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Introduction

The main body of rigorous results in statistical mechanics and constructive quan-
tum field theory is obtained by applying techniques which can be essentially
grouped in two fundamental and in some sense complementary classes: pertur-

bation methods and convexity methods.

The perturbations method applies to theories which can be interpreted, by
means of small parameter, close to linear or exactly soluble ones.

The other method applies to theories which have a definite sign in the sense
that hold for them some properties like global positivity, monotonicyty, convexity
etc. This last method is generally not affected by limited parameter range and is
used to establish existence of limits, like the infinite volume one, for the observables
of the theory or their sign in that limit. The theorems obtained in this way
give informations on consistency of the theory or on the presence of fundamental
phenomena like phase transitions; but in spite of their elegance they are unable to
say, at least directly, something about the mutual functional dependence for those
observables which is essential for the experimental test.

Perturbative methods fill exactly this lack giving detailed properties of the
theory like analyticity in the coupling constants and estimates for the radius of
convergence; a fundamental point for the method to be rigorous and not only

formal, is that all the estimates for finite size system have to be uniform in their
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size. These well posed expansions are usually known as cluster expansions.

Cluster expansions originated with the work of Mayer and Montroll [l in
1941, and Kirkwood and Salsburg in 1953 [2, but the power and the wideness
of applications of this tool was fully recognised only after some decade with the
works by Gallavotti, Martin-L5f, Miracle-Solé in 1971 Bl in classical statistical
mechanics, and by Glimm, Jaffe, Spencer in 1973 3] in constructive quantum

field theory.

Although these works use the same conceptual strategy, they contain special
features depending on the field its was applied. Only recently it has been realised
that with the notion of polymers model it is possible to unify these various forms

and formalize in an abstract way this techniques.

In the nature of rigorous perturbative method there is a limited parame-
ter range; the conceptual reason is that for a field theory with nontrivial phase
structure cannot exist a unique suitable cluster expansion. In the Ising model
for instance the high and low temperature expansions are defined by completely
different expansions; if the dimension is greater than one, it is not possible to have
the convergence of one of them in the entire phase space because that would imply

the absence of critical point.

A problem emerges naturally: how close to the critical point can we go with

cluster expansion techniques? This thesisis a possible investigation on this subject.

Actually, in order to avoid misunderstanding, the question needs some spec-
ifications. The point is that one cannot establish a priori an abstract threshold
as the “good” one, since every problem has its own degree of tolerance depend-
ing on conceptual and practical reasons like the theoretical meaning of the given

model, and the details of experimental results which have been obtained in the



given context. So we can divide the problem in two steps: first try to give the
best possible estimates in the general formalism with the polymers language and
then to test the result in an explicit example trying to take advantage from its
particular feature. As concrete case we have chosen the problem of surface tension

in two dimensional Ising model.

The exposition is organised as follows. In the first chapter we introduce the
abstract polymer model: it is defined by a partition function which is a sum of
products of the activities of some elementary objects called polymers. In order
to establish convergence theorems in our abstract expansion we formulate two
requirements which guarantee that the elements we have to sum have to be not
too big and not too many. Using an algebraic method and introducing a formal
derivation, we establish our basic recursive functional equation of “Kirkwood-
Salsburg” type. Sinceit livesin a Banach space we exploit the freedom in the choice
of (equivalent) norms. This optimization is reflected in the radius of convergence
for the considered expansion and in the estimates of critical parameters which
generally follow from them in the explicit problems of statistical mechanics and
constructive quantum field theory. Our optimization procedure leads to a result

which is, so far, the best estimate obtained in such general context.

In the second chapter we treat the problem of surface tenmsion in two-
dimensional Ising model following the method in Ref. [3]. With duality methods
we map the low temperature regime in the general polymers formalism and im-
prove the previous general bound exploiting some peculiar features of Z2. In the
so found temperature range (which estimates from above the critical § to within
25%), we observe that the model exhibit the phase separation phenomenon rigor-

ously expressed by some theorems which enables one to give a suitable expression
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for the surface tension.

Finally we study the infinite volume limit for the so found formula. We use
the same ideas of Ref. [3] with slightly modified and improved lemmas; in this way
we are able to stay in the wider temperature range previously established and to

prove inside the well known Onsager value for the surface tension.



Chapter 1

The cluster expansion technique

for abstract polymer models.

