).

On the space

I = {y € C(0,1], T*M)}(0) € T}

we consider the projection p : I' — M, v — mar(y(1)) and the functional S : T' — R given
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by
S(v) = / Par(r(E)F (1) — Helv(2)))d
If 6y € T,T (i.e. &v:[0,1] — T(T*M)), (§7)(t) € Ty T* MVt € [0,1], (67)(0) € To(o)X),

a simple calculation shows:

dS(7)(87) = Am(v(1))((67)(1)) + /0 wa(r(1))((67)(2),7(#) — ve(7(2)))

If 6+ is tangent to the fibre of p throught v ( <= (§v)(1) tangent to the fibre of 7" M

throught (1)), then the first term is zero; in particular:

dS(7)(67) =0 Véy e Ty(p~ (p(7))) = F(t) = v:(v(¥))Vt € [0,1]

If ~ is such a point then v(1) = ¢1(7(0)) € #1(X), and if §y € T,T then dS(v)(67) =
A (Y(D))((67)(1)), i-e. the component along T*M of dS(v) is v(1).

This shows very roughly speaking that S generate ¢1(2).

The problem is then the construction of a finite dimensional reduction of §; this is
done by the method of "broken geodesics”.

A technical difficulty of Sikorav’s proof is due to the nonlinearity of M, or, in others
words, to the fact that I' 2 M is not a vector bundle. We will give a proof of theorem 2
which avoids this difficulty.

In the non exact case, the same trick used in [Sik3] leads to:

Theorem 3 ([Sik1]): let M be a compact manifold and let L C T*M be a lagrangian
submanifold with a generating form o € A*(M x RN) quadratic at infinity; let ¢, : T*M —
T*M, t € [0,1], be a symplectic isotopy, then #1(L) has a generating form & € A*(M x RN)

quadratic at infinity. Moreover, if @ = p*(8) + dS and & = p* (B) + dS, then

6] = [6]+ 5" I({:})

where 7 : M — T* M is the null section.

Remark 1: in theorems 2, 3, we may suppose that L is only a lagrangian immersion.
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Remark 2: theorems 2 and 3 give sufficient conditions for the existence of generating
forms or functions quadratic at infinity; it seems an open problem to find necessary and
sufficient conditions for the existence of such generating functions or forms. A (obvious)
necessary condition is that L intersects every fibre of T*M (because S(g,-) has at least
1 critical point Vg € M). Another one is that L is lagrange-cobordant (see [Arnd]) to a

section of T* M.

Reduction of theorem 3 to theorem 2

If ¢, : T*M — T*M is an isotopy:
S5 Anr — Ao = / (6% Ane)ds ../ 82(Ly Aar)ds =

= / ¢, (14, wnr)ds + exact form
0

and so:

a) ¢ symplectic <= ¢¥*Apr — Apr closed Vi € [0,1], and in this case

I({p:}) = (P10 — ), 77 I({¢e}) = ™ b1 Am]

b) ¢; hamiltonian <= @} Ay — Apr exact Vi € [0,1]
Let a; = j*¢7Ap (a closed 1-form on M), let ¢ : T*M — T*M be the symplectic

isotopy defined by
$:(€) = € — ay(mm(€)) VEeT*M
and let %, : T*M — T*M be the composition ¢; o ¢,.
From gz-S;‘AM = Am — Throy and ¢fAar = Apg + 7ie+ exact form, we obtain:
i An = 6 (Aar + 7wipon) + exact form |
= Ay — a0 + &fvrl*wat + exact form = Ap; + exact form

hence 1y is hamiltonian. In this way, we have decomposed ¢, into the product 1 0 ¢, of a

hamiltonian isotopy and a ”simple” symplectic isotopy (= a translation along the fibres).
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Let p*(8) + dS € AY(M x RV) be the generating form of L. Then ¢ (L) has the
generating form p*(f8 + a;) 4+ dS. Define:

FiT M T M 3E) =€~ (B+ar)(mu(e) VE€T'M

¢ is symplectic and ¢(¢;*(L)) has the generating function S.
Wirite

$(L) = (¢ ogoypiod ™ 0gog; ) (L)
7t def b o;0¢! is again a hamiltonian isotopy, hence by theorem 2 74 (&(&;1 (L)) has
a generating function S : M x RN _, R, quadratic at infinity, and $1(L) = ¢ o

éo gz; 1)(L) has the generating form 7*(8 + a1) + dS, quadratic at infinity; moreover
B+ai] =81+ I({4:}). O

Proof of theorem 2

The main step is a reduction to M = R* (cfr. also the ”Chekanov trick” in [Gir2]). The
non compactness of R* will require some precaution with the supports of diffeomorphisms.

Let N be any manifold and let ¢ : M — N be any embedding; we fix on N any
riemannian metric <, > and on M the metric induced by %, so 7 is an isometric embedding.

The tangent map of 7 induces an embedding
Ti: TM — TN

which maps isometrically T, M into Tj(,yN, Vo € M. On the other hand, the metrics on

M and N induce isomorphisms
f:TM —-T"M, g:TN —T*N

Lemma 1:
oTiof~ 1
T M ey
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is a symplectic embedding.

Proof:
let Ay € AY(TM) defined by

Ar(v)(n) =< v, (ToFar)(n) > Yve TM, VneT,(TM)

where mpr ¢ TM — M is the projection, <,>= scalar product; recalling the explicit

expression of the Liouville form Ay € AY(T*M):

Am(€)(¢) = (f,(TfﬂM)(§)) VE€T*M, V(eTg(T"M)

where mar : T*M — M is the projection and (,) is the duality product, we see easily that

F Q) = Au

and similarly
g*(An) = Ay

A tedious computation shows that
(Ti)*(AN) = Au

hence j*An = fo(T2)*g*ANn = Au and, a fortiori, j*wy = wpr. [

Remark that j(TM) is contained in T*Nli(M).

We want now to extend hamiltonian isotopies and lagrangian submanifolds from T* M
to T*N.

Lemma 2: let ¢, : T*M — T*M, t € [0,1], be a hamiltonian isotopy, then there
exists a hamiltonian isotopy ¥; : T*N — T*N, t € [0,1], such that:
1)joge =107, vt € [0,1]
2) ¢ leaves (T*N)|, ,, invariant Vi € [0,1]
moreover, if V' C N is a compact neighborhood of :(M) we can choose ¥; with support in
(T*N)| -
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Proof:

there is a natural decomposition
(T*N)L-(M) =j(T*M) & Riar

and hence a projection pr: (T*N)li(M) — jJ(T*M); if k : (T*N)Ii(M) — T*N is the injec-
tion, then k*wy = pr*j,wps and this property, joined together a counting of dimensions,
imply:

1) Yo e (T Ny TollT*N)] )" = Talpr ™ (pr(2)))

(L= antiortogonal complement in T*N)

i.e. the fibres of pr are the characteristic leaves of the characteristic foliation of

(T*N)]

(M)’ T(T*M)

T (v

Ifz e j(T*M) then T.(7(T*M))* is transverse to Ty (j(T*M)), because j(T*M) is a

symplectic submanifold of T*N. Moreover:
Ve € j(T"M)  To(f(T"M))* N To((TN)|j0p) = Te(or 7 (=)
and this suffices to ensure the existence of a tubular neighborhood U — j(T*M) such that
II) Vo ej(T"M)  (I7(2)) N(T*N)|;p = (or ' (2)) N T

Let H; : T*M — R, t€[0,1], be the family of hamiltonians of v; = q‘St. Define K :
vu (T*N)Ii(M) — R by:

Hy(57*(pr(z))) if = € (T*N)|

z) = i(M)
Kl=) {Htu-l(uz))) ifeev e
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this is a good definition, thanks to II), and we can extend the family K; to a smooth
family of functions (denoted again by K;) on T*N. Choosing U sufliciently small, we may
suppose that supp K, C (T*N)|,,.

