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Introduction

In recent years, the diamond-anvil cell technology has opened a major breakthrough
in the physics of materials at very high pressures. One of the most striking features
of solids at high pressure is the spontaneous lowering of the symmetry of some cubic
compounds. Many experimental and theoretical investigations on Csl have been carried
out, because of the wide variety of phenomena exhibited by this material on compression.
Despite this, several inconsistencies still remain concerning its structural and electronic
properties. In this work we will investigate from a theoretical point of view the structural

phase transition that Csl undergoes at very high pressure ( hundreds of kilobars).

Csl is an ionic compound that crystalizes in the CsCl structure (simple cubic with
basis: two atoms in (0,0,0) and (%, %, %) - space group O} ). The first systematic studies
of Csl under pressure date back to 1984. From X-ray diffraction experiments!?=4 it
appeared that Csl undergoes a transition which lowers the cubic symmetry of the system
at a pressure of 39 == 1 GPa corresponding at a volume V/V, = 0.544 4 0.003 where
Vi is the equilibrium volume. This transition is not peculiar to CsI only and has
also been observed in other cesium halides. Further experiments on CsBr and CsCl
showed a similar behaviour at 53 + 2 GPa (V/V, = 0.546 4+ 0.003) and 65 + 5 GPa
(V/Vy = 0.53 &+ 0.02) respectively. The common accepted picture of this transition
was that a cubic-to- tetragonal deformation would occur. Group theory analysis within

the Landau theory of phase transitions, unambiguously shows that this deformation
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corresponds to a martensitic first order transition!*®/. This is clearly confirmed by
several independent calculations which indicate that the ¢/a ratio jumps discontinuously
to ¢/a =~ 1.1+ 1.2 at the transition volume V/V} ~ 0.52+-0.54 and increases continuously
above the transition pressure. This discontinuity in c¢/a implies a discontinuity of the
energy gap of about 0.3 €V, and of the pressure of about 20 kbar. This picture seems to
be in contradiction with the experimental observations: no volume change is observed
across the transition and the energy gap is continuous. These results would suggest that
the transition is second order. Although the experimental values of ¢/a don’t allow to
exclude a first order transition, it seems that the lowest value of ¢/a observed is much
lower than the values predicted by the theory. Some studies (2! also report a further

transition from the tetragonal to the orthorhombic structure at about 56 GPa in Csl.

In 1989 Mao et al. [#=°) enriched the phenomenology of the structural phase tran-
sitions in Csl. They performed new energy-dispersive X-ray diffraction experiments. In
their experiments they observed a continuous distortion of the CsI cell from the cubic
to the orthorhombic structure. The observed distortion is continuous upon increasing
pressure after the transition, and yield to a hexagonal-close-packet (hcp) structure above
200 GPa. Such a dist.ortion is associated to the gliding of the (110) plane of the original
cubic cell, as shown in Fig. 1. The starting point of the transition is observed at pres-
sures as low as 15 GPa; however an unambiguous identification of the diffraction peaks
corresponding to the orthorhombic structure can be obtained only around 45 GPa. The
symmetry of the diffraction pattern clearly indicates that the gliding of the (110) plane
could be due to the softening of a zone-edge phonon. This phonon should be the order
parameter of a hypothetical second order phase transition. The hypothetical martensitic

transition, even though first order, is characterized by a softening of the shear constant
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¢s = 3(c11 — c12), which is the second degree coefficient of the energy expansion in
powers of c/a. ¢, has been calculated to vanish slightly above the transition pressure,
at a volume V/Vy ~ 0.50. The link between the vanishing of the shear constant and the
possible softening of a phonon mode is that ¢, is one of the three sound velocity along
the (110) direction!*®!. Its vanishing could be then associated to the softening of the
corresponding phonon mode. The two different hypothesis, the first order martensitic
transition and the second order phonon driven one, are in competition in explaining
the observed phenomena. In order to clarify these inconsistencies, we have performed a
complete first principle study, including calculations of total energy, stress, and phonon
frequencies. A complete and coherent picture of our results has been deduced in terms

of the Landau Theory of phase transitions. Through this analysis we have obtained a

clear characterization of the structural phase transition.



