

ISAS - INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

Some considerations about conjugate and focal points

Thesis submitted for the degree of "Magister Philosophiæ"

CANDIDATE

SUPERVISOR

Egone Pertotti

Prof. Giovanni Vidossich

October 1993

SISSA - SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

TRIESTE Strada Costiera 11 TRIESTE

Scuola Internazionale Superiore di Studi Avanzati International School for Advanced Studies

Some considerations about conjugate and focal points

Thesis submitted for the degree of "Magister Philosophiæ"

CANDIDATE

SUPERVISOR

Egone Pertotti

Prof. Giovanni Vidossich

October 1993

Basic results

In this section we introduce the basic concepts. Let A(t) be a continuous $n \times n$ matrix and let a, b be real numbers. Consider the system:

$$(*) x'' + A(t)x = 0.$$

We say that b is a conjugate point of a with respect to the system (*) if the following problem

$$x'' + A(t)x = 0, \quad x(a) = 0, \quad x(b) = 0$$

has a non trivial solution.

We say that b is a focal point of a with respect to the system (*) if b > a and the following problem

$$y'' + A(t)y = 0$$
, $y'(a) = 0$, $y(b) = 0$

has a non trivial solution.

Suppose now that a < b.

We say that the system (*) is disconjugate on [a, b] if the interval (a, b] contains no conjugate points of a with respect to (*).

We say that the system (*) is disfocal on [a,b] if the interval (a,b] contains no focal points of a with respect to (*).

The following theorems are well known:

Theorem A. Let $A(t) = \{a_{i,j}(t)\}$, $B(t) = \{b_{i,j}(t)\}$ be continuous $n \times n$ matrices; let a, b be real numbers, a < b and suppose that $0 \le a_{i,j}(t) \le b_{i,j}(t)$ for every $t \in [a, b]$ and $1 \le i, j \le n$. Consider the systems:

$$(1) x'' + A(t)x = 0$$

$$(2) y'' + B(t)y = 0$$

and suppose further that b is a conjugate point of a with respect to (1). Then there exists a real number c such that $a < c \le b$ and c is a conjugate point of a with respect to (2).

For the proof see [S].

Theorem B. Let $A(t) = \{a_{i,j}(t)\}$, $B(t) = \{b_{i,j}(t)\}$ be continuous $n \times n$ matrices; let a, b be real numbers, a < b and suppose that $0 \le a_{i,j}(t) \le b_{i,j}(t)$ for every $t \in [a, b]$ and $1 \le i, j \le n$. Consider the systems:

$$(1) x'' + A(t)x = 0$$

$$(2) y'' + B(t)y = 0$$

and suppose further that b is a focal point of a with respect to (1). Then there exists a real number c such that $a < c \le b$ and c is a focal point of a with respect to (2).

For the proof see [S].

Let E be a Banach space with the cone K. The linear operator B is called positive if it transforms the cone K into itself.

Theorem C. Let B be a linear positive operator; assume that λ_0 is the least upper bound of the absolute magnitudes of the characteristic values of the operator B; consider the following equation in E:

$$(*) \lambda \phi = B(\phi) + F$$

where $\lambda \in R$ and $F \in E$. If $F \in K$ and $\lambda > \lambda_0$, then the equation (*) has a unique solution in the cone K.

For the proof see [K].

Let $A = \{a_{i,j}\}$ be a $n \times n$ matrix and let H_A be the homomorphism generated by A in the usual way: for $x = Col(x_1 \dots x_n)$ let $H_A x = Col(y_1 \dots y_n)$ where $y_i = \sum_{j=1}^n a_{i,j} x_j$. With an abuse of notation we identify the matrix A with the homomorphism H_A and write A in place of H_A . So, for example, the expression as KerA, RangeA, the restriction of A etc. mean $KerH_A$, $RangeH_A$, the restriction of H_A etc.