Let {%:}1c[0,1] be the hamiltonian isotopy of T*N generated by {K¢}iefo,: by =
Wi, ty,wny = dK;. The property I) implies wn(z)(wi(z),{) = dK(z)(¢) = 0 Vz €
(T*N)|;apy V¢ € To((T*N) ;1 5p)) " e

wy(z) € To((T*N)] Ve € (T*N)|;

ian)
Similarly, property II) implies
wy(z) € To(7(T*M)) Vz € j(T*M)

and, mofeover, wy(z) = (Javi)(z).
These properties of the infinitesimal generator {w;}4c[o,1) ensure the announced prop-
erties of 1;. The statement on the support of ¥ follows from supp K; C (T*N )IV O
Lemma 3: let L C T*M be a (immersed) lagrangian submanifold with a generating

function quadratic at infinity, then there exists an immersed lagrangian submanifold Lc
T*N such that:
1) L0 (T"N)|pyy = 3(D)
2) L has a generating function quadratic at infinity
moreover, if V C N is a compact neighborhood of i(M) we can choose L suchthat L =Xy
(= null section) outside (T*N)'V.

Proof: |

let S: M x RY — R be the generating function of L and let U N i(M) be a tubular
neighborhood of i(M) such that Vz € i(M) T.(I"*(z)) is ortogonal to Ty (i(M)).

Define §: U x RN — R by

S(z, k) = S(i7*(I(=)), 1)
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and extend § to all N x RN » preserving the quadraticity at infinity (this is possible by
standard differential topology). Choosing U sufficiently small, we can suppose that 5 is
equal to a quadratic form outside V x RV, A transversality argument show that we may
arrange that S is a generating function (quadratic at infinity) of a lagrangian (immersed)

submanifold L C T*N , and the behaviour of S in U ensures that
L0 (TW)] 1y = (2)

The behaviour of 5 outside V x RN ensures that L = 2y outside (T*N)lv. L]

Conversely:

Lemma 4: let L C T*M, L C T*N be immersed lagrangian submanifolds such that
Ln (T*N)|;apy = 3(L);if § : N x RN = Ris a generating function for [ (quadratic at
infinity), then S : M x RN — R defined by

5(2,p) = 5(i(2), p)

is a generating function for L (quadratic at infinity).
Proof:

by definition:
L={¢eT*N3pe RN : %m(&),m =0, &=d(5(,pm))(rn(é))}

i(Ly=Ln (T*N)li(M) implies:

I(L)={{€T"N|3pe RY : g‘g(ﬂN(é),M) =0, £=d(5(,p)(mn(€)), mn(¢) € i(M)}

if £ € j(L) then Alp € L sit. ¢ = J(IV) and the hypotheses of the lemma imply that 7 is
given by d(S(:,u))(mar(n)), where 1 is such that %i—'(ﬂ'N(f),p) =0, ie. %E(WM(?]),[L) =0.

It is now clear that

L={neT*M|3uec RV ; gg(WM(?]),,u) =0, n=d(S(,p)(ma(n))}
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that is, S generates L. [J
From now on we specialize N = RE,

If S: M x RN — R generates L and is quadratic at infinity:

S(z,p) = So(z) + Q(u)  for [lull > Ko

then
def

$(e) 2 ol (e,0) ~ QU + @)
with p : [0,+00) — [0,1] s.t. p(1) =1Vt <1, p(t) =0Vt > 2 and with R; sufficiently big,

is again a generating function for L and moreover

S(zyp) = Q) for [|ull > 2R

Let ¥, : T*RF — T*RF, t € [0,1], I c T*R* be extensions of ¢¢, L as in lemmas 2,3.
The generating function 5. RF x RY — R constructed in the proof of lemma 3 starting

from S has the property:
S(z, 1) = Q(p) outside a compact set.

The submanifold (L) intersects (T*Rk)ti(M) along j(¢+(L)), so, by lemma 4, in order to
prove the theorem it is sufficient to prove that ¢ (L) has a generating function quadratic
at infinity.

We ” compactify” the isotopy {1:}¢e[o,1], i-e. We replace {¥+}1e0,1) by a hamiltonian
isotopy {J’t}te[o,lj with compact support, such that (L) = :(L). This is always possible
by the properties of L, 1 stated in lemmas 2 and 3.

Let (p,q) = (pj)q;)j=1..k be the canonical coordinates on T*RF (Arx = 3, p;dg;,
wge = 3 dpj A dgj)-

If 41 is sufficiently smallin the C 1_ topology then there exists a function F: RFxRF —

R such that:
oF oF
(P,Q) =v1(p,9) = P=P+5§(Q,P), qg= Q+-5;(Q,p)
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F is called generating function of v; and, using a suitable symplectic diffeomorphism
T*RF x T*RF 2 T*R%* it can be understood as a generating function of the lagrangian
submanifold ®(graph 1) (if ¥; is C'- small, then graph ; is C- near to the diagonal
and ®(graph ;) is C*- near to the null section).

If 91 is not C'- small, we can decompose it as a product of small hamiltonian diffeo-
morphisms %;, (j = 1...I) with compact support and with generating function. The proof
of the existence of a generating function quadratic at infinity for (L) (and hence the
proof of theorem 2) will be completed by an iteration of

Lemma 5: let L C T*R* be an immersed lagrangian submanifold with generating
function § : R* x RN — R equal to a quadratic form Q(p) outside a compact set and
let ¥ : T*R* — T*RF* be a hamiltonian diffeomorphism with compact support and with
a generating function F : R* x R* — R; then 1,[:(1-}) has a generating function equal to a
quadratic form Q( ) outside a compact set.

Proof:

using the above coordinates (p,q) on T*R*:
. 85 85
= T* R* N, 22 = =
L={(p,g) eT"R*|3p€ R 3#(%#) 0 r=73, (g, )}

»(L) ={(p,q) € T*R*3(5,9) € L : ¥(5,9) = (p,q)} =
= {(p,q) € T*R*|3(y,5,3) € RN x R* x R*:
a5 _ 8§ OF

] ) . aF,
yﬂ(q,u) =0, p= g‘q‘(%#), p=p+ 94 (¢,p), §=q+ ap.(q,z))}

define T': R* x RN x R* x R* — R by

T(Q;#:fﬂ?) :F(Q7§) +§(Q+"7’P‘) _6'77

then:

oT oF 85
'gq"(q,li,f,ﬂ) = ”B'“q_(%g) + a‘(q + 77’#')

oT 85
_5;(%/1'16777) - _BZ(Q + 777/”’)
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oT oF
-B—g-(q,u,é,n) = gg(q,é) -7

aT a8
-5;]'(‘11/1"6377) - a_q(q +"77/—L) _‘5

and

. | aT
%(L) = {(p,q) € T*R*|3(p,¢,m) € RN x R* x R* : -5;((1,#,6,17) =0,

oT oT oT
5«5—((‘7’”’5’") =0, —a?(q,#,é,n) =0,p= —az(q,u,f,n)}

that is, T is a generating function for (L), with N + 2k parameters.
The compactness of supp v allows to choose F' = 0 outside a compact set.

