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1. Introduction.
The aim of this thesis is to study the functional

F(E) = / L+ In(z)P) a1 (a),

where £ C R? is a bounded open set of class C%, p > 1 is a real number, x(z) is the
curvature of F at the point z, and H* denotes the one dimensional Hausdorff measure in
R2.

We are interested in the study of the minimum problem
(1) mial [ 14 (2] 4 (2) + [ o(2) ds,
E JeE E

where g € L*°(R?) is non negative for |z| large enough. This can be considered as a
simplified version of a variational problem, depending on partitions of R? rather than
on sets E, proposed by D. Mumford [14] to obtain a good segmentation of images in
computer vision. Moreover, it was recently conjectured by E. De Giorgi [4] that problem
(1.1) is connected with the asympotic behaviour of some singular perturbations of minimum
problems arising in the theory of phase transition.

If we apply the direct method of calculus of variation to problem (1.1), we are led to
consider a minimizing sequence {E}}, which, in our hypothesis on g, satisfies

sup H'(8E,) < +oo, Ej C Bg(0) for any h,
h

where Bp(0) := {z € R? : |z} < R}. By a well known compactness theorem there
exists a subsequence {Ey;}x which converges in L'(R2) to some bounded set E of finite
perimeter. We shall prove that the functional F' is lower semicontinuous with respect to
the convergence in L'(R?). This allows us to show that, if the limit set E is of class C?,
then F is a minimizer of (1.1). Since, in general, it is hard to prove that the limit of a
minimizing sequence is of class C?, we want to extend the functional F to the set M of all
bounded Lebesgue measurable subsets of R2, in such a way that the extended functional
F is still lower semicontinuous with respect to the convergence in L1{R?). As usual in
the theory of relaxation (see {2]), we define F : M — [0, +0oc] as the lower semicontinuous
envelope of F" with respect to the L!(R2?)-topology, that is

F(E) = inf{liminf F(E) . B — E in L R?)}.
The main purpose of the paper is to study the functional F and to determine the family

of sets E for which F(E) < +co. The study of the minimum problem (1.1) has led us to
regard the functional

(1.2) fa L+ ()] i)
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as a function of E rather than of 8E. In fact, the compactness properties of a minimizing
sequence of (1.1) ensure a good convergence for the sets Ej, but the corresponding weak
convergence of the boundaries 0F; seems to be not appropriate for variational purposes.
The main difficulties, in this paper, are due essentially to the lack of good continuity
properties of the map E — BE.

Lower semicontinuity results and existence of minimizers under suitable boundary con-

ditions are much easier for the functional, related to (1.2),

(1.3) /F 1+ |s(=)?] dH(2),

where T varies now over all curves of class C? satisfying prescribed boundary conditions.
In the case p = 2, the problem is classical and the minimizers, discovered by Euler in 1744
{8], are called elastica because of their application to the theory of flexible inextensible
rods. For a complete treatment of the elastica we refer to [13, 10]. Unfortunately, these
results can not be applied directly to the study of (1.1).

In this paper we have considered the problem in the plane. The extension of our results
to the n-dimensional case is a difficult open problem and seems to require the methods of
geometric measure theory [9, 17]. We want to stress that all our proofs are obtained by
using only elementary tools. We cannot exclude that some of these results could also be
obtained in a more direct (but less elementary) way by using varifold theory [12, 6, 7).

We describe now in detail the content of the paper.
In Section 2 we give some notation and we introduce the problem.
Section 3 is devoted to the study of the lower semicontinuity of F. Precisely, we prove

(Theorem 3.2} that given a sequence {EL}1 of bounded open seis of class C? converging in
L1(R?) to a bounded open set E of class C2?, then

f (1 + x(=)[?) dH}(2) < limint f (1 + [sa(2)P) 4K (),
8E h—too JoE,
where k and k), are the curvatures of OF and of OEn, respectively.

The definition of F' makes sense if E is a set whose boundary can be parametrized,
locally, by ares of regular curves of class H2?, and the previuos semicontinuity theorem
holds also in this case (Corollary 3.2).

We emphasize that the semicontinuity of F and the definition of F are considered with
respect to the L*(R?)-topology. This means that the sequence {Ex}s approximates E if
and only if |[ByAE| — 0 as h — +oo, where || denotes the Lebesgue measure and A is the
symmetric difference of sets, and no further condition is required on 8E; and 8E. Simple
examples show that there exist sets E with F(E) < +oo, whose boundary is not smooth.
In particular, let us consider the set B of Figure 1.1. Then JE is not smooth because
of the cusp points. Figure 1.2a shows that F(E) < +oo. In fact the sequence {En}tn
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approximates ¥ in L!*(R?) and sup, F(Fi) < +o0. On the other hand, the approximation
of Figure 1.2b is not allowed. Here the cusp points are smoothed by circular arcs, and
it is easy to prove that, if p > 1, then faE,. |kn(z)|F dH'(z) — +o0 as b — 4-oc0. Note
that figure 1.2a shows that, at. the limit, the sequence {OFEj}; creates a hidden arc (with
multiplicity two), given by the segment joining the two cusp points.

FIGURE 1.1.

FIGURE 1.2,

The main issue is obviously to characterize those sets E such that F(E) < +o0. We
found some necessary conditions and some different sufficient conditions, but the complete
characterization of this class of sets still remains an open problem.

In Section 4 we present some regularity properties of the sets B such that F(E) < +oo.
To be precise, the following result is proven (Theorem 4.1, Remark 4.4).

Let E C R? be o measurable set such that F(E) < 4+oco. Then, up to a modification

on a sel of measure zero, we have that
(i) E is bounded and open;



(ii) H*(8E) < +o0;

(iii) there ezists @ system of curves A = {4ty Y™} of class H*F such that OF is
contained in the union (A) of the traces of the curves ~and B = int( A U (A)),
where A is the set of ell points of R2\ (A) of indez 1 with respect to A;

(iv) OF has an unoriented continuous tangent;

(v) OF can Lave ot most a countable set of cusp points.

At the end of the section we classify the points of BF according to the local properties
of the normal line.

In Section 5 we show examples of sets F such that F(B) < +09 despite of their
boundary being very irregular. Precisely, in Example 1 aset B is described whose irregular
boundary points have positive one dimensional Hausdorff measure. In Example 2 a set
having an infinite aumber of cusp points is shown.

In Section 6 we deal with the following problem: which conditions must satisfy the
boundary of a set E in order to have that F(E) < +00? To answer this question, we begin
to study which systems of curves can be obtained as limits, in the H?P norm, of a sequence
of boundaries of smooth sets. Hence we introduce the definition of system of curves with
multiplicity, without crossings and satisfying the finifeness property (Definition 6.1), and
the notion of left and right ordering of a node. Then the following result holds (Theorem
6.1): letT bea system of curves of elass H2? without cTossings and satisfying the finiteness
property, and define E as the sel of all points of R2\ (T) of odd indez with respect to L.
Then

8E C (T).
Moreover there ezisis a sequemnce {En}n of bounded open sets of class C*° such that

(i) En — E 1n LY(R?) as h — +00;

(11) supy F(ER) < +oo.

Hence

T(E) < +oo.

In addition, up to a suitable surgery operation o7 the parameter space of T', we have that
8E, — T strongly n H*? as h — +o0.

The proof of this theorem relies essentially on two ideas. The first one is that, from the
point of view of the energy functional (1.3), we are free to make suitable Surgery operations
on the parameter space of T in such a way that the left and the right orderings on any
node coincide. The second idea is to approximate an arc of T having integer multiphcity

by a sequence of arcs having multiplicity one.

Then, quite surprisingly, using clementary properties of the regular graphs and the
previous result, we Jemonstrate one of the main results of the paper (Theorem 6.4), namely,
let E be a subset of R? with the following properties:
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(1) E is bounded and open;

(ii) 8F has an unoriented continuous tangent;
(i1) E is bounded by a finite number of closed curves of class H*P up 4o the closure;
(iv)E:{zER2:3r>0IBP(Z)\EIEO}. ‘

Suppose that OF is smooth ezcept for a finite number n of cusp points. Then

o1 even < F(E) < +oo.

In Section 7 we localize the definition of F to all open subsets of R2, i.e., we consider
the functional

(1.4) FEN:= [ [ e arege),
SENQ

where Q is an open subset of R? and E is a bounded open subset of R? such that §E N 2
is of class C2. We prove (Theorem 7.1) that F(-,0) is L(Q2)-lower semicontinous.

Finally, let (., §1) denote the lower semicontinuos envelope of F(-,Q) with respect to
the Ll(ﬂ)-topology. The main result of this section is that, as conjectured by E. De Giorgi
[4, Conjecture 5] in a slightly different context, there are sets E such that F(E, R?) < +oo
but F(E,.), considered as a set function, is not a measuyre, Precisely, we construct an
example of a set E, whose boundary is smooth except for two cusp points, such that

F(E,R*\ ;) + F(E,Q,) < F(E,R?) < +co,

where @, and Q2 are two suitable open squares in R? with Q, cc Qs.
This shows that F(E,Q) can not be represented by an integral of the form (1.2).

patient supervision this research was carried out. I would like also to thank M. Paolinj for
several very interesting discussions ahout the argument. Finally, I am grateful to E. De
Giorgi for the suggestion of the problem.

2. Notations and preliminaries.

A plane curve v ; [0,1] — R2 of class ¢! s said to be regular if %—@ # 0 for every
t €[0,1]. Each closed regular curve «y : [0,1] — R2 will be identified, in the usual way,
with a map v : §! —, R?, where S! denotes the unit circle with clockwise orientation. By
(M ={1):te [0,1]} = (o, 1]) we denote the trace of 7 and by I(7) its length; s will
denote the are length parameter, and 4. 5 the first and the second derivative of v with
respect to s. Let us fix a rea] number p > 1 and let g > 1 be its conjugate exponent, i.e.,
i é = 1. If the second derivative 7 in the sense of distdbutions belongs to L?, then the
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curvature x(7) of 7 is given by [¥], and | &(7) 5si= fulh) |&{)|? ds < +oo; in this case
we say that « is a curve of class H*¥, and we will write v € H*?. If z € R?\ (7), I(7,2)
will be the index of z with respect to v [3].

H! will denote the 1-dimensional Hausdorfl measure in R? [9]; for any zo € R?,0 > 0,
B,(z) = {z € R? : |z — 20| < o} is the ball centered at zo with radius p. Given a
measurable set E C R2, yp will denote its characteristic function, that is xg(z) = 1 if
z € E, xp(z) == 0if z ¢ E; |E| will be the Lebesgue measure of E. We say that E
is of class H2? (resp. C?) if E is open and is locally the subgraph of a function of class
H?? (resp. C?) with respect to a suitable orthogonal coordinate system. Note that if the
boundary OE of E can be parametrized, locally, by arcs of regular curves of class H*P
(resp. C?), then FE is of class H>? (resp. C).

