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Basic results

In this section we introduce the basic concepts. Let A(%) be a continuous n x n matrix
and let a, b be real numbers. Consider the system:

(%) " + A(t)z = 0.

We say that b is a conjugate point of a with respect to the system (x) if the following
problem

' +A(t)e =0, =z(a)=0, =z(b)=0
has a non trivial solution. '

We say that b is a focal point of @ with respect to the system () if & > a and the following
problem
y' +A(t)y =0, y'(a)=0, y(b)=0

has a non trivial solution.

Suppose now that a < b .
We say that the system (*) is disconjugate on [a, b] if the interval (a, ] contains no conjugate
points of @ with respect to (x).
We say that the system (*) is disfocal on [a, ] if the interval (a,b] contains no focal points
of a with respect to (x).

The following theorems are well known:

Theorem A. Let A(t) = {a;;(t)}, B(t) = {b:;(t)} be continucus n X n matrices;
let a, b be real numbers, a < b and suppose that 0 < a;;(t) < b; ;(¢) for every t € [a,b]
and 1 <1,7 < n. Consider the systems:

(1) " + A(t)z =0
(2) y' + B(t)y =0

and suppose further that b is a conjugate point of @ with respect to (1). Then there exists
a real number ¢ such that @ < ¢ < b and ¢ is a conjugate point of a with respect to (2) .

For the proof see [S].

Theorem B. Let A(t) = {a; ;(t)}, B(t) = {b; ;j(t)} be continuous n x n matrices;
let a, b be real numbers, a < b and suppose that 0 < a; ;(t) < b; ;(t) for every t € [a, ]
and 1 <1,7 < mn. Consider the systems:

1) 2" + A(t)e = 0
(2) y" + B(t)y = 0
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and suppose further that 4 is a focal point of @ with respect to (1). Then there exists a
real number ¢ such that a < ¢ < b and ¢ is a focal point of a with respect to (2).

For the proof see [S].

Let E be a Banach space with the cone K. The linear operator B is called positive if
it trasforms the cone K into itself.

Theorem C. Let B be a linear positive operator; assume that )¢ is the least upper
bound of the absolute magnitudes of the characteristic values of the operator B; consider
the following equation in F :

(+) A6 = B(g) +F

where A € Rand F' € E. If F € K and A > )y, then the equation (%) has a unique solution
in the cone K.

For the proof see [K].

Let A = {a;;} be a n X n matrix and let H be the homomorphism generated by A
in the usual way: for z = Col(z;...z,) let Hyz = Col(y; ...yn) where y; = Z;lzl a; ;T;.
With an abuse of notation we identify the matrix A with the homomorphism H 4 and write
A in place of H . So, for example, the expression as KerA, RangeA, the restriction of A
etc. mean KerH 4, RangeH 4, the restriction of H 4 etc.



§1: A Theorem about the set of conjugate points

In this section we study some properties of conjugate points in the nonselfadjoint case.
Let A(t) be a continuous n x n matrix, a € R; consider the following matrix Cauchy’s
problems:

(a) X"+ A()X =0,, X(a)=0,, X'(a) =1,

(b) Y'+ A#)Y =1, Y(a)=1I, Y'(a)=0,.

Let Wy(4,a,t) be, by definition, the solution of (a) and Wi(4,a,t) be the solution of (b).
We know that b is a conjugate point of a with respect to the system =" -+ A()z = 0if and
only if detWy(A,a,b) = 0. If this is the case then the multiplicity of b is, by definition,
equal to dimKerWy(4, a,b).

Proposition.  For the matrices just introduced the following equations hold:

(1) WoT (AT, a,t)Wo(4,a,t) — WT(AT,a,t)W!(4,a,t) = 0,
(2) Wi (AT, a,)W(4,a,t) — WIT(AT, a,8)Wy(4,a,t) = I,
(3) Wo(4,a, )W, (AT, a,t) — Wi(4,a,)WT (AT, a,1) = 0,
(4) Wy(A, o, )W (AT a,t) — W] (4, a,t)WT (AT, a,t) = I,

Proof. For simplicity we suppress the variable a and write, for example, Wy (4,1¢)
in place of Wy(4,a,t). Consider the following matrix Cauchy’s problem:

On ITL
(m) A (—A(t) 0n>Z, Z(a) = I,
and let W (t) be the solution of (m). An easy calculation shows that

[ Wi(4,1) Wy(A,1)
o= (e wiies)

Consider now the following matrix Cauchy’s problem:
r_ 0. In _
(9) Y_—y<___A(t) 0n>’ Y(a) = L,
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and let V() be the solution of (¢). An easy calculation shows that

WiT(AT 1) W] (AT, ¢
v(t) = <——W1'T( (AT,Z) W}T((ATJ))) |

It is easy to prove that the derivative of V(¢ t) is zero everywhere (Proof :(V(t)W(t)) =
0 1 .
1 ; 7 n n n n 37
VI)W () + V()W (t) = —V(2) ( t ( () On) W(t) = 0,).

From this it follows that V(¢)W (t) = a) = I>n and so W(t)V (¢) = I,,. Therefore

0n,

a)W(

WiT(AT 1) —WT(AT, 1)\ (Wi(4,1) Wo(4,8)\ _ 7
~WiT (AT, 1) WT AT t) Wi(A,t) Wi(4,t) )~ 2m

leads us to the first two equation and

Wi(4,t) Wi(A,1) W (AT 1) —WOT(AT,t) _7
(W{(A,t) Wé(A,t)> (—-W{T(AT,t) Wi (AT, 1) >' o

leads us to the last two equations.

Theorem 1. Let A(t) be a continuous n x n matrix. Consider the systems:

(a) 2" + A(t)z =0
(5) y" + AT (t)y = 0.

Let a be a real number. Then b is a conjugate point of a with respect to (a) if and only if
bis a conjugate point of a with respect to (b). Moreover both multiplicities coincide.

Proof. It is sufficient to prove that for every t € R we have that
dimKerW,(4,a,t) = dimKerW, (A7, a,t).
We shall first prove the following equality:
(%) Wy(4,a,t)KerWy(4,a,t) = KerW{ (AT,a,t) Vte R.

Let h € Wi(A,a,t)KerW;(A,a,t). Then there exists 7 € KerWy(4,a,t) such that h =
Wiy(4,a,t)n. If we multiply equation (1) of the Proposition from the right by 7 then we
obtain that WT(AT a,t)h = 0 because Wy(4,a,t)n = 0 by hypothesis. From this it follows
that h € KerW (AT, a,t). Let k € KerWT(AT a,t). If we multiply equation (4) of the
Proposition from the right by k then we obtain that k = Wi(A,a,t)YWT (AT, a,t)k because
W[ (AT, a,t)k = 0 by hypothesis. We must check that WT(AT a,t)k € KerWy(A4,a,t).
By hypothesis k € KerWT (A7, a,t) and so, if we multiply equation (3) of the Proposition
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from the right by k& we obtain that Wo(4,a,t)WT(AT,a,t)k = 0. The equality (%) is
therefore proved. '
Next we shall prove that the restriction of Wi (4,a,t) on KerWy(A,a,t) is injective.
Let 1,72 € KerWy(4, a,t) and suppose Wj(4,a,t)y;, = Wy (4, a,t)n,. From this it follows
that
1 — 12 € KerWi(4,a,t)
and, obviously, 71 — 7, € KerW;(4,a,t). Now, if we multiply equation (2) of the Propo-

sition from the right by n; — 75 then we obtain that 0 = 71 — 72 and so 71 = 7.
From this it follows that

dimWy(A,a,t)KerWy(A4,a,t) = dimKerWy(4,a,t)
and so, from () it follows that

dimKerWy(4,a,t) = dimKerW{ (A7, a,t) = dimKerWy (AT a,t).

Theorem 2. Let A(t) be a continuous n X n matrix. Consider the system:
(1) " + A(t)z = 0.

Let a be a real number. Put, by definition, C, = the set of conjugate points of a with
respect to (1) that have multiplicity strictly greater than n/2. Then C, is discrete.