§1: A Theorem about the set of conjugate points

In this section we study some properties of conjugate points in the nonselfadjoint case. Let A(t) be a continuous $n \times n$ matrix, $a \in R$; consider the following matrix Cauchy's problems:

(a)
$$X'' + A(t)X = 0_n, \quad X(a) = 0_n, \quad X'(a) = I_n$$

(b)
$$Y'' + A(t)Y = I_n, \quad Y(a) = I_n, \quad Y'(a) = 0_n.$$

Let $W_0(A, a, t)$ be, by definition, the solution of (a) and $W_1(A, a, t)$ be the solution of (b). We know that b is a conjugate point of a with respect to the system x'' + A(t)x = 0 if and only if $det W_0(A, a, b) = 0$. If this is the case then the multiplicity of b is, by definition, equal to $dim Ker W_0(A, a, b)$.

Proposition. For the matrices just introduced the following equations hold:

(1)
$$W_0^{\prime T}(A^T, a, t)W_0(A, a, t) - W_0^T(A^T, a, t)W_0^{\prime}(A, a, t) = 0_n$$

(2)
$$W_1^T(A^T, a, t)W_0'(A, a, t) - W_1'^T(A^T, a, t)W_0(A, a, t) = I_n$$

(3)
$$W_0(A, a, t)W_1^T(A^T, a, t) - W_1(A, a, t)W_0^T(A^T, a, t) = 0_n$$

(4)
$$W_0'(A, a, t)W_1^T(A^T, a, t) - W_1'(A, a, t)W_0^T(A^T, a, t) = I_n$$

Proof. For simplicity we suppress the variable a and write, for example, $W_0(A, t)$ in place of $W_0(A, a, t)$. Consider the following matrix Cauchy's problem:

$$(m)$$
 $Z'=\left(egin{array}{cc} 0_n & I_n \ -A(t) & 0_n \end{array}
ight)Z, \quad Z(a)=I_{2n}$

and let W(t) be the solution of (m). An easy calculation shows that

$$W(t) = \left(egin{array}{ccc} W_1(A,t) & W_0(A,t) \ W_1'(A,t) & W_0'(A,t) \end{array}
ight).$$

Consider now the following matrix Cauchy's problem:

$$(q) Y' = -Y \begin{pmatrix} 0_n & I_n \\ -A(t) & 0_n \end{pmatrix}, \quad Y(a) = I_{2n}$$

and let V(t) be the solution of (q). An easy calculation shows that

$$V(t) = \begin{pmatrix} W_0'^T(A^T, t) & -W_0^T(A^T, t) \\ -W_1'^T(A^T, t) & W_1^T(A^T, t) \end{pmatrix}.$$

It is easy to prove that the derivative of V(t)W(t) is zero everywhere $(\text{Proof}:(V(t)W(t))' = V'(t)W(t) + V(t)W'(t) = -V(t)\begin{pmatrix} 0_n & I_n \\ -A(t) & 0_n \end{pmatrix}W(t) + V(t)\begin{pmatrix} 0_n & I_n \\ -A(t) & 0_n \end{pmatrix}W(t) = 0_n).$ From this it follows that $V(t)W(t) \equiv V(a)W(a) = I_{2n}$ and so $W(t)V(t) \equiv I_{2n}$. Therefore

$$\begin{pmatrix} W_0'^T(A^T,t) & -W_0^T(A^T,t) \\ -W_1'^T(A^T,t) & W_1^T(A^T,t) \end{pmatrix} \begin{pmatrix} W_1(A,t) & W_0(A,t) \\ W_1'(A,t) & W_0'(A,t) \end{pmatrix} = I_{2n}$$

leads us to the first two equation and

$$\begin{pmatrix} W_1(A,t) & W_0(A,t) \\ W_1'(A,t) & W_0'(A,t) \end{pmatrix} \begin{pmatrix} W_0'^T(A^T,t) & -W_0^T(A^T,t) \\ -W_1'^T(A^T,t) & W_1^T(A^T,t) \end{pmatrix} = I_{2n}$$

leads us to the last two equations.