If M denotes the class of all bounded Lebesgue measurable subets of R?, we define
the map F : M — [0,+o] by

1+ |k(2)|P)dH (= if E is open of class C?,
pmy o | [ HAREEE)

400 elsewhere on M,

where r(z) is the curvature of OF at the point 2.
Let g € L°(R2?) be a function such that @ # {z € R? : g(z) < 0} C Br(0), for a
suitable B > 0. Let us consider the minimum problem o

(2.1) minf [ {1+ (7] 4 (2) + [ o2) d,
E JeE E

where E varies over all bounded open subsets of R* with boundary of class C2. It is clear

that (2.1) is equivalent to the problem

(2.2) EI:IIE.‘IJ];.IA G(E), where G{E):=F(E)+ /:Eg(z) dz,

in the sense that (2.1) and (2.2) have the same minimum values and the same minimizers.
By the assumptions on g, it is immediate to verify that, if problem (2.1) has a solution E,
then E could be non empty.

We shall identify M with a closed subset of L(R?) by means of the map B — X=-
The L!(R2?)-topology on M is, therefore, the topology on M induced by the distance
d(E1,E;) = |E1 D Es|, where By, B € M and A is the symmetric difference of sets.

Let us prove that any minimizing sequence {E}, of G is relatively compact in L*(R?).
Let { Er}» be such a minimizing sequence; clearly, we can assume that sup, G(Er) < +o0,
hence Ej, is of class C? for any h. Then, since )

fa [ o)) 4H5(2) S sup GUEN 19 I 1Ba(O))
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it follows that

(2.3) H :=supH'(DE}) < +co.
h

Now we will show that there exist g > 0 and hy € N such that E, C B,(0) for any
h > hy. Suppose by contradiction that for any g > 0, for any hy € N there exists A > h,
such that E; has a connected component C, with C, ﬂ—B':(F) = (). Let us fix such g, kg
and h = h{hy). If we consider the set E,' := E, \ Ch, we get G(E}') < G(E4). Let us
consider the subsequence {E ho) Thy and let us denote it by {E;},. Since this subsequence
is 2 minimizing sequence, it follows that necessarily G(Ex) — G(Ey') = G(Ch) — 0 as
h — +oo. Oun the other hand, one can show (see (3.2)) that Cj gives a positive and
independent of h contribute to the energy F, that is F(Ch) # 0. Contradiction.

Hence, by (2.3), it follows that
Ep CByyg(0) for anyh.
We deduce that
sgp[Hl(aEh) + |E4]] < +oo, Ey C Byyu(0) for any h.

Using the Rellich compactness theorem in BV (see [11, Th. 1.19]), it follows that there
exist a bounded set F of finite perimeter and a subsequence {Ej;}i such that By, — E
in L}(R?) as k — +oco, and this shows that any minimizing sequence of G is relatively
compact in L!(R?).

We denote by F the lower semicontinuous envelope of F' with respect to the topology
of L*(R?). It is known that, for every E € M, we have

(2.4) F(E) := inf{]f_liminf F(Ey) : B — E in L'(R?) as h — +00}.

For the main properties of the relaxed functional we refer to [2]. In particular, one can
prove that

inf{F(E) + /E 9(2) dz} = in F(5) + /;: 9(2) dz.

In addition every minimizing sequence of F(E)+ [; 9(z) dz has a subsequence converging
to a minimum point of F(E) + Sz 9(2) dz and every minimum point of F(E) + Jpa(z) dz
is the limit of a minimizing sequence of F(E)+ [p9(2) d=.

The main purpose of this paper will be to study the properties of the functional F.
From the definition, it follows immediately that F(E) < +o0 if and only if there exists a
sequence {E;}; of bounded open sets of class C? such that B, — E in LY(R?)as h — 40
and

(2.5) sup H'(0E,) < +oo, sup/ I (2)1? dH Y (2) < oo,
h h JaE,

where, for any h, k), denotes the curvature of 8E h-
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DEFINITION 2.1. By a system of curves we mean a finite family A = {7, ..n7™}
of closed simple regular curves of class C' such that | "\ is constant on [0,1] for any
i =1,...,m. Denoting by § the disjoint union ofm unit czrcles Sl, , 81, we shall identify
A with the map A : § — R? defined by Ajg1 = ~i, for i = 1,...,m. The trace (A) of A is

the union of the traces of the curves 7', L.e., (A) i= U?;1(7i)-
DEFINITION 2.2. If A = {¥},...,9™} is a system of curves of class H*?, we define
i e )
=Sl EHMHH =3 [ R
j=1 j=1
If zR2 \ (A) we define the index of z with respect to A as

= ZI('Yi:Z)

i=1

As |iX ‘| is constant on [0,1], we have s(t) = (v’ '), hence

!(v")
(2.6) / l(ww—wfmjlﬁwﬂ.

3. Semicontinuity of F.

DEFINITION 3.1. By a disjoint system of curves we mean a system of curves A =
{+},...,4™} such that (v} N (y?) = 0 for any 2,5 = 1,...,m, i#£ 7.

Note that if { Ez}x is a sequence of sets satisfying (2.5), then a suitable parametrization
{Ap}y of {OF}s satisfies

(3.1) sup {Ar) < oo, sup | k(Ar) IZe < 00

LEMMA 3.1. Let A = {¥%,...,7™} be a system of curves of class H??; then
m < KA || 6(A) [I2, (27)7%
PROOF: Let v be a simple closed regular curve of class H?7; let us prove that

(3-2) v} > (@m)" |l &(7) lize

Indeed, if v € C?, then [5, Th. 5.7.3]

b
(3.3) /U [{s)l ds > 2m.
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By a standard approximation argument, inequality (3.3) holds for any curve ¥ of class
H??, Hence, using the Holder inequality, if v € H?? we get {3.2), since

I(‘?') 1 l('y) 1 1
2 < / 5(s)] ds < [7)( / B(o)fP ds) = v) 1) m(r) oo -

Then, recalling Definition 2.2, we obtain that {v%) > (2m)? || s(y*) || for any i =
1,...,m. It follows that

(8) = Y1) = Yo (2mt | wlr) 82 (@) I w(4) 2 m.

The following generalization of inequality (3.2), as well as Corollary 3.1, will be very useful
in section 7.

LEMMA 3.2. Let v : [0,1] — R? be a simple regular curve of class H*? and let us
denote by 8, and 6, the oriented angles between the z-axis and the oriented tangent vectors
ofvati=0andt= 1, respectively. Then

Kv) > 181 — 6o]? || () 127 -

Proor: Let us write with obvious notations 4(s) = (cos 8(s),sin 6(s)). Then, using
the Holder inequality, it follows that

v Iiv) .
Is o= [ B do 2 5[ i) depp >

vy
)75 [ da) asly = 16— BoP U7 E
[#]
COROLLARY 3.1. Let v,8y,8, be as in Lemma 3.2. Then
il

(3.4) Uy )+ Il s(7) 12,2 16, - eu|[<§)% +(2)

e~ W~

PROOF: Lemma 3.2 implies that

()4 | &) 1502 L) + K7) 75161 — 6o P,

Hence, since the minimum point of the function {v) + 1(7)_%[91 — 8,7 is reached at
() = 18, — 83(2)?, we obtain

() + 1| o(7) 12,2 161 — 6l(E)7 + 162 — 601216, — 80) 5 (2) 7 = 16, — 8ol [(E)7 + (£)3].

|3
g
TRk
o R
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DEFINITION 3.2. Let E C R? be a bounded open set of class C'. We say that a disjoint
system of curves A is an oriented parametrization of 8F if (A) = GF, and, in addition,

E:{ZERZ:I(A:z)Zl}: Rz\E:{zERZ:I(AVZ):G}'

PROPOSITION 3.1. Each bounded subset E of R? of class H*? (resp. C?) such that
OF as a finite number of connected components admits an oriented parametrization of
class H*? (resp. C?).

PROOF: Since E is of class H?? each connected component of E can be parametrized
by a regular closed curve of class H2?. The last assertion follows from the Jordan’s
Theorem. [J

,  DeriniTION 3.3. Let m € N, m > 1; we say that a sequence {Ap}r of systems of
curves of class H*? converges weakly in H2? to a system of carves A = {7,...,7™} of
class H?? if the number of curves of each system A, equals m for h large enough, i.e.,
An ={¥},...,7"}, and, in addition, for any 1 =1,...,m, vi — 4% weakly in H*?(0,1) as
h — “4oo.

Note that, if {As}s converges to A = {¥%,...,7™} weakly in H*?, then
(3.5) ~i — 4" in C1({0,1]} as h — o0,

foranyi=1,...,m.

DEFINITION 3.4. We say that A is a limiting system of curves of class H*? if A is the
weak H®? limit of a sequence { A}, of oriented parametrization of bounded open sets of
class H*?P, ' . ‘ '

The following remark is an easy consequence of (3.5).

REMARK 3.1. If A is a limiting system of curves of class H*?, then I(A,z) € {0,1}
for any z € R? \ (A).

THEOREM 3.1. Let {Ax}, be a sequence of systems of curves satisfying (3.1) such
that the traces (Ay) are bounded in R? uniformly with respect to h. Then there exists a
subsequence which converges weakly in H2? to a system of curves A.

Proor: By (3.1) and by Lemma 3.1, the number m, of curves of the system Aj is
bounded uniformly with respect to k. Hence, for a subsequence (still denoted by {Aw}r),
there exists m € N such that Ay = {v},...,v/"} for any h. Fixi € {1,...,m}; using (3.2)

and (3.1) we get that there exist two positive constants o, 8 such that
a<lyi)<pB for anyh.

12




Then, using (2.6) we obtain that there exists a positive constant ¢ such that fol —C%I,EL P dt <
¢ i(vi)¥! < e B2P~1, whence, since (Ax) are bounded uniformly with respect to & by the
hypothesis, the family {7i}4 is equibounded in H2>. Then, for a subsequence, there exist
m curves v',...,¥™ of class H2? such that, for any 1 = 1,...,m, vi — 4% weakly in
H*?(0,1) as A — +o00. This shows that {Ax}n converges to A := {41,... Y™} weakly in
H%?

In order to prove the semicontinuity Theorem 3.2, we need the following Lemma.

LEMMA 3.3. Let E C R? be a measurable set, let {En}s be a sequence of sets satisfying
(2.5), and suppose that E, — E in L(R?) as h — 4o0. Let us define

E*:={zeR*:3r > 0{B.(2)\ E| = 0}.