Proof. We note, first of all, that C, is closed in virtue of the lower-semicontinuity of
the function ¢ — RankW,(4,a,t). Suppose, by contradiction, that b is an accumulation
point of C,: there exists a sequence (s;) in C, such that lim;_ o s; = b. W.L.G. we
may assume that dimKerWy(4,a,s;) = m > n/2 for every i = 1,2,3,..., where m is a
constant. Put, by definition, K; = KerWy(4,a,s;) and L; = KerWy(AT ,a,s;). From the
proof of Theorem 1 we know that

Wi(4,a,5)K; = KerW{ (AT, a,s;)

and the restriction of Wj(4,a,s;) on K is injective for s = 1,2,3,.... If we replace 4 with
AT in the previous formula then we obtain that

Wi(AT, a,5:)L; = KerWI(4,a,s;)
and the restriction of W{j(A7,a,s;) on L; is injective for i = 1,2,3,.... From Theorem 1
dimL; = dimK; = m and so dimW{(A7,a, $;)L; = dimWj(4,a,s;)K; = m. By hypothe-
sis m > n/2. So
(WA(AT, 0, 5)L5) 0 (WY Ay 0,55 KG) # {0
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fori=1,2,3,.... For every ¢ we can therefore select from this intersection an element pi
with norm equal to 1. Now, (p;) is a sequence in the unit sphere of R", we can therefore
find a convergent subsequence (p;,). Put p = lim,_,o p;.. Obviously ||p|| = 1. From
the definition of p; there exists n; € K; and ¥ € L; such that p; = Wi(A,a,s;)n; and
pi = W§(AT,a,s;)n}. We may assume that the sequences (;, ) and (n;) are convergent.
Infact: to see, for example, that the sequence (7;) is bounded we proceed as follows:
put R; = the restriction of W{(4,a,s;) on K;. We know that R; is injective and so
n; = Ri"lpi. From this it follows that [l7;|| < ||R;||™!. Therefore it is sufficient to show
that there exists an € > 0 such that ||R;]] > € for every i. Assume, by contradiction,
that there exist k; € Kj, ||ki]| = 1 and lim; o ||Riki]| = 0. W.L.G. we may assume
that lim; .o k; = k. Then Wj(4,q,b)k = lim;_ o Wo(A,a,s;)k; = lim;_ o Rik; = 0
and Wy(4,a,b)k = lim; o Wy(4,a,5:)k; = 0. So ||k]| = 1, k € KerW/(4,a,b) and
k € KerW,y(A,a,b). But this is impossible.

Put n =lim, .00 7;,, 7% = lim, o n; . From
Wo(A,a,s;.)n;, =0 Vre N
and
WO(AT,a,sir)n;‘r =0 VYVreN

it follows that
Wo(A, a, b)'l] =0

and

Wo (AT, a,b)n* = 0.
Son € KerWy(4,a,b) and n* € KerWy(AT,a,b). From

T/V[;(A7 a‘?'sir )T,lr = pl VT E N

r

and

W(;(AT, a')Sir )77:,. = Pzr VT € N
it follows that

(2) p=Wy(4,a,b)n
and
(i3 p = Wi(AT, a,b)r".

From n* € KerW,(A7,a,b) and from
Wy(AT,a,b)KerWo (AT, a,b) = KerWT (4, a,b)
it follows, from (i1), that p € KerW{ (4,a,b) and so p € (RangeW,(4,a,b))*. Now,
(P, Wu(A,a,s:,)m:.) = 0 and (p, Wy(4,a,b)n;,) = 0 because p € (RangeW,(4,a,b))*.
Put, for
¢ = min{s; ,b} <t < max{s; ,b} = d,
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Fr(t) = (p, Wo(4, a,8)m:, ).

Then F.(2) is a real valued, differentiable function, defined on the interval [c,d] and such
that Fi.(¢) = F-(d) = 0. From Rolle’s Theorem there exists ¢ < ¢, < d such that FEl(t,) =0
ie. (p,Wy(4,a,t:)n; ) = 0. Obviously, im;_t; = b and so, passing to the limit in the
last equation, we obtain that (p, W{(A4,a,b)n) = 0. From (i) we have that (p,p) = 0 and
so p = 0. But this contradicts the fact that ||p|| = 1.