As explained in the introduction, cluster expansion techniques have been used in
many different context. In each of them they appear with different and special ad
hoc features. A natural process of generalization has been developed in the last
decade (%7 and a kind of axiomatic structure has been singled out; in this way,
in the study of a particular problem, one has only to check that it is possible to
map the problem in the abstract formulation and verify that the axioms hold. The
entire set of theorems will follow automatically without any extra work.

The models we can study with this general formalism are usually known, for
historical reasons, as polymer models. They are defined by a partition function in

a volume V:

zvy= >, I = (1.1)

Pominiey YETamily
where the function z(7) is the activity of the polymer v and characterize the model
together with the space on which one perform the sum.
The meaning of the axioms is related to the possibility of defining the “free energy
density” i.e. the %;log(Z(V)) in the infinite volume as expansion in the activity:

in order the sum be convergent the activity has to be sufficiently small, and the

cardinality of the space on which the sum is performed has to be normalizable
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with the volume.

There are essentially two approaches to the proof of convergence: one is based on
the use of Kirkwood-Salsburg type of equations [Bll®l3], while the other relies on
combinatorics counting of trees of a graph [101[11]1[4]

We follow the first method because it is particularly suitable for the general
optimization procedure which we are looking for. The Banach structure on which
the functional equations live is defined by a norm: the degree of freedom in this
definition can be optimised and produce, in the last analysis, estimates for critical

parameters.

1.1 The definition of polymer model.

We start with a set P; of object vk, £ = 1,2, ..., called polymers. One has to
think of this set as an alphabet. The collections of r-polymers, i.e. the elements
of the r-fold Cartesian product P, = P; X P; X ... x P; r-times, will be the space of
r-words; we will denote them by X = ~1,...,7, with N(X) = r. The fundamental
notion for polymer models is the notion of incompatibility. One can define it by a

reflexive and symmetric relation on P, represented by a characteristic function:

n _ J 1, if v,4' compatible; 19
flr ) = {0, otherwise. (1.2)

In addition to the compatibility the following two primitive notions for a polymer
will be introduced. The activity z(«) is a function from P; to the complex numbers,
and the volume |y| is a function from P; to nonnegative real numbers with the
order preserving property with respect to an assigned partial order in P;.

Two subset of P, are important for the polymer expansion, namely the com-

pletely compatible r-polymers D, and the incompatible r-polymers C,. In order
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to easily visualize the structure of these two sets we can represent a r-polymer X
as a r-vertex graph. Each vertex represent one v; € X. The graph is constructed
connecting two vertices by a line if the two corresponding polymers are not com-
patible. In this picture the r-graph without lines are the elements of D, and the

path-connected r-graph are the elements of C;.. We set by definition
Ciy =D =P (1.3)
Furthermore Dy = Py = () and
ngDk szjCk Pngk. (1.4)
k=0 k=1 k=0

It will be of great importance the distinction between the spaces introduced and
their quotient to respect the permutation group; we will indicate these modified
sets overposing a hat, e.g. ﬁk, D etc., and their elements putting them inside the
parenthesis, e.g. (y1,...,7r) € D,. The difference is essentially seen in the typical

sums:

TOY et = D dm)eeaw) (1)

Y1y YrEDE (71,-.-,'71-)657'

and

7!
Yoo am) ) = Y mz(vl)“‘z(%) (1.6)
Y1serYrEPP (71,---:71‘)62;7‘

where r; is the multiplicity of v; in 1, .cey ¥r-

The whole set of informations contained in a r-polymer can be split in this
way in two complementary part: the combinatoric part which refer the topological
nature of the associated graph, and the analytic part which refer the functional

properties of its activity.
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Now defining .
2N = H z(y). (1.7)

with 2(0) = 1, and
A= I feor) (1.8)

('Yia‘Yj)e‘YXX
with f(0,0) =1, we introduce the notion of partition function Z for a given set of

polymers P; :

1 . . -
Z = Z N(X)!z‘\ = Z 2% = Z 2N FE, (1.9)

XeD XeD XeP
If P, is a finite set the previous sum is finite. In the infinite case , which will
correspond to the infinite volume limit in some explicit case, there are obviously
problems of convergence which will require some additional properties to control
the expansions; we examine all these problems in the section 1.3 after the study of
a resumation procedure which we allow to express the logarithm of the partition
function in terms of activities and to derive the recursive functional equations of

Kirkwood-Salsburg type.