Theorem 1. Let A(t) be a continuous $n \times n$ matrix. Consider the systems:

$$(a) x'' + A(t)x = 0$$

$$(b) y'' + A^T(t)y = 0.$$

Let a be a real number. Then b is a conjugate point of a with respect to (a) if and only if b is a conjugate point of a with respect to (b). Moreover both multiplicities coincide.

Proof. It is sufficient to prove that for every $t \in R$ we have that

$$dim Ker W_o(A, a, t) = dim Ker W_0(A^T, a, t).$$

We shall first prove the following equality:

$$(*) \hspace{1cm} W_0'(A,a,t)KerW_0(A,a,t)=KerW_0^T(A^T,a,t) \hspace{3mm} orall t\in R.$$

Let $h \in W_0'(A,a,t)KerW_0(A,a,t)$. Then there exists $\eta \in KerW_0(A,a,t)$ such that $h = W_0'(A,a,t)\eta$. If we multiply equation (1) of the Proposition from the right by η then we obtain that $W_0^T(A^T,a,t)h = 0$ because $W_0(A,a,t)\eta = 0$ by hypothesis. From this it follows that $h \in KerW_0^T(A^T,a,t)$. Let $k \in KerW_0^T(A^T,a,t)$. If we multiply equation (4) of the Proposition from the right by k then we obtain that $k = W_0'(A,a,t)W_1^T(A^T,a,t)k$ because $W_0^T(A^T,a,t)k = 0$ by hypothesis. We must check that $W_1^T(A^T,a,t)k \in KerW_0(A,a,t)$. By hypothesis $k \in KerW_0^T(A^T,a,t)$ and so, if we multiply equation (3) of the Proposition

from the right by k we obtain that $W_0(A, a, t)W_1^T(A^T, a, t)k = 0$. The equality (*) is therefore proved.

Next we shall prove that the restriction of $W_0'(A,a,t)$ on $KerW_0(A,a,t)$ is injective. Let $\eta_1, \eta_2 \in KerW_0(A,a,t)$ and suppose $W_0'(A,a,t)\eta_1 = W_0'(A,a,t)\eta_2$. From this it follows that

$$\eta_1 - \eta_2 \in KerW_0'(A,a,t)$$

and, obviously, $\eta_1 - \eta_2 \in KerW_0(A, a, t)$. Now, if we multiply equation (2) of the Proposition from the right by $\eta_1 - \eta_2$ then we obtain that $0 = \eta_1 - \eta_2$ and so $\eta_1 = \eta_2$.

From this it follows that

$$dimW_0'(A,a,t)KerW_0(A,a,t) = dimKerW_0(A,a,t)$$

and so, from (*) it follows that

$$dimKerW_0(A,a,t) = dimKerW_0^T(A^T,a,t) = dimKerW_0(A^T,a,t).$$

Theorem 2. Let A(t) be a continuous $n \times n$ matrix. Consider the system:

$$(1) x'' + A(t)x = 0.$$

Let a be a real number. Put, by definition, C_a = the set of conjugate points of a with respect to (1) that have multiplicity strictly greater than n/2. Then C_a is discrete.

Proof. We note, first of all, that C_a is closed in virtue of the lower-semicontinuity of the function $t \longrightarrow RankW_0(A,a,t)$. Suppose, by contradiction, that b is an accumulation point of C_a : there exists a sequence (s_i) in C_a such that $\lim_{i\to\infty} s_i = b$. W.L.G. we may assume that $dim KerW_0(A,a,s_i) = m > n/2$ for every $i = 1,2,3,\ldots$, where m is a constant. Put, by definition, $K_i = KerW_0(A,a,s_i)$ and $L_i = KerW_0(A^T,a,s_i)$. From the proof of Theorem 1 we know that

$$W_0'(A, a, s_i)K_i = KerW_0^T(A^T, a, s_i)$$

and the restriction of $W_0'(A, a, s_i)$ on K_i is injective for $i = 1, 2, 3, \ldots$ If we replace A with A^T in the previous formula then we obtain that