Fig. 1: Nature of the phase transition in Csl, as found in the experiments by Mao et
al. . Panel a - the original cubic cell; panel b - an orthorhombic intermediate structure,
showing also the gliding of the cubic (110) plane (from Ref. [8]). Solid spheres - Cs,
empty spheres - I; ag is the lattice parameter for the original cubic cell.



Previous results.

In order to understand the observed phase transition, many theoretical investiga-
tions havé been done, both with models [* and from first principles [6,7], The transition
was studied for the first time by Vohra et al 1®] using a Born-Mayer expression for
modelling the interionic interaction. This model was able to describe the transition
with a reasonable degree of accuracy: they confirmed the first order character of the
cubic-to-tetragonal transition, studying the discontinuous increase of ¢/a at the tran-
sition pressure; they explained it in terms of the competition between the electrostatic
and repulsive interactions; they found that the shear constant is still positive at the
transition volume. However the parameters chosen to describe the high pressure phase,
predict an incorrect rocksalt structure for the zero pressure phase. This is a common
characteristic of calculations based on empirical model: they have a limited predictive
péwer. In fact, the parameters entering this model are fitted to the experiments per-
formed at very high pressure, and are unable to predict behaviours different from those
experimentally observed.

First principle calculations have been performed by Chriestensen et al. [¢! in the
framework of the atomic sphere approximation linear muffin tin orbitals (ASA-LMTO)
method. They explored in detail the behaviour of the system around the cubic-to-
tetragonal phase transition, globally confirming the previous picture from the empirical

model. Studying the dependence of the gap upon pressure, they were also able to
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predict that metallization would occur at V/V, = 0.5. This calculations - though very
accurate in many respects - suffered from the use of the atomic sphere approximation,
an approximate way to treat the deviations of the crystal charge density from the

superposition of spherical muffin tin ionic distributions.

A self-consistent ab-initio study without any assumption on the shape of the elec-
tronic charge density has been performed by S. Baroni and P. Giannozzi [7) using norm-
conserving pseudopotentials. They have confirmed the previous characterizations of the
transition; moreover they observed a discontinuity of about 0.3 €V in the optical gap
for ¢/a = 1.0 to ¢/a = 1.15 at the transition point. This discontinuity is in perfect
agreement with the first order character of the transition, but is contrary to previous

optical measurement.

Up to 1989 the theoretical studies were in fearly good agreement in explaining
the cubic-to-tetragonal transition, but the picture was not lacking of inconsistencies
between experimental and theoretical results. In 1989, the experiments performed by
Mao et al. renewed the interest in the phenomena exhibited by CsI upon very high
pressure. As stated before, they observed a continuous distortion of the CsI cell from
the cubic to the orthorhombic structure. The most st.riking feature observed in the
X-ray diffraction spectra is associated to the splitting of the 110 peak into a quintuplet
after the transition. The components of the quintuplet can be assigned as follows: a
triplet (020, 002, 111) related to the new orthorhombic cell, and a doublet (110, 021) to
the gliding of the (110) plane. The observed splitting and intensities of the peaks evolve
continuously from 15 to 100 GPa, showing a single orthorhombic phase with variable
parameters; even though the experiments seem to show a continuous distortion from

the cubic to the orthorhombic cell, a weak first order character of the transition cannot
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be ruled out. Starting from these results we decided to perform a deeper investigation

of such a fransition, using first principle techniques.



Method

Our calculations have been performed in the framework of a combined approach
based on density functional and linear response theory to obtain total energies, forces,
stresses and phonon frequencies for various volumes and different crystal structures.
The self-consistent calculations have been performed within the Local Density Approx-
imation (LDA) using norm-conserving pseudopotentials and large plane wave basis set
(191, For each crystal structure and microscopic arrangement of ions, we computed the
forces acting on the atoms using the Hellmann-Feynman theorem [**!, and the macro-
scopic stresses, along the lines suggested by Nilsen and Martin [!3. Phonon dispersion
have been calculated using Density Functional perturbation theory!'? which allows one
to compute dynamical matrices at arbitrary wave vector with a computational effort
comparable to that of a self consistent calculation for the unperturbed crystal. Re-
cently this method has been successfully applied to the calculation of phonon dispersion

relations in semiconductors [13].