1.2 The algebraic method.

We are now interested in a formal algebraic relation between the partition function
and its logarithm. The method we use in order to derive this relation is a very
powerful tool introduced some decade ago in the study of statistical mechanical
properties for ordinary gas; it can be found in a completely abstract formulation
in Ref. [8].

We consider the set of finite configurations X = (y1,...,7n), i.e. those ele-

ments of P with N(X) =73, X(v) < oo, where X (7) is the multiplicity of v in X.
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A natural definition of sum can be introduced by (X1 + X2)(7) = X1 (7) + X2 (7).
We also consider the space F' .of functions of configurations ¢(X) such that
SUP N (x)=n |P(X)| < oo for all n, and its subspaces Fy and F; defined by ¢(0) =0
and ¢(0) = 1 respectively. We define in F' a convolution product by

(rxd)(X) = D,  $1(X1)da(Xz). (1.10)

N+ X=X

The sum is obviously finite since X is finite and ¢; * ¢ € F'. The corresponding
exponential can be defined for ¢ € Fj:

B = XL — 10+ XL T e @i

n>0 n>1 " Xy X=X
where ¢°° = T(X) is defined to be 1 if X = () and 0 otherwise. We also define the
corresponding logarithmic function for ¢ € Fi; posing ¢ = 14 ¢ with ¢ € Fy we
have:
n+1

(Loga)x) = 3 E g - S U S () go(x)

n>1 n>1 X+ X, =X
(1.12)

The reason for introducing the convolution product is the property:

> (g1 da)(X)" = Z $1(X)=")( Z $a2(X)2* (1.13)

XeP XeP XeP
and then
> (Bzpg)(X)z* =exp( ) ¢(X (1.14)
XeP X EP
if ¢ € Fp.
For the estimates we will derive it will be of great importance a “derivation”

formalism defined by:

(Dxe)¥) = ¢(x + 7)Y (1.15)
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with X! =[], X (4)!. In terms of it one can prove the usual rules like the Taylor

formula

- 'LI,X
S HX) w40 = 3 B Y (Dxg) ) (1.16)
XeP XeP YeP
and the Leibnitz rule

D, (¢1 * ¢2) = (Dy¢1) * @2 + ¢1 % (D g2). (1.17)

We can now derive our main algebraic relation. Observing that the ¢ defined by

#(X) = z¥ f¥ belong to F; we define ¢7 = Log¢, so that ¢ = EzppT. Then
2= g(x) =exp( 3 7(X)). (118)
XeP XeP
The explicit formula for ¢T is (3]

n(X
$ s ye) = P o (1.19)

with n(X) = n4(X) —n_(X) and n+(X) is the number of subgraphs of X in C,

which contain an even (resp. odd) number of lines. So we can finally write:

n(X) +
logZ =Y —g?!lz“. (1.20)
xeC

1.3 Convergence of the polymer expansion.

An optimised norm.

With the algebraic and differential language introduced in the previous section we

can easily derive estimates for ¢7.
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We use the method of functional equations of “Kirkwood-Salsburg” type.
There is no unique way to formulate the problem with this approach; one could
say that the “art of the job” is the right choice between the various possibilities
of formulation. We follow the line which can be found in Ref. [3] and we try to
optimize it.

Our optimization procedure can be understood in the general abstract frame-
work commonly used to describe these mathematical structures [8]. The functional
equations describing our problem live in a Banach space; the (equivalent) norms
defining that structure have some degree of freedom which we can exploit to op-
timize it. This optimization will be reflected in the radius of convergence for the
considered expansion and in the estimates of critical parameters which generally
follow from them in the explicit problems of statistical mechanics and constructive
quantum field theory.

In order to establish convergence in our abstract polymer expansion we have
to formulate two requirements whose meaning can be roughly explained saying
that the elements we have to sum have to be not too big and not too many.

