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Chapter 1

Renormalization Group in Two
Dimensions

1.1 General Ideas

The fundamental objects in quantum field theory are the correlation functions of local

fields A;:
< Al(ml)Ag(mg)...AN(mN) > . (111)

In the Lagrangian formulation these quantities are given (up to a normalization) by
the functional integrals

/’quAl(a:l)...AN(a:,\.—) exp{—H[4]} , (1.1.2)
where ¢ stays for some set of fundamental fields such that

Ap(z) = Ax(d(z), 0ud(z), 0,0, (), - -.) (1.1.3)

and H(¢] is the (Euclidean) action (Hamiltonian in statistical field theory), which in d
dimensions is the integral of a local density H :

i) = [ d=H(4(2), 8,8(2)) - (1.1.4)

The correlators (1.1.1), and then the action H, will in general depend on a set of
parameters g1,..., g, which are the coupling constants of the theory. Asis well known
[1], a renormalization procedure is needed in an interacting theory in order to cancel
the ultraviolet divergences present in the naive formulation of the theory. Cancella-
tion of infinities leaves undetermined finite parts which have to be fixed through the
renormalization conditions, namely by assigning the values that some quantities should
acquire when computed at a certain scale p. This dependence on the arbitrary scale
parameter g, which is an unavoidable consequence of renormalization, can be consis-
tently taken into account introducing running coupling constants gi(p). Obviously, the



physical predictions of the theory must be independent on the choice of p and this fun-
damental requirement leads to the equations of the renormalization group (RG) which
determine the dependence on p of the running coupling constants. We will return in
more detail on these formal developments in sec. 1.5. For the moment we are interested
in introducing a series of basic ideas and definitions concerning the RG which will be
widely used in the following.

A very useful and intuitive geometrical picture arises if we associate to an effective
action H a point in the interaction space @) with coordinates gi,...,g, [2, 3]. Generally
speaking, () is an infinite dimensional space. Nevertheless, it is assumed that one
can deal with it as with a finite dimensional manifold since only finite dimensional
subspaces turn out to be essential. In light of previous considerations, a trajectory in
() parameterized by the scale parameter g will correspond to a field theory: different
points on the trajectory correspond to the effective actions which describe physical
systems differing only by a scale transformation; the passage from an effective action
to another is realized by a so called RG transformation:

{g1()s---19n(1)} = {91(k);- .- gn(w)} (1.1.5)

Our convention is that g is a mass parameter, so that, if g = pge™" with pg some fixed
mass, the value ¢ = 400 (—o0) corresponds to the infrared (ultraviolet) limit. Once
the initial conditions g;(¢y) are given, the evolution of the trajectory in the interaction
space @ is completely determined by the RG equations.

Clearly a very special role in the theory is played by the fixed points of the RG,
namely by the points of () which are invariant under the RG transformations:

gi(t) = gi(t)=gi(); i=1...,m . (1.1.6)

This means that such a point represents itself a whole trajectory and that the corre-
sponding quantum field theory is invariant under scale transformations, namely it is a
massless theory with an infinite interaction range ¢*.

The general solution of the RG equations, which amounts to a complete topological
characterization of the interaction space @, is a formidable task which remains so far
unsolved. The best we can do in the general case is to use perturbation theory in order
to study the neighbourhood of fixed points. This gives rise to a series of useful concepts

that we now briefly present. To this aim let’s write the effective Lagrangian density in
the form

H(:E) = ;nlgi@i(m) B (1.1.7)

The operators ®; so introduced are said to be conjugated to the coupling constants
gi- Let’s now consider in the interaction space @ a point P whose coordinates g =
{g1,-..,9n} differ very slightly from those of a fixed point P* = g*. In other words

gi = g; +7i, (1.1.8)

*In the framework of critical phenomena £ si called correlation length and the zero mass condition
is substituted by that of criticality; in the following we will use interchangeably the two terminologies.



where the 7;’s are infinitesimal constants.
Under a RG transformation corresponding to the change of scale p — ©/s the point
P will be mapped in a point P, with coordinates

9i(s) = g7 +m(s,7:) , (1.1.9)

Since the 7;’s are infinitesimal we can linearize the previous relation by taking the first
order expansion in 7;:

7]1'(5) ~ Aij(s)ﬁj . (1110)

After diagonalization this relation reads

wi(s) = f(s)7, - (1.1.11)

The requirement that the result of two RG transformations parameterized by s; and
s» should correspond to a unique RG transformation parameterized by s;s, forces f(s)
to be simply a power of s:

ni(s) = s¥qt . (1.1.12)

From this result the transformation law of the fields ®! conjugated to the coupling
constants g under the scale transformation ¢ — sz can be immediately read off noting
that the Lagrangian density eq.(1.1.7) should acquire a factor s? coming from the
contraction of the volume when measured in the new units. This implies

®l(z) — s4Pi(sz) . (1.1.13)
The ®; are called scaling operators and (recall eq.(1.1.7) and eq.(1.1.12))
di =d—y; (1.1.14)

is their anomalous scale dimension; this is in general different from the canonical scale
dimension dictated by dimensional analysis. The spectrum of anomalous dimensions
characterizes a fixed point and its determination represents the central problem in
the framework of critical phenomena since it amounts to the determination of critical
exponents. We stress that the identification of scaling operators is essentially a local
procedure since it holds only in a neighbourhood of the fixed point under consideration.
With this remark in mind we can proceed to the classification of scaling operators
according to their anomalous dimensions. We distinguish three cases:

1. di <d: from eqgs.(1.1.14) and (1.1.12) we see that 7/(s) increases with s and
the point P, moves away from the fixed point P*; the operator ®! is said to be
relevant.

2. d;=d: n(s) remains constant varying s; &' is said to be marginal.

3. di > d: the situation is reversed with respect to case 1 and 74(s) vanishes in
the infrared limit; ®! is said to be irrelevant.



The basis of scaling operators defines a system of local axes in the neighbourhood
of a fixed point P* (see fig. 1). Since our convention is to follow the evolution of
RG trajectories as s increases (to this refer the arrows in fig. 1), we will call cen-
trifugal (centripetal) the axes corresponding to relevant (irrelevant) operators. The
subspace Wir (Wyv) spanned by the centripetal (centrifugal) axes represents the IR
(UV) catchment area of the fixed point P~ in the sense that any trajectory intersecting
Wir (Wyy) will converge to P~ in the IR (UV) limit. This gives a very suggestive pic-
ture of the property of universality, namely of the phenomenon observed in statistical
mechanics for which systems with apparently different interactions actually exhibit the
same critical behaviour.

Wig is contained in the critical surface S, which we define as the submanifold of
Q formed by all points corresponding to an infinite correlation length ¢ (in particular
S, contains all fixed points). To prove this statement we simply observe that in a RG
transformation related to the change of scale p — p/s the correlation length undergoes
the transformation & — &/s; but, since P € Wig converges to P~ in the limit s — oo
and P* € S, then it should be P € S.

It may happen that a trajectory passes close to a fixed point before finally converg-
ing to another. If this is the case the theory exhibits at different scales the behaviour
characteristic of the two fixed points originating a so called crossover phenomenon.

1.2 Operator Algebra and Conformal Field Theo-
ries

'We have seen in previous section that fixed points play a central role in our study of
RG. As a consequence, the investigation of the field theory solutions corresponding
to fixed points is of fundamental importance. By definition such solutions should be
invariant at all scales under the scale transformation

z* — szt . (1.2.1)

On the other hand it is known that scale invariance of a local, homogeneous and
isotropic field theory implies the invariance under a larger transformation group, the
conformal group, which preserves the angles of two arbitrary vectors at any given point
but may change their lengths. In other words, a conformal transformation

zt — yH(z), (1.2.2)
is characterized by the fact that it changes the metric multiplicatively:
dy*dy, = p(z)dz"dz, . (1.2.3)

Thus we see that the important problem of the classification of fixed points of RG
is equivalent to the construction of all conformal invariant solutions of field theories.
This problem appears very hard to face in the framework of Lagrangian field theory.



In alternative, Polyakov [4] proposed a bootstrap approach directly for the correlation
functions based on the hypothesis of the algebra of local fields. According to this
hypothesis [5, 6, 7], in the field theory there is an infinite basis of local operators A;(z)
such that any local operator of the theory can be decomposed as

Az) = Z,UiAi(fD) . (1.2.4)

Moreover, the space 4 of local operators of the theory form a bilocal algebra with
respect to the operator product expansion (OPE)

Ai(z)A4;(0) = %jc{;(m)Ak(O) : (1.2.5)

where the functions Cl’;(m) clearly contain all the informations about the field theory.
Relations like egs.(1.2.4), (1.2.5) and similar are to be understood as relations between
correlation functions.

In the scaling region around a fixed point we can suppose to identify the set of scaling
fields ®;(z) (see previous section) as a basis for A. Consequently, the transformation
law eq.(1.1.13) can be used to fix the form of the structure functions

Ck
@i(z)@;(O) = 4 m@;@) , (1.2.6)
where the Ci";-’s are now constants.

In Lagrangian theory, A includes, apart from the "fundamental” fields ¢ and their
derivatives, any composite field of the type : " i Oudg™ :,... . In the present
approach, the basic dynamical equations are provided by the requirement of the asso-
ciativity of the algebra (1.2.5), which amounts to the condition of crossing symmetry
of the correlation functions. Combining this condition with the requirement of confor-
mal invariance of the operator algebra (1.2.5), Polyakov obtained a system of bootstrap
equations for the anomalous dimensions and the structure constants C’,’; While the
general solution of these equations remains an open problem, in many cases they can
be exactly solved in the two-dimensional case.

In order to understand the reason for this, let’s consider the infinitesimal version
of eq.(1.2.2):

y(z) = 2" + e¥(z) . (1.2.7)
It is easily seen that, starting from a flat matric b, €q.(1.2.3) constrains e(z) to be
solution of the equation

Ouen(z) + Oue,u(z) = 3—3,\6'\(1‘)5#” , (1.2.8)

where d stays for the number of dimensions. While for d > 2 eq.(1.2.8) allows e¥(z)
to be at most quadratic in z, for d = 2 it reduces precisely to the Cauchy-Riemann
equations:
' 6161(3) = 6262(13) H
6162(1)) = "‘5261(23) . (129)



Thus we arrive at the crucial result that for d = 2 the transformation (1.2.7) is con-
formal for any holomorphic (antiholomorphic) function e(z) = €'(z) + ie?(z) (&(z) =
el(2) — i€*(2)), with z, z defined to be the complex coordinates

z=2a' —iz® . (1.2.10)

Then we see that the conformal group of two-dimensional space is an infinite dimen-
sional group and it is precisely this infinite-dimensional symmetry which allows us to
advance in the research of conformal field theory for d = 2 much further than in higher
dimensional cases [8].

For the systematic study of this symmetry, it is convenient to consider z and Zz
(which are related by complex conjugation in the Euclidean space R?) as independent
complex variables in the complex space C* of which R? is some real section; corre-
spondingly, the correlation functions of the theory are analytically continued in some
domain in C%. As a consequence, £(z) and &(Z) become independent functions and the
conformal group splits in the direct product T' x T of right and left groups of analytic
substitutions of the variables z and Z.

In any homogeneous and isotropic field theory there is a local symmetric energy-
momentum tensor 7}, (z) contained in the algebra of local operators A which satisfyies
the conservation equations

8,T"(z) =0 . (1.2.11)

From the Lagrangian point of view, T, (z) describes a variation of the action H un-
der the arbitrary infinitesimal coordinate transformation eq.(1.2.7) (from now on we
consider d=2)

§.H =2 / e 8,6.(c)T™(z) . (1.2.12)
In particular, for the dilatation eq.(1.2.1) (with s = 1 4 ¢) we have ¢,(z) = ez, and
eq.(1.2.12) specializes to
5.H = 2% / &2 0(z) , (1.2.13)
where © = T#. Hence scale invariance constrains the energy-momentum tensor of field
theories corresponding to fixed points to be traceless.

Coming back to the general transformations, eq.(1.2.12) can be used in the func-
tional integrals (1.1.2) to compute the variation of correlation functions. We obtain

N
Z < Al(:l:l) . 5EA1'(:B,') cee AN(Z:N) >
1
~9 / 28,e.(z) < T (2)As(2y) ... An(zy) > (1.2.14)
where §.A(z) represents the variation of the field A(z) under the transformation
eq.(1.2.7). In the non-Lagrangian approach based on the algebra of local fields this

equation is postulated and should be considered as defining the action of the operator
6. on A. Due to eq.(1.2.11) we can write the integrand in last equation in divergence

7



form apart from the points z = ; where the correlator in right-hand side is singular.
Calling S;; an arbitrary small domain in R? containing the point @; we can write the
integral in eq.(1.2.14) as

/ ~ d’z Ou < Eu(-’B)T“V(IB)A1(:El)...AN(:I;N) >

R2-J S;
i=1

Af
+2/5 &eBue,(z) < T(2)As(a1)... An(zn) >,  (1.2.15)
i=1 zi
so that we conclude
1
S6.A(2) = j[c dy e, (y) T (y) A(z) + /S &y 8,6, (y)T™ (1) A(z) ,  (1.2.16)

where C, is the boundary of S, and € an antisymmetric tensor (15 = 1).
It is convenient to introduce the spin operator S and the dilatation operator D
acting on A in order to express the field variation corresponding to rotations and

translations translations e#(z) = e* 4wz, (WM = —w¥™)
beA(z) = "0, A(z) + W (2,0, + £,,5)A(z) (1.2.17)
and uniform dilatations e = ez
6 A(z) = e(z"0, + D)A(z) . (1.2.18)

Let’s restrict our attention to a field theory related to a fixed point of the RG in order
to see how conformal symmetry allows a characterization of the space of local fields A.

If we define
T=T"~T2 2T,
T=T"—T% _ 972 (1.2.19)
due to the condition © = 0, equations (1.2.11) become
;T =0 ; 0.T =0, (1.2.20)

showing that T' = T'(z) (T = T(2)) is a holomorphic (antiholomorphic) function. Since
under a conformal transformation the second term in eq.(1.2.16) drops out due to
eq.(1.2.8) and to © = 0, we obtain

W )T (w) A, z) . (1.2.21)

5514(2, Z) = - _2~7—1'—’L €

This equation and the similar one for 6:A(z, 2) involving T(2) show that T and T can
be considered as the generators of right and left conformal transformations respectively.
A way to formalize this fact is to expand T'(z) and T(z) in Laurent series

+oo
T(z)= > 27" %L, ;

T(z)= Y z"?L,, (1.2.22)

n=--oo



with the L,’s and L,’s acting as operators on A and representing the infinite generators
of the two-dimensional conformal group I' X I'. By using these definitions in eq.(1.2.21)
and composing with egs.(1.2.17) and (1.2.18), the following results are easily obtained

L_,A(z,2) = 0.A(z,2) , L_1A(z,2) = 0;A(z,%) ; (1.2.23)

LO e ZO == S 9 Lo + ng = .D . (1224)

Tt is convenient to choose in A a basis of eigenvectors A; of the operators Ly and Ly:
LoA; = A4 LoA; = NA; . (1.2.25)

Here the real numbers A; and A; are called right and left dimensions (0_1‘ conformal
Weight_s) of the field A;; in light of eq.(1.2.24) the quantities s; = A; — A; and d; =
A; + A; represent the spin and the anomalous scale dimension of A;.

On general grounds it can be shown that the field T'(z) transforms under a conformal
transformation as

6T(2) = e(2)T'(2)+26/(2)T(2) + 15€"(2) 3
6T(z) = 0, (1.2.26)

where primes indicates differentiation with respect to z. The parameter c, called central
charge, is an important quantity which characterizes the conformal field theories (CFT).
The transformation law of T'(z) under a finite conformal transformation z — f(z) reads

T(z) = (FPT(f(2) + 555(F,2) , (1.2.27)

where the quantity

S(f,2) = f'f (;I)az(f )

is known as the Schwartzian derivative. It can be shown that S(f,z) = 0 only for the
three-parameter subgroup of the conformal group corresponding to

(1.2.28)

az+b

f(z)zm,

These are the only conformal transformations defined and invertible in the whole com-
plex plane.

The expression eq.(1.2.26) is equivalent, through eq.(1.2.21), to the following OPE:

ad—be=1 . (1.2.29)

2 1
T(2)T(0) = ?2—% + ;-Q-T(O) -+ —z—T'(O) + regular terms . (1.2.30)

Equating (1.2.26) to (1.2.21) with A(z,z) = T(z) and using eq.(1.2.22) one can find
the following commutation relations obeyed by the generators Ly:

[Ln, L] = (n — m)Lnpm + é(na — )6pimo - (1.2.31)

9



This is called Virasoro algebra and we denote it by £. Recalling that an analogous
algebra L is satisfied by the left generators L., we conclude that the conformal group
in two dimensions is generated by £ @ L.