All the calculations have been performed using a set of k points in the irreducible
wedge of the first Brillouin zone corresponding to the meshes of 4, 10 or 20 points for
the simple cubic structure in the Moncorst and Pack scheme 1%, We generated pseu-
dopotentials for Cs and I using the Kerker’s procedure (11, including angular momenta
up to 1 = 3; we included in the core Cs 5s and 5p orbitals, as discussed in Ref. 7. Plane

waves corresponding to a 25 Ryd cut-off were included in the basis set. We have tested
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the convergency of total energies, stresses, and phonon dispersion both in the number of
special points and of the plane wave basis set used (up to 40 Ryd cut-off). Even though
total energies are not fully converged at a cut-off as high as 40 Ryd, we have verified
that all the other meaningful structural and dynamical quantity are well converged with

a 25 Ryd cut-off.



Structural and dynamical properties of Csl under

pressure

Zero - pressure properties

We have computed the equation of state of Csl fitting total energies and pressures

to the isothermal equation of state of Rose ¢ :

1-X .
P(V)=3By— """

2

1 '
X = (V/Vy)Y?® and n= =(3B, — 1
T=5 0

171,

and Murnaghan

B '
P(V) = B—?(X—3Bo —1).

0
The results are summarized in the following table. The theoretical values are

referred to a calculation performed with 4 k points and a 25 Ryd cut-off. In parenthesis

are indicated, for comparison, the values obtained with a 40 Ryd cut-off.

Rose Murnaghan Exp. [8]
ao(A) 4.430 (4.435) 4.439 (4.434) 4.568
By(GPa) 15.2 (16.0) 15.4 (16.6) 13.5 + 0.2
B, 5.64 (5.51) 3.84 (5.43) 5.45 + 0.06
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The agreement with the experimental data is quite satisfactory. In Fig. 2 we com-

pare the Rose equation of state as fitted to theoretical calculations and to experiments.

Structure and dynamics under pressure

As anticipated before, the main idea of this study is that the transition could
be driven by a phonon mode whose frequency would soften upon increasing pressure.
The gliding of the (110) plane observed experimentally can be viewed as a phonon
mode for k = (3, -;—, ), the M point at the edge of the first Brillouin zone of the cubic
structure. Such a mode along (110) could be responsible for the transition, as indicated
by the fact that the shear constant ¢; = %(cn — ¢12), that vanishes not far above
the transition pressure, is actually one of the three sound velocities along the (110)
direction. This behaviour is common to a variety of systems that undergo pressure
induced phase transitions'®). An example is the Paratellurite (TeOy) that undergoes
a pressure induced, soft-phonon driven phase transition from the tetragonal to the

orthorhombic structure(2%.

Following this approach, we have studied the behaviour of the zone edge phonon
frequeqcy vs. compression. The phonon responsible for the phase transition is the dou-
bly degenerate acoustic mode in M. In Fig. 3a we display the phonon dispersion of CsI
calculated along the (110) at equilibrium volume. In the picture are also indicated the
experimental values for the two modes we are interested in!?°!. In Fig. 3b we report the
detail of the acustic branches just above and below the critical volume (V/V, = 0.638)
at which the frequency of the doubly degenerate mode in M vanishes. These results
allow us to identify the amplitude of this mode as the order parameter v of a second

order phase transition in the Landau sense. The dimensionality of this order parameter
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is easily obtained, considering the fact that the star of M is formed by three vectors.
For each of them there are two modes, and then the order parameter is six-dimensional,
v = (7v1,72,73,74,75,7s). BEach component corresponds to a pattern displacement fol-
lowing the auto-displacement of a zone edge phonon for k = (%, %, 0); (%, 0, %), (0, %, %)

In Fig. 4 we show the dependence of the zone edge frequency vs. compression. The
frequency vanishes for V/V, = 0.638 at a critical pressure P, = 22.9 GPa. Note that
these calculated volume and pressure are respectively well above and below those previ-
ously calculated for the martensitic cubic-to-tetragonal transition (V/Vp = 0.54 P ~ 45
GPa).