Defining N(v,z) as the number of 4-incompatible polymers in P; which have

a volume between z and z + 1, one introduces two axiomatic estimates:
Al (Entropy Estimate). There exist a constant p such that
N(y,z) <lvlw® ¥V v€e b (1.21)
A2 (Energy Estimate). There exist a constant A < 1 such that
lz(7)| <AV 4y e R (1.22)

The problem of thermodynamic limit is now reflected in the number of elements of

P;. We are interested only in uniform estimates in this number. We start with the
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definition of correlation function g(X) which is the probability that the polymers
in X are present:

Lyep (X +Y)
Zyep¢(Y)
(we remind that ¢~ defined by ¢=1 % ¢ = 1 is well defined if ¢(0) % 0) where

Ax(Y) is defined by:

o(X) = = Z(qs- *Dx¢)(Y)= > Ax(Y) (1.23)

veP YeP

Ax(Y)= (67" +Dxd)¥)= >, ¢'(M)$(X+Ya).  (1.24)
Y14+Yo=Y

We can now derive the recursive equation for Ax(Y).

From (1.24) is easy to see that Ax(Y) = 0 if X is not in D, i.e. when there
are inside incompatible polymers. Consider A,y x(Y) for v + X € D. From the
definition it follows that

dv+ X +Y2) =2(1)¢(X +Y2) [] (1+9(77))
v EY,

=2(1)¢(X +Y2) Y (~1)N ),

5CY;

(1.25)

if Y is without “multiplicities”, and the overposed « means that the sum is over
sets § (the empty set have to be included) all of whose elements are incompatible

with v. We obtain:

Ayrx(Y)= D ¢ (H)p(r + X +1a)
Ay

=2(7) Y, $TBE 1) Y (-1

N+Ye=Y SCY,

(1.26)

since the only contributing Y; are those without multiplicities. Posing Y» = S+ Y}

and interchanging the sums we obtain:

Apex(¥)=2(n D (DN 3T THR)SX + 5+ )
SCY A +Ya=Y —S

=2(7) 3.~V Ay s(Y - 5).
S5CY

(1.27)
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We observe that this equation determine Ax(Y) with N(X)+ N(Y) =m + 1
in terms of Ax(Y) with N(X) + N(Y) = m for m = 0,1,..., successively. This
is exactly what we need in order to obtain convergence estimates. We define the

Banach structure by the m-norm depending on an optimization parameter z:

In(@)= sup Y |Ag,.am@)|(A"Tem=) 20 (1.28)

Y1

Y
m2n2l N(Y)=m—n

We can now deduce from (1.27) and from A1, A2:
. Ax(¥)(ATem®) N <

Y
N(Y)+N(X)=m

= Z Z ’Y'Ax-i-s(Y — 8)|(A"te=)HIXIN <

NN (x)=m TS (1.29)

< Z'Y Z Axts(Y — S)|(A"te=) X +ISlg==l1(\e2)ISI <

v
N(Y)=m-N(X)

< In(2)e™* 1Y (")
S
Since the only contributing S are those without multiplicities we can transform
the last sum in:

PINCLOLEDY —( 37 < exp(ly] D (uAe™)) = exp(])\l——————“Aez )

S n>0 n! ocEP; . >1 /.I,Aez
(1.30)

if

pre® <1 (1.31)
where we have supposed, without restriction, that the minimum size of a polymer
is 1. The fact that we have extended to infinity the previous sum in [ corresponds
to consider the thermodynamic limit; the resulting estimates are uniform in the

volume. We can conclude that:

pie®
< - —). 1.32
Int2(2) < Ina) exp(—a + 2252 (152)
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It’s clear that for the m-norm to be a contraction and the expansion to be conver-
gent the argument in the exponential has to be negative:

pAe®

— <0 1.33
zt 1—pler — ( )
or
T
AL -
pA = 142 ¢
and in order to optimize the choice of z we have to find the positive value of z that

— (VB5-1)
2

maximize the right hand side. A simple calculation give z as solution
for the first variation vanishing condition z? + 2z —1 = 0.

The final general estimate is:

1 =z _,
e ?| (i1 (1.34)

A< —
pliz =y

since, of course, this estimate is stronger than the optimized version of the (1.31).
A result numerically identical has been obtained with different method in Ref. [7]
and with the same method but in a slightly different context in Ref. {12]; it is, so
far, the best estimate obtained in a so general context.
One could take advantage from an eventual inequality |y| > m; in this case
the (1.33) becomes
gy A (1.35)

but since it is not exactly optimizable as function of p we will use it only in the
concrete case that we will examine in the next chapter.

Omne can see BII7I31112] that in the range (1.34) the polymer expansion con-
verges absolutely as a power series in the z(A) for every finite P;, and the conver-
gence for i-log(Z(V)) is uniform in the volume; in this abstract case the volume is
defined as V = sup.,¢p, |7|. Furthermore standard theorems on analytic functions,

in particular Vitali theorem, imply analitycity of thermodynamic functions.