The representation theory of Virasoro algebra can be used to study the structure of
the space A of fields of the conformal theory. It is immediately seen from eq.(1.2.31)
that the operator L, map the space Uy C A of eigenvectors of Ly with right conformal
weight A into Us_,. By the requirement that the spectra of anomalous dimensions
d = A + A is bounded from below, there exist lowest weights representations (LWR)
whose lowest weight vectors ®; satisfy the equations

Lo@j = Aj@j , Eo@j = Aj@j ’
L,® = L,®;=0 forn>0 . (1.2.32)

The operators ®;(z, ) are called primary fields. Using eq.(1.2.21) their variation under
an infinitesimal "right transformation” is simply given by

6:%;(2,2) = €(2)0.9;(2,2) + Nje'(2)B;(2,2) . (1.2.33)

Specializing this variation to the case of a dilatation and taking into account also the
left part, one can immediately see that it coincides with the infinitesimal form of the
transformation eq.(1.1.13). Thus we conclude that the primary fields of a conformal
field theory can be identified with the scaling fields of the corresponding fixed point.

The other vectors of the LWR are obtained by applying to the primary field the step
operators L, L, with negative n and are called descendant fields; the LWR associated
to the primary field ®; is called conformal family and will be denoted with [®;]. Due
to the decomposition of the Virasoro algebra in right and left parts, a conformal family
can be written in the direct product form

(2] = [A5] x [Ay], (1.2.34)

where [Aj] and [A;] are LWR of £ and £ respectively; [A;], for example, is spanned
by all vectors of the form

L__m .. -L——nN@j 3 1 S (51 S .o S ny . (1235)

The quantity L = Z n; is called the level of the vector (1.2.35). The space A of local

fields of a CFT contams some (in general infinitely many) primary fields and can thus
be wiitten as direct sum of conformal families:

A= @ [®;] . (1.2.36)

1.3 Minimal Models

While in the general case these informations are not still sufficient to solve the boot-
strap equations and, consequently, to determine the anomalous dimensions and the

10



structure constants of the theory, this program can be successfully completed for the
so called minimal models [8]. These are obtained by the condition that the space A
contains reducible representations of the Virasoro algebra, namely representations hav-
ing invariant subspaces. To be concrete, suppose that the subspace V spanned by the
vectors (1.2.35) contains at level L a vector xa4r (null-vector) satisfying the equations

L.xasr = 0 for n >0,
Loxarr = (A+L)XA+L . (131)

In this case the subspace Vayr C Va generated by applying the operators L, with
n > 0 to xayr is invariant under the action of the right Virasoro algebra £. In order
to get an irreducible representation we consider the factor space [A] = Va/Vasr, ie.
we set

XA+L = 0 (1.3.2)

The irreducible representation [A] obtained in this way is said to be degenerate. The
requirement that null-vectors exist, supplemented by the requirement that anomalous
dimensions are real and bounded from below, select the following values of the central
charge for which physically sensible degenerate representations are possible: -
2
c(fPaQ) =1- GM ) (133)
rq

where p and g are mutually prime natural numbers. It turns out that the operator
algebra of each minimal model M(p,q) closes on a finite number of primary fields
<I>(,,,m) (1<n<p-1,1<m< g-—1) whose conformal dimensions are given by the
Kac’s formula [9, 10]

Ay = (gn—pm)’ —(a—-p)*
’ 4pg

The degenerate representation with lowest-weight vector ®(n ) turns out to contain

a null vector at level nm. Since A(p_pg-m) = A(n,m), we conclude that @, n g m) =

®(1,m). The field ®(;1) = P(,_14-1) has conformal dimensions A = A = 0 and is

identified with the identity operator I of the theory. The structure of the operator

algebra is described by the fusion rules

(1.3.4)

mny+ng—1 my+mg—1

@(nl,ml)@(ng,mz) - Z Z [@(k,l)] ; (]_35)

k=|n1 —leH-l l=[m1——m2|+1

where the variable k (I) runs over the even integers, provided ny +ny (my + m») is odd
and vice versa.

For minimal models the structure constants of the operator algebra (1.2.5), and
then the correlation functions, can be determined by exploiting differential equations
(null-vector equations) for correlation functions obtained using eq.(1.3.2) and OPE.
This completes the bootstrap program.

An important class of minimal models can be selected by imposing the unitarity
condition, namely the requirement that the space of states of the field theory is positive

11



definite. In [11] it was shown that for ¢ < 1 this constraint can be satisfied only for
the discrete set of values of the central charge given by eq.(1.3.3) with g = p+ 1. In
this case eqs.(1.3.3) and (1.3.4) specialize to

P p(p+1)

(1.3.6)

and
_((ptn—pm)* -1
(rrm) 4p(p + 1)

It can be easily verified from eq.(1.3.4) that all the fields contained in such theories
have non negative anomalous dimensions.

Minimal models describe the critical behaviour of many statistical mechanical sys-
tems. For given values of p and g, different universality classes (namely different critical
behaviours) correspond to different subset of the allowed operators. A complete clas-
sification of these subsets can be obtained by requiring the modular invariance of the
partition function on a torus [12, 13]. We just sketch the basic idea of this approach.
Comnsider the conformal mapping

(1.3.7)

[
= v = — 1 1.3.
w=1u -} 5o inz, (1.3.8)

which maps the whole z-plane onto an infinite strip of width ! with periodic bound-
ary conditions (a cylinder). Using the transformation law eq.(1.2.27) one obtains the
following expression for the quantum hamiltonian of the system on the cylinder (the
euclidean time direction is chosen along the v axis):

-

{
1 2 = c
H:2—7;O/dvTvv:—l~(Lo+Lo—-> . (1.3.9)

This equation relates the eigenvalues Ej, of the hamiltonian H to the scaling dimensions
dy = Ar + Ay of the operators of the CFT (recall that d; are the eigenvalues of the
generator D = Ly + Ly of dilatations in the plane). Then the partition function for a
rectangle of sides ! and I’ with periodic boundary conditions on both pairs of opposite
sides (a torus) is

Z(1,1") = Tre " = ™t/ N gmamdis (1.3.10)
k

where § = I'/l. For a minimal model we know that the scaling dimensions d; of
a descendent operator at level (L,L) in the conformal family of a primary field of
dimensions (Anm) Anmy) 18 Apnm) + Agim)+ L+ L. Then the sum in eq.(1.3.10) can
be rewritten as

Z N(n,m; 7, ) (L) ds (L) exp(—?vr&(A(n,m) + A@am + L+ L)), (1.3.11)

n,m;a,m

12



where the factors d denote the degeneracy at the appropriate level in the conformal
family and the integers N define the operator content of the theory. Introducing the
Virasoro characters

Xnm(8) = ¢~/ Trg™ (1.3.12)
g=e (1.3.13)

we rewrite the partition function (1.3.10) in the form

Z(8) = . N(n,m;n,m)xnm(8)xam() - (1.3.14)

n,m;fi,m

Now we impose the fundamental condition
Z(6) = Z(1/6) (1.3.15)

reflecting the fact that the partition function on a torus can be calculated in two
different ways corresponding to the two possible choices for the time axis. More in
general one can require the invariance of Z under the whole modular group generated
by § — 1/8 and § — §+i. This gives rise to a system of linear Diophantine equations for
the numbers A which permits a complete classification of modular invariant partition
functions for minimal conformal theories [13]. Such classification is known as ADE
classification since all the solutions are labelled by the simply laced Lie algebras.

Let us restrict now our attention to the unitary minimal models with central charges
given by eq.(1.3.6). For each p there is always the solution N(n,m;f,m) = 8,a6mm
where each allowed scalar operator is present just once and no others appear. These
diagonal solutions correspond to the so called A — A series (or principal series) in the
ADE classification and were identified with the universality classes of critical (p = 3),
tricritical (p = 4), tetracritical (p = 5), etc. points in Ising models. In additions, for
p =5, and p = 6 there exist two further (non diagonal) solutions identified with the
critical and tricritical three-state Potts universality classes respectively. For p < 6
these are the only solutions of the modular invariant constraint.

An interesting mapping can be established between the unitary model of the prin-
cipal series (we will denote them M,) and the lagrangian theories of a scalar field ¢
subject to an even (i.e. invariant under the replacement ¢ — —¢) polynomial inter-
action [14]. Indeed in the Landau-Ginzburg classification a (p — 1)-critical point is
described by the effective action

H—/d2 1(‘3(;5<9¢>+p§ 2k
= z uPOu g™\ (1.3.16)
2 k=1

with gy = g» = ... = gp—2 = 0 and g,—1 > 0. Let’s define the composite operator : ¢? :
by the OPE

B(2)$(0) — < P()$(0) >= lo|= 7% 1 ¢ 1 (0) + ..., (1.3.17)

where d, and d, are the anomalous dimensions of : ¢ : and ¢ respectively and only the
most singular term for £ — 0 was written in the right-hand side. The other composite
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fields : ¢**1 : can be defined recursively through the OPE (z) : ¢* : (0)

F¢t 1 (0) = lim ettt {g(a) : ¢ 1 (0)

[(k+1)/2]
— Y Agle|Beraedimdi ghHI=20, ()8 (1.3.18)

g=1

In this relation the coeflicients A, are chosen in such a way that the limit is finite;
an average over the directions of the vector z* is understood to ensure the absence of
vector terms. The fields : ¢??% : constructed in this way should satisfy the operator
equation of motion

g: 97 :=08,0,0 . (1.3.19)
Consider now the operator algebra of the model M,. From eq.(1.3.5) we obtain
B0%mm = Y. CEINB ik min] - (1.3.20)
kl=+41

We are not interested in the precise values of the structure constants C,(l’f;,ll); for us it is
important to know only that

p—-1m 1,m

el =c =olt) = ot =) =0t =0 (1.3.21)

If we use the notation ®(;,) = ¢ and define composite fields : ¢F : using the rules
(1.3.18), we can verify using eqs.(1.3.20), (1.3.21) and (1.3.7) that

:qﬁk:rv@(k“,k“) for k=0,1,...,p—2;
s pF i~ D (k—p+3,k—p+2) fork=p-1,...,2p—4 . (1.3.22)

The OPE ¢ : ¢°?~* : is given by

@(2,2)@(19_1117_.2) = [(:ﬁ(p—2,p—3)] + [@(2,2)] (1323)

(recall that ®(n,m) = Ppnpt1-m)). According to eq.(1.3.18) : ¢?~3 : is obtained
subtracting from eq.(1.3.23) the most singular contributions due to the primary fields
P20 = ¢ and P,y ,_3) = $?7° ;. Therefore : $?*~3 : will receive a contribution
from the field 9,0,¢ which is the most singular scalar representative of the conformal
family [¢] after the field ¢ itself. Thus we see that the field ¢ = ®(3,2) of the model M,
formally satisfies the operator equation of motion (1.3.19). In this sense we say that
the (p — 1)-critical behaviour of theory (1.3.16) is described by the unitary minimal
model M, and identify the composite operators : ¢* : with conformal primary fields
according to (1.3.22).

It was shown in ref. [15] that the models M, describe the critical points of the
exactly solvable “RSOS models” [16], which apparently have the same physical origin
as the (p — 1)-critical points described by (1.3.16). This leads to conclude that a
critical theory M, is not a specific feature of some exactly solvable model, but describe
the general (p — 1)-critical behaviour of two-dimensional systems with scalar order
parameter ¢ and symmetry Z, (¢ — —¢).
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1.4 Coset Construction

A more general CFT can be constructed by means of algebraic methods (see ref. [17]
and references therein). Consider the affine Kac-Moody algebra § defined by the
commutation rules

T8, T2 = i TS, + RS (14.1)

where f2% are the structure constants of some Lie algebra G associated to a compact Lie
group G of dimension dimG = |G|, k is the so-called central extension and n,m € Z.
If we introduce the currents J%(z) in terms of the mode expansion

J(z) =) Jaz"t (1.4.2)

ncZ

eq.(1.4.1) is equivalent to the OPE

J%(2)7%(0) = 5ab f“bCJC(O) . (1.4.3)

The representation theory of affine algebras shares many features with that of the
Virasoro algebra. In particular; there exist primary fields ¢(z) having the OPE

J2(2)$(0) = gd)(o) +.. (1.4.4)

and corresponding to highest weight vectors of some highest weight representation .
In the following we will restrict our attention to unitary representations. Unitarity is
implemented as the condition of hermiticity of the generators: Jot(z) = J%(2). It can
be shown that this implies J2t = J2 .

Virasoro generators L, can be constructed in terms of the modes J2. Indeed one
can verify that the operators

1 Gl 4o

Li(z2) = —=——S" S :ga  Jo (1.4.5)

2k + CA a=1m=-—oo

satisfy the Virasoro algebra, the quadratic Casimir C, of the adjoint representation of
G being defined by fod fd = C,6%. Eq.(1.4.5) automatically leads to the introduction
of the so-called Sugawara form of the stress-energy tensor

G|

T Jz . 1.4.6
O = e (146)

T(z) satisfies the canonical OPE eq.(1.2.30) with central charge

el
L1 1.4.7
T Erc.2 (1.4.7)
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From eq.(1.4.5) one obtains
(L, J5] = —nJ3.. , (1.4.8)

which in turn implies the OPE

J(w) 0J%(w)

(z—w)?  z—w

T(2)J*(w) = (1.4.9)
showing that J°(z) is a conformal field of dimensions (1, 0).

The numbers C4 and k in eq.(1.4.7) depend in general on the normalization of
the structure constants f%. Denoting by 1 the highest root of the Lie algebra G,
we define the normalization independent quantity hg = C, /1,[12~, known as the dual
Coxeter number. Only for simply-laced algebras (A4,D,E series) hg coincides with the
Coxeter number, defined as the number of (non-zero) roots divided by the rank of G.
The dual Coxeter numbers for all the compact simple Lie algebras are listed below:

G hg
SU(n) (n>2) n
S50(n) (n>4) n-—2

Es 12

E; 18

Eg 30
Sp(2n) (n>1) n+1

G, 4

F, 9

Analogously, we introduce the normalization independent quantity k = 2k /4?2, known
as the level of the affine algebra G. It can be shown that k is quantized as an integer in
a highest weight representation. In terms of the integers k and h¢ the formula (1.4.7)
for the central charge reads

k
e = MG (1.4.10)
k+ hg
For any group G the central charge (1.1.4) satisfies the inequality
rankG < Cg < |G| . (1.4.11)

Thus we see that the Sugawara stress-energy tensor (1.4.6) does not allow to make
contact with conformal theories having ¢ < 1. This limitation can be circumvented
through the so-called coset construction.

Denote by J& the G currents and, among them, denote by Ji, the currents cor-
responding to a subgroup H C G (i = 1,...,|H| = dimH). We can construct the
two Sugawara stress-energy tensors (in the following the normalization of structure
constants is fixed by 3% = 2)

|c|
V2 S, ge)date) - (1.4.12)

T = —l
o(2) kG + he ;=1
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11 |
S R (1.4.13)

and, correspondingly, two sets of Virasoro generators LS and L. One can verify that
the operators L¢/H = LG — L commute with the LE’s and satisfy the Virasoro algebra
with central charge

kc|G] B ki |H|

c =cg—CH = = = 1.4.14
G T T ket he  ku + b ( )
This realizes a decomposition of the Virasoro algebra generated by

T = (TG - TH) + Ty = Tg/H + Ty (1.4.15)

into two mutually commuting Virasoro subalgebras generated by T/ and Ty. From
eq.(1.4.14) a central charge less than the rank of G can now be obtained.

As an example, consider the case of coset spaces of the form G’ x G”/H, where H is
the diagonal subgroup generated by J* = Jiy + J(;), J{ and J() being the generators
of G’ and G" respectively. From eq.(1.4.3) we obtain

k1 + kz
(z = wy )2
so that the level of H is determined to be k = ky + ko.

In the case G/H = SU(2)x x SU(2)1/SU(2)k+1, with the indices denoting the levels,
eq.(1.4.14) gives

To(2)T(w) = Ty (2)Thy(w) + Ty (2) Ty () = (1.4.16)

3k 1o 3(k+1) _,_ 6
k+2 (k+1)+2 = (E+2)(k+3)

o = (1.4.17)

and we recognize the values of the ¢ < 1 unitary series eq.(1.3.6) with p = k + 2 =
3,4,....
For G/H = SU(2)x x SU(2)2/SU(2)k42 we find

_ 3k 3 3(k+?) _3(
= 272 (k+2)+2 2 (k+r2)k+4))

(1.4.18)

corresponding to the central charge values for the unitary series of N = 1 superconfor-

mal models [18].