§2: Existence of positive solution in the disconjugate case

In this section we prove the following theorem:

Theorem 1.  Let A(t) = {a;;(¢)} be a continuous n x n matrix and let f(¢) =
Col(fi(),..., fn(t)) be a continuous function defined on R with values in R™. Consider
the system:

(1) z" + A(t)z = f(2).
Let a, b be real numbers, a < b. Suppose that the system
(2) v+ Aty =0

is disconjugate on [a,b]; suppose further that a;;(t) > 0 for t € [a,b], 1 < 3,7 < n
and fi(t) < 0 for ¢t € [a,8], 1 < i < n. Then there exists an unique solution z(t) =
Col(z(t),...,2n(t)) of (1) such that z(a) = z(b) = 0 and moreover z(t) > 0 for t € [a, 8]
and 1 <1 < n.

Proof. Let Afa,?] be the usual space of admissible function: A[a,b] = {f : [a,b] —
R"|f is absolutely continuous, f(a) = f(b) = 0 and ||f'|| € L?[a, b]}. Let
(—b%)_(ji_—a) for a<s<t<y}
G(s,t) = (b—s)(t—a)
o for a<t<s<b

be the usual Green’s function. Define on A[a,b] the following operator: for ¢(t) € Afa, b]
put

b
B($)(t) = / G(s,8) A(s)(5) ds.

We know that B is a linear, continuous and compact operator that transforms the space
Ala, b] into itself; moreover, z(t) is a solution of

'+ A(t)z =0, z(a)=2(b) =0




if and only if 2(t) is a fixed point of B. From the hypothesis of the Theorem it follows
that B is a positive operator with respect to the cone of all functions z(t) € Ala,b] with
non negative components. Let C(B) be the set of characteristic values of the operator B.
We know that 0 € C(B) and so C(B) is not empty. '

Claim  supC(B) < 1.

Infact: suppose first that there exists » € C(B) such that » > 1. There exists a non
trivial ¢ € A[a,b] such that

r¢ = B(¢) = / G(s,t)A(s)o(s)ds

and so
b
(*) ¢=/ G(s,t)r~t A(s)d(s)ds.

Put b; ;(t) = r71a; ;(2), B(t) = {b; ;(¢t)}. The equation (%) shows that ¢ is a non trivial
solution of the following problem:
y" 4+ B(t)y =0, y(a)=y(b) =0.

From r > 1 it follows that b; ;(¢) < a; ;(t) for t € [a,b] and 1 < 7,7 < n. From Theorem
A there exists a conjugate point ¢ of a with respect to (2) such that @ < ¢ < b, but this
contradicts the disconjugacy of (2) on [a, b].Therefore every element of C(B) is strictly less
than 1. Suppose now that supC(B) = 1. There exists a sequence (r;) in C(B) such that
lim;_,oo7; = 1. We can suppose that r; > 0 for every ¢ = 1,2,3,.... Put B;(t) = 77 At).
Then B;(t) — A(¢) for i — oo and the problems:

2" + Bi(t)z =0, 2z(a)= z(b) =0

for:=1,2,3,... have all a nontrivial solution. From this it follows that detWy(B;,a,b) =
0 Vi€ N. From the Continuous Dependence Theorem it follows that detWy(4,a,b) =
lim; . detWy(B;,a,b) = 0. But this contradicts the disconjugacy of (2) on [a,b]. The
claim is therefore proved.

Put now, by definition,

F(t) = -—/ G(s,t)f(s)ds,

F(t) = Col(Fy(1), ..., Fa(t)).

Obviously F(t) € Ala,b]. From the hypotesis of the Theorem it follows that Fj(t) > 0 for
t € [a,0] and i =1,2,...,n. Consider now the equation

(+) &= B(¢)+F.
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From Theorem C the equation (+) has a unique solution ¢ with non negative components.
But this function solves also the problem (1).

Theorem 2.  Let A(t) = {a;;(¢)} be a continuous n x n matrix and let f(t) =
Col(fi(t),..., fa(t)) be a continuous function defined on R with values in R". Consider
the system:

(1) ' + A(t)z = f(1).