Both the auto-displacements in M actually correspond to the gliding of the (110)
plane (and its orthogonal (110)), but with different displacement length for Cs and I
atoms, where the latter has a lenght that is about 0.9 the one of the former. In order
to inquire all the possible stable phases that can be induced by these phonons, we have
analyzed the transition in the framework of the Landau theory of phase transition, that

is the common tool to perform this kind of analysis.
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Fig. 2: Comparison between the experimental and calculated (Rose) equations of state;
solid line: theory, dotted line: experiment.
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Fig. 3: Panel (a): dispersion relations at equilibrium. Experimental data are shown
for the two modes we are interested in (from Ref. 29); the theory refers to a calculation
with 4 special points and a 20 Ryd cut-off; Panel (b): dispersion relations for the two
modes whose frequency soften at the M point of the first Brillouin zone for two different
volumes.Negative values corresponds to imaginary frequencies.
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Theoretical analysis of the phase transformation

A general phenomenological theory for continuous phase transitions, based on sym-
metry arguments, has been given by Landaul®!. This theory lies on the hypothesis that
the free energy of the system at the transition can be expanded in a power series of a
quantity called “order parameter”. The characteristics of the order parameter are that
it is zero in the more symmetric phase (above the transition), and different from zero
in the less symmetric one (in the following we will call symmetric the more symmetric
phase). The transition being continuous, the order parameter, v, will assume infinites-
imal values around the transition point. Assuming that the free energy is analitical

around the transition, its power series given by
EViy)=Fo+oy+ AV +C(VI¥* + B(V)y* + ... (1)

If the states for vy = 0 and v # 0 are distinguishable for their symmetry, the first order
term must be identically zero. The second order term must be zero at the transition
point but > 0 in the more symmetric phase and < 0 in the less symmetric one. In order
to have a stable transition point, (i.e. F minimum for v = 0) also the third order term
must be zero at the transition, and the fourth order one must be positive. A second
order phase transition is characterized by the fact that C(V) = 0 identically.

It is possible to classify the symmetry change that can occur at the transition with
[22] |

the following procedure
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(1) Find the order parameter associated with the transition.

In our case, the order parameter is the displacement pattern of the atoms in the cell,
corresponding to the soft phonon modes. The order parameters transform into each
other upon a symmetry operation of the symmetric phase as partners of an irreducible

representation of its symmetry group.

(2) Find the space group of the high symmetry phase of the system, and the irreducible

representation induced by the order parameter 7.

For the transition to be second order, this irreducible representation should comply with
the Landau and Lifshitz condition for a continuous commensurate phase transition. This
condition can be formulated also by saying that the symmetric cube of the irreducible
representation of the order parameter does not contain the identical representation, i.e.
the only linear combinations of monomials of the form ~iv;vk which is invariant under

all the symmetry operations of the symmetric phase is the null polynomial.

In our system the space group of the high symmetry phase is Of ; the order
parameter of the transition is the displacement pattern induced by the phonons in M.
To find the irreducible representation associated to these modes we have to classify
the normal modes for that specific point of the first Brillouin zone. Given the point
group of the M point, Dus, we found that the modes we are studying transform like the
antisymmetric bidimensional representation I'y (in the following we use the notation
of Ref. 22 for the groups and the irreducible representations). First of all, we easily
verify that the Landau and Lifshitz condition is complied, because, being the irreducible
representation odd with respect to parity, its cube will necessarily be odd and hence

not invariant.

(8) Find the set of basic invariant polynomials in v up to degree four, which enter the
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free energy expansion, eq. (1).