Let p:[0,+00) — [0,1] such that p(t) =1Vt <1, p(t) = 0Vt > 2 and define

A

?(g,m6m) = oLy (L2 g, + oLy L S0 4 1) - Q) + Q) —

then, choosing appropriatly the constants K;, K2, K3, K4 > 0, we see easily that T is again
a generating function for 7,b(i), and moreover 7' is equal to the non degenerate quadratic
form Q(p) — € - g outside a compact set.

Remark: if {#:}4¢[o,1] is a C'- small hamiltonian isotopy, then there exists a smooth
family of functions F; : R* x R* — R, t € [0,1], such that F} is a generating function
for %;. Decomposing a (big) hamiltonian isotopy into the product of small hamiltonian
isotopies we see that (under the same hypotheses of theorem 2)) there exists a smooth

family of functions {S:};¢[o,1) such that Sy is a generating function for ¢.(L).

A last remark on generating functions

The above proof constructs a generating function for (L) with more parameters then
the generating function for L. However, there is a situation in which it is not necessary to
increase the number of parameters.

Definition ([Arn-Var-Gou)): two lagrangian submanifolds Lo, Ly C T*M are said
to be lagrangian equivalent if there exists a symplectic diffeomorphism ¢ : T*M — T*M

such that:
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1) ¥(Lo) = Ly
2) 1 maps fibres of T*M into fibres.
A symplectic diffeomorphism of T* M preserving the fibration T*M % M may always

be written in the form:

$(&) = (T°9)(&) + Bl ((T*9)(£)))  VEeT™M

where ¢ : M — M is some diffeomorphism, T*¢ : T*M — T*M is its cotangent map
(which is a symplectic diffeomorphism), 8 is a closed 1-form on M.

Proposition: let Ly, L; C T*M be two lagrangian submanifolds and let ¥ : T*M —
T™M be a symplectic diffeomorphism realizing a lagrangian equivalence between Lo, Ly,
P(&) = (T*¢)(¢€) + B(mam((T*$)(€))) V€ € T*M; if g € AV (M x RYN) is a generating

form for Lg, then
de . & *
a1 (¢ x idpn)*(an) + p*(B) € AY(M x RN)

(p: M x RN — M is the projection) is a generating form for L.

The proof is a simple globalization of the analogous local statement contained in
[Arn-Var-Gou]. OO

Observe that [a;1] = (¢ x idgw )*[ap] + [B] and in particular if 8 is exact (e.g. if ¥
is hamiltonian) and Ly has a generating function, then so has L;. Remark also that ag
quadratic at infinity = «; quadratic at infinity.

A lagrangian submanifold I C T*M is stable if every lagrangian submanifold [ C
T*M sufficiently near to L ( with respect to a suitable topology, cfr. [Arn-Var-Gou)) is
lagrangian equivalent to L.

Corollary: if L C T* M is stable and has a generating function (quadratic at infinity),
then ¥(L) has a generating function (quadratic at infinity) with the same number of

parameters, for every ¥ € Dif fy(T* M) sufficiently small. [J

27



DECOMPOSITION OF LAGRANGIAN INTERSECTIONS

The method of generating functions and forms may be used to study lagrangian inter-
sections on any symplectic/ma,m'fold if we are able to translate our problem on a cotangent
bundle.

The main results of this chapter will be the following.

Definition: let M be a manifold and let Ly, L; C M be submanifolds; we shall say
that Lg, L, have clean intersection I = Lo N Ly (or Lo, Ly intersects cleanly along L)if L
is a submanifold of M, L = Ly N Ly, and

Ve e L T.L =T.LoNT,L

Example: the null section and a conormal bundle in a cotangent bundle.

Theorem 1: let Lo, Iy C M be compact lagrangian submanifolds of the symplectic
manifold (M,w) with clean in;cersection L = Lo N Ly, then there exist a neighborhood U
of Ly in M, a neighborhood V of ¥ in T* Ly and a symplectic diffecomorphism 4 : U — V

such that:
a) P(Lo) = &
b)Y(L1NU)=R,NV
/ b
/ e g .
/ { V////'""MU / /\V . B it B /tu,\/
R N /'/ - Z_”

|

/ o

/ e d

/ ) JJ/ (~
N

Mo SO NS
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Corollary: let M,Lg,L:,L as in theorem 1 and let ¢; : M — M, t € [0,1], be a
symplectic isotopy; let 2 : L — M be the inclusion and let v = *I({¢:}) € Hlk(L,R), then:

a) if {#:} is sufficiently small in the C'- topology, then points in ¢1(Lg)N Ly arein 1-1
correspondence with zeroes of a closed 1-form 8 on L s.t. [8] = v; transverse intersections
correspond to Morse zeroes

b) if {d’t} is sufficiently small in the C°- topology, then points in ¢1(Lg) N Ly are in
1-1 correspondence with zeroes of a closed 1-form o = p*(8) + dS on L x RN quadratic at
infinity, s.t. [8] = 7; transverse intersections correspond to Morse zeroes.

Proof:

by theorem 1 and by the smallness of {¢:} we may suppose that M = T*Lo, Ly =
%, Li =Ry

in case a) ¢1(Z) = B(Lg) for some B € Al(Lg) closed, and if jo : Ly — T*Lo,

j1 : L — Ly are the canonical inclusions:

B = I(63)  11B) = Go o in) T({ee}) = 5*I({4:})

the (transverse) intersections between ¢;(X) and Ry, correspond to (Morse) zeroes of § =
jiB
in case b) $1(Z) has a generating form @ = *(8) + dS € A*(Lo x RY) quadratic at

infinity, for some 3 € A'(Lg) closed, and again we have

7181 = (jo 0 72)"I({$e}) = 5" I({$:})

the (transverse) intersections between ¢;(X) and Ry, correspond now to (Morse) zeroes of

the closed 1-form, quadratic at infinity, a = (j1 % idg~ )*(&) = p*(8) +4dS5 € AY(L x RY).O0
Remark 1: proposition 2, chapter 2, gives explicit estimates of ¢1(Lo) N L.
Remark 2: the compactness of Ly and L is not really necessary, it is sufficient the

compactness of L.
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Remark 3: in b) the hypothesis on the C°- smallness of ¢; means that ¢:(Ly)
Vt € [0,1] is contained in the neighborhood U of theorem 1; in some cases, this neighbor-

hood may be "large” and so ¢; may be "big” (cfr [Sik1]).

Related results to the corollary were obtained by Weinstein ([Wein3]).

Proof of theorem 1

The proof of theorem 1 is a simple extension of a classical result of Weinstein about
tubular neighborhoods of lagrangian submanifolds. If Ly = L; theorem 1 is contained in
[Weinl]. The proof relies on the homotopy method (or méthode du chemin) of Weinstein-
Moser ([Weinl], [Arn-Giv], [Grol]). In a first step we shall prove the existence of a dif-
feomorphism which satisfy a) and b) and which is "infinitesimally symplectic”, i.e. its
derivatives at points of Ly are symplectic. Next we shall ”symplectify” this diffeomor-
phism, preserving properties a) and b). In this second step the main ingredient is:

Proposition (generalized Poincaré lemma, [Weinl]): let E 5 L be a vector bundle,
7 : L — E its null section, m; : E — E, t € [0,1], the multiplication by ¢ along the fibres;
if 2 is a closed p-form on a m-invariant neighborhood U of j(L) C E such that j*Q = 0,
then

where
1
w=/ 7y (1, Q)dt
0

is a (p — 1)-form on the same neighborhood U.