Chapter 2

The surface tension problem in

two-dimensional Ising model

The history of the surface tension for the Ising model starts with the fundamental
work by Onsager [14]. He gave, in this paper, the first definition and, at the same
time, the first calculation for it with a simple and ingenious method: one considers
instead of a ferromagnetic Ising model with coupling +1 an antiferromagnetic
model with coupling —1, and cylindrical boundary condition. According to the
parity of the number of the spin in the periodic direction the phase structure have
to change: if this parity is odd there is going to be somewhere a mismatch at low
temperature (in more recent terminology we said the model is frustrated) in the
arrangement of the spin as if one puts together two oppositely magnetized phase
in the ferromagnetic case. Therefore one will be able to interpret the difference
in the free energy when the parity is odd and when it is even as due to the phase

separation and therefore as a surface tension. In this way Onsager obtained:
7(8) = —28 — log(tanh(B)). (2.1)

Only in 1971 [13] it has been proved that the Onsager’s value coincides , for
large enough, with that computed using a different definition based on a detailed
microscopic description of the separation of the phase and of the line of separation

which we are going to consider.
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In this chapter we expose the duality method and map the low temperature
regime in the general polymers formalism. After some definitions we improve the
general polymer estimate, taking advantage of the structure of closed contours in
the lattice; in particular the fact that they have a minimum side of 4 units implies
good improvements since it eliminates the first three terms in a geometric sum.
In the range so found we prove the validity of some theorems stating in a rigorous
form the phase separation phenomenon. Finally with a simplified expression for
surface tension we prove its existence in the infinite volume limit using an improved

version of the proof in Ref. [16].

2.1 Notations and definitions.

Let O be a finite subset of the infinite square lattice Z2. The Ising model in the
“box” O is defined by associating to each point z € © a spin variable o, taking
values £1. We will suppose that the spins on the boundary of @ are fixed and we
denote by 7 the array specifying their values. In this way to each configuration

defined by o, 7 we associate the usual weight:

B,(c) = exp(B Y o20,) (2.2)

{z,¥)

where the sum runs over all pairs of nearest neighbors in @, including the boundary.

From the first pioneering work by Peierls in 1936 7] up to more recent work
[18:13] " one has realised that, for the purpose of investigating the system at low
temperature it is very convenient to use the duality transformation method. It
consists essentially in a representation in terms of contours in the dual lattice

of a spin configuration for assigned boundary condition: one draws a line on the
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lattice bond which separate opposite spin. The set of lines thus obtained splits into
several components and, at each vertex of the (1/2, 1/2)-shifted lattice will end
0,2,4 lines excluding the points in the boundary. In order to map this formalism
in the polymer language it is useful to transform this set of lines in selfavoiding
contours; this is simply done cutting the overlapping lines along a fixed diagonal
direction (for instance: ). We obtain in this way a family of edge-selfavoiding
contours (¥;,...,¥n) some of which start and end at the fixed segments of the
boundary, the others being closed and lying ”inside” ©. We stress that for a given
T we have a one to one correspondence between o and (7i,...,vn)-

It is straightforward now to rewrite the thermodynamics in terms of contours:

Z 0z0y = mno.of bondsin® — 22]721 (2.3)

(z,9) 1
and from (2.3)
wr (Vs -y 7n) = exp(—28 > i) (2.4)
1

so that the partition function will be

Z(MZ(0),8) = > exp(—28 > i) (2.5)

(i ooy Yn ) EMI(O)

where MZ(0) is the set of allowed configurations of contours, called ensemble,
which correspond to the set of spin configurations.

More generally we will consider partition functions for any assigned ensemble
M, for example it will be important the canonical ensemble MZ(©,m) of allowed
configurations with a given magnetization » .o 0z = m|O|.