1.5 c¢-Theorem

We have seen in previous sections that to each fixed point of the RG can be associated
a CFT identified by the value of the central charge c¢. A.B. Zamolodchikov obtained
in ref. [19] an important result, known as c-theorem, which gives the possibility to
interpret the ordering of CFT solutions according to the value of their central charge.
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Let’s consider an unitary, homogeneous and isotropic field theory in two dimensions.
In the spirit of renormalization theory, we have to require that the Lagrangian density H
of the theory does not globally depend on the arbitrary scale parameter p introduced by
the regularization procedure, Taking into account the dependence of H on the running
coupling constants g;(u), 2 = 1,...,n we have to impose

d, ,_0H 0g9; OH

L9 0900t 1.5.1
dp Op ~ Ou Oy 0 (15.1)

(in this section sum over repeated indices is understood). If we now parameterize
t

K = poe”", introduce the beta functions by means of
9gi
(g) =+ 1.5.2
aie) = %%, (152)

and the spinless fields ®;(z) conjugated to g; through

OH
p= =, 1.5.3
Ba. (1.5.3)
we can rewrite eq.(1.5.1) in the form
OH
— =0, . 1.54
L (15.4)

On the other hand the same variation of the Lagrangian density under an infinitesimal
dilatation can be obtained from eq.(1.2.13). Therefore, comparing with eq.(1.5.4), we
get the relation

O(z) = —Bi(g)®i(z) . (1.5.5)
We note that in correspondence of fixed points, where the theory becomes scale invari-
ant and © = 0, all the coefficients of expansion (1.5.5) should vanish as expected from
the definition eq.(1.5.2).
The variation of correlation function (1.1.1) with coupling constants can be written,
using eqs.(1.1.2) and (1.5.3) as

0 N o}
5}; < Al((l}l) .. .AN((I)N) > = az::l < A]_((B]) “en B;;Aa($a) . .AN(IDN) >

”‘/dzy < Ai(z1) ... An(on)Bi(y) > . (1.5.6)
On the other hand, the scale transformation eq.(1.2.18) operated on all the fields

contained in the correlator (1.1.1) results simply in a change of integration variables in
the functional integral (1.1.2) so that we write the equation as

N
Y < (@40 + Da) i) .. An(en) > +/d2y < Ax(w1)... An(2n)O(y) >= 0,
) (1.5.7)
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where D, denotes the dilatation operator D applying to the field A,(z,) and we made
use of eq.(1.2.13). Combining now eqgs.(1.5.5), (1.5.6) and (1.5.7) we obtain the equa-
tions of RG in the Callan-Simanzik form

N
(3 (et + Tala) ~ Bla) g | < o) o AnCan) >=0, (159)
a=1
where the operator 5
I'(g) =D+ ﬂi(g)a;_ (1.5.9)

is the so called matrix of anomalous dimensions. By verifying the compatibility of the
equations (1.5.6) and (1.5.7) it is possible to show that the space ® C A spanned by
the fields ®; is invariant under the action of I':

I'd;(z) = (25,3 — %gf) ®;(z) . (1.5.10)

This relation, together with eq.(1.5.5), allows to obtain the equation
o =20, (1.5.11)

showing the coincidence of the anomalous dimension of © with his canonical dimension,
i.e. the absence of renormalization for the components of the energy-momentum tensor.

Let’s consider now the correlators of the components of T}, (we pass to complex
coordinates according to eqs.(1.2.10) and (1.2.19)). By euclidean invariance and the
absence of renormalization of the energy-momentum tensor, they can be parameterized
as follows:

< T(z,5)T(0,0) >= L Z(T) :

< T(2,2)0(0,0) >= Hgf) : (1.5.12)

< 0(2,2)0(0,0) >= C,T;(z )

where 7 = In(22). In the present notation equations (1.2.11) are rewritten in the form
0:T + 0.0 =0; 8.T+08:0=0 . (1.5.13)

These equations imply the following relations for the functions F,G and H:
F=3H-H; H;H=2G—é, (1.5.14)

where the dot means differentiation with respect to 7. If we now define the function

C =2F —4H - 6G , (1.5.15)
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relations (1.5.14) immediately give

¢ =-12G . (1.5.16)

At this point we can use this relation, the RG equations (1.5.8) and the absence of
renormalization for T*¥ to obtain

15}
ﬂz‘(g)g;(](ng) = —24G(1,g) . (1.5.17)
By fixing 7 = 0 and defining

Gij(T,g) = (25)2 < @,’(Z,E)@j(o,ﬂ) > ;

Gii(g) = Gi(0,9), (1.5.18)
eq.(1.5.17) becomes
B.(9)5-C(9) = 4G (9)Ale)6,(s) (1.5.19)

(where eq.(1.5.5) was used).

So far we did not make use of the initial assumption about unitarity of the theory
but now we observe that this condition implies the matrix Gi; to be positive definite
(note that in force of this requirement the quantity ds? = G;;dg;dg; can be regarded as
the metric in the interaction space Q). As a consequence, from eqgs.(1.5.2) and (1.5.19)
we obtain the important inequality

d
—C(g) <0 1.5.20
S0l <0, (1.5.20)
showing that the function C is monotonically decreasing along the RG trajectories. In
particular this excludes the existence of limit cycles in the RG flow.

In correspondence of a fixed point of the RG identified by coordinates g* in Q the
theory becomes conformal invariant and © = 0 so that eq.(1.5.15) reduces to

C(g™) =2z" < T(2)T(0) > . (1.5.21)

The two-point function in the right-hand side is immediately obtained from eq.(1.2.30)
observing that < T >= 0 in an infinite system, so that

< T(2)T(0) >= =

oo (1.5.22)

where c is the central charge of the conformal theory. Thus we can conclude that the
function C introduced in eq.(1.5.15) is stationary in correspondence of fixed points of

the RG where it equals the central charge of the corresponding conformal field theory:

Clg)=c . (1.5.23)
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1.6 Perturbation Theory around Fixed Points

The exact knowledge of the field-theory solutions corresponding to a fixed point of the
RG can be used as the starting point for the study of the properties of RG around
the fixed point itself. Indeed we can think to deform a CFT by adding to it a small
perturbation and to study perturbatively the field theory obtained in this way, with
action

H = Hopr + Hpert - (1.6.1)

However, this approximation is useful only if the RG exhibits a nontrivial topological
behaviour in a sufficiently small neighborhood of the fixed point, namely if it has other
fixed points in this region, since otherwise we would have to sum up at all orders the
perturbative series to get any exact topological information. In order to determine the
conditions under which such nontrivial behaviour can arise, let’s consider a fixed point
with coordinates ¢g= in @ and choose it as the origin of the coordinate system, namely
g* = 0. We now introduce the conjugated fields ®; according with eq.(1.5.3) and orient
the coordinate system in @ in such a way that the fields 7 = ®;|,=¢ have well defined
conformal dimensions A; = A; so that the matrix of anomalous dimension is diagonal
in the origin:

T(0)3? = A;8? . (1.6.2)
Then using eq.(1.5.10) we obtain

Bi(g) = 2ei9: + O(¢%) , (1.6.3) -

where €; =1 — A;. Therefore we conclude that if |e;| ~ € < 1 there is the possibility
to find a new fixed point for g; ~ €, namely inside the region for which a perturbative
study at finite order is allowed. .

In the following we will restrict our attention to the cases in which a CFT is per-
turbed only along one direction in the interaction space @, namely we will consider
single-charge perturbing actions of the form

Hperr = g/dza: ®(z) . (1.6.4)

This restriction is consistent only if the perturbing field @ is the only relevant field in
the operator algebra A or, at least, in some subalgebra of .A. This condition ensures
that under repeated fusions ® closes on itself (modulo irrelevant operators) and the
identity, so that renormalization of ultraviolet divergences in the perturbation theory
based on eq.(1.6.4) does not require additional counterterms.

Let’s now apply these general ideas to the specific case in which the fixed point
g;, corresponds to a minimal unitary model M, with p > 1 [19]. It is easy to see
from eq.(1.3.4) that the only relevant fields in these theories with conformal dimension

close to 1 belong to the series @(,n42), with n < p. In particular the field ®(, 3y, with
dimension

2
A(1,3)=1—E; £ = ——r

1.6.5
— - (1.6.5)
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is the only relevant field in the subalgebra A; = @[@(1,2n+1)] C A, as can be verified by

n

eq.(1.3.5). Thus we can take eq.(1.6.4) with ° = &, 5 as perturbation of the conformal
model M,. We begin by evaluating the second order correction in eq.(1.6.3) to verify
the existence of another fixed point g} in the perturbative region. To this aim we
compute the two-point function

<@)B(0)> = < B(2)B(0) > |ymo + 9o < B(2)B(0) >,y + O(g")

Og
= < ®%z)2°(0) > +g (< —%@O(m)@“(O) >+ < @O(m)%éo(o) >>
~g/d2y < °(2)8°(0)8°(y) > +0(g?) . (1.6.6)

For g = 0 the form of two-point and three-point functions is fixed by conformal invari-
ance:

< ®(z)2°(0) > = |z|™**;
< 8%(2)2°(0)2°(y) > = C{5)qlellz —ylly))7?2, (1.6.7)
where A = A(1,3) and the structure constant C((ll,’g))(l,f}) is equal to ~j—§ in the large p limit

we are considering [21]. With a suitable choice of the coordinate system in () one can
obtain the following condition on the metric:

G(g) =< (2)2(0) > ;220 = 1 + O(g%), (1.6.8)
so that 5
_8; < (I)(IB)@(O) >|g:0,.’c2=1 = O . (169)
Moreover we know that
0 .o 0 0 0 o —4A
< Bg@ (z)® 0)>~<d (m)ag@ (0) >~ |z| . (1.6.»10)

Using all these information we get

-4 167 21~
< ®(z)®(0) > =~ |z (1 —gm(lw[ (1-4) _ 1))
~ || TIATED (1.6.11)

From this relation we can read off the anomalous dimension of the perturbing field ®:

Ag) = A+ —%ﬂ'g + 0(¢%) . (1.6.12)

We can now use eq.(1.5.10) to obtain
4
Blg) =29 (e ~ —\/—é—-vrg> +0(g%) , (1.6.13)
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showing that, for g > 0, an infrared fixed point is present with coordinates

g5 = 7\4/—55 + O(e?) . (1.6.14)

The models M, are the only unitary conformal theories with ¢ < 1. Since unitarity

cannot be destroyed perturbatively, we can use the statement of previous section con-

cerning the decay of the C-function to predict that the new fixed point corresponds to

a model M, with 7 < p. In order to identify the precise value of 7, we use eq.(1.5.19)
to compute the difference between the central charges at g and g7:

c(gg) —c(gr) = —24 /ggo B(g)dg = ges : (1.6.15)

Using eq.(1.3.6) we verify that r = p — 1. Therefore we conclude that the field theory
constructed in this section interpolates between the minimal unitary models M, and
M,_y. In particular

Alg)=1+¢ | (1.6.16)

and this value corresponds to the conformal dimension of the irrelevant operator ®(3)
in the model M,_;. Thus we see that the perturbing field @, identified as @’(01,3) at g;,
renormalizes to (I)(a 1) 2t g7 :

This flow from M, to Mp_1 has an immediate interpretation in the Landau-
Ginzburg description d1scussed in sec. 1.3. Indeed, according to (1.3.22), the field
®(1,3) corresponds to the composite field : ¢*~1 : so that perturbing the model M, by
the field ®(; 5y amounts to lower from p — 1 to p — 2 the degree of criticality of action
(1.3.16). Detailed analysis [19, 20] allows to follow explicitly the change of position
in the conformal grid of the operators : ¢* : as p — (p — 1): all operators &, n) with
n=1,2,...,p— 2 stay at the same position while the other operators move according
to @(mn) = B(myrnp) form—n=1 and ®(,-1p-1) = B(21)-

23



Chapter 2

Integrable Deformations of
Conformal Field Theories

2.1 Integrals of Motion

We presented in sec. 1.6 an example of a field theory with both ultraviolet and infrared
asymptotic limits described by CFTs (the unitary minimal models M, and M,_;
respectively). Since the associated RG trajectory interpolates between two fixed points,
it necessarily lies on the critical surface S, and corresponds to a massless theory (see
sec. 1.1). But in general the RG trajectory obtained perturbing a CFT by a relevant
operator goes out from the critical surface, so that the corresponding field theory
develops a finite correlation length, namely contains only massive particles.

It is known that a massive theory is equivalent to the relativistic scattering theory
and so it is completely specified by the S-matrix, subjected to the usual requirements of
analyticity, unitarity and crossing symmetry. The S-matrix gives explicit informations
about the infrared properties of the theory, while the CFT data (i.e. the particular
ultraviolet fixed point and the perturbing operator) are encoded in the S-matrix in
non-trivial way and have to be derived from it by some technique.

The study of the link between the CFT data and the S-matriz data can be success-
fully performed for a particular class of perturbations, the so-called integrable deforma-
tions [22], and represents an important progress in our understanding of the structure
of two-dimensional quantum field theories. We begin our discussion by considering the
problem of integrals of motion for two dimensions.

The existence of a conserved current in a two-dimensional field theory is expressed
by the continuity equation

65T5+1 = 6263_1 ) (211)

where T3 and ©,_; are some fields of spin s + 1 and s — 1 respectively. The integral
P, = f [Top1dz + O,_1d3] (2.1.2)

is invariant under contour deformations and represents an integral of motion of spin s
for the field theory. If M is the Euclidean rotation generator, the following commutation
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relation holds:

[M,P,] = sP, . (2.1.3)

A conformal invariant theory in two dimensions should possess an infinite number
of conserved currents. They are easily identified considering the subspace A of the
conformal family of the identity operator I formed by all the fields with left conformal
dimension equal to zero. Indeed all the operators T, € A (the spin s coincides with
the right dimension) are holomorphic and satisfy the equation

8:T, =0, (2.1.4)

which is a particular case of eq.(2.1.1). In particular, T = L_,I is simply the holo-
morphic part T of the energy-momentum tensor.

Consider now the theory obtained perturbing a CFT by a relevant scalar operator
® of anomalous dimension d = 2A (as already discussed in sec. 1.6, the field @ is taken
to be the most relevant one in the space A or in some subalgebra A C A;). The action
can be written as

H = Herr + g/d:c2 ®(z) (2.1.5)

with the coupling constant g carrying anomalous dimension 2(1 — A). This can be
expressed ascribing to g right and left dimensions (1 — A,1 — A). We want to study
the possibility that some conserved current T} of the CFT (apart from the case s = 2)
remains conserved in the perturbed theory [22]. In the following we assume that the
structure of the space of operators in the perturbed theory remains unchanged with
respect to the space A of the CFT. Therefore we will keep also the same notations.

Clearly, equation (2.1.4) will be in general modified in the perturbed theory; we
rewrite it in the form

0:T,=gR!_,+...+g"R'_,+..., (2.1.6)

where R"_, are some local fields belonging to A (or A;. Since the dimensions of T}
are (s,0), the dimensions of each term on the right-hand side should be (s,1). This
implies that the dimensions of R" | are (s —ne,1 —ne), withe = 1— A (e > 0 since @
is a relevant operator), so that they become negative for sufficiently high n. Suppose
now we restrict our attention to a unitary theory. Since such a theory does not contain
fields with negative dimensions we conclude that the perturbative series in eq.(2.1.6)
should be finite. In fact, the term g"R” ; with n > 1 can be different from zero only
if the condition

1 —ne = A, (2.1.7)
is satisfied for some relevant dimension A, < A, since otherwise one cannot find a field
with appropriate dimension in A. But we have chosen ¢ to be the most relevant field

in A (or in A,;) so that it must be A, = 0 and the relation (2.1.7) can be verified only
if € is an inverse integer, namely

A=1-= : 1.
5 N>1 (2.1.8)
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We assume this is not the case and write
0:T, = gR,_, . (2.1.9)

It was shown in ref. [22] that there is a set of linear operators D, with the following
properties:

62 = gDO ;
(L, D] = —((1=A)(n+1)+m)Dnym ,
1
Dopal = —I%8(s,7) . (2.1.10)

This allows the direct computation of the right-hand side of equation (2.1.9). For
example, for T, = T' we have

65T = g.DOL__2I = g(A — l)D_zI = g(A - 1)L..1(I) 3 (2111)
But, since L_; = 8, (see eq.(1.2.23)), this result can be rewritten in the usual form
8:T+8,0=0, (2.1.12)

where

0 =g(1-A)d (2.1.13)

expresses the trace of the energy-momentum tensor in terms of the perturbing field.
Note that, although eq.(2.1.13) vanishes for A = 1, this does not means that © really
vanishes in the case of marginal perturbation since the assumption A < 1 was crucial
in the reasoning leading to the truncation to first order of the perturbative series in
eq.(2.1.6).