These polynomials can be obtained using standard techniques of group theory!?*2%] but
we used the following simpler procedure. First of all, we know that the number of fourth
order invariant is equal to four, because the identical representation is contained four
times in the 4-th symmetric power of the irreducible representation. A way to obtain
them is to operate on the possible forth power combinations of v’s with all the symmetry
operations of the point group of the more symmetric phase. The starting combination
must obey some symmetry conditions: given v;7v;7x7i, one must have k; +kj+ki+ke =
G, where k; is the particular k vector corresponding to the particular phonon v; , and
G is a reciprocal space vector. This is due to the invariance of the system under rigid
translations, and it implies that the two phonons associated to the same k vector of
the star must be always coupled. The basic invariants are summarized in the following

table:

starting combination invariant

NN R e I T S R
NNY2Y2 TV +73vE + v
V17277373 —m172(73 + 75 =7 - )+

Yava(vE + 9 —vE —vE)+

Ysv6(7: + 75 — v —v2)

Y1Y2Y3 Y4 —Y1Y2Y3V4 — Y1Y2 Y56 + Y3 V4Y5 Ve

(4) Minimize the Landau potential consisting of the basis set of invariant and find the
7o corresponding to the absolute minimum.

This is, by far, the most difficult problem to solve in order to get sensible results from
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[24=27] " For our

the Landau approach, but it is also much studied by group theorists
specific case, we refer to Ref. 24, where a complete description of the six-dimensional

order parameter case is carried out. Following the notation of Ref. 24, the possible

stable phases can be classified as follows:

direction ~symmetry group

P1 (a, 0,0, 0,0, 0) D3,
P2 (a,-a,0, 0,0, 0) DL
P6 (a, 0,a, 0,a, 0) >
P7 (0,-2,0, a,0, a) Di

P9 (a,-a,a,-a,0, 0) | D7
P10 (a,-a,0, 0,a,-a) Di7
P11 (a,a,a, a,a, a) T

where each configuration corresponds to a particular direction in the order param-
eter space, i.e. to a particular combination of phonon displacements. We have verified
that for each direction there was an energy minimum and for each case we determined
the corresponding leﬁgth of the displacement. In Fig. 5 the two energy minima along
P1 and P2 are shown.

Once we have determined the symmetry of the possible stable phases, we have
to inquire for a coupling between phonon displacements and continuous deformation
of the unit cell, i.e., we have to take into account the elastic deformation that the soft
phonon can induce in the system. To consider the coupling between phonons and elastic
deformation of the cell, we have to construct all the possible invariants of the kind v?e,

where € are the strain components. These are the only fourth order terms that survive in
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the free energy expansion (for a demonstration see the Appendix). In the Appendix the

method to construct these invariants is also discussed in detail, and the four invariants

that can be constructed are:

1
S(Ees +eyy + €:)(Vi+ 75 + 7+ )

A2 +73) =7 =7 =7 —78) (2€2: — oo — €yy) +3(72 + 72 — 72 = ¥E)(€xe — €4y)
(—27172 — 7371 — V576 )(€zw — €yy) + (—7372 + V576)(2€22 — €20 — €4y)
(V3 = 7)exy + (73 —i)eys + (72 — 7E)ews

Moreover also the pure elastic energy terms must be included in the free energy expan-

sion. For a cubic crystal this reads:
1 2 2 2
5011(5212: + Eyy + €2 ) + CIZ(Ezzeyy + €rz€r: + €yy 622)+

1
5044(5:03;2 + 62:22 + Eyz2) - P()chll(exa: + €yy + Ezz)

where C13,C12 and Cyy are the three independent elastic constants, and the last linear

term takes into account the external pressure for each volume.