Then E* is bounded, open, and |[EAE*| = 0. Moreover there exists a limiting system A
of curves of class H®? with the following properties:
(i) B =int(AU(A)), where 4 :={z € R?\ (A): I{Az) = 1};
(ii) 0E* C 9A C (A);
(iii) {= € R?\ (A) : I(A, 2) = 0} C R?\ ¥
(iv) OE* C R2\ E~.

PRrOOF: It follows immediately from the definition that E* is open. For any h, by
(3.1) and by Lemma 3.1 8E), admits an oriented parametrization Ay of class C? and the
number my of curves of the system Ay is bounded uniformly with respect to h. Hence, for
a subsequence (still denoted by {Ar}s), there exists M € N such that Ay = vk}
for any h. In order to apply compaciness arguments, we shall transform the sequence

{As}r, which is not necessarily bounded (see Figure 3.1), into a sequence {Bh}h such
that {(Ax)}x is bounded.

FIGURE 3.1.
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Let us consider first the sequence {y}}s of curves. If the sequence of real numbers
{a}, := sup,¢pp,q) [7i{t)|}n converges to +oo, then we eliminate v}, i.e., we replace Ay by
the system Al := {72,...,7M}. Note that, as {(v}) is uniformly bounded with respect
to h, the behaviour of {a}}s gives that, for any R > 0, there exists Ap € R such that
I(y},2) = 0 (hence I(A},z) = I{Ay,z)) for any h > hgr and for any 2'€ Br(0). If {a}}n
does not tend to +oo, there exists a subsequence, still denoted by {71}, such that the
traces (y}) are bounded uniformly with respect to h. In this case we define A}l = A
Starting from {A}}x, we repeat the same procedure, obtaining a new sequence of systems
of curves {A%},. After M steps, we end up with a sequence of systems {AM}y, which we
shall denote by {Eh} a. By construction, for every h, A} is a disjoint system of curves of
class C2, and for every R > 0 there exists hg € R such that

(3.6) I(A4,2) = I{A, 2)

for any h > hp and for any z € Bg(0). It is clear also by construction that the traces
(A}) are bounded uniformly with respect to k, i.e., there exists Ry > 0 such that

(3.7) (E.h) C Bgr,(0) for any h.

From (3.6) and (3.7) it follows easily that, for any 2 € R?\ (A}) we have I(An, z) € {0,1}
for h large enough. Let us define A := {z € R2\(A4) : I(Aj,z) = 1}. Then, for any h, 4y
is a bounded open set of class C2, and, since A} is a disjoint system, we have 84, = (ﬁh)
Using Theorem 3.1, there exists a subsequence {As}s which converges weakly in H*?
to a limiting system A of curves of class H??. By Remark 3.1, I(A,z) € {0,1} for any
z € R?\ (A). Let us define the open set 4 := {z € R*\ (A) : I(A,z) = 1}. Since
X4, (2) = I(Eh,z) for any z € R? \(B.h), and x.4(z) = I(A,z) for any z € R* \ (A), by '
the continuity property of the index and by the dominated convergence theorem we have
that A, — A in L'(R?) as A — +oo. Let us prove that

(3.8) |BAA]=0.

By (3.6) and (3.7), for any R > Ry, we have that 4, = E, N Bg(0) for h large enough;
passing to the limit as A — 4-00, we obtain that |AA(ENBg(0)) = 0. Since R is arbitrary,
we get (3.8).

Let us prove that |EAE*| = 0. By (3.8}, it is enough to prove that

(3.9) |AAE*| = 0.

Since A is open and [EAA| = 0, for any z € A there exists > 0 such that B.(z) C A and
\Br(z)}\ E| < |B:(2)AE| <|AAE| = 0; hence = = E*. Then we get

(3.10) ACE™
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To prove (3.9), being [(A)] = 0, it is sufficient to show that

(3.11) E* C AU(A).

If z ¢ AU(A), then I(A,z) = 0. Since the index is locally constant, there exists + > 0
such that I(A,w) = 0 for any w € B,(z). This implies that 0 = |B.(z)N 4| = |B-(z) N E|,
hence z ¢ E*. This proves (3.11), so we can conclude that |[EAE*| = 0.

Let us prove (i). The inclusion E* C int(4 U (A)) follows from (3.11) and from the
fact that E* is open. To prove the opposite inclusion, let z € int (AU (A)). Then there
exists r > 0 such that B.(z) C AU(A). Hence |B.(2)\ A] = |B.(2)\ E| = 0, and therefore
z € E*. This concludes the proof of (i). In particular, it follows that E* is bounded.

Now we will prove (ii). Let us show that
(3.12) 04 C (A).

If z ¢ (A), then either I{A,z) =1 or I(A,é) = 0. In the former case z € 4, hence z ¢ §4.
In the latter case, there exists a neighbourhood U of z such that I (A,w) = 0 for every
w € U. This implies U N 4 = @, hence z ¢ 8A. This concludes the proof of (3.12). Note
that the inclusion (3.12) might be strict (see Figure 1.2 a).

To prove (ii) it remains to show that 8FE* C 8A4. Let z € 8E* and let I/ be a
neighbourhood of zy. Clearly there exists a point z € U \ E*; from (3.10) it follows that
(3.13) ze U\ A

Moreover, since U N E* is open, using the definition of E* and (3.8), we can find a point
w € UNE* with the property that there exists 7 > 0 such that B.(w) C U and |B.(w)\ 4] =
|Br(w) \ E| = 0. Hence we can choose a point w' such that |

(3.14) w' e ANU.
Since U is an arbitrary neighbourhood of 2, (3.13) and (3.14) imply that zy € 84, hence
0E* C 8A.

Let us prove (iii). Let z0 € {z € R?\ (A) : I(A,z) = 0}; then there esists + > 0
such that Br(z0) C {2z € R*\ (A) : I(A,z) = 0}. Moreover, from (3.9), it follows that
|Br(20) N E*| = 0; since E* is open we get § = B,(20) N E* = B.(z0)N E*. This gives (iii).

It remains to prove (iv). From (iii), it is enough to show that

O0E* C {z e R2\ (A): I(A,z) = 0}.
Let zy € §E*. If by contradiction there exists a ball Br(z0} such that B.(z) N {z. €
R?\ (A) : I(A,2) = 0} = @, then |B.(25) N (R? \ E*)| = 0; hence |Br{zg) \ E*| = 0, that
gives zy € E*. ]

If F(E) < +o0, we shall consider E* as the best representative of & in its equivalence
class, therefore, to simplify the notations, in the sequel we always shall assume E = E*.

Note that, with this convention, 8E has no isvlated points, and cannot have any one
dimensional subset lying inside or outside of E. Obviously, if E is a bounded open set of
class C?, then E* = E.
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THEOREM 3.2. The functional F(+) is L*(R?)-lower semicontinuous on the class of all
bounded open subsets of R? of class C?, i.e., given a sequence {E} of bounded open sets
of class C? converging in L!(R?) to a bounded open set E of class C2?, then

(3.15) [ aisar) ar(e) < mint [ (14 mn(2)F) 4€1(2),

where & and x;, are the curvatures of OF and of 3E}, respectively.

PROOF: Let {Es}s be a sequence of bounded open sets of class C?, Ey — E in L}(R?)
as h — +o0o. We can suppose that the right hand side in (3.15) is finite, otherwise the
result is trivial. Let {Ejx}+ be a subsequence of {Ex}x with the property that

k]ij F(E) = hmm.f F(Ep) < +oo.

For simplicity, this subsequence (and any further subsequence) will be denoted by {Ex }x-
For any k, 8F; has a finite number of connected components. Let A be an oriented
parametrization of 8E;. Since {Ex} satisfies (2.5), the sequence {Ax}x satisfies (3.1).
As in the proof on Theorem 3.1, we can suppose that, for any k, Ag = {¥},-- <YM} with
M independent of k. Let {Ax}e = {71},-+-,7;"} be the equibounded sequence and let
A be the limiting system of curves of class H27? constructed in the proof of Lemma 3.3.
Then, by construction, m < M, A= {y4,...,¥~}, and for any j = 1,...,m Wwe have
that 'Y.r: — ~% weakly in H>? as k — 4-o0. Usmg (ii) of Lemma 3.3 and the weak lower
semicontinuity of the L? norm, we ha.ve :

— 1-2 k
%Ej_g F(Eh) | hm F(Ek) _-. hm Z i '7&) + hm Z ] 7k) u f |~ dt2 lp dt

> i E E )i-2e k P dt

k
jzl j=1 —rtoo j=1

= Sol) + Do) T f ldz’“ pazw(0E) + Yt [ 1L v

liy'i)
— H(9E) +Z f (55 (o)7 da = H(OE)+ || k(A) [}, F(E),

that gives the assertion. [J

Note that the inequality (3.15) might be strict. In fact, let 7 € Rt, E := B.{0),
Ey = Br_k( yu{zeR*:ir+1 -2 <z <r+1 4 11} for any k. Then OF is strictly
contained in (A) = 8B,(0) U 8B,+1(0). and

Jim F(BL) = F(E) + 2F(Br:(0))
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(A 3\

FIGURE 3.2.
The following result generalizes Theorem 3.2.

COROLLARY 3.2. Let E C R? be a bounded open set of class H**. Then
(3.16) F(E) = f L+ |6(2)]7] dHA(z).
8E

In particular, F(E) < 4oo.

PROOF: Theorem 3.2 holds with the same proof if E is of class H%?, hence, passing
to the infimum with respect to the approximating sequence {E;}4 in (3.15), we infer that

(3.17) [+ s dr¢i(a) < F(E)

Let us prove the opposite inequality. Proposition 3.1 implies that there exists an oriented
parametrization A = {y',...,4™} of GE of class H%?. Hence in particular §E = UT (),
where v : [0,1] — R? are closed simple regular disjoint curves of class H>?. Feor any
i =1,...,m,let us consider a sequence {} }» of curves of class C>([0, 1]) such that v} — 4
strongly in H?? as h — +oo. It follows that, for k large enough, the approximating system
Ay = {75,...,7P} is a disjoint system of curves. Moreover, by construction, (Ax) are
equibounded uniformly with respect to k. For any k, let us define Ej, := {z € R?\ (As) :
I{(Ap,z) =1}, Then 8B, = U™ (vi), Bxr — {z € R\ (A): I{A,z) =1} = E in L}{R?)
as h — +oo0, and [y (14 |sa(2)|P] dH(2) = 102, f‘ff. [1+ |&(yi)|?] dt. It follows that

)< hJiP&mZ/ 1+ et} = [ ) ane ),

by construction. This concludes the proof of (3.16). ~

In particular, from the preceding result. it follows that if E ¢ R? is a bounded open set
of class H?P, then there exists a sequence {E,}; of bounded open subsets of R? of class
C* such that B, — E in LY(R?), 8E, — OF in C', K, — & strongly in L?, as kb — +oo.
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4. Some properties of the sets E such that F(E) < +oo.