As a second example, consider the field Ty = L2,I. We find

85T4 = gDOL_QL__QI

= g(A—1)(D_2L_y+ L_,D_5)I

= g(A-1) (21:_21;_1 + —%’ELL) 'y (2.1.14)

but since the right-hand side is not a total z-derivative, this does not imply the con-
servation of the quantity under consideration.

A general argument for establishing the existence of non-trivial integrals of motion
in a perturbed theory was developed in ref. [22] along the following lines. As shown
by the dimensional counting explained above and confirmed by previous examples, the
field R]_, belongs to the subspace ®,_; of the conformal family [®] containing all the
fields of dimensions (A + s — 1, A). Analogously we define A, to be the subspace of A
containing the fields of dimensions (s,0):

A=@PA, . (2.1.15)



Let us introduce also the factor spaces

Ay=A,/L_1A,_4 (2.1.16)

and

b, =8/L_,D,, . (2.1.17)

The symbol 8; in eq.(2.1.9) can be considered as a linear operator acting in the following
way:

8: : A, —®,, (2.1.18)
(in fact, the action of J; extends to the whole space A Aand the restriction to A is only
for later convenience). Let II, be the projector ®, — ®, and B, the operator

B,=T,0: : A, — &, . (2.1.19)
Then, by definition, every field T4y € Ayy1, satisfying B,11T,41 = 0 has the property
0:Ty11 = 0.09,-1 , (2.1.20)

where ©,_; is some local field belonging to ®,_;. So we conclude that an integral of
motion of spin s in present in the perturbed theory every time the operator B,.; has a
non-vanishing kernel. For a general field ® taken as the perturbation, ker B, = T and
ker B, = 0 for s # 2.

The presence of non-trivial integrals of motion can be proven if the perturbing field
is chosen to be one of the degenerate fields ®(, ,) contained in the unitary minimal
models M, discussed in sec. 1.3. Our choice restricts to the three fields ®(1,3), ®(1,2)
and ®(,) since these are the only fields among the ®(,,m)’s with the property to be the
most relevant fields in some appropriate subalgebra. As an example, take & = ®(; 3).
This field satisfies the third-level null-vector equation 8]

) 1
Ly——— I L. 3 = 1.21
( PTA+9 2’Jr(A+1)(A.+2)L—1>CI) 0, (2.1.21)

where A = Ay 3) can be computed by the formula (1.3.7). Using this equation we can
rewrite eq.(2.1.14) in the form

8.1, = 8,0, , (2.1.22)
i (a-1) (A—3)(A—1)(A+3)
g(A —1 —9)(A—1)(A+3) .,
— 2 212 _ . .
0, = £ [AL2+ 58 D) L_l]@ (2.1.23)

In the general case, since B, is a linear operator mapping A, into ‘is_l, ker Byyq # 0
if dim(Aypq) > dim(@,). In the example we just proposed, the nonzero kernel of By
comes simply from the fact that dim('i'g) = 0 due to eq.(2.1.21). The dimensions of
the spaces A, and &, can be computed by using the generating functions

Z qsdim([&s) =(1- q)q°/24x(1,1)(q) +q (2.1.24)
=0
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and -
g 37 g*dim(2,) = (1 - g)q”* X (nm)(q) , (2-1.25)

§=0
where x(1,1)(¢) and X(n.m)(g) are the Virasoro character functions of the identity op-

erator ®(; ) and the perturbing operator ®(n,m)- Such functions are defined in the

following way:
+oo

X(ra)(q) = g 7 P(q) S (qPurktrs — gPumkins) (2.1.26)
k=—o0
where _
Plg)=1I(1-¢")7", (2.1.27)
n=1

and prefers to the model M,,. Using eqs.(2.1.24) and (2.1.25) we can establish for which
values of s the condition dim(AsH) > dim('@,) is satisfied. This counting argument
permits to show [22] that the theory obtained perturbing a unitary minimal model M,
by the operator ®(,, ) (whose action we denote by HIS"’"’)) contains integrals of motion
P, with the following spins:

s=1,3,5,T for H{?)
s=1,57,11  for H" HED 5 p>5 (2.1.28)

The counting argument turns out to be not valid for values of s larger than those
contained in (2.1.28). Nevertheless, it is generally believed these first few conserved
charges are only the first representatives of an infinite series. This amounts to assume
the complete integrability of the theories proposed in this section and gives rise to a
series of important developments. The theories HIELB) with g < 0, HISI’Q) and H;(,z’l)
are expected to develop a finite correlation length ¢ ~ |g|~/* (we showed in sec. 1.6
that HI(,I’B) remains on the critical surface for g > 0). Therefore they will contain only
massive particles and will be characterized by an S-matrix.

2.2 Factorized S-matrix

While in four-dimensional space-time the existence of non-trivial integrals of motion
is known to force the S-matrix to coincide with identity [23], in two dimensions this
circumstance leads to particularly simple (but non-trivial) scattering theories exhibiting
many interesting properties [24].

Let’s consider a relativistic scattering theory containing N types of particles with
masses Mg, a = 1,..., N. We will denote a(p) the particle a with two-momentum Pu
satisfying the mass-shell constraint p,p* = m2. We also define the light-cone compo-
nents of p*

p=p"+p';  p=p"—p' . (2.2.1)
The states
!a‘l(pl)a’2(p2) e a’n(pn) >in(out) (222)
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form the basis of the asymptotic in (out)-states which is assumed to be complete in a
local field theory. The S-matrix is the operator connecting these two sets of asymptotic
states. Let’s assume that the theory possesses an infinite number of integrals of motion
P, of type (2.1.2) with different spin s, whose action on the asymptotic states (2.2.2)
is given by |

Psla'l(pl) ce an(pn) >in(out): ngi(Pi)‘al(Pl) cee a'n(pn) >in(out) . (223)

i=1

The additivity of the contributions of the largely separated particles contained in
asymptotic states follows from the locality of the conservation law expressed by the
fact that P, is the integral of a local density. Due to eq.(2.1.3), the eigenvalues wg(p)
have the general form

Wi(p) = K7 (2.2.4)

where p is defined in eq.(2.2.1) and k¢ are constants.
If we now consider a generic scattering process in which the state |a;(p;) ... an(pn) >in
evolves into the final state |b1(g1) . - - bm(gm) >out, conservation of charges P, implies

m

iW?"(Pi) = wilg) - (2.2.5)

J=1

Since we required the existence of infinite charges with different spin, (2.2.5) is a
system of infinite equations for a finite number of unknowns which will be satisfied in
general only if n = m and the set of initial two-momenta {p;,...,pn} equals the set
of final two-momenta {qi,...,gm}. In other words, the theory in question admits only
elastic scattering processes (there is not particle production) in which each initial two-
momentum is individually conserved (this automatically implies the conservation of
the number of particles with a given mass). All this does not mean that the scattering
is trivial since, for instance, if the initial state contains particles with the same mass,
they can exchange momenta in the final state, or be replaced by other particles with
the same mass™.

Another important property enjoyed by the scattering theories we are discussing
is the complete factorization of multiparticle S-matrix into a product of two-particle
S-matrices. Indeed, if we consider as an example the collision process of three particles
with spatial momenta k; > ky > ki, there are the three possible space-time diagrams
depicted in fig. 2. Let’s now apply to the initial state the operator exp(iaP;), with s > 1
and a some real parameter. Since the charge is locally conserved and the particles are
initially widely separated, the exponential operator will act separately on the wave
packet of the i-th particle which we write in the form

Wile) >=1 [ dh exalib(a — w] F(F) > , (2.2.6)

* Actually, we have to say that it can be shown [25] that to reach the same conclusions it is enough
to require the existence of one non-trivial (s > 1) conserved charge plus analyticity.
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where f(k) is any reasonable function peaked at k = k;. We have
Wi(e)> = expliaB,)li(e) >
4o
_ f dk expliaw,(k)] explik(z — )] f(k) > .  (2.2.7)

By stationary phase approximation, we see that ;(z) is peaked at z;, while 9/ is
peaked around the value

T =2 —a [%ws(k)} L (2.2.8)

Then, recalling eq.(2.2.4), we conclude that the exponential operator with s > 1 dis-
places the "centre of mass” of the i-th wave packet by an amount depending on the
mean momentum k;, so that taking the parameter a sufficiently large we can alter the
relative position between any two particles with different momenta [26]. As a conse-
quence, we can pass in fig. 2 from a diagram to another applying exp[iaP,] to the initial
state. But, since this operator commutes with the S-matrix, we conclude that the am-
plitudes for the three possible sequences of collisions in fig. 2 are equal and factorize in
the product of three two-body S-matrices. With obvious notations

S(123) = 5(23)5(13)5(12) = 5(12)5(13)5(23) . (2.2.9)

These cubic relations, also known as star-triangle or Yang-Bazter equations, are triv-
ially satisfied if the S(ij) are ordinary functions, but impose on the contrary serious
constraints to the two-body S-matrix in the case the spectrum of the theory contains
particles with the same mass differing for quantum numbers related to some internal
symmetry.

Generalizing the displacement argument just illustrated one can see that any N-
particle S-matrix element can be written in factorized form, in such a way that the
problem of obtaining the complete S-matrix for a two-dimensional scattering theory
possessing non-trivial integrals of motion reduces to the determination of the two-
body S-matrix. Exploiting relations (2.2.9) and the usual requirements of unitarity,

analyticity and crossing symmetry, this task has been successfully completed for several
models.

2.3 Purely Elastic Scattering Theories

The integrable deformations of CFTs discussed in sec. 2.1 have led to diagonal factor-
izable S-matrix theories, namely to theories in which the final state contains exactly
the same particles, with the same momenta and the same quantum numbers, than
the initial state [27, 22, 28, 29, 30, 31, 32]. As a consequence, the S-matrix element
Sap describing the scattering of particles a and b reduces simply to a pure phase e'e
expressing the time delay (or advance) with respect to the free case and the cubic iden-
tities eq.(2.2.9) are,trivially satisfied. To these diagonal, or purely elastic, scattering
theories we will restrict our attention in the following,.
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We define the two-particle S-matrix element in terms of the relation
|a(0:)b(0) >out= Sab(ba,06)a(62)0(0s) >in , (2.3.1)

where we introduced the convenient parametrization of two-momenta in terms of the
rapidity variable 6:
p° = mcoshf ; p* =msinh § . (2.3.2)

In terms of the Mandelstam variable s = (ps + ps)?, Sas(s) has two cuts along the
real axis of the complex s-plane for s > (m, + m;)? and s < (m, — my)?. These cuts,
required by two-particle unitarity, are of purely kinematical origin, corresponding to
the opening of the direct channel (ab — ab) and of the crossed channels (ab — ab,
ab — ab) respectively. They are the only cuts in the s-plane, due to the absence
of particle production. They can be eliminated considering S,, as a function of the
relative rapidity 6,, = 6, — 8, and using the relation

5(8ap) = m2 + mE + 2m,my cosh 8,4 (2.3.3)

to map the s-plane onto the §-plane as depicted in fig. 3. The first sheet of the s-plane
is mapped into the physical strip 0 < Im 8, < m while the second Riemann sheet is
mapped into the strip —m < Imy < 0 (this structure of the f-plane is obviously
2mi-periodic). Since to poles in the S-plane correspond poles in the §-plane, we will
treat S,(f) as a meromorphic function of §. The assumption of real analyticity in
the s-plane, Sy(s) = Si,(s*), translates into S.(6) = S;(—67), so that the unitarity
condition SST = 1 reduces, for real values of 8, to

Sun(8)Sap(—0) = 1, | (2.3.4)

and can be extended to the entire -plane by analytic continuation.
Since Su4(0) = Sea(f) (we consider parity invariant theories) and Sqp(6) = Sz5(8

due to charge-conjugation symmetry, the crossing symmetry relation S, 3(s) = Sa(s) =
Sap(2m? + 2m? — s) becomes simply
Sa5(0) = Sap(0) = Sap(im — 6) . (2.3.5)

From eqs.(2.3.4) and (2.3.5) we obtain the relation Su(6 + 271)Sa(—6) = 1 showing
that (compare with eq.(2.3.4)) Sq(6) should be a 27i-periodic function of 4.

In alocal quantum field theory we expect scattering amplitudes to be polinomially
bounded in the momenta (this is a consequence of Wightman axioms [33]). It can
be shown [34] that this condition forces any meromorphic , real analytic, 27i-periodic
function f(f) satisfying the unitarity condition (2.3.4) to be of the form

f8) = II fa(6) , ' (2.3.6)
acd
where f, are the so-called building blocks,
sinh 2(6 + i)
sinh (6 — i) ’

fo(0) =

(2.3.7)
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and A is a set of complex numbers invariant under complex conjugation.

We consider theories whose spectrum contains only stable particles to which corre-
spond poles in the interval (mq —my)? < s < (m,+m;)? of the real axis in the s-plane.
Since this interval is mapped onto the imaginary axis in the f-plane, we can take every
a real and —1 < a < 1. The building block f,(f) has a simple pole at 8 = iar and a

simple zero at § = —iam, and has the useful properties
fa(e) = fa+2(9) = f—a("'g) 3 (238)
fa(0)f-a(8) =1, (2.3.9)
| faim — 0) = —fi_4(6) (2.3.10)
fol8 — i B) fu(8 + ixB) = fap(F) , (2.3.11)
folf) =—-fi(8) =1 (2.3.12)

If at least one of the particles a and b is its own anfiparticle, the crossing invariance
relation (2.3.5) reduces to

Sap(0) = Sap(im — 6) (2.3.13)
implying that, up to a sign, Sg(6) must be a product of functions of the form

tanh (6 + iar)
tanh 2(6 — iar)

Fo(0) = fal(8) fulim — 8) =

(2.3.14)

If 5,4(8) has a simple pole at 8 = Uy, in the direct channel, we say that the particle
¢ with mass

m? = s(tuly) = m2 + m} + 2mamy cosus, (2.3.15)

is a bound state of a and b. The last equation can be geometrically interpreted in terms
of a triangle of sides m2,m? and m?, so that

uly 4+ ud, 4+ ul =21 . (2.3.16)

In the vicinity of this singularity, the S-matrix element is given by

iggbc

Sap(6) ~ mg , (2.3.17)
and can be diagrammatically represented as in fig.4, where the couplings gu. are
supposed to be totally symmetricin a,b and ¢. To this direct channel pole corresponds,
through the crossing symmetry relation (2.3.5), a pole at § = itgy, = i(7 — ul,) for the
matrix elements S, ;(6) = Sz,(0) of the crossed processes. A direct-channel pole can be
distinguished from a crossed-channel one through the sign of the residue, respectively
positive and negative in the two cases. For the discussion of this point and many other
details, such as higher order poles, we refer the reader to the review article ref. [35]

and references therein.
The construction of the S-matrix for factorizable scattering theories in two dimen-
sions can be performed using the so-called bootstrap principle [36]. According to this,
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one uses the scattering amplitudes, supposed to be known, of a small number of fun-
damental particles to obtain the scattering amplitudes of the bound states of these
particles through a fusion procedure; this procedure is then applied to the bound states
of the bound states and stops only if the bootstrap closes on a finite number of particles.
To be concrete, let’s return to the case of purely elastic scattering theories discussed
in previous section and suppose for simplicity that all the particles of the theory are
self conjugated. Consider a particle ¢ appearing as a direct-channel bound state at
fap = iuS, in the scattering of particles a and b. Now, if we consider the three-particle
amplitude
Sava(Bas 06, 02) = Sap(8ab)Sad(bad)Sea(Fea) (2.3.18)

for 6 = iu’,, we can use the displacement argument of sec. 2.2 to obtain the relation
diagrammatically represented in fig. 5 and corresponding to the bootstrap equation

Sea(8) = Saa( + iul,)Sea(6 — i@g,) . (2.3.19)

The fact that for suitable imaginary values of the rapidities particles a and b give
rise to the bound state ¢ can be expressed writing

lc(0) >= lim ela(f + a8, — €)b(f — iug. +€) > . (2.3.20)

From eq.(2.2.3) follows that, acting on both sides of the last equation with the conserved
charge P,, we obtain [22]

kemle ™ *%e 4 Kdmie e = km? (2.3.21)
where eqs.(2.2.1), (2.2.4) and (2.3.2) were used. This can be considered as a system
of equations for the constants k¢ which provide significant limitations on the possible
values of the spin s. Note that the trivial solution k¢ = 0 for any a and s should
be rejected since it would imply the absence of integrals of motion and this is in
contradiction with factorization.