$$W_0'(A^T, a, s_i)L_i = KerW_0^T(A, a, s_i)$$

and the restriction of $W'_0(A^T, a, s_i)$ on L_i is injective for $i = 1, 2, 3, \ldots$ From Theorem 1 $dimL_i = dimK_i = m$ and so $dimW'_0(A^T, a, s_i)L_i = dimW'_0(A, a, s_i)K_i = m$. By hypothesis m > n/2. So

$$(W_0'(A^T, a, s_i)L_i) \cap (W_0'(A, a, s_i)K_i) \neq \{0\}$$

for $i=1,2,3,\ldots$ For every i we can therefore select from this intersection an element ρ_i with norm equal to 1. Now, (ρ_i) is a sequence in the unit sphere of R^n , we can therefore find a convergent subsequence (ρ_{i_r}) . Put $\rho=\lim_{r\to\infty}\rho_{i_r}$. Obviously $\|\rho\|=1$. From the definition of ρ_i there exists $\eta_i\in K_i$ and $\eta_i^*\in L_i$ such that $\rho_i=W_0'(A,a,s_i)\eta_i$ and $\rho_i=W_0'(A^T,a,s_i)\eta_i^*$. We may assume that the sequences (η_{i_r}) and $(\eta_{i_r}^*)$ are convergent. Infact: to see, for example, that the sequence (η_i) is bounded we proceed as follows: put R_i = the restriction of $W_0'(A,a,s_i)$ on K_i . We know that R_i is injective and so $\eta_i=R_i^{-1}\rho_i$. From this it follows that $\|\eta_i\|\leq \|R_i\|^{-1}$. Therefore it is sufficient to show that there exists an $\epsilon>0$ such that $\|R_i\|>\epsilon$ for every i. Assume, by contradiction, that there exist $k_i\in K_i$, $\|k_i\|=1$ and $\lim_{i\to\infty}\|R_ik_i\|=0$. W.L.G. we may assume that $\lim_{i\to\infty}k_i=k$. Then $W_0'(A,a,b)k=\lim_{i\to\infty}W_0'(A,a,s_i)k_i=\lim_{i\to\infty}R_ik_i=0$ and $W_0(A,a,b)k=\lim_{i\to\infty}W_0(A,a,s_i)k_i=0$. So $\|k\|=1$, $k\in KerW_0'(A,a,b)$ and $k\in KerW_0(A,a,b)$. But this is impossible.

Put $\eta = \lim_{r \to \infty} \eta_{i_r}$, $\eta^* = \lim_{r \to \infty} \eta_{i_r}^*$. From

$$W_0(A, a, s_{i_r})\eta_{i_r} = 0 \quad \forall r \in N$$

and

$$W_0(A^T,a,s_{i_r})\eta_{i_r}^*=0 \quad orall r\in N$$

it follows that

$$W_0(A,a,b)\eta=0$$

and

$$W_0(A^T, a, b)\eta^* = 0.$$

So $\eta \in KerW_0(A, a, b)$ and $\eta^* \in KerW_0(A^T, a, b)$. From

$$W_0'(A,a,s_{i_r})\eta_{i_r}=
ho_{i_r} \quad \forall r \in N$$

and

$$W_0'(A^T, a, s_{i_r})\eta_{i_r}^* = \rho_{i_r} \quad \forall r \in N$$

it follows that

$$\rho = W_0'(A,a,b)\eta$$

and

$$\rho = W_0'(A^T,a,b)\eta^*.$$

From $\eta^* \in KerW_0(A^T, a, b)$ and from

$$W_0'(A^T, a, b) Ker W_0(A^T, a, b) = Ker W_0^T(A, a, b)$$

it follows, from (ii), that $\rho \in KerW_0^T(A,a,b)$ and so $\rho \in (RangeW_0(A,a,b))^{\perp}$. Now, $\langle \rho, W_0(A,a,s_{i_r})\eta_{i_r} \rangle = 0$ and $\langle \rho, W_0(A,a,b)\eta_{i_r} \rangle = 0$ because $\rho \in (RangeW_0(A,a,b))^{\perp}$. Put, for