We recall the definition of tangent cone for an arbitrary subset of R? (see for instance
{9, 3.1.21}).

DEFINITION 4.1. Whenever A C R?, z; € A, we define the tangent cone of A at
2z, denoted by T4(z0), as the set of all v € R? such that for every € > 0 there exist
z€ A,0 < r e R with |z —zy| < ¢, |r(z—20) —v| < €. Such vectors v will be called tangent
vectors of A at z;.

By the definition, it follows that T'4(z) is a closed subset of R2.

If Ti4(2g) is a straight line we can write T4(z) = {a7(z) : @ € R}, where 7(2) is a
unit vector determined up to the sign that we will call a tangent unit vector of 4 at zp. In
this case we define the normal line N 4(zg) of A at zy as the straight line through the origin
orthogonal to T4(z,). We will make the following convention: once 7(zg) is chosen, v(z)
is the orthogonal unit vector to 7(zp) taken in such a way that {r(z0),v(20)} is oriented
as the canonical basis of R2.

Note that if A is a system of curves, 2z € (A) and A7 (=) = {¢1,...,%n}, then
(4.1) Tiay(20) U{a ra € R}.

DEFINITION 4.2. We say that a sysiem of curves A has no crossings if, whenever
Yt ) = (tg) for some i # j and 11,1, € [0,1], then dy (h) and &* (:’) are pa.ra.ﬂel

Note that if Aisa hmltmg system of curves of class H>? then A has no crossmgs T]:us
follows easily from the fact that A is limit in C* of systems of simple curves (see (3. 5)).

Let A be a system of curves without crossings, and let 2z € (A); by (4.1) the tangent
cone T'(zp) 1= T(a)(20) of (A) at 2 is a straight line.

DEFINITION 4.3. Let A be a system of curves without crossings, let z; € (A) and let
m(2y) be a tangent unit vector of (A) at zy. If there exists t € § = S} U...U 8], such that
A(t) = zp, and %(t) -7(zg) > 0 (resp. ‘—%(t) -7(zp) < 0), then we say that A is positively
(resp. negatively) oriented with respect to T(zy) In t, or equivalently, that A points o the
right (resp. to the left) with respect to v(z) in t.

We want to list some regularity properties of those sets E such that F(E) < +oo.
We shall identify the real projective space P! with the set of all one dimensional linear
subspaces of R?.

DEFINITION 4.4. Let A be a subset of R7. e say that A has an unoriented continuous
tangent if at each point z € A the tangent cone Ty(z) of A at zy is a straight line and the
map Ty : z — T4(z) from A into P! is continuous.
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PROPOSITION 4.1. Let A be a system of curves of class C* without crossings; then the
set (A) has an unoriented continuous tangent.

PROOF: We must prove that the map T(y) is continuous. Let zg € (A), A7 (z0) =

{t1y--stn}. As () = ... = 44 (4.) are parallel, it is easy to prove that the only
unoriented tangent vector of (A) at zg is Tay(z) = n((t1)) = --- = w(42(t.)), where

denotes the canonical projection of R? into P. Let U C P! be an open neighbourhood
of Tyay(20). The map ¢t — T(a)(A(t)) is continuous because Teay(A(2)) = (42 (t)). Hence
for any € > 0, there exist 61,...,6, positive numbers such that, if |t — 2] < 6;, then
Tay(A()) € U, so that if V' := UL At — 6t + 6:), then T4y(V) C U. Let us take
§; so small in such a way that the intervals 1t — 8i,ti + §;[ are pairwise disjoint; since A
is a system of curves parametrized with constant velocity, the implicit function theorem
implies that V is a neighbourhood of z; in (A) for the induced topology from R2. This
concludes the proof. [

THEOREM 4.1. Let E C R? be a measurable set such that F(E) < +oo. Then, up to
& modification on a set of measure zero, we have that

(i} E is bounded and apen;
(ii) H*(8F) < +oo;
(iii) there exists a limiting system of curves A of class H*? such that (A) 2 OF and
E =int(A U (A)), where A = {z e R?\ (A) : I(A,z) = 1};
(iv) 8F has an unoriented continnous tangent;
(v) F(E) > inf{l(A)+ || x(A) [|3,: A € A(E)}, where A(E) is the collection of those
limiting systems of curves A of class H*P such that (A) D 0E.

PROOF: Assertions (i), (ii) and (iii) follow from (2.5) and Lemma 3.3. Assertion (iv)
follows from Proposition 4.1, and (ii) of Lemma 3.3. Let us prove (v). Since F(E) < +o0,
there exists a sequence {Ej}, of bounded open sets of class C? satisfying (2.5) and such
that E; — E in L'(R?) as h — +oo. Using the same notations as in the proof of Theorem
3.2, for a subsequence {E;}, we have, from the weak lower semicontinuity of the L? norm,

- . — - — . p 1

fmind P - i PR =)+ B [ P (2
> A+ || £(A) 15> inf{{A)+ || £(A) |22 A € A(E)}.

Taking the infimum with respect to the approximating sequence {Ex}r, we get (v). [

DEFINITION 4.5. Let E C R? be a measurable set, let z € 8E, and suppose that the
tangent cone of 8E at z is a straight line. Let v(z) be a normal unit vector of 0F at z,
and, for any p > 0, let

Ni(z)i={z+sv(z): 0<s<p}, N (z):={z —-su(z): 0 <5 < g}
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Then we define
OwE:={2€8E:3» >0 N7 (z)UNT(z) CR*\ E},

8 E:={z€8E:3r >0 N7 (z)UNI(z) C E},
801 E = {z€0E:3r >0 N-{z) CR*\E, N¥(z) C E or conversely }.

REMARK 4.1. Suppose that E C R? is such that at any point of OF the tangent cone
is a straight line; then, for any z € OF there exists r > 0 such that N(z)NB.(z)N0E = {z}.

Proor: Follows immediately from the definition and the uniqueness of the tangent
line at z. J

REMARK 4.2. Let E C R? be a measurable set having an unoriented continous tan-
gent. Then

(4.2) SE = 8poEU 811E U 81 E.

In particular, if F(E) < +co, then (4.2) is fulfilled.

Proor: The inclusion 8y F U 011 F U 391E - BE is obvmos The opp051te mclusmn
follows from Remark 4.1. [J

REMARK 4.3. Let E C R? be a measurable set such that F(E) < +o0, and let 4 be as
in (iii) of Theorem 4.1. Then the deﬁmtmns of aﬂ{]E 611E and 601E rema.ms unchanged
if we replace E by A in Definition 4. 5 '

PRrOOF: Let z € 8F and suppose for instance that z e BnE We mll show tha.t
N}t(z) C Aand N7 (2z) C A. Let (A) be as in (iii) of Theorem 4.1. By Remark 4.1 there
exists r > 0 such that B,(z) N N(z) N (A) = {z}. Hence, since E = int{A U (A)), we have
the assertion. The other cases are analogous. []

A particular case of the next Lemma (r = 0, m = 1) can be found in [1, Lemma 9.2.5].
The general case can be proved using the same methods.

LEMMA 4.1. Let A be a system of curves without crossings, zy € (A), and 21,2 # 2
be points on N(z), one on each side of zy, and close enough to zy. Suppose that A is
positively oriented r-times, and negatively m-times with respect to 7(2) in z0. Then

[I{Ayz1) = I(A, z2)| = |r — m|.

Let E C R? be a measurable set such that F(E) < --co, and let A = {¥1,...,7™} be
the system of curves of class H?¥ of Theorsm 4.1. Suppose that 2y € 0y1 E; from Lemma
4.1, we deduce that, if {¢;,...,2,} = A™%(z4), then n = 2k + 1, k > 0. More precisely, we
get that A points k-times to the right with respect to v(zy), and (k 4 1)-times to the left
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(or viceversa). If zy € OgoF or 2y € 811 F, we get n = 2k, k > 1, and A points k-times to
the right with respect to v(zp), and k-times to the left.

Let p € (A)\ OF; then from (iii) of Theorem 4.1 it follows that there exists » > 0
such that either I(A,z) = 0 for any z € Ny4)(p) N B(p) \ (A), or I{A,2z) = 1 for any z €
N(a)(P)N B:(p) \ (A). This shows that (A) has even multiplicity at any point z € (A)\ JE.

Suppose now that z; € 3F has a neighbourhood where 8E is of class C!. Reparametrize
A by the arc lenght. If there exist ;,f; € A=(zo) such that %(t,—) = 222(4;) for some
r #8, 8,7 € {1,...,m}, then from the uniqueness of the parametrization by arc lenght, we
infer that there exists 77 > 0 such that, for any ¢ €] — 5, 7[ we have v7(¢; + ) = v*(¢; + 1).
This means that when two different branches of A meet together with the same orientation
at a point z9 where OF is locally of class C!, then they must glue together at least for a
short time.

In the following figures we show some examples of sets E with F(E) < 400, their
approximation in the L*(R?) norm, and the limiting system of curves A obtained.

FIGURE 4.1.

DEFINITION 4.6. Let E C R? be a measurable set such that F(E) < +o0, z5 € OF,
and let 7(zg) be a tangent unit vector of 8F at zy. We say that z is a cusp point of OE if
there exists » > 0 such that

either B} (z)NOE =10, or B (z)NB8E =0,
where
B (z0) := {y € B:(z) t(y—z)-m(20) > 0}, B (z4) :={y € Br(2v) : (y—24)-7(20) < 0}.
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FIGURE 4.2.

FIGURE 4.3.

REMARK 4.4. Let E C R? be a measurable set such that F(E) < +oco. Then 8E have
at most a countable number of cusp points.

PROOF: Let A = {y',...,4™} be the limiting system of curves of class H2* as in (iii)
of Theorem 4.1, and let C be the set of the cusp points of 8E belonging to (v!). For any
r € C let ¢, € {0,1] be such that y'(¢,) = r. Assume for simplicity that ¢, €]0,1[. By the
definition of cusp point and since 7! is parametrized with constant velocity, there exists
€r > 0 such that either y!(I7) N GE = 0, or v}(I;}) N 8E = 0, where IT :=[t, — €., 1,],
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It =]tr tr+e). Let C = {r € C:4y*(I7)NOE =0}, C* := {r € C: 4} (I})NOE = 0}.
Note that in particular 4*(I7)N C~ = @ for any r € O, and ¥}{IF) N Ct+ = @ for any
r € C*. Hence, for any r,s € G+, r # s, I} NI} = 0, and the same holds for C~. It
follows the assertion. [

We will see at the end of the next section that there exist sets E such that —F—(E ) < oo
having a countable number of cusp points.