As an example consider the case a = b and k% # 0. Then equation (2.3.21) reduces
to

kC
Z:i = 2cos(sty,) . (2.3.22)
If a = b = ¢, the above equation has an unique solution
Uoa = 3 s =1,5(mod.6) . (2.3.23)

The non-vanishing of the quantity u2, means that the particle a appears as bound state
of itself. This is referred to as “¢3-property”.

Very interesting applications of the bootstrap principle and of equation (2.3.21) can
be found in ref. [22].
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2.4 The 3-state Potts Model

As an application of many of the ideas exposed so far we present in this section some
results concerning the 3-state Potts Model [37, 27].

Generally speaking the g-state Potts model (see,e.g., [38]) is the lattice model in
which the “spin” variable o, associated to the generic site  can assume g different
values while the nearest neighbour interaction energy takes two possible values, dis-
tinguishing the case when the two states are identical (favoured case) from the one
when they differ. For ¢ = 2 one simply recovers the Ising model. It is clear from
the definition that the model has S,-invariance, S, being the permutation group of ¢
elements.

In the ¢ = 3 case the partition function can be written in the form

26) = Seso{s T Joat 5.0

{s} (")

= > exp {ﬂ > cos(¢s — ¢x:)} , (2.4.1)

¢z=0,+2x/3 (z,2")

where the sum in the exponent is intended over nearest neighbours and the spin vari-
ables o = exp(i¢$) and & = exp(—i¢) take as values the cubic roots of identity. Looking
at this partition function one immediately realizes that the global symmetry group
S3 can be regarded as the product of the two abelian subgroups Zs (with generator
2, Q% = E) and Z, (with generator C, C? = FE) whose action on the spin variables
is defined by (w = exp(27i/3))

Qo =wo Ve =wld (2.4.2)

Co=45 . (2.4.3)

We will call the subgroup Z, “charge conjugation”.
The partition function of the two-dimensional g-state Potts model obeys a duality
relation with a fixed point

B = 21n(1+ ) (2.4.4)

(this is a generalization of the well known duality property of the Ising model ). For
g > 4 there is a first order phase transition while for ¢ < 4 the transition is continuous
[39] and at the corresponding critical point the system can be described by a conformal
invariant theory. Some critical exponents for the 3-state Potts model where obtained
by Baxter [40] from the assumption that this model is in the same universality class
as the hard hexagon model which he solved. These informations permit to compute
the conformal dimensions of the operators ¢(z) and &(z), which are the scaling limits
of the lattice spin variables, and of the energy operator £(z), which results from the
scaling limit of the the interaction term o, + .0, in the partition function. Such
dimensions are A, = A; = 1/15 and A, = 2/5. Scanning the Kac’s tables for the
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unitary minimal models one finds that these two conformal weights are present in the
conformal grid of the model M5 (¢ = 4/5). The complete conformal grid for this model
is shown in table 1.

It was already mentioned in sec. 1.3 that there exist two modular invariant partition
functions corresponding to the value p = 5. The first one is the diagonal solution which
allows only for the presence of scalar primary fields appearing just once. The second
partition function belong to the A-D series of the ADE classification and reads

Z = |xi1+x14® +xaz + xual® + 2xs07 + 2xs.4)?
= |xo+ xsl® + Ixz/s + x7/5l° + 2lxa/15* + 20x2/5] (2.4.5)

(here we used first the notation Xn m, then the notation xa o ). We see that this sec-
ond solution contains two scalar fields of conformal dimensions (1/15,1/15) in perfect
agreement with the presence of two spin variables ¢ and & in the partition function
(2.4.1). Therefore we conclude that eq.(2.4.5) is the correct choice for the partition
function of the 3-state Potts model.

Let’s consider the other primary operators which, according to eq.(2.4.5) are present
in the theory (we will adopt the notation @, ) for the field with conformal dimensions
(A, A)). The transformation properties of such operators under the group S; were de-
termined in refs. [41, 42]. It turns out that the doublet of fields ®(y/3/3) Tepresents,
as the doublet ®(;/15,1/15), a basis for a two-dimensional representation of S53. The
remaining scalar fields ®(2/52/5) = €, ®(7/5,7/5) and ®(33) are invariant under Sy trans-
formations. In conclusion we have the two pairs of fields V = ®(7/52/5), V = @(2/5,7/5)
and W = ®(30), W = ®(y3) which are the left and right light-cone components of a
spin 1 field and a spin 3 field, respectively; they have zero Z3 charge but change sign
under C conjugation.

All these properties are in complete agreement with a Landau-Ginzburg description
of the 3-state Potts model based on a complex scalar field ¢ with Lagrangian

L= (0u9) +M¢” +¢7) . (2.4.6)

Then the spin density doublets ®(;/151/15) and ®(z/3,2/3) may be identified with the
pairs ¢, ¢ and ¢*¢?, ¢*2¢ respectively. In addition the energy-like operators ®(z/5,2/5)
and ®(7/5,7/5) correspond to the Ss-invariant combinations ¢~¢ and ¢® + ¢*3. Finally
the operators with spins 1 and 3 are associated to (¢*0¢ — $8¢™) and (¢* ¢ — $3¢™)
respectively.

Only a subset of the anomalous dimensions contained in table 1 appears in the
partition function (2.4.5). The remaining anomalous dimensions were related in ref.

[42] to “disorder fields” which are non-local with respect to the subalgebra discussed
above.

The fields W and W are spin 3 conserved currents since they satisfy the equations
oW =0, o.w . (2.4.7)

showing that W = W(z) and W = W(Z) (in the following we will consider only the
holomorphic component W reminding that the same results hold for W). An infinite
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set of generators W, (n = 1,41,42,.. .) for the associated symmetry can be introduced
through a mode expansion analogous to that used to define the Virasoro generators L,
from the holomorphic component of the energy-momentum tensor, i.e.

W, = ){dz W (2) . (2.4.8)

These operators form, together with the Virasoro generators, the so-called W-algebra
[43].

The 3-state Potts model away from the critical point can be described by perturbing
the fixed point Hamiltonian Hy by the energy density operator e(z) which is the only
relevant operator in the theory invariant under the group S3. In other words we consider
the Hamiltonian

H=H, -+ g/dzm e(z) (2.4.9)

where the coupling constant g has conformal dimensions (3/5,3/5). Since in the nota-
tion of sec. 2.1 this Hamiltonian corresponds to Hél’z), we already know (see (2.1.28))
that an infinite set of integrals of motion P, with spin s = 1,5,7,11,... survives in the
perturbed theory. These integrals of motion comes from the deformation of conserved
currents belonging to the conformal family of the identity and have positive C-parity.
On the other hand we have seen that the conformal limit of the theory under consider-
ation contains also infinite conserved currents belonging to the conformal family of W
(all the descendents obtained applying the operators L_, to W) which have negative
C-parity. In order to see if some of these currents remains conserved off-criticality, let’s
consider the first of equations (2.4.7). For g # 0 the right-hand side becomes non-zero
and can be represented in the form of a perturbative series in g as in eq.(2.1.6). Using
the dimensional counting discussed in sec. 2.1 one immediately sees that the series can
contain only the linear term so that we write

8:W =gR . (2.4.10)

Here R should be alocal field of dimensions (12/5, 2/5) and negative C-parity belonging
to the operator algebra of the theory. The only field with these properties is the
derivative 0.V where the field V was specified before. Thus €q.(2.4.10) can be rewritten
in the form

where @ is just 8,V up to an appropriate numerical factor. Therefore the operator
E:f@W+&Q (2.4.12)

is an integral of motion for the theory having spin 2 and negative C-parity. In ref.
[27] integrals of motion with negative C-parity and spin 4 and 8 were also constructed
and it was argued that, together with the positive C-parity representatives previously
mentioned, they form the first members of an infinite series of conserved charges P,
whose spin s takes all positive values such that s # 0 (mod 3).
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The existence of these integrals of motion implies the factorizability of the S-matrix
associated to the theory defined by the action (2.4.9). Such S-matrix can be constructed
associating to the fields & and & the particle and antiparticle a and @, respectively. They
have the same mass m and form a basis of a two-dimensional representation of S, i.e.

Qa = wa , Qa=w'a (2.4.13)
Ca=a (2.4.14)

Then the most general two-particle S-matrix is given by the relations
|a(61)a(92) >0ut = u(ﬁlg)la(t%)a(@g) >in y (24:15)

10(6)8(62) Sows = t(812)|a(61)3(62) >in +7(612)[a(61)a(82) >in - (2:4.16)

The selection rules coming from the conservation of P, can be used to show that the
reflection amplitude 7() in eq.(2.4.16) must vanish. Indeed the one-particle states
|a(6) > and |@(0) > should be eigenstates of P, with opposite sign eigenvalues to take
in account the fact that P, has negative C-parity. Then, according to the results of
previous sections, we can write

Pla(8) > = kme®|a(d) >, (2.4.17)
Pla(8) > = —kme*|a(d) > . (2.4.18)
Recalling that P, commutes with the S-matrix and using eq.(2.2.3) to compute the
result of the action of P, on both sides of eq.(2.4.16), one immediately concludes that

it should be () = 0 so that the S-matrix becomes diagonal. The remaining amplitudes
u(6) and t(§) are subject to the constraints coming from unitarity

1OV (—0) =1, u(f)=u(—6)=1 (2.4.19)
and crossing symmetry
t(0) = u(ir —09) . (2.4.20)

The minimal Zz-symmetric solution for these equations was proposed in ref. [44] where
the S-matrices for general Z,-symmetric models were constructed. It reads

sinh 1(6 + 271/3)

)T Gnh 1(6 — 2wi/3)

(2.4.21)

The pole at # = 27i/3 in this amplitude is interpreted as an antiparticle @ appearing
as a bound state in aa channel. This is in agreement with the constraints provided by
the conservation of P,. Indeed, in the vicinity of the pole one can write

la(p1)a(p2) >~ la(py +p2) > - (2.4.22)
Applying P, to both sides of this relation we get the equation
mk(e?® + €2%) = —mk(e® + )’ (2.4.23)

which is satisfied only for §; — 0, = 2:—3'—’
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Chapter 3

Off-Shell Properties from S-matrix

3.1 Form Factors

As we have seen in the previous chapter, the factorization of the scattering character-
izing integrable two-dimensional models allows in many cases the construction of the
exact S-matrix. An important point in the scheme described so far is represented by
the problem of passing from the on-shell data provided by the relativistic scattering
theory associated to an integrable model to off-shell quantities, like correlation func-
tions of local operators. This would give, in particular, the possibility of going back
from S-matrix data to the conformal theory describing the ultraviolet limit. Unfortu-
nately, apart from a single exception concerning the scaling Ising model [45], there is
no known method to compute correlation functions in explicit form. A very important
step in this direction was made in a series af papers [46] in which was shown that the
factorization of S-matrix, supported by the usual properties of analyticity, crossing
symmetry and unitarity, allows for many integrable theories the explicit reconstruc-
tion of matrix elements of local operators between asymptotic states. The knowledge
of such matrix elements immediately gives the possibility to write down a correlation
function as an infinite sum over multiparticle intermediate states. At this point one
can, in principle, hope to sum up the series or, more pragmatically, use partial sums if
the convergence of the series is fast enough.

At the base of this approach there is the assumption about the existence for the
integrable model under consideration of a set of operators Vi(6.), Va(6a) (the index a
numerates the particles preset in the theory) of creation and annihilation type, which
satisfy the following associative algebra generalizing fermionic and bosonic algebras
(we suppose for notational convenience the theory to be purely elastic):

%(ga)V(eb) - Sab(eab)%(gb)‘/a(aﬂ)a

LA ACHRER R CSVAICVAICAY (3.1.1)
Va(6)Vi'(66) = Sav(Bat) Vi (66) Va(8) + 276,55(6as) (3.1.2)

The role played by S-matrix clearly indicates that each commutation of these opera-
tors can be interpreted as a scattering process. If we call L(e) and T, the generators
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of Lorentz transformations and translations respectively, the operators V! and V, are
expected to transform in the following way under the Poincare’ group (recall the defi-
nition (2.3.2) of the rapidity variable 6):

UVl () U = V(8 +¢), (3.1.3)

Ur,VaUr! = POV, (6) . (3.1.4)

We identify with the vacuum of the theory the state |0 >= |0 >;;(ou) annihilated by
the operators V,(8):

Va(0)]0 >=0 =< 0|V (0) . (3.1.5)

The other states of Hilbert space can then be generated by successive action of the
creation operators V,/(#) on the vacuum:

|a1(91)...an(9n) >= V;i(@l)...an(@n)lO > . (3.1.6)
According to eq.(3.1.2), the normalization of one-particle states is
< a(Ha)]b(Hb) >= 27r6ab5(6ab) . (317)

It is evident from the commutation rules (3.1.2) that the states generated in this
way are not all linearly independent, but linearly independent sets can be selected
giving, for example, ordering prescriptions on the rapidities. Then we choose [24] as a
basis for the in-states those which are ordered with increasing rapidities

01 > ... > 9,1 R (318)

and as a basis for the out-states those with decreasing rapidities

b, <...< g, . (319)

Let’s now consider a hermitean local field O(z), which for simplicity we will suppose
to be scalar, and define the form factors of this operator as

Fal...an(gl, ey Gn) =< 0|0(0)10,1(91) e an(9n) >in (3110)

(see fig. 6 for a diagrammatic representation). The z-dependence can be easily intro-
duced by the shift O(z) = Ur, O(0)U;! and using eq.(3.1.4), while the matrix element
between generic asymptotic states can be obtained from eq.(3.1.10) exploiting crossing
symmetry. Indeed, by analytic continuation of several §’s up to the line Imf = in the
corresponding two-momenta are reversed and we can write

out < bl(gll) e bm(G'm)l(’)(O)]al(Gl) - an(Qn) >in
- FBL...Emal...an(gll + 'L'Tl'7 ey 9’m + ’l:ﬂ', 91, e ,9,,) . (3.1.11)

Two dimensional Lorentz covariance implies, for a generic operator of spin s, the rela-
tion

Fal...an(el + A, e 7671 + A) = BSAFaL...an(gl, .. '7011) y (3112)
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showing that the form factors (3.1.10) are functions of the differences of rapidities §;;.
We expect they to be analytic in the strip 0 < Im 0;; < 2w except for simple poles.

The form factors also satisfy a set of equations, known as Watson’s equations [47],
which in two dimensions assume a particularly simple form. The first one is an imme-
diate consequence of the algebra (3.1.2) and of the definition (3.1.10) and reads

Fal...a;a;+1...an(917 ey 6i7 ei—{—l) sy gn)
= a;a,~+l(9i - 9i+1)Fa1...a;+1a;...a"(917 vy ‘9H—170i7 ey 6”) (3113)

The second Watson’s equation is obtained by considering the analytic continuation
f1 — 0, 4277 and takes into account the monodromy of the form factor as a function of
the rapidities. Indeed, to the proposed substitution does not correspond any variation
from the kinematical point of view but the presence of cuts at f;; = 2m1i gives rise to
the following relation [46]:

Fal‘__an(al+27T7:,92,...,9n) = Faz___anal(ez,...,ﬁn,ﬂ)
= 11 Sesa, (i = 61)Faya, (61, -, 6,) . (3.1.14)
=2

In the case n = 2 Watson’s equations specializes to
Faya,(0) = FaLaz(“g)Sala'z(g) ’ (3'1'15)
Fora,(im — 0) = Fo 0, (im + 6) . (3.1.16)
The fundamental informations which allow in many cases the explicit reconstruction
of form factors came from their pole structure in the strip 0 < Im#; < 27 and from the
recursive equations to which this structure gives rise. As a function of the rapidities
variables the form factors have two kinds of simple poles. The first kind of singularity
arises whenever two particles a and b among those appearing in eq.(1.1.6) have a

bound state ¢ at 6, = iug,. Then, in the vicinity of this value of Oap, the form

factor F,, . anab(01,... 10m,04,0) can be represented as in fig. 7. Recalling eq.(2.3.17)
we obtain

P Py a8,y B8+ 85y = 2,0 = 6054 + ) = g5y Py a6, ., O, 0)
(3.1.17)
where we recall that 4°, = = — ugy. This equation establishes a recursive structure
between n + 1- and n-particle form factors.