At the end, the complete expression of the Landau free energy per cell, including

the phonon - strain coupling is given by :

E=A(+71+7+7E+7E+78) +
AW +rn+rn+r2+v3+%)7+
Bi (vi+7+7 +7i+7i+7s) +
By (717 + 737 + i) +
Bs [=m72(75 + 78 =75 = 78) + 1oV + 78 — 41 — ) + 1576 (v + 3 —4E =) +

20



By (—v1727372 — 717275Ys + Y3 74Y57Ys) +

C1 1/3(exa + €yy + €:2) (V2 + 72 + 75 + 75 +75 +78) +

Co [0 +72) =72 =72 =72 = 78) (2622 — €z — €4y) + 3(75 + 75 = V2 — V5 ewa — €4y)] +
Cs [(—27172 — 7372 — V576 )(€om — €yy) + (—737s + 7576) (2622 — €20 — €4y)] +

Ca [(7 = )eay + (73 —¥)eyz + (V3 — 78 )€s] +

Ci1 1/2(exe® + eyyz +€..0) +

Ci2 (€cz€yy + €xz€:z + €yy€sz) +

Ciy 1/2(61,3,2 +o€p,2 + eyzz)—

POQccll(fzx + €yy + Ezz) (2)

The problem at this point is to calculate the coefficients of this expansion by means

of first principle techniques.
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Ab-initio determination of the free-energy coefli-

cients.

All the coefficients in the free energy have been computed by means of fitting
procedures both on total energy and stress calculations. All the data have been collected

in the following table for two different V/V}, ratios below the transition point:

V/Vy = 0.58 V/Vy = 0.50
A -0.00378 -0.01185
A 0.02011 0.05369
B -0.00621 -0.03339
B, 0.04558 0.05718
Bs 0.04082 0.03638
Bs -0.17560 -0.46068
C 0.00007 -0.00003
Cs 0.02570 0.04330
Cs 0.02996 -0.03580
C, -0.09320 -0.26580
Cu1 6.524 8.240
C1z 6.431 8.322
Cus 6.332 -
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All the calculations used for the fitting have been performed with a plane wave cut-
off of 25 Ryd and the equivalent of 10 k points in the irreducible wedge of the first
Brillouin zone for the cubic unit cell. The parameters from A to Bg have been obtained
fitting total energy calculations for different atomic displacements following a particular
direction in the order parameter space, without strain of the cell; the others through

stress calculations, knowing that, by definition:

1 oe
chll aeij '

gij = —

Note that the values of the elastic constants Ci; and Ci2 give the value of the shear
constant ¢,, and that ¢, is negative at V/V, = 0.50 in agreement with all the previous

calculations.
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Study of the stable phases.

Once the coeficients of the free energy expansion have been determined, we per-
formed a complete study of the stability of the free energy along the minimal directions
of maximal isotropy in the order parameter space. To study the stability we determined
the location of the minima along the various directions and we analyzed the nature of
the singular point (minimum, maximum or saddle) by looking at the sign of the hessian
matrix.

Without the inclusion in the free energy of the phonon-strain coupling, the only
configuration that corresponds to a minimum is associated to the P11 direction, i.e. the
system would enlarge its cell four times and maintain a cubic symmetry (space group
Ts). Such a symmetry however would not explain the evolution of the (110) peak as
seen in the X-ray diffraction experiments. The inclusion of the phonon-strain coupling
turns out to drastically change this picture.

In fact, the role of the new terms is to renormalize the fourth order coefficients in
the free energy expansion. If we take the expression of the free energy along a certain

direction (see Appendix)
£ =—wy? +Iv* + A + A~%e

and apply the equilibrium condition



we obtain

€= ——lAmlA'yz.
Substituting in £, we have
2,2 L oh—1 g\t
Emin = —wy° + (I— §AA A)’)f

where the fourth order coeflicient I, has been renormalized by the phonon - strain
coupling. This new coeflicient doesn’t change much the behaviour of the system along
the directions from P6 to P10, even if the energy saddles are more pronounced; it doesn’t
change at all the behaviour along P11, because the system is not coupled to the strain,

due to the fact that the cubic symmetry is preserved.