DEFINITION 4.7. Let E C R? be a measurable set such that F(E) < +o0, 20 € 0,
and let T(zy) be the tangent line of OF at zo. We say that zp is 2 branch point of OF
if there exists r > 0 and there exists a tangent unit vector T(zo) of OF at zy such that
B} (29)N8E is a cartesian graph with respect to T(zc) and B-(z3)N8E is not a cartesian
graph with respect to T(z).

An example of branch point is shown in Figure 4.3.

COROLLARY 4.1. Let E C R2? be a measurable set such that F(E) < +oo. Then §E
can have at most a countable number of branch points.

PROOF: We will follow the notations of Remark 4.4. Let C be the set of all branch
points of OF belonging to (v!). For any r € C there exist £, > 0 such that y*(I}) or
41(I7) does not meet any other branch point. The assertion then follows reasomng as in
Remark 4.4.

5. Some critical examples.

In this section we show some pathological examples of measurable sets E whose bound-
ary 8E is very irregular and, despite of this, F(E) < +oo.

Example 1. S _

There exists a measurable set E such that F(E) < +oco and H* (G E U E) > 0.

PROOF: Let 4 be an open subset of [0,1] with the following properties:

(i) A is dense in [0, 1};

(i) A = LSS Iy, where I =]ag,bi[, Ir pairwise disjoint;

(iii) H([0,1]\ 4) > 0.

For any k, let zx := ﬁk-—--i and let ¢ : R — [0,1] be a function of class C°°, such that

¢(z) = ¢(—z), ¢(z) = 0if ]:n] > 1, $(0) = 1. Forany z € R, let ¢(z) := ¢( bi: (z—=k)).
Then there exists a sequence {7 }x of real numbers such that the function

=Y mkdi(z)

=1

is of class (%°(R). In fact, for any I, denote by || - [ the C! norm, and suppose that
the sequence of sequences {'qk )}k, . ,{nin}k, ... has been constructed in such a way that
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Yores 17,(:1) | #£(2) ||c: < +o00. Then, if we define

. k
e = mm(??il), 77}22)’ ey Wi(c ))r
we get the convergence in any norm || - ||¢: of the series defining . Finally, we define (see

Figure 5.1
E:={(z,y):z € 4,-8(z) <y < ®(z)}.

FIGURE 5.1.

By construction, 8o E = ([0,1]\ 4) x {0}, 811 E = 0 hence, by (iii) we get ' (Gpo EU
011 E) = H}([0,1]\ A) > 0. Moreover, as 8y, E = §EN(4xR), by (i) we obtain OnE = 0E.
To check that F(F) < o0, we must approximate in the L1(R?) norm the set E with _

a sequence {E}}4 of bounded open sets of class C? satisfying (2.5). It is easy to see that
it is possible to find {E),}, such that E, — E in L'(R?) as A — +o0, and

OFx = {(z, 8(2) + 7) : » €0, 1 (=, ~2(e) - 1) : = €]0, 1} U (C) U (CD),

where (C}) and (C}) are the traces of two simple regular curves C}, C? of class C™ joining,

respectively, the points (0, ~+), (1, —%) and the points (0, 1),(1, 1), and with the followin
P k R R A g

properties:
6) (G N (CE) =0;
(i) supa[(C}) + J IR(CLIF ds < +oo, supy [(CE) + J IR(CE)P ds < +oo;
(iii) SUPz¢cl,yec? [dist(z,y)| — 0 as h — +oo.
Then {Ey}; satisfies the required properties (see Figure 5.2). [
Example 2.

There exists a measurable set £ such that F(F) < o0 and 6F has a countable number
of cusp points.
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FIGURE 5.2.

ProOF: Consider the family of intervals I :=]3,3[, I3 =35, 5[, Ix =1 - 2—&’1—__:117, 1-
1l:=]ar,bx[, £ > 2, k € N. Using the same notations of Example 1, we can construct the

functions ¢, ® and we can define E as
E = {(z,y) 1z € U Ir,—®(z) <y < B(z)}.

Then E verifies the required properties. []

6. Systems of curves that can be approximated by boundaries of sets. Let
E © R? be a bounded open set. The main problem of this section is to understand which
kind of conditions must satisfy OF in order to have that F(E) < -+oo. To do that, we
need the following definition.

DEFINITION 6.1. Let S be the disjoint union of m unit circles S1,...,S%,, and let
T: S — R? be a system of curves. We say that ' satisfles the finiteness property if there
exists a finite number of points t1,...,tar in S such that the unique finite partition P of
S\ {t1,...,tar} composed of connected open sets satisfies the following properties:

(i) any element of P can not be a unit circle;

(i) for any I, H € P either T(I)NT(H) =0 or (D) =T(H);

(ii) Tjr : I — T(I) is an omeomorfism for any I € P.

Condition (i) in Definition 6.1 is uninfluent in order to prove the results of this section.

Clearly, if T is a system of curves satisfying (i) and (iii), condition (i) is fulfilled by suitably
inserting a finite number of new points ¢; in 5.

DEFINITION 6.2. Let T' be a system of curves satisfying the finiteness property. For
every I € P the set T(I) will be called a branch of T', and for everyi1=1,...,M the point
I'(¢;) will be called a node of T'. The set of all nodes will be denoted by N(T').
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DEFINITION 6.3. Let T' be a system of curves satisfying the finiteness property, and
let J be an open and connected subset of S\ {t1,...,tar}. The set T(J) will be called and
arc of I.

Let J be an arc of I, let z € T(J). Then the cardinality of the set I'"1(z) depends
only on J and does not depend on z. This cardinality will be called the multiplicity of the
arc I'(J). In particular, since I'(J) is contained in a branch I'(I), the multiplicity of '(J)
is the multiplicity of I'(I).

Unless specified, throughout this section the symbol T' will denote a system of curves
without crossings (see Definition 4.2) and satisfying the finiteness property.

The problem will be to approximate I' in the H?” norm by a sequence whose elements
are boundaries of smooth bounded open sets ([16], [18, 8.9.4]).

We begin with the following Lemma.

LEMMA 6.1. Let T' : § ~ R? be a system of curves of class H*? without crossings
and satisfying the finiteness property, {t1,...,tar} = T~ (N(T')). There exists a sequence
{T:}e>0 of system of curves of class H2P without crossings, satisfying the finiteness prop-
erty, and there exists eq > 0 such that

(i) Te:S— R? forany 0 < € < €g;

(@) T7UN(Te)) ={t5,..., 85}, and & — ¢; ase — 0, foranyi =1,..., M;

(iii) Te — T' strongly in H*?(§) as ¢ — 0; |

(iv) I‘E(tf)zI‘(t.-) for anyi=1,..., M, forany_0_<e<ég;_ _ N

(v) Les\fer, e 3t S\, s t30} — T(S\ {15, . .. 2t5s}) is an omeomoi'ﬁsz;j, for any
0<e<egg. .

The meaning of Lemma 6.1 is the following. The system of curves I’ can be approxi-
mated in the H?? norm by a sequence of systems of curves {I'. }. of class H?” satisfying
the following properties:

(1) the systems T'. are defined on the same parameter space S;
(2) in the approximation the nodes of ' are kept fixed, i.e., N(I') = N(T.) (condition
(iv))i
(3) all the branches of I'. have multiplicity 1 (condition (v)). Hence if 4 is a branch
of I' with multiplicity n, it is approximated by n different branches of T, with
multiplicity 1.
Condition (ii) says essentially that I'7*(A/(T.)) is 2 perturbation of I'"}(A(I')), and
it is due to the fact that, if we want that the approximating curves have constant velocity,
we need to make a reparametrization of T'.. '

Moreover, as we will see in the proof, it follows that the approximating branches of
different branches of I' are non overlapping.
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PROOF OF LEMMA 6.1: We will construct the approximation for a couple (g1,42) of
consecutive nodes of I', and for one of the branches joining ¢1 and g2. Then it will be
sufficient to repeat this procedure for all the couples of consecutive nodes and for all the
branches of ',

Let g1,q2 € N(T) be two consecutive nodes, let A be one branch joining ¢, and g2,
and suppose that the multiplicity of 4 is n. Then [-1(A) = Up_, I, where Iy € P for
any k =1,...,n. Let v: A — R? be a continuous unit normal vector field on A, and let
us extend v to a continuous vector field defined on R? such that 1 < [¥(z)] <1 for any
z € R2, To overcome problems on the regularity of the approximating curves, we regularize
v as follows. We take a function ¥ € C>°(RZ?, R?) such that [¥] <1 and ¥(z) -»(z) > 3 for
any z € R2. Such a function exists: in fact, defining vy, := v* g, where {g,} is a sequence
of mollifiers, we get v, € C(R?,R?) and v, - v — 1 uniformly on the compact sets of RZ
as 7 — 0. It is enough then to define ¥ := vy, for % small enough.

Let d: A — [0, 400 be the function defined as
d(z) := min{dist(z,B) : Bis a branch of I' joining g and ¢z, B # A}.

From the definition it follows that d is continuous, d{z) > 0 for any z € 4, and d(z) =0
if and only if z = ¢ or z = g2. To be sure that the approximating sequence has the
same regularity of the original system of curves I', and to guarantee that approximations
of different branches do not overlap, we introduce a function h : A — [0, +-00[ of class C
having the following properties: h(g1) = h(g2) = 0, 0 < h(z) < d(2) for any z € 4, and all
the derivatives of k at the points ¢i,q; vanish. We define the n approximating branches
Al ... A" of A4 as follows: forany i =1,...,7n

A =T.(L),  where To(t) := I(t) + s(%’i DRI, tel

and ¢ is sufficiently small. Then we repeat this procedure for all couples of consecutive
nodes of T and for all branches. Finally, if T'. = {},...,7%}, we reparametrize all the
closed curves ! in such a way that their velocity is constant. This concludes the proof.

Let ¢ € N(T'), let 7(q) be a tangent unit vector of (I') at g and 7 > 0. The normal line
N(q) of (T') at g divides the ball B,(g) in two half balls,

Br(q):={z€B.(q):(—q)-7(g) <0},  Bf(q):={z€ Br(g):(z—4q)-7(g) >0}

The set B (q) (resp. Bjf(q)) will be called the left (resp. the right) half ball of centre ¢
and radius 7. If T~1(g) = {s1,...,%}, using the implicit function theorem, one can prove
that, when 7 is sufficiently small, the set B (¢} 1 I'(S) is composed by a finite number
n < [ of arcs, that we will call the local left arcs of I' at g. Moreover, T™!(B; (g) N T'(5))
is composed by a finite number Ji,...,J; of intervals (in §), and each interval J; has one
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of its end points belonging to {s1,...,%}. These intervals will be called local left intervals
at g. Analogously, by considering the set B}(¢) N T(S), we define the local right arcs of T
at ¢ and the local right intervals at g.