$$c=\min\{s_{i_r},b\}\leq t\leq \max\{s_{i_r},b\}=d,$$

$$F_r(t) = \langle \rho, W_0(A, a, t) \eta_{i_r} \rangle.$$

Then $F_r(t)$ is a real valued, differentiable function, defined on the interval [c,d] and such that $F_r(c) = F_r(d) = 0$. From Rolle's Theorem there exists $c \leq t_r \leq d$ such that $F'_r(t_r) = 0$ i.e. $\langle \rho, W'_0(A, a, t_r) \eta_{i_r} \rangle = 0$. Obviously, $\lim_{i \to \infty} t_i = b$ and so, passing to the limit in the last equation, we obtain that $\langle \rho, W'_0(A, a, b) \eta \rangle = 0$. From (i) we have that $\langle \rho, \rho \rangle = 0$ and so $\rho = 0$. But this contradicts the fact that $||\rho|| = 1$.

§2: Existence of positive solution in the disconjugate case

In this section we prove the following theorem:

Theorem 1. Let $A(t) = \{a_{i,j}(t)\}$ be a continuous $n \times n$ matrix and let $f(t) = Col(f_1(t), \ldots, f_n(t))$ be a continuous function defined on R with values in R^n . Consider the system:

$$(1) x'' + A(t)x = f(t).$$

Let a, b be real numbers, a < b. Suppose that the system

$$(2) y'' + A(t)y = 0$$

is disconjugate on [a,b]; suppose further that $a_{i,j}(t) \geq 0$ for $t \in [a,b]$, $1 \leq i,j \leq n$ and $f_i(t) \leq 0$ for $t \in [a,b]$, $1 \leq i \leq n$. Then there exists an unique solution $z(t) = Col(z_1(t),\ldots,z_n(t))$ of (1) such that z(a) = z(b) = 0 and moreover $z_i(t) \geq 0$ for $t \in [a,b]$ and $1 \leq i \leq n$.

Proof. Let A[a,b] be the usual space of admissible function: $A[a,b] = \{f : [a,b] \longrightarrow \mathbb{R}^n | f \text{ is absolutely continuous, } f(a) = f(b) = 0 \text{ and } ||f'|| \in L^2[a,b] \}.$ Let

$$G(s,t) = \left\{ egin{array}{ll} rac{(b-t)(s-a)}{b-a} & for & a \leq s \leq t \leq b \ rac{(b-s)(t-a)}{b-a} & for & a \leq t \leq s \leq b \end{array}
ight.$$

be the usual Green's function. Define on A[a,b] the following operator: for $\phi(t) \in A[a,b]$ put

$$B(\phi)(t) = \int_a^b G(s,t) A(s) \phi(s) ds.$$

We know that B is a linear, continuous and compact operator that transforms the space A[a,b] into itself; moreover, x(t) is a solution of

$$x'' + A(t)x = 0, \quad x(a) = x(b) = 0$$

if and only if x(t) is a fixed point of B. From the hypothesis of the Theorem it follows that B is a positive operator with respect to the cone of all functions $x(t) \in A[a,b]$ with non negative components. Let C(B) be the set of characteristic values of the operator B. We know that $0 \in C(B)$ and so C(B) is not empty.

Claim $\sup C(B) < 1$.

Infact: suppose first that there exists $r \in C(B)$ such that $r \geq 1$. There exists a non trivial $\phi \in A[a,b]$ such that

$$r\phi=B(\phi)=\int_a^b G(s,t)A(s)\phi(s)ds$$

and so

$$\phi = \int_a^b G(s,t)r^{-1}A(s)\phi(s)ds.$$

Put $b_{i,j}(t) = r^{-1}a_{i,j}(t)$, $B(t) = \{b_{i,j}(t)\}$. The equation (*) shows that ϕ is a non trivial solution of the following problem:

$$y'' + B(t)y = 0$$
, $y(a) = y(b) = 0$.