Along P1 and P2 the behaviour is completely different, because the strain coupling
is so strong that the fourth order renormalized coefficient becomes negative. This means
1.:hat along P1 and P2 there are much stronger minima than in other directions, and
that the Landau expansion is instable along such directions. To treat the problem along
the lines the Landau theory, we should include in the free energy expansion the sixth
order terms. At this point, however, we already have all the informations we need
to perform a numerical minimization procedure to get the equilibrium configuration
after the transition. The results of this numerical minimization are summarized in the
following table for V/V;, = 0.58, and in Fig. 6 the two phonon pattern along P1 and

P2 are shown:
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Direction  Ymin (a.10.)  Emin (MRYA)  Ymin (a1)  Emin (mRyd)
(o strain) (no strain) (strain) (strain)

P1 0.368 -0.256 0.631 -1.384

P2 0.182 -0.125 in progress  in progress
P6 0.187 -0.197 0.188 -0.200

p7 0.187 0.197 0.188 -0.200

P9 0.102 -0.078 0.158 -0.189

P10 0.137 -0.142 0.143 -0.154

P11 0.195 -0.432 0.195 -0.432

Even though the calculations for the P2 direction are still in progress, we expect

that the gain in energy will be less than along P1. Without the inclusion of the strain

in the free energy, the value of the minimum along P1 was nearly one half than the

minimum along P2. We expect that this difference between the two minima will be

conserved. The fact that the P1 structure seems to be the most stable one is in perfect

agreement with the X-ray diffraction experiments, and explains in detail the mechanism

of the phase transition.
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O 1 ® Cs

Fig. 6: Top view of the cubic unit cell (dashed) of CsI showing the two displacement
pattern induced by the P1 (left) and P2 (right) phonon configuration.
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Conclusions

In this work we have performed a complete first principle study of the high pressure
phase transitions of Csl. This system undergoes a cubic to orthorhombic second order
transition, driven by a shear acoustic mode at zone boundary along the (110) direction.
Through a combined approach based on the Landau theory and first principle techniques
we have been able to identify that the final structure just below the phase transition
is orthorhombic, space group Dj,, with a displacement of the atoms on the original
(110) plane in the cubic structure induced by the soft phonon mode. This picture is in

agreement with the recent X-ray diffraction experiments.
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Appendix

Consider the generic expression of the Landau free energy pro jected along a certain

direction of the order parameter space:
£=—w'y? + I+ Flv,¢

where 4™ stands for all the possible invariant combination of power n, and F[y,¢€| is the
term of phonon - strain coupling, containing all the possible products of the kind (up

to the fourth order):
627 7€, 7263 752, 753, 72527 735

. All the products that contain an even power of v are not invariant and so they cancel.
The only products that remain are €, that is the elastic energy term, %€ and y2€?.
Up to fourth order only v?¢ must be considered; in fact we can easily demonstrate that
e ~ v2 and so y2¢? is actually of sixth order in the order parameter. To see this, st.arting
from

£ =—wy + I7* + AE + ay’e+ B2 e

and from the equilibrium condition

we get
2Ae+ ay? + 2877 e =0
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and so

1 oy? 2
2

€ =

= ‘Q—W ~
Q.E.D.
To find the form of the y%¢ invariant we have followed this procedure.
We have determined all the second order products such that k; + k; = G. These
correspond to a 9-dimensional representation that can be decomposed in a 3-dimensional
one
Y172, Y3V4s V57Ve

plus a 6-dimensional one

2 2 2
Y1 757 7:?3 7-?7 T5s Ve

These can be decomposed as:
6—d1m—>f‘1 +F3+F5

3—dim-—->F2 +F3

Knowing that, we constructed the combinations of 4’s that correspond to the basis
functions of the irreducible representations:
6-dimensional representation
Iy = H+n+n+vi+7+7%
Ty = 2(vi+73) —vi — 73— -
v:+vE -7 -8
Ls = 97 =578 — 49 — 48
3-dimensional representation
Iy = —7172 + 7374 + 7576
Ty = =2v1v2 — 7374 — 7576
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Y3Y4 — Y578
The strain tensor in the group O} transforms like I'; + I's 4+ I's, and the basis
functions that can be constructed are:
Ty = €xs + €yy + €y
Ty — €z —€yy; 26, — €2z — €y
I's — €ry; €z €y
The invariant that can be constructed from these basis functions are four (the iden-
tical representation is contained four times in the direct products of the representations
of the 4;v; ® €), and they can be obtaiﬁed as:
ghi=> S ey
A

where A is the index of the basis functions.