Let g € N(T'), let v(q) be a unit normal vector of (') at g, and let A;,..., A4, be the
local left arcs of I' at g. We want to give an ordering to the set {4, ... yAn}.

For any ¢ = 1,...,n let 2 := (8B-(¢) N 0B.(q)) N Ai. Suppose for simplicity that
g = 0 and that v{q) coincides with the second vector of the canonical basis of RZ. Then
we say that z; < z; if and only if ziy < 2zj,. This correspond to the ordering in which the
local left arcs meet 8B (q)N 8B, (q), once that the set B (g)N 0B.(q) has been oriented
as v(g). Then we will say that

A; < A; if and only if z; < z;.

Now, let us suppose that, for any ¢ = 1,...,n the multiplicity of 4; is 1. In this case,
the cardinality of I'*'(g) = {s1,...,5} equals the cardinality of the local left arcs, that
is [ = n. With this assumptions, the previuos ordering on the local left arcs induces an
ordering on {s,...,5;} simply defined by

3; < 84 if and only i A; < AJ'.

DEFINITION 6.4. This ordering on the set I'~1(q) = {sy,...,5;} will be called a left
ordering on the node q. ' ' :

Analogously, using the ordering in which the local right arcs of T at g meet 0Bt (g)N
3Br(g), once that the set 8B (g) N 8B,(g) has been oriented as v(g), and supposing that
any local right arc at g has multiplicity 1, we get an other ordering on the set {31,...,31},
that we will call a right ordering on g. Note that all these orderings depend only on the
choice of v(gq).

DEFINITION 6.5. Let I' be a system of curves without crossings and satisfying the
finiteness property. Let Gr be the undirected graph whose vertices are the nodes of T,
and whose edges are the branches of I'. Moreover, let us associate to any edge of Gr the
positive integer given by the multiplicity of the corresponding branch of T'. The graph Gr
will be called the graph with multiplicity associated to I'. The set of all vertices will be
denoted by V(Gr).

Obviously the ordering of the local left (resp. right) arcs of T' at a node g is an ordering
of the set GrN.B; (g) (resp. GrNB;F(g)) of the local left (resp. right) edges. If any branch of
I' has multiplicity 1 it follows that any vertex of §r inherits the left and the right ordering
of the corresponding node.

If ¢ is a vertex of Gr, the number of edges counted with their multiplicity having a
given endpoint ¢ we shall designate by

o(g)-
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This number is called the local degree at g. In this definition, any loop at ¢ will be counted
as a double edge.

Analogously, we can define the number of local left (resp. right) edges g~ (g} (resp.
07 (g)) counted with their multiplicity, that we will call the local left (resp. right) degree
at g. Of course, here no loops are present. '

Note that since Gr is the graph associated to a system of curves, the following property
holds:

(6.1) o (g) = e (q) for any g € Y(fr)

The graph Gr will be called regular.

DEFINITION 6.6. Suppose that any branch of T' has multiplicity 1. We say that T
verifies the compatibility condition if, for any q € N(T), the left ordering on g coincides
with the right ordering on q.

Note that the compatibility condition does not depend on the choice of the unit normal
vector v(q).

We now prove the following crucial result.

REMARK 6.1. Let I': § — R? be a system of curves without crossings and satisfying
the finiteness property, and suppose that any branch of T' has multiplicity 1. Then there
exists a system of curves ' : § — R? satisfying the following properties:

(i) T has the same nodes and the same branches of T', i.e., QF = Gr;
(ii) T verifies the compatibility condition. '

PRroo¥: For any g € AV(T') let us fix a unit normal vector v(gq) of (T') at g. This implies
that the left and the right orderings on any node of I are assigned, as well as the left and
the right orderings of any vertex of Gr. Without loss of generality, we can suppose that Gr
is connected, otherwise we repeat the reasoning for any connected component. To prove
the assertion, one has to show that there exists a closed path on Gr whose trace is Gr and
having the following property: if ¢ is a vertez of Gr and if A is a local left arc on g whose
ordering number is @, then A passes through g and continues on Gr along the local right
arc having the same ordering number o. This closed path can be obviously constructed
by “annihilating” the couples of the corresponding left and right ordering numbers on any
vertex.

This strategy corresponds to a surgery operation on the parameter space S of I, that
we shall briefly describe. Let us write the partition P of S\ {ti,...,tar} as U4, I;, where
I; = (a;, ;) (recall that any unit circle is oriented clockwise}. Let us consider I;; suppose
that b, comes from the left (with respect to v(g)) on a node g;. Then, since the pre-images
of g, have a (left) ordering, the parameter b; has a (left) ordering number ny(b1). Next,
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let us consider the right branch, parametrized by (aj,b;), such that a; (or b;) has ny(b;)
as right ordering number on g. Suppose that, for instance, a; verifies this property. In this
way we have created a couple (b1, a;). We repeat this reasoning for every I;, obtaining a
set of couples containing all the pre-images of the nodes of I'.

Consider (b1,a;): if by = a;j the algorithm stops. If a; # b; we substitute to (a1,51)
and (aj,b;) a unique parametrization, by gluing b, with a;j. There are two possibilities:
either (a1,5,) is different from (aj,b;), or we have glued together two end points of the
same interval. In the first case we have decreased the number of the intervals composing
the disjoint union P. Otherwise we create a unit circle, and this circle remains unchanged.
In any case, reasoning by induction, we end up the algorithm by getting, as new parameter
space §, a finite number of unit circles. 0

We remark that the parameter spaces S and § could be different. We stress also that
(T)=1T), and || o(T) [lze= ~(T) ||zs -

DEFINITION 6.7. The system of curves I’ and T' of Remark 6.1 will be called two
equivalent systems of curves.

Let {I':}c be the sequence of L.emma 6.1,I':: § — R?. Foranye > 0, let f: : 3’: — R?
be a system of curves equivalent to T',. Then, by construction, if ¢ is sufﬁ;ie_ntly: small, S,

does not depend on €, and it will be denoted by s.

LeMMA 6.2, Let {T':}c be the sequence of Lemma 6.1, and for any ¢ > 0 let f‘: 5 =
R? be a system of curves equivalent to T.. Then, for any € sufficiently small, there exists
a sequence {I'7},~o of systems of curves of class C* and there exists 170 > 0 such that

(()T7: 5> R%?isa disjoint system of curves (i.e., N(I'7) = 0), for any 0 < 5 < ng;

(ii) T7 — T, strongly in H??(8§) asq — 0.

PrOOF: We shall suppose, for simplicity, that T, is not parametrized with constant
velocity, in such a way that A(T,) = {t1,...,tasr} is independent of e. A suitable
reparametrization will be made at the end of the proof. Moreover, the construction is
shown for a fixed ¢ sufficiently small, for a fixed node of f;, and it must be repeated for
any element of A/ (f‘:)

Let g € N(ﬁ), f:ml(q) = {s1,...,8}, and let R(q) be a small rectangle centered at
¢ R(g):={2€R*: 2 =g+ar(g)+8v(g) : |a] < ap, |B] < Bo}, in such a way that
R(g) N(T,) is composed only by arcs of T,. Let 4,... ,An be the local left arcs of T,
belonging to R(g) N (ﬁ), and let Ji,...,J, be the corresponding local left intervals. Let
7R(g) — T(g) N R(q) be the canonical projection of R(q} on the tangent line T(g) of T at
g. Then we define the local left approximation nf T. by

— —

[2(t) =T.(t) '*‘TJV(Q)(“TL_ —Do(w(T:(2)}), t€ds, k=1,...,m, 0< 1 < M,
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FIGURE 6.1.

where mg is 2 positive number sufficiently small, and ¢ is a suitable y-symmetric function
of the form pictured in figure6.1.

Making the same construction for the local right arcs of T, in R(q), and using the fact
that T, verifies the compatibility condition, we glue together in an ordered way the local
left arcs with the local right arcs, without creating local self-intersections. We repeat this
argument for any node, and we get a sequence of disjoint family of curves of class H*?
converging to T, strongly in H*?. Then, we regularize by convolution, and we obtain an
approximating family of curves of class C*. Finally, with a reparametrization, we get 2
sequence of disjoint systems of curves verifying the required properties. [

The notion of left and right ordering of a node can be given also when T is a system of
curves whose branches have multiplicity larger than 1, as well as the definitions of compat-
ibility condition and of equivalence. Since this approach seems to be quite complicated,
we prefer to give the following definition of equivalence between systems of curves whose
branches have multiplicity larger that 1.

DEFINITION 6.8. The (strong) Hz'-“(g) limit of the sequence {ﬁ:}g is a system of
curves I defined on §, and it will be called a system of curves equivalent to I'.

Note that

G==Gr, KD)=UIT), | () fzr=[&(T)lzr -

THEOREM 6.1. Let T': § — R? be a system of curves of class H*? without crossings
and satisfying the finiteness property, and define

E:={zeR*\(D): I(T',z) =1 (mod. 2)}.

Then
gE Z ().

Moreover there exists a sequence {Ey}, of bounded open sets of class C* such that
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(i) By — E in L*(R?) as h — +o0;
(ii) sup, F(E}) < +oo.
Hence

F(E) < +oo.

In addition, there exists a system of curves T : § — R?2 equivalent to I' such that, if I'y, is
an oriented parametrization of E}, for any h, then

Tn =T strongly in H*P(S) ash — +oo.

(6.2) F(E) < inf{{T)+ || s(T) ||2,: T € B(E)},

where B{E) is the collection of those systems of curves T' of class H?? without crossings,
satisfying the finiteness property and such that (I') D E.

PROOF: By the definition, E is open. Let us prove that 8E C (T'). Let z ¢ (T); if
I(T',z) =1 {mod. 2}, then z € E, hence z ¢ 8E. H I(T,z) = 0 (mod. 2), there exists r > 0
such that I(T',z') = 0 (mod. 2) for any 2’ € B.(z). Hence B.(z) N E =0, so that z ¢ SE.