Proof:
it is, essentially, Cartan’s homotopy formula: V¢ € (0,1] m; : E — E is a diffeomor-
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phism and the vector field #; is well defined, so (on U):
Q=0-7"7"Q=7{Q - 70 =
1 d 1
=/ —(m; Q)dt =/ 7y Ly, Qdt =
o di 0
1 1
= / 7y dig, Qdt = d/ W:(i;rtﬂ)dt . O
0 0

Remark that Vz € j(L) w(z) =0 (w(z)(§) =0 V¢ € TLE), i.e. w|(Tm));(py = 0; this
is much more then j*w = 0. -
Corollary: if L , M is a submanifold of the manifold M and 0 € A?(M) is closed

and such that

Q=0

then in a neighborhood of I

for some (p — 1)-form w such that

wI(TM)Ij(L) =0. O

We can now start the proof of theorem 1.
Definitions:

A(n) ief space (manifold) of lagrangian subspaces of R*™

Sp(n) def (Lie) group of symplectic linear automorphisms of R2™

if Lo € A(n) is fixed, and N C Lo is a fixed subspace:

AZLo; N) Z {L € Am)|LN Lo = N}

Sp(Lo) < {A € Sp(n)| Az, = 1}.

The structure of A(n) and A(Lg;{0}) is well known ([Arn3)).

Let Mat(k,!) be the space of k x| matrices (on R) and Sym(k) the space of symmetric

k X k matrices.
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Lemma 1: A(Lo; V) is diffeomorphic to Sym(n—k), k = dim N; Sp(Ly) is diffeomor-
phic to Sym(n); Sp(Lo) acts transitively on A(Lg; V), with isotropy groups diffeomorphic
to Sym(k) x Mat(k,n — k).

Proof:

we may choose on R?™ linear symplectic coordinates (g1 ..gn, P1 ..pn) such that, denoting

p=(p1.pk); P = (Prt1--Pn)s ¢ = (01--0k), @ = (ge+1--9n):
Lo={p=0,P=0} N={p=0,P=0,Q=0}
if L € A(Lo; N), then:
LNLy=N = LDON = L*cNt={p=0}

but L = L1, so L is transverse to the plane generated by p and @ and we may express L

as:

L:{pz A-q + B-P
Q= C-¢ + D-P
A, B,C,D = matrices of suitable dimensions
now
NCL = A=0, C=0
L lagrangian = B =0, D € Sym(n—k)

conversely, {p = 0,Q = D - P} defines an element of A(Lg; V) for every symmetric D, so
A(Lo; N) ~ Sym(n — k)
If A€ Sp(Lo), then in the above basis (g, @,p, P) A is expressed by a matrix of the type

(; f), A € Sym(n), and clearly

Sp(Lg) ~ Sym(n) (as Lie groups)

a= (4 4 )» 1 € Sym(k), 4s € Sym(n — K), 45 € Mat(k,n — k), then
2 3 ‘

A{p=0,Q = —4;-P}) ={p=10,Q =0}
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and this complete the proof. [

Remark: the important fact in lemma 1 is the contractibility of spaces in discussion.

Lemma 2: let M, Lo, L1, L as in theorem 1, then there exist a neighborhooid U of Ly
in M, a neighborhood V of % in T*Ly, and a diffeomorphism % : U — V such that:

a) ¥(Lo) = ¥ and here ¥ ~ id

b)¥(LiNU)=R,NV

c) Tpv : To M — To(T* L) is symplectic, Vz € Lg
N.B.= we will identify frequently Ly C M with the null section £ C 7™ L,.

Proof:

define E — Lg as the bundle whose fibre over z € Ly is formed by the linear symplectic
maps from T, M to T,(T*Ly), which map identically T, Ly to T,X; lemma 1 asserts the
contractibility of the fibre, hence the existence of a smooth family of linear symplectic
operators

Ap i ToM — To(T*Lo)  z € Lo

such that

Ale::LO ~1

moreover, lemma 1 again guarantees that we may choose A, such that
A (T.L)=T.RyL Vz el

this is possible because, for every choice of A,, A,(T>L1) is a lagrangian plane of T,,(T™* L)
which intersects T3 along T, L, and so is T, R..

Hence we have a symplectic bundle map
A:TM|L, = T(T* Lo)ls

such that
AITLo ~1d A(TLllL) = (TRL)!L
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Let F; — Lo be a subbundle of M|, transverse to T'Lg, and let F; — X be the
subbundle of T'(T*Ly)|x image of F; by A: (F2), = Az((F1)zVz € Lo. Using exponential
maps from Fy, F, to neighborhoods Uy, V; of Ly, X, we may construct a diffeomorphism

¥y : Uy — Vi such that
P1(z) =2z and To9p1 = A, Yz € Ly

(11 is simply the composition of 4 : F; — F; with the exponential maps). In particular,
P(Lo) = X and ¥1(L, N Uy) is tangent to Ry, along L.

i T Z:ﬁ%(’_ﬂ)

AL el e L A A

Let now v, : V; — V3 be a diffeomorphism of neighborhoods of X such that
Yoz =1id, Tep2=1 Vz € &

and

a1 (L1 NUL)N Vo) =Ry N V3

then the composition ¥ = %3 0 1, defined from a suitable U to a suitable V, satisfies
trivially a), b) and satisfies c) because Yz € Ly Tpyp = Totp1 = A,. []

Let us define on V the symplectic form @ = +,w: @ is equal to the canonical sym-
plectic form wr, of T* Ly on T(T*Lg)|x, thanks to ¢). Moreover, Ry, NV is a lagrangian
submanifold also for @, because R, NV =4(L; NU) and L; is lagrangian for w.

Lemma 3: let wy,w; be symplectic forms on a neighborhood of ¥ C T Ly such that:

i) wg = wy on T(T*Ly)|x

ii) Ry, is lagrangian both for wy and w;
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then there exists a diffeomorphism ¢ : U — V (neighborhoods of ) such that:
a) *w1 = wo
b)#(X) =2, dlz=id
¢)d(RLNU)=RNV.
Proof:
we look for a family of diffeomorphisms ¢,, s € [0,1], such that

Prws = wo

where

ws = wg + s(w1 — wy)

so ¢; will satisfy a) (we omit the domains of definitions of ¢, and other objects, it is

understood that we work on neighborhoods of X))

a derivation shows that Ly w,+ %%—’- =0, i.e.
diq;sw., = wg —w;
(wo —w1) is a closed 2-form which vanishes on T'S, and by the generalized Poincaré lemma:

1
wy — Wy = d/ (P4, (Wo — w1))dt
0

so we look for a family of vector fields v, such that

def

1
1o, Ws =/ my (1, (wo — w1))dt = B
0

For every s € [0,1] w, is a symplectic form (thanks to i)), so v, exists and is unique;

moreover § — v, is smooth;
ﬂ|T(T'Lo)IE =0 = v,(m) =0Vze X, Vs e[0,1]
Let z € Rp, and ¢ € T: Ry, then my(my(z)), (Tem:)(€) € Try(a)Re Vi € [0,1], hence

(3 ik, (wo — w1))(2)(§) = (wo — wi)(m(2)) (e (me(2)), (Teme)(§)) =0 V€ [0,1]
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by the lagrangianity of Ry, with respect to wy and w;; this means that
wy(z)(€,vs(z)) =B(z)(€) =0 Vse0,1], Vz € Ry V¢ € TRy,
and the lagrangianity of Ry with respect to every w, implies that
vs(z) € TR R Vz € R, Vs € [0,1]

Finally, let ¢, be the flow of v, (%|u=o¢,+u = v, 0 ¢, ), then the above properties of v,
guarantee that ¢, satisfy a), b), c); ¢; is defined on a sufficiently small neighborhood of &
because v, =0 on X. [J

The proof of theorem 1 is now achieved by a composition of lemmas 2 and 3. []

A remark on degenerate lagrangian intersections

Let Lg,L; C M be lagrangian submanifolds and let £ € Ly N L; be a point of non-
transverse intersection; k = dim (TpLo) N (T2 L1) > 0.