33



References

T. L. Huang and A. L Ruoff, Phys. Rev. B 29, 1112 (1984).

K. Asaumi, Phys. Rev. B 29, 1118 (1984).

E. Knittle and R. Jaauloz, Science 223, 53 (1984).

T. L. Huang ,K. E. Brister and A. L Ruoff, Phys. Rev. B 30, 2968 ( 1984).

Y. K. Vohra, S. J. Duclos and A. L Ruoff, Phys. Rev. Lett. 54, 570 ( 1985).

N. E. Christiensen and S. Satpathy, Phys. Rev. Lett. 55, 600 (1985), S. Satpathy,
N. E. Christiensen and O. Jepsen, Phys. Rev. B 32,6793 (1985).

S. Baroni and P. Giannozzi, Phys. Rev. B 35, 765 (1987).

H. K. Mao, Y. Wu, R. J. Hemley, L. C. Chen, J, F. Shu, L. W. Finger and D. E.
Cox, Phys. Rev. Lett. 64, 1749 (1990).

H. K. Mao, Y. Wu, R. J. Hemley, L. C. Chen, J, F. Shu, L. W. Finger, Science
246, 649 (1989).

for a review see for instance W. E. Pickett, Computer Phys. Rep 9, 115 (1989).
G. P. Kerker J. Phys. C 13, L189 (1980).

S. Baroni, P. Giannozzi and A. Testa, Phys. Rev. Lett. 58, 1861 (1987 ).

P. Giannozzi, S. de Gironcoli, P. Pavone and S. Baroni, Phys. Rev. B 43, 7231
(1991).

H. Hellmann, Einfihrung in die quantumchemie, ( Deuticke Leipzig, 1937); R. P.
Feynmann Phys. Rev. 56, 340 ( 1939).

34



[15]
[16]

[17]

18]

[19]

[20]

[21]

[22]

28]

[29]

O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).

J. H. Rose, J. R. Smith, J. Ferrante, Phys. Rev. B 28, 1835 (1983 ).

F. D. Murnaghan, Deformation of an elastic solid, chap. 4, (John Wiley, NY,
1951).

C. Kittel, Introduction to Solid State Physics, ( John Wiley, NY, 1966).

for a review, see e.g. G. A. Samara and P. S. Peercy, Sol. State Phys., 36, 1
(1981).

P. S. Peercy, Y. J. Fritz, Phys. Rev. Lett. 32, 466 (1974).

see for instance, G. Y. Lyubarskii, The application of Group Theory in Physics,
chap. 7, (Pergamon, NY, 1960).

we remind that the number of n-th order invariant for a group G, constructed from
a given quantity that transform like a particular irreducible representation I' € G is
the number of times the identical representation is contained in the n-th symmetric
power of the representation itself.

G. F. Koster, J. O. Dimmock, R. G. Wheeler, H. Satz, Properties of the thirty-two
point groups, ( M.I.T. Press, Cambridge, Mass., 1963).

J. C. Toledano, P. Toledano, The Landau Theory of Phase Transitions, (World Sci.,
Singapore, 1987).

J. S. Kim, D. M. Hatch, H. T. Stockes, Phys. Rev. B 33, 1774 ( 1986).

M. V. Jarié, Phys. Rev. Lett. 48, 1641 (1982).

D. M. Hatch, H. T. Stokes, Isotropy Subgroups of the 230 Crystallographic Space
Groups, (World Sci., Singapore, 1988).

P. W. Anderson, E. I. Blount, Phys. Rev. Lett. 14, 217 (1965).

W. Bithrer, W. Halg, Phys. Stat. Sol. 46, 697 (1971).

35