Using a diagonal | argument, let us call {I's}s the sequence of disjoint systems of curves
of Lemma 6.2, Tj, : § — R2. Then, using Definition 6.8 we get that there exists a system
of curves I : § — R? equivalent to T such that ', — I‘ strongly in H 2'1’(“5' ) For any hlet
us define

Eh = {z e R? \ (I‘],) : I(I‘h, ) = l(mod 2)}

Note that this definition is independent of the orientation of any S}, that S can be reori-
ented in such a way that :

Ey = {z e R? \ (I‘h) :I(I‘h,z) = 1},
and that, since I'; is a disjoint system, OE, = I'y. From the fact that
X{ZER"’\(I‘;.):I(F;,,z)El{mod. 2)} 7 X{zeR2\(I"):I(T,2)=1(mod. 2))
for every z ¢ (') as h — +o0, using the dominated convergence theorem, we get E —

{z € RE\(T") : I(T,2) = 1 (mod. 2)} in L}(R?) as A — +oo. Since by construction
sup, F(Ey) < +oo, it follows F(E) < 4+o0o. Moreover

)+ s = [ ) a0 () 2 F(E)

Passing to the infimum with respect to I’ € B(E), we get (6.2). 1]
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DEFINITION 6.9. Let E be a subset of R? with the following properties:

(i) E is bounded and open;

(ii) OE has an unoriented continuous tangent;
(iii) E is bounded by a finite number of closed curves of class H*® up to the closure;
(iv) E={zeR?:3r >0 |B-(2) \ B| = 0}.

We say that a point g € OF is an ezceptional point if there exists > 0 and there exists

a tangent unit vector 7(g) of 8E at ¢ such that BF(q) N OF is either a cartesian graph
with respect to T(q) or is empty and B> (g) N OE is not a cartesian graph.

This definition generalizes Definitions 4.6 of cusp point and 4.7 of branch point. Sup-
pose that GF has a finite number of exceptional points. Let Gog be the undirected graph
whose vertices are the exceptional points, whose edges are the curves surrounding 8F, and
having all edges with multiplicity 1. The multiplicity m{g) of an exceptional point g is
defined as follows. Suppose that B (g) N GF is not a cartesian graph. Then we define

@ i () i
m{g) i= g if o7(gq) is even,
271 if p~(g) is odd.

THEOREM 6.2. Let E be a subset of R? verifying the assumptions of Definition 6.9,
and suppose that 8E has a finite number {g1y---18n} Of exceptional points. Then

Z m(q;) even=r F(E) < +oo.
i=1

PROOF: We shall describe an algorithm that permits to join in a suitable way the
couples of vertices, possibly by inserting a finite number of new vertices. Suppose for
simplicity that B (gi) N OF is not a cartesian graph for any 2 =1,...,n.

S1. Let us consider 1.
S11. if g~ (gq1) = 2 we join ¢, and g2 with a smooth curve v such that

(i) (v) does not intersect the set {ga,.-r4n};

(i) if (y) meets OE at a point z, we impose that the tangent line of (7) at z coincides

with the tangent line of 8F at z. This point 2 will be considered as a new vertex.
We associate to () the multiplicity 2.
S12. If o~ (q) is even > 2, we attack to g1 2 smooth closed curve (a loop) such that

(i) () does not intersect the set {g2;--+10n}i

(i1) asin (ii) of 511.

0oy

We associate to () the multiplicity = t

i

S13. If p~(g) is odd (obviously p~(g) = 3) we reason as in §12 with the difference that

the multiplicity associated to {7} is —Q—lg)—_l—
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Then reason as in S11.
Note that after these steps we get that o~ (g) = g*(q) and that, if z € 8E N {7), then
e~ (z) = 0% (2).
S2. Define Gsp = GspU (7). This means that V(Gog) =V(Gog)U{z € R2:z ¢ (v)NOE}
and that all the edges of G have multiplicity 1 except for (v) that has the multiplicity
previously assigned.

S3. g1 :=q2, @2 :=qa, ..+, Gn—1 = gn, gu = 0. GO TO S1.

In view of the hypothesis, the algorithm stops after a finite number of steps. Then
from Theorem 6.1 it follows that F(E) < --oo. []

COROLLARY 6.1. Let E be a subset of R2 verifying the assumptions of Definition 6.9,
and suppose that OF is smooth except for a finite number n of cusp points. Then

n even = F(E) < +co.

Conversely, we can prove the following result.

THEOREM 6.3. Let E be a subset of R? verifying the assumptions of Definition 6.9,
and suppose that OF is smooth except for a finite number 1. of cusp points. Then

F(E) < +o0 = n even._

PROOF: From Theorem 4.1 (iii) there exists a limiting system of curves A of cla.ss H Z.p
such that (A) 2 E. We divide the proof in two cases.

FIRST CASE:
suppose that A has a finite number of points where, locally, is not a cartesian graph,
i.e., let us suppose that A satisfies the finiteness property, and let us denote A with the

letter I'. Let us associate to the regular graph Gr a new graph gr as follows. Let A denote
an edge of gr, w(4) its multiplicity and &(A) its multiplicity in Gp. Then

K w(Ad) =m, m odd, then &(A) := —;—& (hence, fw(d)=1,41is deleted);

fw(A) =m, m even, then H(4):= %

Note that Gr is not necessarily regular, and that V(EI—:) = V(Gr).

For any g € V(Gr) let us denote by o(q), 07 (q), o *(g) (resp. g(q) o (g), 27 (q)) the
local degree and the local left and right degrees of g in Gr (resp. in gp) Suppose that

gz JE.

Then, since all edges of Gr meeting at g have even multlph(:lty, it follows that p{q) = 4k,
k > 1. Hence p(g) is even.
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Suppose that
g€ 8E andgis regular in a neighbourhood of g.

Then, two of the edges of Gr meeting at g have odd multiplicity and lie one on each side of
q with tespect to v(g), and ail the other edges have even multiplicity. Hence 2(g) is even.

The last possibility is when
q€ 8E and gis a cusp point of OE.

Then, by the definition of cusp point, there exists two edges with odd multiplicity lying
either on the left or on the right of g. Let us suppose that there are two left edges A, B
with odd multiplicity 2k +1, 2k’ + 1 respectively. Let gfi) — 2n. Then (see Figure 6.2 ) we
have that, since g~ (q) = 0¥ (),

9 =2m+2k+1+2k +1,

that gives n = m+k-+k'+1. Moreover o(q) = n+m+k+k', hence 3(g) = 2(m+k+k')+1
is odd. Since [15, Th. 1.2.1] in a finite graph there is an even number of vertices for which
the local degree is odd, we have the assertion.

FIGURE 6.2.

SECOND CASE:

Suppose that A does not satisfy the finiteness property. Let K be the closure of the
set of the accumulation points of C, where

C:={ge(A):Ais not a cartesian graph in a neighbourhood of g}

Then K is a compact set. Let A = {7!,...;7"}h let ¢ € K. We will distinguish three
possibilities.
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First possibility: ¢ ¢ GE.

We can assume ¢ = 0, T(g) = {(=,y) € R? : y = 0}. Let R(q) = [~7,7] X [~3,s] be a
small closed rectangle centered at g such that R{g) N 8E = 0, and such that any 7' is a
cartesian graph in R(g) with respect to T'(g). Then (A)N{(z,y) € R? 12 = —3,y € [~r, 7]}
is a finite number of points, as well as the set (A)N {(z,y) € R?: ¢ = s,y € [—7,7]}. Let
{21,--y2} = (M) N {{z,y) € R?* : ¢ = —s,y € [-r,7]}, {w1,...,wy} = (A) N {(=z,y) €
R?:z =3,y € [—r,7]} ordered by their y coordinate.

-5 R(q) {sry

9

OIS

(_S’-ﬂ (sj‘r)

- FIGURE 6.3.

Let 2m,, := cardinality of A7*(2;), 2 = 1,...,7n, 2my; = cardinality of A™1(w;),
i =7Jy.--,1. Let us ridefine A in R(q) as follows. We join w; and g with a smooth arc a;
having the following properties: S : B
(i) (e1) C R(q);
(ii) o is a cartesian graph in R(g);
(iii) the first and the second derivative of ¢; at w; coincide with the first and the second
derivative of 4! at w;, respectively;
(iv} the first and the second derivative of a; at ¢ are 0;
(v) (o1) has multiplicity 2my, .
Then consider w, and repeat the same procedure with a curve as such that (a;)Waz) =
{g}. Make the same operation for w; and z;, 7 =1,...,,1=1,...,n.
Then, after this local ridefinition, we have the following facts:
(1) A is a system of curves of class H*? without crossings;
(2} UA)+ || (A) [|Ls < +o0;
(3) we have eliminated all the points of C Nint(R(q));
(4) we have created a node g;
(5) ¢ is not a cusp point of OF;
(6) OF is unchanged;
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(7) the multiplicities are all even and well defined in R(q).
Second possibility: g € F and F is smooth in a neighbourhood of g.

Take a rectangle R(g) as before (obviously 8E N R(q) # D), and such that R(g) N OE
is smooth. Then we adopt the same rules keeping fixed JE N R(q) but with the following
modifications:

(a) all the modified curves could pass, for simplicity, through a point ¢’ € R(q) \ OF;
(b) the intersection points between the modified curves and JE are smooth.

Then also in this case properties 1)-7) of the first possibility hold.
Third possibility: ¢ € OF and ¢ is a cusp point.

) ‘V /

FIGURE 6.5.

This case is a slight modification of the previuos one.

Then, by compactness, we can cover K with a finite number of rectangles verifying the
required properties, and we can modify A, as previously explained, in each rectangle. What
we get is the following: 8F is unchanged, A is a system of curves of class H*P without
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crossings and verifying the finiteness property, (A) 2 JOE. Hence, using the preceding
result, the number of cusp points of F is even. []
Putting together Corollary 6.1 and Theorem 6.3, we get one of the main results of the

paper, namely,

THEOREM 6.4. Let E be a subset of R? verifying the assumptions of Definition 6.9,
and suppose that OF is smooth except for a finite number n of cusp points. Then

n is even <« F(E) < +oo.

In view of Theorem 4.1 (v) and in view of (6.2) we conjecture that if E C R? is a set
verifying Definition 6.9 having an even number of cusp points, then

F(B) = inf{{A)+ || &(T) || [}, : A € A(E)} = inf {{T)+ || ~(T) [IZ,: T € BE)},

where A(E) and B(E) are defined in (v) of Theorem 4.1 and in the statement of Theorem
6.1, respectively. Note that the last infimum does not seem to be reached, as the following

example suggests (Figure 6.6).

FIGURE 6.6.

7. Localization.

Some results of sections 3, 4 can be localized to an open subset of R2. Let § be an open
subset of R? and let M be the set of all bounded measurable subsets of R%. The L'(£2)-
topology on M is the topology induced by the pseudo-distance d( B, B ) := {E1AE)NQ.
We say that a subset E of R? is of class C2(£2), and we will write £ € C?(Q), if E is open
and 8E N Q is of class C2, i.e., ENQ is locally the subgraph of a function of class C? with

“respect to a suitable orthogonal coordinate system.