The Darboux - Weinstein theorem ([Arn-Giv], [Weinl]) and linear symplectic geome-
try show that there exist symplectic coordinates (p, ¢) on a neighborhood U of z, centered

at z, such that

LoNnU ={p =0}

LiNU tangent to {p; =0, =1..k, ¢ =0,l=k+1l.n}atz=0
consequently, for a suitable function S with vanishing derivatives at 0 up to order 2:

as as .
LinU = {Pj = "‘"(Qlek,Pk-l—lnPn), qr = "'—“(QI"qk)pk+1"pn)a i=1.kl=k+ ln}
9g; opi
We want to show that we may choose (p, ¢) in such a way that, moreover, S is independent
on pi, I = k + 1..n. This is equivalent to say that L; N U is contained in {¢ = 0, [ =
k 4 1..n}, hence it is sufficient to prove that there exists a symplectic diffeomorphism

¥ : (V,0) = (V,0), V,V neighborhoods of 0 in R?™, such that Ty = 1 and:
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1) ¢ preserves {p = 0}

2) ¢ maps A = {q = —_-gfl—(ql..qk,pk.,.l..pn),l =k +1.n} into B = {¢ = 0,] =
k+1..n}.

Define Ao = AN {p =0}, By = BN {p = 0}; clearly, there exists a diffeomorphism
of the g-plane {p = 0} tangent to id at 0 and sending Ay to By, and its cotangent map
is a symplectic diffeomorphism of T*R"® ~ R?*" tangent to id at 0, preserving {p = 0},
sending A to some submanifold ¢ such that C' N {p =0} = B,.

Remark that C is coisotropic (Vz € C : T,C+ C T:C) and ToC = Ty B, but in general
T:C # T.B for z € By, z # 0; in any case,

T.0NT{p=0} =T.B, =T:BNT,{p=0} Vz € By

ie. T,C and T,B are both transverse to T.{p = 0}, with the same intersection. An
argument of linear symplectic algebra similar to that used in theorem 1 allows us to
construct a diffeomorphism near 0 € R2™ and tangent to id at 0, which is the identity
on {p = 0}, maps C to a submanifold D s. t. T.D = T;B Yz € By, and is symplectic
along {p = 0}. This diffeomorphism maps the characteristic foliation F of C' (given by
integrals of the integrable distribution 7C't ¢ T'C ) to some foliation G of D, whose leaves

are tangent along By to the leaves of the characteristic foliation H of B. B

37



$ 40}
Now it is easy to construct a diffeomorphism, tangent to id along {p = 0} and mapping
D to B, G to H.

Collecting this facts, we ensure the existence of a diffeomorphism
1 2 (U1,0) = (01,0)

U1, U; C R?™, with the following properties:

1) $a({p = 0}) = {p = 0} (ear 0)

2) 1(A) = B (near 0)

3) 71 is tangent to id at 0

4) 1, is symplectic along {p = 0}
As in theorem 1, we must ”symplectify” ;.

Let &@ = t1,w, then @ is a symplectic form equal to w on TR*™|(p=0} by 4) and
moreover:

5) B is coisotropic both for w and @

6) the characteristic foliation of B with respect to w and @ is the same.
As in lemma 3, theorem 1, we may construct a diffeomorphism 3, which sends @ to w and
which preserves {p = 0} and B. The definition of the vector fields {v.} that generate ¥,
is as in lemma 3, the only difference is that we must verify that v, are tangent to B. This
follows from properties 5), 6) and from the fact that m (m4(p.q) = (tp,q)) maps B into

itself preserving its characteristic foliation (hence T'm; preserves TB and TB):
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if z € B and ¢ € T, B+, then

wi(z)(vi(2),€) = /0 (w = @)(me(2)) (e (o)), (Tome)(€))dt = O

because 7y (mi(z)) € Ty, () B, (Tomi)(€) € Tr,(2)B™, so vy(z) € T B (remark: the charac-
teristic foliation of B is the same w.r. to all wt).

The composition 9 o 1, gives finally the announced result:

Theorem 2: let Ly,L; C M be lagrangian submanifolds and let z € Lo N Li be a
point of non transverse intersection, k = dim T,,Lo N T.L;. Then there exist symplectic

coordinates (p, g) centered at z such that, locally:

Lo={p=0}

8S .
Ly ={p; = é—‘;(ql..qk), J=L1k q=0I=k+1.n}
j

for some S : R* — R with vanishing derivatives at 0 up to order 2. [
This theorem is probably not very useful; it is stated here because its proof may clarify
some specific features of the homotopy method in symplectic geometry that, perhaps, are

not evident in the proof of theorem 1. See, for example, the 16le of characteristic foliations.

Fixed manifolds of symplectic diffeomorphisms

Theorem 1 and its corollary may be useful to study the decomposition of a manifold
of fixed points of a symplectic diffeomorphism.

Definition: a diffeomorphism ¢ : M — M of a manifold M is said to be a Bott
diffeomorphism if its graph G(4) C M x M has clean intersection with the diagonal A.

The definition is given in analogy with the case of functions: a Bott function is a
function f: M — R such that df (M) C T*M has clean intersection with the null section
%. A Bott critical manifold is a critical manifold L such that f is Bott near L.

If ¢ : M — M is a Bott symplectic diffeomorphism, then G(¢) C M x M is a
lagrangian submanifold that intersects cleanly A along {(z,y) € M x M|z = y € N},

N = Fiz(¢) C M. The arguments given in chapter 1 and the corollary to theorem 1 give:
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Proposition: let ¢ : M — M be a Bott symplectic diffeomorphism, with N = Fiz(%)
compact; if ¢, : M — M, t€[0,1], is a symplectic isotopy and if ¥ = j*I({$:}) €
HY(N,R), j: N — M canonical inclusion:

a) {¢:} C*-small => Fiz(¢10%)isin 1-1 correspondence with zeroes of a closed 1-form
6 € AY(N), st [B] =7

b) {¢:} C°-small = Fiz(¢;0)isin 1-1 correspondence with zeroes of a closed 1-form
p*(8) + dS € A'(N x RN) quadratic at infinity, s.t. [8] =~

Proof:

recall that if i : N — M x M is the inclusion (i = (j,7)):

i*I({id x ¢¢}) = 5" I({¢})

and apply the corollary to Ly = G(¢), L1 = A (LoNLy1 = i(N)), idx ¢y : Mx M — M x MO

A particular class of Bott symplectic diffeomorphisms appears as flows of vector fields
v € Vecy,(M).