Let a, b be real numbers, a < b. Suppose that the system

(2) y' 4 Aty =0

is disconjugate on [a,b]. Suppose further that there exists two sets I and J such that
TuJ={1,...,n},INJ = @ and a;,;(t) > 0 for t € [a,b] if (i,j) € Ix JUJ x I, fi(t) <0
for t € [a,b] if i € I and f;(¢) > O for ¢ € [a,b] if i € J. Then there exists a unique solution

z(t) = Col(z1(t),...,2n(t)) of (1) such that z(a) = 2(b) = 0 and moreover z;(t) < 0 for
t €la,blifi € J and 2;(t) > 0 for ¢ € [a,b] if 1 € I.

Proof. Put, by definition, for 1 = 1,2,...,n

1 4f der
f""{—1 if i€ J,
T:dia‘g(fla"'afn)'
Then T7 =T = T7'. Let B(t) = TA(t)T, B(t) = {b; ;(t)}. Then

bijt) = fifjaus(t) = {ié(jzt) Zfz’f (i’(g,)jf eI Fx 0 = sl

So all the entries of B(t) are non negative. An easy calculation shows that

Wo(B, a,t) = Wy(TAT,a,t) = TWy(A, a,)T.
So detWy(B,a,t) = detWy(4,a,t) # 0 for a < t < b. From this it follows that the systemn
(3) Z'+B(t)z =10

is diconjugate on [a,d]. Put now f*(t) = Tf(t), f*(¢) = Col(f;(t),.-., f:). Then
0 = £t = { (10 ST )
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for every t € [a,b]. Then the syst;am |

(4) 24 B(t): = £(2)

satisfies the condition of Theorem 1 and so there exists a solution
2(t) = Col(z1(t),...,za(¢))

of (4) such that z(a) = 2(b) = 0, 2;(¢) > 0 for t € [a,b] and i = 1,2,...,n. If we multiply
the equation (4) from the left by T then we obtain:

(Tz)" + A(t)(Tz) = f(2).

So T'z satisfies (1), Tz(a) = Tz(b) = 0 and an easy calculation shows that if Tz(t) =
Col(g(t),...,gn(t)) then g;(t) < Ofort e [a,b] if i € J and g;(t) > 0 for t € [a,b] if i € I.

§3: Existence of positive solution in the disfocal case.
In this section we prove the following Theorem:

Theorem 1.  Let A(t) = {a; ()} be a continuous n x n matrix and let f(t) =
Col(fi(t),-- -, fa(t)) be a continuous function defined on R with values in R™. Consider
the system:

(1) " + A(t)e = f(2).
Let a, b be real numbers, a < b. Suppose that the system
2) Y+ Aftly = 0

is disfocal on [a, b]. Suppose further that a; ;(t) > 0 for ¢ € [a,b], 1 <4,j < n and fi(t) <0
for t € [a,b], 1 < ¢ < n. Then there exists an unique solution z(t) = Col(z1(t), ..., za(t))
of (1) such that 2'(a) = 2(b) = 0 and moreover z;(t) > 0 for ¢ € [a,b] and 1 < n.

Proof. The proof is essentialy the same as the proof of the Theorem 1 of §2. Put,
by definition
N _Jb—s for a<t<s<b
¢ (S’t)_{b—t for a<s<t<bh

and define on
A(a,b) def {f:[a,b] — R"|f is a.c.,
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f(b) =0, Hf,“ S Lz[aa b}
the following operator: for ¢ € A(a,b) put

B%murzfcr@ﬂmgﬂﬂm-

Then B* is a linear, continuous, compact and positive operator. Moreover z(t) is a solution

of
" +At)z =0, z'(a)=2(b) =0

if and only if #(t) is a fixed point of B*. Let C(B*) be the set of characteristic values
of the operator B*. We can show that supC(B*) < 1: we proceed as in the proof of the
Theorem 1 of §2. It is sufficient to use the Theorem B in place of the Theorem A and
replace the matrix Wy (4, a,t) with the matrix Wi(4, a,t). Put next

b
Fr = —/ G*(s,8)f(s)ds,

F*(t) = Col(Fy(t),..., Fi(1)).

n

Obviously F*(t) € A(a,b) and from the hypothesis of the Theorem it follows that Fj(t) > 0
for t € [a,b] and 1 = 1,2,...,n. Consider the equation:

¢ =B(¢)+ F".

The conclusion is now the same as the conclusion of the Theorem 1 of §2.
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