The poles of second type show up if there are particles and antiparticles among the
particles entering the form factor and are of purely kinematical origin. Indeed, suppose
that the particle a and the antiparticle @ have rapidities differing by 7w. Then, through
the crossing symmetry relation (3.1.11), the incoming antiparticle @ can be interpreted
as the particle a in the final state with an unchanged value of the rapidity (see fig. 8).

To this particular kinematical configuration corresponds a pole whose residue is given
by the relation [46]

—i Bm(0—0)Fu, . araa(B1 - . ., Oy Bkir, 0) = (1 — T Saai(6 - ei)) Fuyan(81y..,00) ,
6—8 =1
(3.1.18)
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relating form factors with n + 2 and n particles.

In ref. [46] equations (3.1.11-3.1.18) were used as a set of axioms to show that the
operators defined by matrix elements between asymptotic states satisfy proper local
commutativity relations.

In order to give some basic informations about the explicit construction of form
factors, let’s consider for simplicity the case in which the theory contains only one
species of particles. Then, as was shown in ref. [48], the general solution of Watson’s
equations (3.1.13) and (3.1.14) can always be written in the form

Fo(81,...,00) = Ka(B1y. .-, 00) [1 Frin(6i5) (3.1.19)

i<j

where F,;,(6) has the properties that it satisfies egs.(3.1.16), is analytic in 0 < Imf <
, has no zeroes in 0 < Imfd < 7, and converges to a constant for large values of §. These
requirements uniquely determine F,;,(6) up to a normalization N. In terms of the
function f(z) defined through the following integral representation of the two-particle

S-matrix
55(6) = exp M‘” %”if( ) sinh (”gﬂ , (3.1.20)

7

Fpin can be written as [48]

Frin(8) = N exp [./o — f( )sz i ) (3.1.21)

sinh z

L.___—l

where R
=iwr—0 . (3.1.22)

Due to the properties of F;, the remaining factor K, in eq.(3.1.19) should be a
solution of Watson’s equations with S, = 1. This implies that K, is a completely
symmetric, 2mwi-periodic function of the 6;’s. Moreover, it must contain all the physical
poles expected in the form factor. In order to have a power-law bounded ultraviolet
behaviour of the two-point function eq.(3.2.1) one has to require that the form factors
behave asymptotically at most as exp(k8;) as §; — oo, k being a constant independent
of 7. This means that, once one extract from K, the denominator which gives rise to
the poles, the remaining part has to be a symmetric function of the variables z; = eli
with a finite number of terms, i.e. a symmetric polynomial in the z;’s. A basis for
the space of such polynomials is provided by the elementary symmetric polynomials
o*k (ml, ,Z,) generated by [49]

[ +2)= i 2" * el (zy,. .., z,) , (3.1.23)

with the convention that the 0',(:) with & > n and n < 0 are zero. For the other cases
one finds

0'0:1
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o1 = Tyt+Te+...+z,

gy = TiTr+ T3+ ...+ Th_1T,

On = Z1T9...2T,

The U,E") are homogeneous polynomials in z; of total degree k and of degree one in each
variable.

Providing this general scheme with the specific informations coming from the pole
structure of the theory and using the recursive equations (3.1.17) and (3.1.18) the form
factors for several models have been explicitly constructed (see refs. [50, 51, 52].

3.2 Expansion over Intermediate States

As already mentioned, the correlation functions of local operators can be written as
an infinite series over multi-particle intermediate states. In particular, the two-point
function of an hermitean operator O(z) in real Euclidean space is given by

< O(z)0(0) > = i/%ﬁ < 0|O0(z)|a1(61)...an(8n) >in
X in < ai(f1)...a,(6,)]0(0)]0 >
= Z% / %(3;%05 | Fayan(B1ye .0y 9n)|7‘ exp(—r ;m; cosh §;3.2.1)

where 7 = /2% + x} denotes the radial distance and the factor 1/n!is due to the order-
ing prescription over the rapidities previously discussed. All the integrals in eq.(3.2.1)
are nonsingular and convergent. The series is expected to converge as well. Note that
the n-particle term in eq.(3.2.1) behaves as e~™(mr) (m is the typical mass scale of the
theory) so that the higher contributions are strongly suppressed in the infrared limit.

Equation (1.5.16) can be integrated to obtain the Zamolodchikov C-function as a
function of the separation » = [2| in the two-point correlator < O(z)®(0) >. The
result is

C(R) = cin + g [ ar < 0(z)0(0) >, (3.2.2)

where c;p = C (400) vanishes for massive theories (the normalization of ® was changed
with respect to sec. 1.5). For R = 0 this formula just reproduces the Cardy’s sum rule
[53] expressing the total variation of the central charge in passing from the ultraviolet
to the infrared limit:

Ac=cip — cyy = g/m drr® < O(z)0(0) > . (3.2.3)
0

This expression has been related in refs. [54, 55] to the spectral representation of
the two-point function of ©. Indeed defining the spectral density
6 1

ci(p) = P—EImG(pZ = —p?), (3.2.4)
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where
G(p?) = / Pz e < 0(2)0(0) > , (3.2.5)

it turns out that one can write
Ac = / dpei(p) . (3.2.6)
0

Inserting a complete set of in-states into eq.(3.2.4), one can express ¢;(p) in terms of
the form factors F,, of the trace of the energy-momentum tensor:

12 & rdby ..

¢ (.U) = Z

,LL n=1 (27r)n '

X6 (Z m; sinh 9,~> § (Z m; cosh 0; — p) (3.2.7)

=1 1z=1

IF (61,2 8a)["

(the vacuum contribution should be subtracted in this approach). Inserting this ex-

pression in eq.(3.2.6) and exploiting the é-functions we obtain the following result for
the n-particle contribution to Ac:

AL - _1% df; ...dfn_s |Fn(91,r.l..,6n)l2 b e (328)
m (2m)ral ok fa( X, cosh 6:)° rinhin= 2y sinh
For n =1 and n = 2 eq.(3.2.8) simply gives
Ael) = ;r_f_r_z_ﬂpll? . (3.2.9)
Ac?) = -%—S’n-{;/;o da'f—ﬁ%ﬁ . (3.2.10)

These formulas were used to test the convergence of the series over intermediate
states for models whose form factors are known [55, 49]. It turns out that the first
non-vanishing contribution (which is not necessarily Aclt) but depends on internal
symmetries of the model) already saturates the sum rule eq.(3.2.3) while the next one
gives only small corrections.

Also in light of these results it becomes interesting to have explicit expressions for
the first contributions to the expansion over intermediate states of formula (3.2.2).
Denoting by C(™ the n-particle contribution to C one easily obtains

3 p° 2
00(p) = exn+ LR {Kslp) - 2a(p)} (3:2.11)
3 4 oo K3(2pcosh )  K,(2pcosh )
2 p) = s f_) d 282 alép _ Hallp
C™e) = CIR+4 2 ( -/(; 6 1F:(26) pcoshf (p cosh f)? ’

(3.2.12)

where we introduced the dimensionless variable p = mR, m being the mass of the
particles entering Fy and F, (eq.(3.2.12) holds in the case the two particles entering
F; have the same mass); the K,,’s are the modified Bessel functions. It can be easily
verified that for p = 0 these formulas correctly reproduce eqgs.(3.2.9) and (3.2.10).
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3.3 Thermodynamic Bethe Ansatz

In this section we will describe a powerful method, known as thermodynamic Bethe
ansatz (TBA) [56, 57, 58, 59, 60, 61], which gives the possibility to recover the ultravi-
olet data of an integrable model using only the on-shell informations contained in the
S-matrix. This allows us, in particular, to test if the minimal S-matrix obtained using
the bootstrap procedure is the correct one to describe the massive theory arising from
the relevant perturbation of a CFT. '

Let’s start by considering a relativistic field theory living on a torus generated by
two orthogonal circles B and C of circumference I and R respectively. One can develop
an hamiltonian approach to this situation choosing the time direction along the circle
B or, alternatively, along the circle C. This leads to the definition of two different
Hamiltonian, He and Hp respectively. Therefore the partition function of the theory
can be written in two different ways:

Z(R,L) = tree™Hc = trye~FRHs (3.3.1)

where B (C) is the space of states on B (C).
Consider now the limit L — oo, I > R. This corresponds to the thermodynamic
limit for the system living on B and we can write

InZ(R,L) ~ —~RLf(R) , (3.3.2)

where f(R) is the free energy for unit length at temperature T' = 1/R. On the other
hand, in the limit we are considering, the second expression for Z(R, L) in eq.(3.3.1) is
dominated by the contribution of the ground state of He whose energy Ey(R) depends
_on the size R of the system:

Z(R,L) ~ e~ Bo(RIL (3.3.3)

We see from eq.(1.3.9) that in the ultraviolet limit R — 0, where the system is described
by a CFT with central charge c, the ground state energy behaves as Ey(R) ~ —né/6R,
where

&=c—12dmm , (3.3.4)

dmin being the lowest anomalous scale dimension in the CFT. In a unitekry theory
dmin = 0 and ¢ = c. In light of this result we introduce the scaling function C(mR) (m
is the mass scale of the theory) such that C(0) = ¢ and write

T -
Ey(R) = ~—6RC(mR) . (3.3.5)
Putting together eqs.(3.3.2), (3.3.3) and (3.3.5) one sees that the determination of
C’(mR) reduces to the computation of the free energy of a system of relativistic particles
living on a line of length L — oo at temperature 1/R. We will discuss this problem
for the case in which the system of particles is described by a purely elastic scattering
theory (see sec. 2.3) containing n species of particles with masses mg,a =1,..., n.
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Generally speaking, the wave function formalism is inappropriate to describe a
system of relativistic particles due to the virtual and real particle creation. But for a
system of N particles on a line of length L much larger than the correlation length ¢
there exist regions of the configuration space in which the particles are widely separated
from each other: |z; —z;| > &, Vi # j (€ ~ 1/my if m; stays for the mass of the lightest
particle in the theory). In these free regions the off-shell effects can be neglected and it
is sensible to describe the system by a Bethe wave function ¥(z1,...,z,) proportional
to the free wave function I]y[ ePivi, Now the important step: the passage from a free

i=1
region to a different one in which, for example, particles i and j exchanged their

positions can be described simply by multiplying the original wave function by the
scattering amplitude S;;(6;;). In particular, if we impose periodic boundary conditions,
this criterion leads to the relation

R H Ss(0:5) =1, i=1,...,N . (3.3.6)

Jig#

Defining ‘
Sij(G) = 616‘.-’.(9) 3 (337)
eq.(3.3.6) can be written as

m;Lsinh §; + Y §;(6;;) = 2wn; , (3.3.8)

J#

with NV integers numbers n;. This system of transcendental equations selects admissible
sets of rapidities in free regions. Note that in the non-interacting case, where §;; = 0,
eq.(3.3.8) reduces to the usual quantization condition for the momenta of a particle in
a box: p; = 2wn;/L.

If identical particles are present, statistical constraints on the wave functions must
be taken into account. The unitarity condition eq.(2.3.4) allows two different cases:

(a)  Sy(0)=-1 . (3.3.9)

Then the wave function is antisymmetric in the coordinates of two identical particles
with the same rapidity. This is allowed for fermions but implies that a system of
bosons cannot contains identical particles with the same rapidities. Under this respect
bosons behaves like fermions since each value of rapidity can be occupied by at most
one particle. As a consequence, all the integers n; in eq.(3.3.8) must be different and
we refer to this case as “fermionic”. On the other hand, if the identical particles are
fermions, the states with coinciding rapidity are allowed and there are no constraints
on the numbers n;; we will refer to this case as “bosonic”.

(b)  S;(0)=1 . (3.3.10)

In this case the situation in just inverted, bosons giving rise to the bosonic case and
fermions to the fermionic case.
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Since each set of N integers m; for which the system (3.3.8) admits a solution
selects a set of rapidities, we can imagine a system of levels in the rapidity space. In
the thermodynamic limit L — oo the distance between two adjacent levels behaves
as 0; — 041 ~ 1/mL (think to the free case) and it is useful to introduce continuous
level densities p,(8), with the index a referring to different species of particles. We also
define rapidity densities of particles pa(8) as

- na(6)
pa(G) = ——A—H*- ) (3311)
where n,(6) is the number of particles of species a contained in an interval Af around 8

such that 1/m; L <« Af < 1. Using these definitions equation (3.3.8) can be rewritten
in the integral form

maL cosh§ + 3 / 48 (6 — 6)3(8) = 27pa(6) (3.3.12)
b=1
where 5 5
Bus(0) = g5bu(6) = —i~-InSuu(0) . (3.3.13)

The free energy Lf can be computed by the usual thermodynamic relation

1

L1(6,0) = Hn(p) ~ =5(p,7) (3:3.14)
where the total energy Hp(p) is given by
He(p) =3 /d9 Mapa(6) cosh 8 | (3.3.15)
a==]

and &(p, p) is the entropy of the system. The number of particles in a rapidity interval
Al is pa(0)A8 and p,(8)Af is the number of levels in the same interval for a given
species of particles with mass a. Therefore the number of possible distributions of such
particles among these levels is

[pa(6)20]!
[5a(0)A6]! [(pa(8) — pa(th))AE]! (3.3.16)
in the fermionic case, and
[(pa(8) + pa(8)A6)! o

[pa()AOT! [5(8) A0

in the bosonic case. Since the entropy is the logarithm of the number of possible
distributions for given densities p and p in the limit L — co, we have

Srermi(psp) =3 / 48 [Paltipa — palnfa — (pa — pa)in(pa — po)] (3.3.18)
a=1
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and

SBoselp, p) = Z / d6 [(pa + fa)in(pa + Pa) — palnpa — palnpa] - (3.3.19)
a=1

At this point we have to minimize the free energy in order to determine the densities
p and j at equilibrium. They are related by the dynamical equation (3.3.12) from which

we get
bpa(8) _ 1
5,51,(9) - 2w
Define the pseudoenergies £4(0) by

pa(0) _ e
pa(6) 1Le =

das(0' — ) . (3.3.20)

(3.3.21)

and introduce also

La(8) = +n (1 £ &™) (3.3.22)

(here and in the following upper and lower signs refer to the particle a being of fermionic
or bosonic type, respectively). Using eq.(3.3.20) to compute the variation of Hp and
S with respect to 5,4, the extremum condition for f take the form

' noptoo 4o’ ,

Rmgcosh 6 = ea(8) + 3 / = du(0 - 9)Ls(0) - (3.3.23)

b=1" T &

These are the TBA equations written in unified form for fermionic and bosonic case.
The numerical solution of these integral equations provides the values of the pseudoen-
ergies £q(0) which are the necessary ingredients for the determination of the function

C(r) (r = mR) through the formula

e = -

3 &y [t Mg
_ ;2.;/_00 49 Lo(6)*rcosh 6 . (3.3.24)

This expression can be explicitly evaluated in the limit 7 — 0. In this limit 6 has

to be taken very large in order to give a non-negligible contribution to the left-hand
side of equation (3.3.23). One has

p2 cosh B ~ —2ef Ee:::p (9 - lnz> . (3.3.25)
M 2m, my T
Numerical work shows that the pseudoenergies assume constant values ¢, in the range
—In(2/r) € 6 < In(2/r), where the left-hand side of eq.(3.3.23) can be neglected,
and grow exponentially at very large values of |6]. In the interval in which they are
constant eq.(3.3.23) reduces to

Ea =% Nypln(lte™), » (3.3.26)

b=1
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with
Ny = — /;+OO ;-76; dap(0) = ——1—(5,,1,(00) — bap(—0)) . (3.3.27)

o] 271'

On the other hand this region does not contribute to the integral in eq.(3.3.24) which
is sensible only to the large || limit for r — 0. In this limit the pseudoenergies é,(6)
are determined by eq.(3.3.23) in the form

T My N, ot 4!