Let v € Vecy,(M) and let ¢ =time-1-flow. Suppose that ¢ is a Bott diffeomorphism
and that a compact connected component N of Fiz(¢) is formed by non trivial closed
orbits of v (i.e. N does not contain zeroes of v). Let 7 € Vec, (M) C%near to v and
such that v — %is hamiltonian, then ¢ =time-1-flow of ¥ is C'- near to ¢ and the above
proposition tell us that F' iz($) is, near N, in 1-1 correspondence with critical points of a
function f on N. Fixed points of ¢ are closed orbits (with period 1) of ¥ and the hypotheses
on N imply that these closed orbits are not trivial near N; as a consequence, the fixed
points of ¢ near N are not isolated, but are "organized” in circles. The same is true for
the critical points of f.

Suppose that the perturbation v — ¥ is "generic”, then f will be a function with &
critical circles transversally non degenerate (= transversally of Morse type), i.e. a Bott

function with k critical circles. A lower bound for k is given by Morse-Bott theory:
1 .
k> E{sum of Betti numbers of N}
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Remark: Morse critical points correspond to non degenerate fixed points, Bott critical

manifolds to transversally non degenerate fixed manifolds.

On a theorem of Moser

Let N C M be a coisotropic submanifold (TN D TN 1) and let F be its characteristic
foliation. Theorem 1 has as a simple corollary the following theorem of Moser ([Mos],
[Ban2]).

Theorem 3: if N is compact and if ¥ : M — M is a hamiltonian diffeomorphism
sufficiently C'-small, then #{z € N|#(z) € F, = leaf throught z} is not less then the
number of critical points of a function on N.

Remark 1: we leave to the reader the C%-small and the symplectic versions of this
theorem.

Remark 2: if N = M then F, = {2z} Vz € N and the theorem estimetes #Fiz();
if N is lagrangian then F, = N Vz € N and the theorem. estimates #3(N) N N.

Proof:

define

L:{(z,y)EMXM]zENandyEfz}
\I!:(id,¢):MXM~+MxM

then

{z € N|{p(z) € F,} ~ ¥(A)N L

moreover A N L ~ N and the intersection is clean; in order to prove the theorem, it
is sufficient to verify that I is lagrangian (this is not precise, because L may be not a
submanifold, but only an immersed manifold; however' it is clear how bypass this little
problem).

Let (z,y) € L andlet 7 : U — jg’__ be the projection, where U is a domain of a foliated
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chart of N containing = and y, then
Tzl =

= {(&,1) € T(a,y(M x M) ~ T, M x T,M|¢ € T.N, n € TyN, (Tom)(§) + (Tym)(n) = 0} -

neTy

L,
[
j/vr

() (@)

Z

¢ N o
TA=TE) | /()“

(€,7) € T(q,,y)L‘L means:

—w(2)(6,§) +w(y)(m,7) =0 V(1) € T(z,y) L

in particular:

w(z)(é,€)=0 VEe Tgc.i’-',-c

w(y)(m,7) =0 VnelyF:

= EeT,N,7eT,N
if wg is the projection of w on —g— (w is projectable because it is constant along the

leaves, cfr. [Wein2]), then

—won(m(@)(Tem)(€), (Tem)(E)) + wr(x(@)(Tym) ), (L)) =0 ¥(&m) € Ta D
wr(r(@))(Tam)(), (Tem)(E) + (T,m)(@) =0 VEE€ TN

and the symplecticity of wg ([Wein2]) implies:

(Tam)(€) + (Tym)(7) = 0

hence (¢,7) € T(z,) L) i-e. Tzl = Tzl L V(z,y) € L and L is lagrangian. L
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OTHER INTERSECTION PROBLEMS

The above results show a certain rigidity in moving lagrangian submanifolds with
symplectic isotopies. This rigidity appears as a global phenomenon, because locally sym-
plectic diffeomorphisms acts very freely, at least on submanifolds of positive codimension
([Grol], [Ben)); it is a rigidity very different from that appearing in riemannian geometry
or complex geometry.

It is natural to ask if such a rigidity manifests also on other classes of submanifolds,
and in particular on submanifolds of dimension strictly less than the half-dimension of the
ambient symplectic manifold.

Laudenbach has proved the following nice result, which states that on submanifolds
of small dimension symplectic isotopies acts with many flezibility, from the C'° point of
view.

Theorem 1 ([Lau2)): let (M?",w) be a symplectic manifold and let N C M be a
compact submanifold of dimension < n; let ¢; : M — M , t € [0,1], be a (differentiable)
isotopy and let U C M be a neighborhood of ¢;(N), then there exists a hamiltonian
isotopy % : M — M, ¢ € [0,1], such that vi(N)CU. [

In order to clarify this theorem we consider the following construction.

Let Ly C M be an isotropic (TLy D TLy) compact submanifold, dim Ly = k < n. Let
E — Lg be the subbundle of T} |z, defined by E, = %ﬁ%; E, has a natural symplectic
(algebraic) form, and E is a symplectic vector bundle.

On E @ T*L, we may introduce a symplectic form @, given by the ”sum” of the
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symplectic form on T*Lg and the symplectic forms on the fibres on E (this requires the
choice of a connection on E). Weinstein ([Wein2]) proved that a neighborhood of Lo in M
is symplectically diffeomorphic to a neighborhood of the null section Y of E® T*Ly.

Let now L; C M be a coisotropic (T'Li- C T'L;) compact submanifold of M, dim L, =

2n — k. If L = Ly N Ly, we suppose:

TZL = TzLo n Tle VQ: € L
T,L =T, Ly NT.L Vz €L
The second condition is equivalent to

T.L*t =T,Lo +T:L1 Vz €L

and from T,L C T, Lo we deduce T;,,L{)L C TeLo +T5L1.

There is a natural decomposition
T.M=E,®F. Vz¢& Lo

where F; is also (as E.) a symplectic vector space, naturally isomorphic to Tz Lo @ T3 Lo;
the symplectic form w(z) on T M is the direct sum of the symplectic forms on E, and F3;
from TzL(,L C T,Lo + T, L, it follows that

T:L1=E. ® R Vz €L

where R, C F, is lagrangian because T>L; is coisotropic and dim R, = %dim F,.
On the other hand, under the same decomposition T,M = E. ® T.Lo®T: Lo, = € Lo,

we have also

T,Lo = {0} ® T Lo ® {0}
T.L ={0}®T.L®{0} ifzel

the hypothesis of clean intersection implies T L ® {0} = R. N (To Lo ®{0},ie. R, C Fzis

a lagrangian plane that intersects the lagrangian plane T,Lo ® {0} C F, along T-L & {0}.
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The linear symplectic algebra of chapter 3 shows that there exists a smooth field of

linear symplectic operators

L>z— A,:F, - F,

such that Az]TzLoe{g} =1, 4;(R.) =T, L® S, (z € L), where S, C T*Lg is the

annihilator of T, L; hence the linear operators

104::E,0F, - E,®F,

are the identity on T, L, and map 1L, to E, @ T, L & S,, for z € L.

These calculations ensure the existence of a diffeomorphism from a neighborhood U/

of Eo in M to a neighborhood V of ¥ in E @ T*Lg such that:
1) ¥ maps Ly to 3, and here is the identity (X ~ L)
2) ¥ maps Ly NU to (E@® Ry) NV, where

E®RL Y {(e,2) € E®T*L |z € Ry}

3) Vz € Ly T,% is symplectic.