We define the map F{-,{2) : M — [0, +0c0] by

f (14 |s(=)1") dH! (=) if B cC?(Q),
8EN

+00 elsewhere on M.

F(E. Q) :=
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Note that

(7.1) F(E,Q) = sup F(E, )
neN

for every sequence {(,}n of open sets invading {}. Moreover F(E,-) is monotone as a set
function, i.e., if {21, {}s are open,

(72) 0, C Qs = F(E,ﬂl) < F(E, Qz).

By F(-,Q) we denote the lower semicontinuous envelope of F(-,0) with respect to the
topology of L1(£2). It is known that, for every E € M, we have

F(E,Q) := inf{lgminf F(Ey,¥): By — Ein LY(Q) as h — +00}.

Note that F(E,§) < +oco if and only if there exists a sequence {En}n of bounded open
subsets of R? of class C2(f) such that Ej, — E in L*(Q) as b — +oo0, and

(7.3) sup (0B, N0) < +oo, sup [ |ma(z)lP dH(2) < oo
h h SE,NN

THEOREM 7.1. Let E be an open subset of class C?(2). Then

(7.4) F(E,Q) < ]gminf'F(E,.,n)

for any sequence {Ex}» of open subsets of R? of class C2(0) such that By — E in L(Q)
as h - +oo.

Proor: Let {E;}4 be a sequence of open subsets of R? of class C*(Q), Ey — Ein
I'(Q) as h — +o00. We can suppose that the right hand side of (7.4) is finite, otherwise the
result is trivial. Hence {E}}s verifies {7.3). Given a sequence {0, }n of relatively compact
open sets invading 2, it will be sufficient to prove that

(1.5) F(E,Q,) < lgm_*i_an(Eh,ﬂn),
for every n. In fact, (7.4) follows from (7.5), since, by (7.1) and (7.2),

F(E,Q) =sup F(E,Q,) < sup lgminf F(E,Qn) < l}iminf F(Ey, Q).

—+Loc

Fix n € N. Let {E}}+ be a subsequence of {Ej}; with the property that

lim F(Big,0n) = liminf F{Ep, Q) < +o0.
k—-+o0 h—+o0
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For simplicity, this subsequence (and any further subsequence) will be denoted by {Ex}x.
From (7.3) it follows that, for any k,

Tk

8E; NQ, C Uk(fr;;) u | JBih),

i=1 j=1
where
() {+i,...,7** } is a disjoint system of (closed) curves of class C? such that ()N, #
b;
(1) {BE,...,Br*} is a finite family of simple regular curves of class C? such that ]%]
is constant on [0,1], 81(0),81(1) € 6@ and (B]) N 0N, # D for any 7 = 1,...,7k;
(iii) all the curves are pairwise disjoint;
(iv)
my ™ me -
S b+ Yo s+ [P ds+ Y [I(BiIP do <+
i=1 =1 i=1 i=1

Note that Lemma 3.1 implies that {m}; is uniformly bounded with respect to k.
Moreover {r;}z is also uniformly bounded with respect to k. This follows from (iv) and
from the fact that i) > 2dist(89,,0Q) for any j = 1,...,7;. Passing to a suitable
subsequence, we can assume that m; and r; are independent of k. These numbers will be
denoted by m and r, respectively. Using (iv) and repeating the arguments of Theorem 4.1,
by compactness we get a family A = {¥!,...,7™,8%,...,087} of regular curves of class
H?? such that _ o '

i — 7' weakly in H®? as k — +oc forany i =1,...,m;
ﬁi — 39 weakly in H>? as & — +oc for any j = 1,...,r.

Then, from (3.5) and the fact that Ex — E in L}(2) as & — +o00, using the hypothesis
that E € C2(Q), it follows that (A)NQ, 2 8ENQN,. In fact, suppose by contradiction that
there exists p € (GE\(A))NN,. Let 7 so small such that B.(p) C O, and B .(p)NGEN(A) =
@. Then from (3.5) there exists kg € N such that E; N B: (p) = @ for any k > k¢, and
this contradicts the fact that Ey — F in L'(Q}) as k — +o0. Then, repeating the last part
of the proof of Theorem 3.2 relatively to {1, and passing to the limit as n — +o0, we get
the assertion. []

COROLLARY 7.1. Let E CC §l be an open subset of R? of class H*? such that F is
relatively compact in (). Then

F(E,Q) = /8 L+ e 761 (2),

In particular, F(E, 1) < +cc.

PROOF: Theorem 7.1 holds with the same proof if E is of class H%?, hence, passing
to the infimum with respect to the approximating sequence in (7.4) we infer that [, [1+
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|x(z)P] dHi(z) < F(E, ). The opposite inequality can be proved as in Corollary 3.2,
using the hypothesis that E is relatively compact in Q.0

The last part of this section is devoted to prove that F(E,) is not subadditive (see [4,
Conjecture 5]). This is the main result of this section, and shows that F(E,-) cannot be a
measure and in particular that F(F, ) can not be represented as in integral of the form
(1.2) for a suitable choice of the function x(z).

TEEOREM 7.2. There exists a bounded open set E C R? such that
F(E,R*\ Q)+ F(E,Qz2) < F(E,R?) < 400,

where Q, and Q3 are two suitable open squares in R?, and @; CC Q2.

PRrOOF: Let E be the set of Figure 7.1.

?‘u (q‘q )

FIGURE 7.1.

Let p1, p2 be the two cusp points of 8E, and let C1, C be the two connected compo-
nents of E. We fix p; = (0,0) and p2 = (1,0) and we assume that the unoriented tangent
line in p1 and pp is the z-axis. Here it is important that C; lies on the left with respect
to the y-axis, and that C lies on the right with respect to the normal line N{p;) of OF
at py. Clearly F(E) < +oo (see for instance Section 1). From Theorem 4.1 (v) it follows
that

(7.6) F(E) = F(E,R?) > inf{{A)+ || =(A) |5,: A € A(E)}-

Let A € A(E), A= {#*,...,7™}; since (A) D OE, thereexist i € {1,... ,m} and ¢y € [0,1]
such that vi(ty) = p1. Up toa reparametrization of the curve +*, we can suppose that
ty = 0 and that the normal tangent unit vector to ~iat t = 0is (1,0). We will suppose
also that 7' is parametrized by arc lenght s.
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We can consider the decomposition [0,{v!)] = A U B, where 4 := {5 € [0,{~")] :
7(s) € 8E}, and B := {s € [0,{(v')] : v'(s) ¢ 8E}. Clearly B # @. There are two
possibilities:

(i) (v')NBCs # 0;

(i) (y')nac, = 0.

In case (i) one obviously gets
& 108)+ [ ) s> b -l =1
B

Let us consider case (ii). Let us denote by v the z-component of the curve 7. By
construction, we have that 4i(0) = 1. Since v* is closed, we can consider the smallest
parameter 3 €]0, {(v?)[ such that v{(3) > 0 and 4}(3) = 0. Then it is easy to prove that
vi(s) > 0 for any s € [0,3]. Hence, since C; lies on the left with respect to the y-axis, we
get 8C1 N+*([0,3]) = 0. Moreover, by (ii), we have also that 8C» N ¥'([0,3]) = 0. Hence,
[0,3] € 4, and using (3.4) we get

(7.8) HI(B)+/[ s)IP ds>s+f e de 2 S + (S,

where it is crucial that the constant in the right hand side does not depend on A Then,
from (7.6), using (7.7) and (7.8), we infer that ' -

(7.9) F(E,R) > (95) + | NG CLEORT

. xrrpat 1
where ¢ 1= mn(l,;[(g)v + (1)) _ _ _ ‘
Let us consider two squares @; and @, centered at the point (3,0). Suppose tha.t

@1 CC Q2 and that the side b of Q3 is such that ¢ > 2(1 — 8) > 0. Then ENQ; =
implies that

(7.10) F(E,Q1) =0,

and from (7.9) we have

(7.11) F(E,R?) > H!(OE) + /B o IR ) 20 -8),

Moreover one easily construct a sequence {E}, of bounded open subsets of R? of class
C*(R?\ @z) such that By — Ein L}(R2\ Q1) as h — 400, and such that (see Figure 7.2)

HEE [ e @) 4 2= ) = lim PELR\T)
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FIGURE 7.2.

This concludes the proof, since from (7.11) and (7.10) we get

F(E,R?) > hEIfmF(Eh,RZ \Q.) > F(E,R? \@) =F(E,R2\Qz) + F(E,Q:1).- O

8. Appendix: connections with the elastica.

For the definition and the main properties of the elastica we refer to [13, 10]. Let us
fix two points zg, z; € R?, and two angles 8,6: € [0,27]. Consider the problem

(8.1) min{i(7)+ || s(7) I7,: v € P}y

where D is the set of all curves y : [0,1] — R? of class H2P parametrized with constant
velocity, and such that

dvy

(8:2) 70) = 20, 7(1) = =1, 2(0) = 6o, T

PROPOSITION 8.1. If zp # z; or 8y # 8:, the problem (8.1) admits a solution. More-
over, if p = 2, this solution is an elastica.

PROOF: Let {y4}x be a minimizing sequence, and, for any h, let Ay := |93 |. Since
{An}s is uniformly bounded with respect to h, passing to a suitable subsequence {7k},
we have that Apx — Mg > 0 as k — +oco. Let us use the index k for this subsequence, and
for any further subsequence. If zg # 21, we get that Ag > 0, since, for any k,

1
d
o= 2ol = 1) = 0)] < [ 1l = A
0

If §, # 0, we get the same conclusion, by using (3.4). Hence Ay > 0. By the uniform
boundedness of {A;}) and {Ax + AR ]:.l |51 dt}) with respect to k, we get that

sup || (i) flzr < +oo.
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Hence, using (8.2} and the fact that sup, I(yx)} < +oo0, we get that

sup I ¥& I ep < +o0.

Passing to a suitable subsequence, we obtain that there exists a curve 4, € H2? verifying
(8.2) such that v — ¢ weakly in H?? as k — +o0. Using the weak lower semicontinuity
of the L? norm and the fact that Ay > 0, we get easily that -, is a solution of problem
(8.1).

If p = 2 and 7, is a solution of problem (8.1), writing ¥(s) = (cos 8(s),sin 8(s)), we

have that v solves

minfA+2- [ (9y2 agy
Y o - dt ’

under the prescribed conditions (8.2). If Idd—";"[ = Ay, then 7, is in particular the solution

of the minimum problem
1
minfo +37° [ (5 dih
3 g dt

under (8.2), i.e., 7o is an elastica. []
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