——2ef = 2.(8 — Bap(8 — 0")Lp(8") , 3.3.28
5 E()Jrl; o Fan(0 = 6)Le(6) (3.3.28)
where ) _
La(8) = £in(1 4+ e~ | (3.3.29)
and we have 6
~ oo A Tm
=—5"1 0 L,(0)=—2¢° .3.30
¢(0) ﬂagggﬂl 48 Lo(6)5 % (3.3.30)

(in last line the parity of €,() was used to change the lower boundary of integration).
Taking a derivative of eq.(3.3.28) with respect to 6 one obtains another expression for
.;_%;aef’ which can be substituted in eq.(3.3.30) and, after several integration by parts,
allows to arrive at the final result

n

DA CH (3.3.31)

a=1
where ( )
) 6 L{—-1_ 6 [ z4e,/2
toy- 6 e :__/ dg Z T %al2 3.3.32
flea) = 55 { L(e~%=) 7o et 11 (3:3.52)

Here the g, are determined by equation (3.3.26) and L(z) is Rogers’ dilogarithm func-

tion [62]
1 p= Iny  In(l-y)

L(z)=—= [ d . .3.33
(7)== [ [{2L 4 L (5.3.33)
In conclusion we give an expression for the quantities Ny, defined in eq.(3.3.27) and
entering eq.(3.3.26). We have seen in sec. 2.3 that the S-matrix element Sap(8) for a
purely elastic scattering theory can be written as product of the building blocks f,(6)
so that ¢up(0) = 3, @[fa;](f) and N, = T, N{fa;], in an obvious notation. Direct

computation gives

.d sin am
Plfal(0) = ——za—glnfa(e) " coshf — cos ar (3.3.34)
and
Nifa] = (1 — |a|)sgna for —1l<a<1, (3.3.35)
where sgna is the sign of a (sgn0 = 0). This implies
1 1
N[F,] = sgna for — 5 <a< 2 (3.3.36)

for the composite blocks (2.3.14).
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Chapter 4

The Staircase Model

4.1 Roaming Trajectories

We discussed in previous sections how an integrable deformation of a CFT leads in the
general case to a massive theory which is characterized by a factorized S-matrix; if the
S-matrix is known, off-mass shell informations, including the ultraviolet parameters of
the background CFT, can be obtained using the form factors approach or TBA. On
the other hand, one can construct infinitely many factorized scattering theories which
are perfectly consistent from the S-matrix point of view, but which lack any known
field theory interpretation.

In this spirit AL.B. Zamolodchikov proposed in ref. [63] a simple purely elastic scat-
tering theory which under TBA analysis reveals a very remarkable off-shell behavior.
The theory contains a single particle, which is chosen to be a boson of mass m, and is
defined by the two-particle amplitude

sinh 8 — 7 cosh 8,
5(0) = = . ;
sinh @ + 2 cosh 8
where 6 is a real parameter. This amplitude satisfies the usual requirements of uni-

tarity and crossing symmetry egs.(2.3.4) and (2.3.5) which for a single particle theory
read simply

(4.1.1)

S(6)S(-8)=1, (4.1.2)
S0y = S(ir—46) . (4.1.3)
5(8) exhibits two simple zeroes in the physical strip at positions 6 = 12: + 6y, paired
via the unitarity relation to two simple poles in the unphysical strip at positions 8 =
==y
2
The TBA analysis of this model goes along the standard lines described in section
3.3 for the “fermionic case” since from eq.(4.1.1) we get S(0) = —1 (note that the
same off-shell pattern discussed below can be obtained supposing that the particle of
the theory is a fermion and changing the sign of the amplitude (4.1.1)). Since only one
particle is present, one has to deal with the single TBA equation
+oo dg’
Rmcosh 8 = e(6) + / 40— 8)L(6) (4.1.4)
- ™

o0
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where

L(8) =1n (14 ¢7®) (4.1.5)
and the kernel ¢(6) defined in eq.(3.3.13) in this specific case is given by

1 1
cosh (8 + 6y) + cosh(f — 6)

$(6) = (4.1.6)

The ultraviolet effective central charge &y = C’(mR = 0) is easily obtained using
the relations (3.3.32), (3.3.27) and (3.3.26); it turns out to be

Gy =1 . (4.1.7)

The interesting features of the model under consideration appear when equation
(4.1.4) is solved numerically and the effective central charge at intermediate distances
is computed through eq.(3.3.24) [63]. The results of this analysis for various values of
the parameter ; are shown in figs. 9a-d where the effective central charge C is plotted
as a function of the logarithmic scale '

z = In Tég . (4.1.8)

For 8y = 0, C’(a:) shows the usual behaviour smoothly interpolating between the ul-
traviolet limit C(z = —oo0) = &yy and the value C(z = +o0) = 0 characteristic of
massive theories; but for §; # 0 the situation becomes highly non-trivial and C(z)
develops a “staircase” pattern which becomes more and more visible as 8y increases.
More precisely, for 6, sufficiently large (say 6, > 20) C’(a:) clearly exhibits a series of
plateaux at values coinciding with those provided by formula (1.3.6) for the central
charges of unitary minimal models M,; the plateau at C =1 — 6/p(p + 1) lies inside
the interval —(p — 2)6,/2 < = < —(p — 3)6p/2 with p = 3,4,.... Since the difference
in the heights of the neighbouring steps becomes small as z — —0o0, the numerical
resolution becomes insufficient in the deep ultraviolet limit and the picture is slurred.
Nevertheless, at f, = 50 one can clearly distinguish 8 steps, the highest being of height
21/22 and corresponding to M, central charge.

These results unavoidably lead to an interpretation of the model defined by eq.(4.1.1)
closely related to the massless RG flows between the theories Mp and M,_; induced by
the perturbing field @?1’3). Indeed the characteristic pattern of figs. 9a-d are suggestive
for a one-parameter family of roaming trajectories interpolating between all the fixed
points M,,: according to eq.(4.1.7), each trajectory starts from the limiting fixed point
Moo and then, for 6y large enough, flows very close to the fixed points M, spending
approximately the same fraction 6,/2 of the RG time z near each one. In ref. [63] it
was shown that for 6y > 1 and 2 ~ —(p — 2)8,/2 (this is the value corresponding to
the switching from c,1; to ¢,) the function C’(w) reproduces with high accuracy the
values obtained by the TBA system proposed in ref. [64] as describing the flow from
Mpi1 to M, (since this is a massless flow, the TBA analysis differs from the standard
one presented in sec. 3.3). Thus we can imagine that the limiting 6y — oo trajectory
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starts at M, and then proceed on the critical surface following the massless trajecto-
ries M, — M,_; until at M; it develops a finite correlation length and gives rise to
a massive infrared behaviour.

One can use the numerical data for C(z) to compute the beta-functions along the
RG trajectories [63]. Indeed, let’s call @ the operator which draws the field theory
along the trajectory and g the conjugated coupling constant. Then the expectation
value of ® on the TBA geometry can be written as

x 8C

® = = 4.1.9
<®R=FR Og ( )

We now eliminate the dependence on R fixing R = 1 and normalize the field @ through

<P >pa= —%— , (4.1.10)

where the minus sign is due to the fact that C monotonically decreases along the
trajectory. Requiring g to be zero at the ultraviolet fixed point, eqs.(4.1.9) and (4.1.10)
give

g(z)=1- C(z) . (4.1.11)

On the other hand the beta-function is simply defined as the derivative of the coupling
constant with respect to the scale parameter so that

aC

— (4.1.12)

Alg) =
The last two relations give a parametric representation of §(g). Figs. 10a-c show the
behaviour of the beta-function for different values of the parameter 6: B(g) develops
deep minima in correspondence of the values g = 6/p(p+1), p = 3,4,... which become
progressively indistinguishable from zeroes when fy increases. Note that, while the
higher minima turn subsequently to zeroes when 6, grows, the beta-function in between
to zeroes is stabilized at the corresponding interpolating shape.
An interpretation of the results presented above from the conformal perturbation
theory point of view was proposed in ref. [66] where the following hamiltonian density
was argued to describe the staircase model:

H =M, + AP 4 — ABF, ) (4.1.13)

Here H,, stays for the hamiltonian density of the minimal conformal model M, and the
suffix p for the fields denotes that they belong to M,. For A > 0 and X =0eq.(4.1.13)
simply corresponds to the deformation studied in sec. 1.6 and interpolating between
M, and M,_;. The aim of the irrelevant perturbation coming from @’(’3,1) is then to
deform this interpolating trajectory in such a way to avoid that it stops at M, (Mp-1)
in the ultraviolet (infrared) limit. This would make possible a multiple crossover of the
type described above. A detailed perturbative study of the RG equations corresponding
to the deformation (4.1.13) was carried out in ref. [66] in the limit of large values of
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p- To leading order in 1/p it was shown that, for A and X both positive, there exists
a unique one parameter family of solutions exhibiting the characteristic behaviour of
roaming trajectories. Indeed, if we denote by z the RG time and by 8y the parameter
labelling the solutions, it turns out that each trajectory come close to each fixed point
My in the time interval (p — p' — 1/2)6, < 6 < (p —p' 4+ 1/2)8,. In particular, for the
RG flow of the function C(z) defined in sec. 1.5 one obtains

C(kbo) = cpp +0(p7*), (4.1.14)
C((k + 1/2)‘90) = Cp—k — %(Cp—k = Cpk-1) + O(P~4) (4'1'15)

for integer k.

In conclusion we make some remark about the particular deformation of the fixed
point M,, defined by eq.(4.1.13). Both the perturbations ®(1,3) and (3 1) are separately
integrable (see sec. 2.1 and ref. [22]). But, while in the general case a linear combination
of two integrable perturbation does not generate an integrable field theory off criticality
(this is the case, for example, of Ising model under simultaneous thermal (®(1,3) and
magnetic (®(;5)) perturbations), the combination of ®(1,3) and P31y was argued to
be integrable in ref. [65] so that one can expect (4.1.13) to correspond to a factorized
scattering theory.

The multiple crossover exhibited by the theory (4.1.13) for A and A positive gives
rise to an interesting critical behaviour as a function of the relevant “temperature-
like” parameter A\. Indeed for A = 0 the theory is in the universality class of M,
but the thermodynamic singularities as A — 0 are determined not by M, alone, but
simultaneously by all the fixed points Mp, Mp_1,...,Ms. Some exact exponents are
obtained in ref. [67].

4.2 Sinh-Gordon Theory

The scattering amplitude (4.1.1) can be considered as an analytical continuation of the

S-matrix of the Sinh-Gordon theory, namely the theory of a two-dimensional scalar
field ¢(z) with the action

» |1 , m?
A= /d T 5(@1@3)‘ — —5 coshgg(z)| . (4.2.1)
g

It can be regarded as a perturbation of the free massless conformal action by means of
the relevant operator cosh 9¢(z) of anomalous dimension A = —(3? /8 or, alternatively,

as a deformation of the conformal Liouville action

. [1

A= /d“m [5(5y¢)2 - ,\egﬂ (4.2.2)

by the relevant operator e=9%,

Action (4.2.1) possesses a Z,-symmetry under the substitution ¢ — —¢ and can
be mapped into the action of the Sine-Gordon model by an analytic continuation in g,
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namely g — ig. In a perturbative approach, ultraviolet divergencies come only from
tadpole diagrams and can be removed by a normal ordering prescription. This gives
rise to finite wave function and mass renormalization, while the coupling constant g
does not renormalize.

The Sinh-Gordon model is the simplest example of a large class of integrable theo-
ries, the afine Toda field theories. Integrability allows the determination of the exact
S-matrix which is given by [71]

=B
2 (4.2.3)

. . . w8
smh@-l—zsm%

sinh 8 —isin

S(6,B) =

where B is the following function of the coupling constant g:

292

Ble) = g7

(4.2.4)

It is evident from this relation that in the Sinh-Gordon theory B(g) takes values in
the range [0,2). The two-particle amplitude (4.2.3) has no poles in the physical strip
(then there are not bound states) and exhibits two zeroes at the crossing symmetric
positions iwB/2 and in(2 — B)/2.

An interesting feature of (4.2.3) is its invariance under the substitution

B—2-B, (4.2.5)

corresponding through eq.(4.2.4) to the strong-weak coupling constant duality

8
g — —;73 . (4.2.6)

At the self-dual point B(+/8w) = 1 the two zeroes of the scattering amplitude collide
at § = iw/2. If we now analytically continue the parameter B to the complex values

B=1+24, (4.2.7)
s

the zeroes split again but along a direction parallel to the real 6-axis and (4.2.3)exactly
coincides with the scattering amplitude (4.1.1).
The form factors for the Sinh-Gordon model were computed in ref. [51]. Using

eqs.(3.1.20) and (3.1.21) to compute the minimal two-particle form factor Fy,;n one
obtains

Foin(8,B) = N exp [8 fD > %E sinh (22) sinh (5 (1 - %)) sinh § 2 (m())

sinh? z o ’
) (4.2.8)
with 6 = ir — 0. If one fixes the normalization of F,;, requiring that
glim Fnin(6,B)=1, (4.2.9)
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the factor A in eq.(4.2.8) should be

sinh? z

N(B) = Fpin(it, B) = exp {_4 /Doo % sinh (22) sinh (£ (1 - 2)) sinh 2

(4.2.10)
The following results were obtained for form factors of the trace © of the energy-
momentum tensor (this is a Zy-even operator):

2

Fo(6) = 5;%1-—13/23 , (4.2.11)
Fy(6) = 2m2% , (4.2.12)

?

2 2 4si B/2 -l Fmin 91"
Fou(r, ... bum) = mm ( s1n(7r / )) O_(Zn)O_(Zn) Po(zy,..., Tz) H _____(__J_)_

Fm;n(iﬂ') Fmin(’i’lr) 1 2n-1 i<; Ti + z;
(4.2.13)
with n > 1 in the last line. The P,’s are symmetric polynomials of total degree
n(n — 3)/2 and of degree n — 3 in each variable whose first representatives are

P3(:Z)1,...,KZ33) = 1

P4(£l?1,...,1134) = 03
P5(1231,...,235) = 0'20'3'—C§0'5
Ps(za,...,26) = o3(op0y — o6) — ci(oyos + 01020%) (4.2.14)

where ¢; = 2cos(wB/2) (the P, with n odd enter the expressions for the form factors
of the elementary field ¢). In ref. [51] formula (3.2.10) was used to test the velocity of
convergence of the expansion in the number of intermediate particles. Since the Sinh-
Gordon model can be regarded as a deformation of the free massless boson theory, the
expected value for the ultraviolet central charge is cyy = 1; on the other hand ¢;p = 0
as for any massive theory. The numerical results for the two-particle contribution
Ac®) are listed in table 2 and clearly show that the sum rule is saturated by this first
contribution also for large values of the coupling constant.

4.3 Analytic Continuation of Form Factors

The fact that the Zamolodchikov’s scattering amplitude (4.1.1) can be obtained as an
analytical continuation of the Sinh-Gordon S-matrix naturally suggests to consider an
analogous analytical continuation of the form factors of the Sinh-Gordon model in order
to see if the results of the TBA analysis can be reproduced through this alternative
approach.

Let’s perform an analytical continuation in the parameter B according to eq. (4.2.7)

and define
_ 2%,

U

a

(4.3.1)

54



Then the minimal two-particle form factor (4.2.8) can be rewritten in the form

Frin(0, @) = N(a)hi(6)he(, &) (4.3.2)

where p b

© dr T a \ sinh %

N(a) = exp {—2/0 — (cosh 5 —cos 5:1:) sinhzzm} , (4.3.3)

d:r: sin? 8 0
= ——2% 3y — —gsinh = 3.4
hi(8) = exp {2/0 - smhm} isinh o (4.3.4)

® dz cos 5 . ozl
ha(8,a) = exp{ 4/ e msmhism —2—;} . (4.3.5)

Formula (3.2.10) takes the form
h1(20)h2(26, 2)|?