L,
R VEQRL
x //‘L——; E
|
e =

The homotopy method allows to obtain:

Theorem 2: let Ly, L; be compact submanifold of the symplectic manifold (M, w)
such that:

1) Ly is isotropic, dim Ly = k

2) Ly is coisotropic, dim L; = 2n — k
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3) L = Ly N Ly is a clean intersection and
T,L =T, Ly NT. L7 Vzel

then there exists a symplectic diffeomorphism ¢ : U —V, U = neighborhood of Lg in M,
V = neighborhood of T in E @ T* Ly, such that:

a) ¥(Lo) =2

b)y(LiNU)=(E®R)NV. ]

This normal form theorem may be used to study the decomposition of Lo N L1 under
symplectic isotopies.

Suppose that ¢ : E®T*Lo — E @ T* Lo is a symplectic diffeomorphism, then ¢(X)N
(E @ Ry) is in 1-1 correspondence with 7(¢(Z)) N Ri, where m: E@® T*Lo — T*Lg is the
projection. But now m(¢(X)) is not a lagrangian submanifold of T* Ly, and we can not
deduce some estimates of Morse-type or of cup-lenght-type on 7($(2)) N Rr.

More specifically, suppose that E @ T Lo =~ Rt x T*Ly (R = n— k), and let Ly =
7(4(X)) such that its projection on X = null section of T* Ly is everywhere non singular,
so Ly = B(Lo) for some 1-form 8 € A'(Lo) and m($(X)) N Ry, = zeroes of the pull-back of
B on L.

A simple calculation gives d3 = f*(wo), where wp = Z?=1 dz; A dy; is the canonical
symplectic form on R2* and f : Ly — R*" is some map. If h is sufficiently big, then
every 1-form on Lg is of this type. Conversely, if 8 € AY(Lg) is of the type f*(wo), then
L, %/ B(Ly) is the projection of some isotropic submanifold I C R** x T*Lo (I is the
image of the embedding Lo (Z20) peh T*Ly), which is, moreover, isotopic to % in the

space of isotropic submanifolds.
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T,

- STl
// R

py
,
2

Consequently, I = #(X) for some symplectic ¢, and we have:

B(Lo) = m(4(%)), B € Al(Ls), ¢ symplectic
< df = f*(wy), for some f : L, — R2"
Similarly, if v = dz — Z;;l yjdz; is the standard contact form on R2A+1.
B(Lo) = n(4(X)), B € A'(Ly), ¢ hamiltonian
< dff = g*(70), for some g : L, — R2"*!
In conclusion, if A is sufficiently big (with respect to k = dim L) then the image of every
I-form on Ly is of the type m(#(X)) with ¢ symplectic or hamiltonian, and there is no

hope to obtain interesting estimates on $(Z) N (R** x Rr). The theorem of Laudenbach

suggest that this remains true VA > 1.

Generic decomposition of clean intersections

Let M™ be a manifold and let Lk, Lf’"k C M be two submanifolds with compact clean
intersection L' = Ly N L; = Ly N Li. Let ¢y : M — M, t € [0,1], be an isotopy and let
v =g € Vec(M) be its infinitesimal generator at ¢ = 0: v = A

The vector field v defines, after restriction and projection, a section w of £ — I,

where
_ (TM)|
 (TLo)lz + (TLy);

observe that the dimension of the fibre of E is equal to the dimension of L.
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Proposition: if w : L — E is transversal to the null section T of E, then Je > 0 with
the following property:

there exist smooth curves v; : [0,¢) — Lo, j = 1..r;such that

1) v;(0) = z; € L Vj = l..r, where z;..z, are the zeroes of w

2) ¢4(7;(t)) € Ly Vj = 1..r and Vt € [0,¢)

3) Vt € [0,€) ¢+(Lo) is transversal to L and ¢4(Lo) N L1 = Uj— {#:(7i (1))}

in particular #[¢¢(Lo) N L1] is not less then the absolute value of the Euler-Poincaré

characteristic of F.

Proof:
let N — Lo be the normal bundle of Lo in M, with respect to some metric, and define

A= (TL)|c N Np (a vector bundle over L)

B = a complementary of A in N|g

so (TM)|g is decomposed as
(TM)|p =(TL)lL®AS B

(TLo)|r ® A= (TLo)|r ®(TL1)|z, and we may identify F and B.
There exists a diffeomorphism 9 from a neighborhood U of L in M to a neighborhood
V of Lin N (L C Lo, Lo ~ null section of V) such that:

1) p(LeNU)=LoNV

2) (L1 NT)= ANV
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(¥ "push” Ly on A, which is its linearization along L).
For ¢ small, ¥(¢:(Lo) NTU) = B:(Lo) NV, where B : L, — N is a suitable section; if
z € L then By(z) = (a:(=),b4(z)), where ay : I — A, by : L — B (recall that N|p = A® B).
For ¢ small, ¢¢(Lo) N L1 C U and %(¢s(Lo) N L;) = B:(Lo) N ANV =~ zeroes of b,.

From v = -}tlt:oqbt and from w = projection of v|;, on E ~ B, it follows that w(z) =
&li=0bi(z), Vz € L (identifing B, ~ ToB.), i.e.

bt = tw + O(tz)

pd
()
e Qg j
- v e é_ y <X>= “g{.. (X\
Nx ?E(ﬂ .7 dt k=0 y ‘«{-t/ﬁ;zfc
O oo
£lx ¢ -
‘1 ! xe| "‘Lo I" ) o”’h(*) T t:ofyt(x)
! %)
Z/AQX)
jﬁ(x)
B,

The transversality hypothesis on w ensures the existence of the curves y1...7.. [

The above proposition has some consequence on the decomposition of clean intersec-
tion in symplectic geometry.

Lemma: let (M?",w) be a symplectic manifold, let L¥, L?"~* = M be submanifolds
with compact clean intersection L' such that

T.L=T,LyNT, L} VzelL

let v € Vecy(M) and let w be the corresponding section of (ITM)|x

(TLo)|z+(TL)[1? then the
(transversal) zeroes of w are the (Morse) critical points of H|;, H = hamiltonian of v.
Proof:

w(z) =0 < v(z) € T,Lo + ToLy <= v(z) L (TuLo + ToL1)t =

w(z)(v(z), ) =0VE € T, L = dH(z)({) =0V¢ e T, L. O
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Corollary: under the same hypotheses, if ¢, : M — M, t € [0,1], is an isotopy such
that %Imoqﬁ — » and w is transversal to the null section, then for ¢ sufficiently small
¢4(Lo) N Ly is in 1-1 correspondence with the critical points of a Morse function on L. (]

This means that if {¢;} is a "generic” hamiltonian isotopy, then #[d+(Lo) N L] satisfy
Morse inequality on L, for small ¢. It should be remarked that this does not means that
if ¢ is a small ”generic” hamiltonian diffeomorphism then #[#(Lo) N L] satisfy Morse
inequality, unless we do some additional hypotheses on Lo and Lj.