From $r \geq 1$ it follows that $b_{i,j}(t) \leq a_{i,j}(t)$ for $t \in [a,b]$ and $1 \leq i,j \leq n$. From Theorem A there exists a conjugate point c of a with respect to (2) such that $a < c \leq b$, but this contradicts the disconjugacy of (2) on [a,b]. Therefore every element of C(B) is strictly less than 1. Suppose now that $\sup C(B) = 1$. There exists a sequence (r_i) in C(B) such that $\lim_{i \to \infty} r_i = 1$. We can suppose that $r_i > 0$ for every $i = 1, 2, 3, \ldots$ Put $B_i(t) = r_i^{-1} A(t)$. Then $B_i(t) \to A(t)$ for $i \to \infty$ and the problems:

$$z'' + B_i(t)z = 0, \quad z(a) = z(b) = 0$$

for i=1,2,3,... have all a nontrivial solution. From this it follows that $detW_0(B_i,a,b)=0$ $\forall i\in N$. From the Continuous Dependence Theorem it follows that $detW_0(A,a,b)=\lim_{i\to\infty}detW_0(B_i,a,b)=0$. But this contradicts the disconjugacy of (2) on [a,b]. The claim is therefore proved.

Put now, by definition,

$$F(t) = -\int_a^b G(s,t)f(s)ds,$$

$$F(t) = Col(F_1(t), \dots, F_n(t)).$$

Obviously $F(t) \in A[a,b]$. From the hypotesis of the Theorem it follows that $F_i(t) \geq 0$ for $t \in [a,b]$ and $i=1,2,\ldots,n$. Consider now the equation

$$\phi = B(\phi) + F.$$

From Theorem C the equation (+) has a unique solution ϕ with non negative components. But this function solves also the problem (1).

Theorem 2. Let $A(t) = \{a_{i,j}(t)\}$ be a continuous $n \times n$ matrix and let $f(t) = Col(f_1(t), \ldots, f_n(t))$ be a continuous function defined on R with values in R^n . Consider the system:

$$(1) x'' + A(t)x = f(t).$$

Let a, b be real numbers, a < b. Suppose that the system

$$(2) y'' + A(t)y = 0$$

is disconjugate on [a,b]. Suppose further that there exists two sets I and J such that $I \cup J = \{1,\ldots,n\}, \ I \cap J = \Phi$ and $a_{i,j}(t) \geq 0$ for $t \in [a,b]$ if $(i,j) \in I \times J \cup J \times I$, $f_i(t) \leq 0$ for $t \in [a,b]$ if $i \in I$ and $f_i(t) \geq 0$ for $t \in [a,b]$ if $i \in J$. Then there exists a unique solution $z(t) = Col(z_1(t),\ldots,z_n(t))$ of (1) such that z(a) = z(b) = 0 and moreover $z_i(t) \leq 0$ for $t \in [a,b]$ if $i \in J$ and $z_i(t) \geq 0$ for $t \in [a,b]$ if $i \in I$.

Proof. Put, by definition, for i = 1, 2, ..., n

$$f_i = \begin{cases} 1 & if \quad i \in I \\ -1 & if \quad i \in J, \end{cases}$$

$$T = diag(f_1, \ldots, f_n).$$

Then $T^T = T = T^{-1}$. Let B(t) = TA(t)T, $B(t) = \{b_{i,j}(t)\}$. Then

$$b_{i,j}(t) = f_i f_j a_{i,j}(t) = \left\{egin{aligned} a_{i,j}(t) & if & (i,j) \in I imes I \cup J imes J \ -a_{i,j}(t) & if & (i,j) \in I imes J \cup J imes I \end{aligned}
ight. = |a_{i,j}(t)|.$$

