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Introduction

Density Functional Perturbation Theory (DFPT) is a powerful tool to de-
termine low-order derivatives of the ground-state electronic energy of materials
with respect to some external parameters. The use of DFPT is twofold. On the
one hand, it allows to calculate response functions—which are directly accessible
to experiments—or other measurable properties which can be related to response
functions—such as e.g. phonon frequencies in the adiabatic approximation. On the
other hand, it can be used to calculate properties of specific, complex, materials
which can viewed as small perturbations with respect to other, simpler, systems.
Since DFPT was demonstrated to be a computationally viable technique [1], many
applications have appeared belonging to either categories. The first group includes
the calculation of elastic constants [2], dielectric and piezoelectric constants [3],
and various lattice-dynamical properties [4,5]. Other applications belonging to the
second group are based on the so called computational alchemy approach to semi-
conductor alloys [6] and superlattices [7] in which the disordered semiconductor is
viewed as a small perturbation with respect to a reference, periodic system (the

virtual crystal).



Third-Order Density-Functional
Perturbation Theory

All the applications of DFPT appeared so far are limited to second order
in the energy. It is a well known result of elementary quantum-mechanics that
the knowledge of the wavefunction response of a system up to n-th order in the
strength of an external perturbation is sufficient to determine the energy derivative
up to order 2n + 1 [8]. The validity of this ‘2n 4 1 theorem’ within self-consistent
field (SCF) theories has been known since several years in the quantum-chemistry
community [9], and recently it has been generalized to density-functional theory
(DFT) by Gonze and Vigneron [10]. A first important conclusion we can draw
from this ‘theorem’is that the knowledge of the linear response of a system to an
external perturbation allows to determine the third derivatives of the energy with
respect to the strength of the perturbation and it gives therefore a practical way
to link linear and quadratic generalized susceptibilities. The interest in doing so
is evident: one can in principle obtain higher-order susceptibilities or gain in the
accuracy achieved by perturbation theory essentially for free. In the following, we
will concentrate on the formulation by Gonze and Vigneron and will restate it in a
form which is free from some of its original drawbacks, and is well suited for prac-
tical implementations. As an example, we calculate the third-order anharmonic
coupling coefficients in Silicon at some high-symmetry points of the Brillouin zone

(BZ), and compare them with results obtained by the frozen-phonon method.



Analytical Results

Let us suppose that the ezternal potential acting on the electrons of a given

system depends linearly on some external parameter, A:
Vert(T) = Vegy(r) + Mvgyy(r). (1)

The case where the dependence of v, upon A is non linear requires a straightfor-
ward generalization of the results obtained in the linear case and will be considered
later. According to Gonze and Vigneron [10], the third-order derivative of the DFT
ground-state energy with respect to A reads:
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= 62(¢iiﬂécp—fil¢i)+/ K3 (r,r',x" )’ (r)n (x')n (x")drdr'dr”,  (2)

where the sum runs over occupied (valence) Kohn-Sham (KS) orbitals, ' and €
indicate the first derivatives of the KS orbitals and energy levels respectively, n'
and Hi.p indicate the corresponding linear corrections to the electron ground-
state density and KS one-electron hamiltonian, and K?® is finally the third-order

functional derivative of the exchange-correlation energy with respect to the elec-

tron density: K*(r,r’,r") = M(f;‘fi‘;f)&ﬂ(r”) o Eq. (2) clearly shows that the
calculation of the third-order correction to the energy requires only the knowl-
edge of such ingredients as 1! and €' which are directly accessible to first-order
perturbation theory.

All the results of DFT must be invariant with respect to unitary transforma-
tions of the orbitals which do not mix the manifolds of occupied and empty (con-
duction) states. As it stands, Eq. (2) does not manifestly display this invariance.

Furthermore, its implementation would require the knowledge of the components of

the perturbed wavefunction, 92, along all the valence wavefunctions different from
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Y itself: (2 |¥1)y12,. Once again, this is innatural because in DFT the variation
of any physical property must only depend on the variation of the one-electron den-
sity matrix which is not affected by components of the perturbed valence orbitals
along the unperturbed valence manifold. This situation is particularly unpleasant
when, due to the degeheracy or quasi-degeneracy of some unperturbed valence
states, the actual implementation of Eq. (2) would require the use of degenerate-
state perturbation theory. We will now show that Eq. (2) can be recast in a
form which requires only the knowledge of the conduction-manifold projection of
the 91’s, which is manifestly invariant with respect to unitary transformations
within the valence manifold, and which can be straightforwardly and efliciently

implemented using standard non-degenerate first-order perturbation theory.

The second term on the right-hand side (rhs) of Eq. (2) already displays the
desired unitary invariance, and we concentrate on the first term. Our final result

is:

Z(¢i|H§0F — & ly) = Z(zbiIPcHécchlzbi) - Z<¢11;|Pcl¢};'>( o [ Hscr¥y),

” ” " 3)
where P, = > _|4?)(4?] is the projector over the unperturbed conduction-state
manifold (from now on, ‘¢’ will indicate an index running over conduction states,
while ‘v’ indicates sums over valence states). Before demonstrating Eq. (3) we
notice that it is manifestly invariant with respect to unitary transformations within
the valence manifold. In fact, it is the sum of the trace of a matrix defined over that
manifold (first term on the rhs) and of the product of two such matrices (second
term). The desired invariance derives from the invariance property of the trace.
The demonstration of Eq. (3) is tedious, but straightforward. Let us start from

the definition of the first-order correction to the v-th unperturbed valence state,
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and consider its projections over the valence- and conduction-state manifolds:

|¢11,> :Pc’¢11;>+Pv|¢zl;>7 (43’)
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where P, = 1 — P, is the projector over the valence manifold. Substituting Eq.
(4a) into the left-hand size of Eq. (3), one obtains the sum of four terms, which will
be denoted by cc, cv, ve, and vv, according to the couple of projectors appearing

inside the matrix elements. Inserting Eq. (4c) into the expression of the vv term

and separating out terms with v/ = v” from those with v’ # v", one obtains:

(ol Hscrp by (e — &) | Hscrlby)
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Both the terms on the rhs of Eq. (5) vanish because the parities of the numerators
and those of the denominators with respect to the exchanges v = v’ v = v" are
different. Let us come now to the cv and ve terms. Using Eqgs. (4b) and (4c) and
a few algebraic manipulations, one obtains:
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The cc term reads:

> (P Hicp — &) Pupl) =

v
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The first term on the rhs of Eq. (7) coincides with the first term on the rhs of Eq.

> (WP Hsop Peltry) — . (7

v c,v

(3). The second term has the same form as the rhs of Eq. (6), just providing the
v = v' terms which were missing therein. By combining these terms, we finally
obtain:

> (Wi Hscp — eslbs) = Y (b3 PeHscpPeltry)—
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By using Eq. (4b) and the condition that different conduction state are orthogonal
to each other, we finally arrive at Eq. (3).

Eq. (3) can be easily generalized to the case where the perturbation depends
nonlinearly on more than one parameter (as it is actually the case, e.g., in lattice
dynamics if ) is identified with a nuclear displacement). Suppose there are three
different such parameters, {\;,As,A3}. Following the notation and the line of

reasoning of Ref. [10], we easily arrive at the final result:

0°E
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where

EAlAzAa —

S (24P H AL p Pl (3 [ Poo™ s ) (00> P2+ (5 o> 22 22[s5) )

v

1
— Z(¢31|P°1¢3’2><¢2' }HQBCFWS)-;—E /KB(r, r’,r/l)n/\l(r)n)\z(rl)nz\a(ru)drdrldru,(10)

where the ); superscript indicates the derivative with respect to A;. One sees

that when the external potential depends lineary on just one parameter, A, Eq.
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(2) is recovered. In the general case where the positions of the nuclei also de-
pend on the A’s, one must of course add to Eq. (9) the derivative of the ionic
contribution to the energy which is usually expressed as an Ewald sum. All the
ingredients necessary to implement Eq. (10) are naturally provided by any com-
puter code aimed at standard second-order DFPT, such as the one we routinely
use for lattice-dynamical calculations. In the following, we present some tests of
the above formulation which we have made on the anharmonic coupling between

lattice distortions of Silicon at selected high-simmetry points of the BZ.

Numerical Tests

The equilibrium and lattice-dynamical properties of Silicon have been calcu-
lated within the local-density approximation, using the plane-wave pseudopoten-
tial method. We have used the same pseudopotential as in Ref. [4], plane waves
up to a kinetic-energy cutoff of 14 Ry, and the (444) Monkhorst-Pack mesh for
BZ integrations [11]. Calculations have been done at the I' and X points of the
BZ both within DFPT and, for comparison, by the frozen-phonon method. In the
latter case, the unit cell has a lower (rotational and/or translational) symmetry,
and the set of k-point used for sampling the BZ has been modified accordingly. We
stress that, as it is the case for the harmonic dynamical matrix [4], the calculation
of anharmonic coefficients at arbitrary points of the BZ within DFPT does not
require the use of any supercells, but it only uses wavefunctions and band energies
calculated for the unperturbed system. There are four independent parameters
describing the harmonic properties of the crystal within the set of distortions cor-
responding to I' and X phonons (the I'z10, X140, X714, and X710 frequencies),

whereas there are six anharmonic constants: one describing the coupling between
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three I'-like phonons, and five describing the coupling between one I'- and two
X-like phonons. We refer to Ref. [12] for a full group-theoretical analysis of the
independent coupling coefficients and for an explanation of the notations we bor-
row from it. In Table I we compare the third-order coupling coeflicients calculated
in the present work with DFPT and the frozen-phonon method. The values ob-
tained with the latter method have been obtained using a procedure analogous to
the one used in Ref. [12]. As one can see, DFPT give results which are in perfect
agreement with those obtained by the frozen-phonon method. Actually, they are
in principle more accurate because DFPT directly provides the energy derivatives

without the need of any numerical differentiations.

TABLE I. Comparison of the third-order anharmonic coupling constants between
phonons at the I' and X points of the Brillouin zone in Silicon, as obtained
by density-functional perturbation theory (DFPT) and the frozen-phonon (FP)

method. The notations are the same as in Ref. [12]. Units are eV/A®.

B:cyz ‘ Izﬁ' I_,j,'g IZEE Im Im
DFPT  -295.06 232.41 -35.27 55.92 447.64 -64.74
FP -295.27 232.11 -35.23 55.44 447.19 -64.84

We conclude that DFPT provides an accurate and computationally convenient
tool for calculating the anharmonic coupling of phonons at arbitrary points of the
BZ, with a numerical effort which essentially does not depend on the position in
the BZ. This opens the way to a systematic investigation of such effects in real ma-
terials. A calculation of the anharmonic-decay phonon lifetimes in semiconductors

along the lines presented in this paper is presently under way [13].

We are grateful to S. de Gironcoli, E. Molinari, and R. Resta for frequent and

useful discussions.
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