A pictorial way to understand this phenomenon is the following: let
B = {¢ € Dif fu(M)|$(Lo) F L1 and #[¢(Lo) N L1] = SB(L)} Uid

(SB(L) = sum of Betti numbers of L),
then for every neighborhood U of id
in Diffg(M) BNU is not generic in U,

but Tj4B is generic in  Vecu(M).
Example (cfr. also the discussion on isotropic-coisotropic intersections):
M=T$'xR2=S'xRx R}, w=d0Adp+dzAdy
Lo = §' x {0} x {(0,0)} (isotropic)
L; = §* x {0} x R? (coisotropic)
Lo C Ly, Ly is a characteristic leaf of Ly; L =14

let ¢; be generated by the hamiltonian H(6,p,z,y) = T cos 6 + ysin 6, then

be(Lo) = {(6, %tz, _tsin8,¢cos 8)|0 € 51}
d)t(LO)le 20 fOI‘t;éO
fix t as small as you want, then (by transversality, because #4(Lo) £ Ly!) there exists

a neighborhood U of ¢; s.t. ¥ € U = ¥(Lo) N L1 = 0, so there exists an open set
V C Diffu(M) st. ¥ € V = %(Lo)N L1 = 0 and d € V. On the other hand,

v = (ycosd — zsin 9);3% —sin 9;9—‘9; + cos 05%, so w ~ p-component of v|z, is identically zero
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and non transversal to the null section. The section by = tw + O(t?) that appears in the
proof of the proposition is identificable with the 1-form 142d8 € A(S87), whose image is
equal to the projection of #+(Lo) on T*S* x {0}. Because the transversality condition does
not holds, there is no relation between the zeroes of w (=~ Ly) and the zeroes of b, for ¢

small (= 0).

51



APPENDIX: MORSE-NOVIKOV INEQUALITIES
AND QUADRATICITY AT INFINITY

We sketch here, following Sikorav, the proof that a closed 1-form on M x RN quadratic
at infinity satisfy the same Morse-Novikov inequality as a closed 1-form on M.

Firstly, we recall Novikov’s theory.

Let 3 be a closed 1-form on the compact manifold M, such that [3] € H'(M, Z) (i.e.
the periods of B are integers). The class [§] defines a map F' from m1 (M) to m (S*) ~ Z,

by integration on C?! representatives of elements of m(M). In other words,

B = f*(df)
for some f: M — S! and
F =m(f) : m(M) - m(S")
This map F defines a cyclic covering M 5 M in the following way: w1(M) acts on the
universal covering M of M ("deck transformation”), so we have also an action of the

normal subgroup Ker F C (M) on M:
Ker Fx M — M
(7,8) -2
M is the quozient of M by this action; = : M — M is induced by the obvious projection
M — M. The tipical fibre of this covering is %(;ﬂﬁFl
For example, if B is exact ( <= f is homotopic to zero <= F(y) =0Vy € m(M))
then M = M. Otherwise, if 8 is not exact then %g% ~ 7 and M is a Z-covering of M

(remark that it is not compact).
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The pull-back 8 = ™(8) € AI(M) is now an exact form, because closed paths I' on
M projects by 7 to those closed paths I' on M such that fr B = 0; M is the "minimal”
covering of M such that the pull-back of B is exact.
Define _
J1 .
A=ZH N ={>" ajt?, a; € Z,j0,j1 € Z}

J=Jjo

A=2W =4 Y o), aezien

j=—o0

The above map F : 7,(M) — Z defines actions of 71(M) on A and A: v € m (M) acts
as a multiplication by ("), This defines systems of local coefficients Ay, Ap and allows
to define the homology groups H.(M,Ar) (a A-module) and H, (M, Ar) (a A—module).
These modules enjoy the following properties:

a) Ho(M,AF) > H.(M, Z) (as A-modules)

b) Ho(M,Ap) ~ H,(M,Ap) @4 A ~ H.(M,Z)®, A.

For instance, if [8] = 0 then Ap = A, Ar = A, H.(M,Ap) ~ H.(M,Z)®z A and
H.(M,Ap) ~ H,(M,Z) 0 A. |

Define:

H.(M,[8]) = H.(M, Ar)

r(H«(M,[B])) = rank (overA) of H.(M,Ap)
9(H.(M,[B])) = torsion (overA) of H.(M,Ar)
Remark that if [8] € H'(M, Q) then A[g] € H(M, Z) for some A # 0 and the zeroes of 8
coincide with the zeroes of Af. We may define H.(M,[8]) = H.(M,\8]), this is a good
definition (it does not depend on ) #0).

Theorem([Nov]): suppose that 3 is a rational closed 1-form of Morse-type on the

compact manifold M, then the number of its zeroes, #Z(f3), satisfies the inequality:

#Z(:B) _>_ T(H*(Ma [:6])) + 29(3*(M> [,B])) f D
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Let now a € A} (M x RY) closed and quadratic at infinity, o = p*(8) + dS, where p is
the projection on M. Modulo a suspension by a quadratic form we may suppose that the
signature at infinity of S is (2k,2k) for some k € N (this suspension does not change the
number of zeroes).

Lemma: Yk € N there exist a compact manifold V4% of dimension 4k and a map
pap : V¥ — S such that:

1) pax has only one critical point, of Morse type and with index 2k

2) psr induces an isomorphism between r1 (V) and m(S*) =~ 2. [

Remark that p},(d8) defines a rational closed 1-form on V%*, of Morse type.

We want to construct a closed 1-form on the compact manifold M x V**, whose zeroes
are in bijection with the zeroes of a.

By definition, there exists R > 0 s.t.
Sz,2)=Q() IAI>R

where Q()\) is a quadratic form of signature (2k,2k). For every A sufficiently big there
exists a diffeomorphism x4 : Us — D2r, Ua = neighborhood in V%k of the critical point
of psk, D2 = disk of radius 2R in R** such that

Apar = Qo xa + constant

where Par : Us — R is a lifting of pax|u, : Usa — S! (Morse lemma).
Let pr : M x V¥ — M, pp : M x V** — V4k be the projections, and define on

M x V** the closed 1-form
(1d X x4) on M x Uy
Qu =
pi(8) + Api(p(d6))  on M x (V**\Ua)

this is a good definition, because on M x (Ua \ X2 (Dr)) we have Ap3(p},(d)) = (id x

x4)*(dQ) = (id x x4)*(dS). We may think Q4 as an exact deformation on M x Uy of
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the closed 1-form p3(8) + Ap3(pi(dh)), in the same sense as « is an exact deformation of
p"(8) 4+ dQ on M x Dp.

Observe that 14 has no zeroes on M X (ViR U4), because pyp, has no critical points
outside U4, so the (Morse) zeroes of {4 are in 1-1 correspondence, via (id X x 4), with the
(Morse) zeroes of o. Remark that o (or ) is rational if and only if Q4 is rational, and

moreover

(4] = pI1B] + p3[Apir(d9)]

In order to estimate the number of zeroes of 24 we may use Novikov’s theory, and we
must evaluate the module H. (M x V**, [©4]).
Proposition: let o = p*(B) +dS € A*(M x R**) closed, rational and quadratic at

infinity, let Q4 defined as above, then
H.(M x V**,[Q4]) ~ H.(M,[8])

as A-modules.

The proof follows from Kunneth formula and from the fact that, if F7 : m(M) — Z,
By :m(V*) - 2, Fy : my(M x V**) — Z are the maps induced by AlB]l € HY (M, 7),
AlAp;,(d9)] € HY(V*k 7), AlQ4] € HY(M x V4%, Z), then

A

Ap, = [\Fl ® AF;,

(of course, it is essential also the property 2) of py in the lemma). []

Corollary: if « is of Morse-type, the numbers of its zeroes, #7(a), satisfies:

#2(a) 2 r(H. (M, [B])) + 2q(H.(M, [8])) | [
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