So all the entries of B(t) are non negative. An easy calculation shows that

$$W_0(B, a, t) = W_0(TAT, a, t) = TW_0(A, a, t)T.$$

So $detW_0(B, a, t) = detW_0(A, a, t) \neq 0$ for $a < t \leq b$. From this it follows that the system

$$z'' + B(t)z = 0$$

is disonjugate on [a,b]. Put now $f^*(t) = Tf(t)$, $f^*(t) = Col(f_1^*(t), \ldots, f_n^*)$. Then

$$f_i^*(t) = f_i f_i(t) = \begin{cases} -f_i(t) & \text{if } i \in J \\ f_i(t) & \text{if } i \in I \end{cases} = -|f_i(t)|$$

for every $t \in [a, b]$. Then the system

$$(4) z'' + B(t)z = f^*(t)$$

satisfies the condition of Theorem 1 and so there exists a solution

$$z(t) = Col(z_1(t), \ldots, z_n(t))$$

of (4) such that z(a) = z(b) = 0, $z_i(t) \ge 0$ for $t \in [a, b]$ and i = 1, 2, ..., n. If we multiply the equation (4) from the left by T then we obtain:

$$(Tz)'' + A(t)(Tz) = f(t).$$

So Tz satisfies (1), Tz(a) = Tz(b) = 0 and an easy calculation shows that if $Tz(t) = Col(g_1(t), \ldots, g_n(t))$ then $g_i(t) \leq 0$ for $t \in [a, b]$ if $i \in J$ and $g_i(t) \geq 0$ for $t \in [a, b]$ if $i \in I$.

§3: Existence of positive solution in the disfocal case.

In this section we prove the following Theorem:

Theorem 1. Let $A(t) = \{a_{i,j}(t)\}$ be a continuous $n \times n$ matrix and let $f(t) = Col(f_1(t), \ldots, f_n(t))$ be a continuous function defined on R with values in R^n . Consider the system:

$$(1) x'' + A(t)x = f(t).$$

Let a, b be real numbers, a < b. Suppose that the system

$$(2) y'' + A(t)y = 0$$

is disfocal on [a,b]. Suppose further that $a_{i,j}(t) \geq 0$ for $t \in [a,b], 1 \leq i,j \leq n$ and $f_i(t) \leq 0$ for $t \in [a,b], 1 \leq i \leq n$. Then there exists an unique solution $z(t) = Col(z_1(t), \ldots, z_n(t))$ of (1) such that z'(a) = z(b) = 0 and moreover $z_i(t) \geq 0$ for $t \in [a,b]$ and $1 \leq n$.

Proof. The proof is essentialy the same as the proof of the Theorem 1 of §2. Put, by definition

$$G^*(s,t) = \left\{egin{array}{ll} b-s & for & a \leq t \leq s \leq b \ b-t & for & a \leq s \leq t \leq b \end{array}
ight.$$

and define on

$$A(a,b) \stackrel{\mathrm{def}}{=} \{f: [a,b] \longrightarrow R^n | f \text{ is a.c.,}$$

$$f(b) = 0, ||f'|| \in L^2[a, b]\}$$

the following operator: for $\phi \in A(a,b)$ put

$$B^*(\phi)(t) = \int_a^b G^*(s,t) A(s) \phi(s) ds.$$

Then B^* is a linear, continuous, compact and positive operator. Moreover x(t) is a solution of

$$x'' + A(t)x = 0, \quad x'(a) = x(b) = 0$$

if and only if x(t) is a fixed point of B^* . Let $C(B^*)$ be the set of characteristic values of the operator B^* . We can show that $\sup C(B^*) < 1$: we proceed as in the proof of the Theorem 1 of §2. It is sufficient to use the Theorem B in place of the Theorem A and replace the matrix $W_0(A,a,t)$ with the matrix $W_1(A,a,t)$. Put next

$$F^* = -\int_a^b G^*(s,t)f(s)ds,$$

$$F^*(t) = Col(F_1^*(t), \dots, F_n^*(t)).$$

Obviously $F^*(t) \in A(a, b)$ and from the hypothesis of the Theorem it follows that $F_i(t) \geq 0$ for $t \in [a, b]$ and i = 1, 2, ..., n. Consider the equation:

$$\phi = B^*(\phi) + F^*.$$

The conclusion is now the same as the conclusion of the Theorem 1 of §2.

References.

- [K] Krasnosel'skii M.A., Positive Solution of Operator Equations. Noordhoff, Groningen (1964).
- [S] K.Schmitt and H.L. Smith, Positive solution and conjugate points for systems of differential equations, Nonlinear Anal. 2 (1978), 93-105.