A / gp [11(26)h2 4.3.6
cosh46 ( )

and can be used to determine the two-particle contribution to the ultraviolet central
charge as a function of the parameter @. The numerical results of this computation are
listed in table 3 and show that Ac(®(a) monotonically decreases from the value very
close to 1 corresponding to the Sinh-Gordon self-dual point (a = 0) to the asymptotic
value 1/2. This asymptotic limit can be reproduced analytically along the following
lines. An analysis of the integrals (4.3.3) and (4.3.5) gives

N(a) ~ exp (—%[al) for |} > 1, (4.3.7)

ho(f,c) ~ 1 for ja] > 1 and 0 < |af . (4.3.8)

Due to the normalization condition eq.(4.2.9), relation (4.3.7) determines the asymp-
totic behaviour in 4 of the product hih, and permits to conclude that the integral
in eq.(4.3.6) receives negligible contribution for § > |a|. Therefore, we can use the
relation (4.3.8) to write

Ac®(Ja] = o) / smh2 = _1 (4.3.9)

2 coshd 2 h
The explicit evaluation of higher particles contributions to Ac becomes a non-trivial
numerical problem since it requires multiple integrations. Nevertheless we can try to
estimate the asymptotic behaviour in a of Ac(™ in order to establish if a non-vanishing
contribution can be expected which permits to reproduce the value Ac = 1. The n-
particle form factor entering the formula (3.2.8) for Ac™ is given by eq.(4.2.13) and
after the analytic continuation can be written as (n even, n > 2)

Folf1,...,6,) = 27rngn(a) (n) ( Y Po(z,. n)H h1(6i5)h2(8:, )

1<J T; + Tj

. (4.3.10)
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where we introduced
gn(@) = (4cosh wa/2) /27 Nm(/2-1) ) (4.3.11)

Basing on a reasoning similar to that presented above we expect the a-dependence
coming from h;, to be strongly suppressed after the integration over rapidities so that
the asymptotic behaviour in & of Ac(™ should be determined by the exponential factors
contained in g, and P,. In the large o limit we can use relation (4.3.7) to obtain

gn(a) ~ exp {—g (—g - 1>2 Ial} : (4.3.12)

On the other hand the examination of the symmetric polynomials P, whose first rep-
resentatives are listed in (4.2.14) shows that they are not sufficient to cancel the expo-
nential decreasing behaviour coming from eq. (4.3.12). Thus we are led to conclude

Ac(la] - o) =0, n>2 . (4.3.13)

The results of this section, which at first sight appear inconsistent with the require-
ment Ac = 1, have a natural interpretation once the nontrivial interplay between the
two scales of the problem, § and «, is correctly taken into account. We already noted
in sec. 3.2 that the n-particle contribution to the expansion over intermediate states of
a two-point correlation function behaves as e (™) denoting the radial distance. As
a consequence, once a scale r is fixed, there will exist a number n, such that the states
with a number of particles n > n, give a negligible contribution to the series. Clearly
n, — oo as 7 — 0. Reversing the argument we conclude that the partial sum

Al = 3 Actm) (4.3.14)
m=1
reproduces the variation of the C-function from the infrared Limit r = oo to & certain
scale r, such that the contribution to C(r) coming from m-particle states with m > =
can be neglected for r > 7, (7o, = 0).

In usual situations, when C(r) is a smooth function which stays constant in the
deep ultraviolet, the first contributions are sufficient to give a very good approximation
of Ac. The case of the staircase model is very different. Indeed, let’s consider a scale
v’ such that C(r',a = 0) > 1/2. According with the results of the TBA analysis, after
the first jump from 0 to 1/2 the function C(r,a) stays constant at 1/2 until a value
7" proportional to e "l/* i5 reached and the second jump takes place. Therefore, for
every r’ there exists a value o/ such that C(r',|a] > |&/|) = 1/2. This in turn amounts
to say that

lim Acgn)(a) _1 for any finite n . (4.3.15)

|o}—o0 2

Such conclusion is exactly reproduced by egs.(4.3.9) and (4.3.13).

Further clarification of the picture presented above is obtained noting that in the
limit § fixed, |a| — co the scattering amplitude (4.1.1) tends to —1. This value coin-
cides with the S-matrix [79] of the scaling Ising model (SIM), namely the deformation of
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the minimal model M3 with central charge 1/2 through the energy operator € = ®(12)-
In the same limit the only non-vanishing form factor is the two-particle omne, in agree-
ment with the result which can be obtained exploiting the well known equivalence of
SIM with a theory of free neutral fermions. One obtains

6
FS™M(g) = lllim F3(8, ) fixea = —2mim? sinh o - (4.3.16)
Using eq.(3.2.1) we get the exact two-point correlation function for the trace of the
energy-momentum tensor in SIM

< ©(r)0(0) >= m*{K}(mr) — Ki(mr)} . (4.3.17)

This result exactly coincides with that obtained by the free fermion formalism (see, for
example, [78]).

4.4 Generalization of the Model

The Sinh-Gordon model is the simplest example of the so-called affine Toda field theo-
ries. Generally speaking the affine toda theory associated to a semisimple Lie algebra
G of rank 7 is a theory of r bosonic field ¢/ with a Lagrangian

2 r r .
L= %(Buebj)z - % D giexp (gz a5¢’) ) (44.1)
1=0 i=1

where my is a mass scale, g the coupling constant, o; (i = 1,... ,7) the simple roots
of G and ap the maximal negative root; the set of integers {g;} is specific for each
algebra. The Sinh-Gordon Lagrangian is recovered from (4.4.1) for G = A;. The affine
Toda theories are integrable at the quantum level [68, 69, 70] and give rise to purely
elastic scattering theories [71, 29, 32, 72]. The S-matrix contains the coupling constant
dependence through the function B(g) defined in eq.(4.2.4) and is invariant under the
substitution B — 2 — B.

The TBA systems for the affine Toda theories based on simply laced algebras were
studied numerically and analytically in refs. [73, 74, 75, 76] in order to determine the
effect of the analytical continuation eq.(4.2.7) in this general case. It was shown that
the effective central charge C’(R) exhibits a staircase pattern completely analogous to
that observed in the A; case. More precisely, the function C(R) for a theory based on
the Lie algebra G of a group G interpolates between the values of the central charges
of the coset models Gj X G1/Ggr1- These values are easily obtained from the general
formula (1.4.14); for the case G = A, one obtains

h~)

h(h+1)>
=7l ", =h+1,h+2,... 4.4
( p(p+1) P (4.4.2)

where b = r + 1 is the Coxeter number and p = h + k labels the values of each
infinite series. Thus the staircase pattern discussed in previous sections, whose steps
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are generated by formula (4.4.2) with » = 1, appears as the simplest example of a
phenomenon which extends to a large class of theories. In the following we will apply
the form factor approach to the next simplest case, G = A,.

The A, affine Toda theory is invariant under the action of the cyclic group Zy. It is
interesting to note that the requirement that a conformal theory is also Zj-symmetric
leads [77] to an infinite series of solutions corresponding to models whose central charges
are exactly those given by formula (4.4.2). The conformal theory with central charge
Cht, 15 Interpreted as describing the (s + 1)-critical point of the Z,-symmetric general-
ization of Ising model.

The minimal solution of the bootstrap procedure for the S-matrices of Zp-invariant
models was found in ref. [44] and we already considered in sec. 2.4 the case h = 3
corresponding to the scaling 3-state Potts model. These minimal S-matrices are not
suitable for the A, affine Toda theories since they do not contain the coupling constant
dependence. Such dependence is introduced [71] multiplying the minimal solutions for
a so called Z-factor which does not change the bound state structure and the bootstrap
equations but introduces some zeroes in the physical strip, ensuring that the S-matrix
tends to unity as the coupling constant g tends to zero. For & = 3 the complete solution
reads

Saa(0) = for3(8)f-B/3(0) FiB-2)/3(6) (4.4.3)
Sea(0) = —f13(0)fB/3-1(8) F-(B+1)/3(8) , (4.4.4)
where f, are the building blocks defined in sec. 2.3. In the limit 6 fixed, |a| — oo the

Z-factors disappear and the minimal scattering amplitudes are recovered. Therefore,
accordin% to the reasoning of previous section, we expect that in such limit the partial
sums ch?) reproduce the value of the central charge of the first model visited by
roaming trajectories, namely the 3-state Potts model. Contrary to the scaling Ising
model, the scaling 3-state Potts model does not correspond to a free theory so that
we expect non-vanishing contributions from all the form factors allowed by symmetry
arguments.

The minimal two-particle form factors obtained from equations (3.1.20) and (3.1.21)
are given by

< dg sinh 2z/3 zf
F (0,B) = N..(B 2/ Zople) P G2 22U s
R A B

. © dz sinhz/3 zf
F93 (8. B) = N.o(B)es 2/ 22 0p(z) 220 2 2O L 4.4.6
H08) = Na(Dew (2 [ Lo g

where we introduced the function
.. zB | T B

qB(:c):4smh~6—smh <§ (1——5)> . (4.4.7)

The minimal two-particle form factors satisfy the following functional relation which
will be used later on

Frin(0 + im[3)Fas (6 —im/3) coshd —1/2 (4.48)
Fra (6) o coshf — cosw(1 — B)/3 o
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Imposing the asymptotic condition eq.(4.2.9) the normalization factors are fixed to be

= d inh 2z /3
Naa(B) = Ff:f:n(zw,B)::exp{-—/o —fqg(m)%} , (4.4.9)
Na(B) = B i B) = p - [* Lan(a) RS

T sinh? z

(4.4.10)

Since the trace ©® of the energy-momentum tensor is a Zjs-invariant operator (it is
a piece of the Lagrangian), its expectation values between the vacuum and an =-
particle state |n > (the form factors) will be non vanishing only if [ > has a total
Zs-charge equal to zero. For mn = 2 the only neutral states are |a(6;)a(62) > and
|a(61)a(82) > (the two states should be distinguished due to the ordering prescription
over the rapidities). Since a and @ do not form any bound state in the direct scattering
channel, we conclude that the two particle form factors must coincide with the minimal
one, up to a numerical constant. Such constant is easily fixed taking the limit g = 0
in which the theory becomes free. Therefore we can write
,F? (8,B)

Fua(8, B) = Fzo(8, B) = 2rm?—min

) (4.4.11)

We give in table 4 some numerical results for Ac(® for real values of B and for values
corresponding to the analytic continuation B = 1 + ia. The situation appears similar
to that observed in the A; case. Indeed the two-particle contribution reproduces with
good approximation the expected value ¢ = 2 of the ultraviolet central charge for real
values of the coupling constant; in the analytic continued region Ac(*(a) exhibits a
monotonically decreasing behaviour toward the stable asymptotic value 0.79217. Note
that the 3-state Potts model has central charge ¢ = 0.8

Let’s pass to the computation of Ac®. The non-vanishing three-particle form
factors are F,,, and Fzszz and, obviously, they give the same contribution to AcB®). To
be specific we will refer to the first one. The amplitude S,, has a pole in the direct
channel at § = 2w1/3 corresponding to the fusion aa — a@. According to equation
(2.3.17), in the vicinity of this pole the S-matrix is expressed as

Saa(6) ~ GZ_EQT?:/?) . (4.4.12)

Direct computation gives

5 \2 sm?sm (2 — B)
=1+/3
(920) \/_sm6(4 B)sin %(2 + B)

(4.4.13)

For the case under consideration the general equations (3.1.17) and (3.1.19) read

Fuaa(01,02,03) = K(61,02,03) [[ Faz.(6:5) , (4.4.14)
1<J
e T T _
2 hr% eF 0 (9 + ig £,0 — i + 5,9') = g2 Fos(6,6') . (4.4.15)
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The factor K in the first equation contains the poles at positions §;; = 27i/3; they can
be extracted writing

-1

K(@l,eg, 63) =H H(w:cl + (I)j)(w_lmi -+ ZDJ) Q(IIJ],IEQ, 333) ’ (4416)

i<

where z; = €%, w = ¢™/3, H is a normalization factor and @ is a symmetric polynomial
in the z;’s. Using the functional relation eq.(4.4.8) simple algebra gives

£

2i]jn(1) €Foaa(0 +1m/3 —€,0 —im /3 +€,0;) = —%Q(mw,ww‘l,m)
Fin(2m1/3)F72 (6 — 65)

z?(z + z3)?(z? —r}—m:rnl% — vz, 417)
where -
v = 2cos —3—(1 - B) . (4.4.18)
Comparing with eq.(4.4.15) and recalling eq.(4.4.11) we get
a2
H= ”F,;;:/(i?f/g?ma ’ (4:4:19)
Q(zw, zw™?, z3) = mz(a) + :133)2(3:2 +z2 — yrzs) . (4.4.20)

The last equation shows that Q is a polynomial of total degree 6 and maximal de-
gree 4 in each variable. Moreover conservation of energy-momentum tensor implies
that @ should be proportional to oyo,, where the 0,’s are the elementary symmetric
polynomials introduced in sec. 3.1. These requirements and the constraint provided by
eq.(4.4.20) permit the complete determination of @; it is given by

Q(z1,22,23) = oy09(0y05 — (2+7)os) . (4.4.21)

Having determined the three-particle form factors we can apply the asymptotic criterion
discussed in the previous section in order to establish if a non-vanishing value can be
expected for Ac(®(a) when @ — co. We write the form factor in the form

_ Gaa(a)y(a)N3 (a) _
Faaa(6:) = ,‘fffn(27rz'/3,a)/\faa(a)h(gl’a) ’

(4.4.22)

where, according to the considerations of previous section, the function h(4;, a) is ex-
pected to give rise to a weak (possibly zero) a-dependence (for o — oo) after integration
over rapidities. In the large o limit we have

Noo(@) ~ F22 (2mi/3) ~ exp (_%04) , (4.4.23)
Noa(a) ~ exp (Jg-p;) , (4.4.24)
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F(a)~1, (4.4.25)
1(e) ~ exp (1o ) (4.4.26)

so that we immediately obtain
Foea(0sy @) ~ h(6;, ) . (4.4.27)

The numerical analysis confirms that Act®)(a) approaches a constant value when ||

becomes large (see table 5). Moreover, the asymptotic value of the partial sum Acﬁ_ﬁ ) =
Ac® + Ac® coincides with remarkable precision with the 3-state Potts model central
charge.
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Chapter 5

Conclusion

In this thesis we reviewed some important developments in the domain of QFT in
two dimensions which represent significant progresses toward the ambitious aim of a
classification of all the possible local QFT’s. From the RG point of view this prob-
lem amounts to studying, at last qualitatively, the infinite-dimensional space of local
interactions and the topology of the RG flow on it. In this picture every local QFT
corresponds to a RG trajectory which typically starts from a fixed point of the RG. In
two dimensions the field-theory solutions corresponding to fixed points exhibits a much
more extended symmetry than scale invariance, i.e. the infinite-dimensional conformal
symmetry. The use of this symmetry provided us with an enormous number of explicit
constructions describing possible ultraviolet behaviours in two-dimensional QFT and
it seems reasonable to hope in a complete classification of all the fixed points.

A non scale-invariant theory associated to a RG trajectory flowing from a fixed
point can be obtained as a deformation of the conformal action by a combination of
scalar operators present in the CFT which describes the fixed point. Two different
infrared behaviours are possible for the resulting theory. The trajectory may flows
to another fixed point, and in this case the corresponding theory is massless, or it
may develop a finite correlation length giving rise to a massive theory which can be
characterized in terms of its scattering data.

In the known CFT’s there are particular relevant fields (the integrable operators)
which generate off-critical theories containing an infinite number of integrals of motion.
For a massive theory in two dimensions the presence of non-trivial integrals of motion
leads to a drastic simplification in the scattering theory. The S-matrix is shown to be
factorizable in terms of the two-particle scattering amplitudes which in turn can be
determined in many cases by a bootstrap approach based on unitarity and analyticity.

It is commonly believed that the whole structure of a massive QFT in hidden in its
scattering theory. An important step toward the complete reconstruction of off-shell
properties is represented by the computation of the matrix elements of local opera-
tors between asymptotic states (form factors). Such computation has been explicitly
performed for several integrable theories and immediately permits to write down the
correlation functions as an infinite sum over multiparticle intermediate states. Another
powerful technique which allows us to extract informations on the ultraviolet conformal
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theory corresponding to an integrable relativistic model starting from its on-mass-shell
data is the thermodynamic Bethe ansatz (TBA). This approach is based on the obser-
vation that the finite-temperature free energy predicted by the scattering theory can
be interpreted as the ground state energy of the (euclidean) theory on a finite periodic
geometry. Since the small volume behaviour of the ground state energy is described
by the corresponding ultraviolet CFT, the last can be identified by studying the high-
temperature limit of the TBA equations. TBA played an important role in verifying
the correctness of many S-matrices which in the general case are constructed by the
bootstrap procedure under certain minimality assumptions.

In the last part of this thesis we considered a particular factorized scattering theory
which under TBA analysis reveals an extremely peculiar and rich off-shell pattern
characterized by a multiple crossover among the infinite fixed points corresponding
to the minimal unitary conformal models. While a field theory interpretation of this
staircase model is still lacking, the most suggestive feature of the scattering amplitude
under consideration remains the fact that it can be seen as an analytic continuation
to complex values of the coupling constant of the S-matrix of the Sinh-Gordon theory.
Since the form factors for this model were recently constructed, it seems quite natural
to study the effects of the analytic continuation on the form factors themselves. We
showed that this procedure leads to results which are completely consistent with the
TBA analysis so that the form factor approach appears as a very promising tool for
future investigation of the staircase model.
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0.1 1.939886
0.2 1.891538
0.3 1.852521
0.4 1.821125
0.5 1.796131
0.6 1.776660
0.7 1.762084
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1 1.744026
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