In the following we will consider, instead of the infinite planar lattice Z? ,an
infinitely long cylinder o n with sectional perimeter N. In this way we will obtain

periodic boundary condition in the horizontal direction; in particular our box will




19 THE SURFACE TENSION PROBLEM IN TWO-DIMENSIONAL ISING MODEL

be a cylindrical region Q € Qv with flat top and bottom and with height N
for some § > 1. For it, the four boundary conditions + on the top and — at the
bottom etc, will be denoted by +,— etc. We will refer as “big” to the contours
which go around the cylinder; for each of the defined b.c. they have a given parity.
A subscript 0 will indicate that a given ensemble have a minimal number of such
contour compatible with the right parity. So, for instance, M§ ™ (Q) will be the
ensamble with +,+ b.c. and without “big” contour. Finally we will also have
the occasion to consider the ensemble of “c-small” contours in Q defined by the
restriction of having a length bounded by clog || = clog N1+9,

The definition of surface tension used in our approach is based on the mi-
croscopic description of the phase separation phenomenon. A basic property of
the partition function of any well posed thermodynamic model is the extensivity
of its logarithm. E.g. ||"'log Z(M*~(Q,m),B) — —BFf(B,m) as Q /" Qo 00,
where f(8,m) is the limiting free energy density. In this picture, surface effects
are manifested in terms proportional to the measure of surface between interacting
phases in the corrections to log Z + |8 (8, m). For the ensemble M*~(Q,m),
where there is typically one surface between the two phases and one at each end

of the cylinder, one would expect to have an asymptotic relation:
log Z(M*~(2,m),8) = —|QIBF(B,m) + Nr +2N7' + o(N)  (26)

T being the surface tension between the two phases and 7' the one between each
phase and the fixed spins. In order to extract T we can compare the (2.6) to the
corresponding expression expected for an ensemble consisting only of one phase
like MT+(Q,m*) where m* is the value of the corresponding spontaneous magne-

tization:

log Z(M++(Q,m*),ﬁ) = —|Q|8f(B,m*) + 2N7' + o(N) (2.7)
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where we have supposed that in this last ensemble there is not going to be ,
typically, any big contour and that for symmetry reasons the contributions from
the bases in (2.6) and (2.7) are the same. Furthermore, for symmetry reasons it
have to result that f(8,m*) = f(B8,—m*) and posing m = am* + (1 — a)(—m*) ,
0 < a < 1it should be f(B,m) = af(B,m*)+ (1 —a)f(8,—m*) = f(B,m*). This
should allow the definition:

Z(M*~(Q,m), B)

) 1
7= lim MlogZ(M‘*“"“(Q,m*),ﬁ)

m (2.8)

In the following sections we will prove that all our assumptions are correct and

that the defined limit exist.

2.2 Cluster expansion for contours in two-dimensional lat-

tice.

As previously explained, we have now to check that our problem can be mapped
into the general polymers formalism; in order to do that we first have to show the
correspondence between the underlying conceptual structure and then to show
that our case verifies the axioms..

This is easily done comparing the (2.5) with the general (1.1). The contours
have the role of polymers, the incompatibility is simply the overlap between edge
and the volume |y| of a polymer is the number of its edge which trivially verifies
the order preserving property with respect to the set inclusion. The activity is
z(v) = exp(—20|y|). This last identification permits an immediate test of the

Energy Estimate axiom which give

A = exp(—20). (2.9)
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The Entropy Estimate axiom is easily verified too: the number of contours ~-
incompatible are simply |y|-times the contours which intersect a given point. The
estimate which gives how many such contours exist for a given length [ is u! where
i is the connective constant for the two-dimensional lattice. It is trivial to see
that in this case g < 3. Much less trivial is to improve this bound; we will base
our final estimate on a bound for the connective constant which can be found in
Ref. [19].

Now we can improve the general bound (1.34) taking advantage from the
peculiar structure of our polymers. Since the minimum size of closed contours
is 4 we can rewrite the (1.30) with [ > 4; this change will produce good results
because it eliminates the first three terms, the biggest ones, in a geometric sum.

The (1.35) became:

waAe”)* o, (2.10)

—m+1—uz\e” -

This form is not explicitly solvable as the general one but we can optimize the
choice of x numerically, with the help of a computer, using the value for u given

in Ref. [19]; we have obtained
B> p8=0.55
which can be compared with the general estimate (1.34)
8 >1.04

The 3 gives an estimate from above of the critical 8 (8, ~ 0.44) to within
25%. It will be our landmark in all what follow.

It would be easy now 1] to prove some fundamental estimate for ¢T which
are useful for convergence theorems and which we will use in the next section in

order to establish the theorems on the phase separation.
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If6>p4 |
> 18T (y + X)| < aexp(—bf) exp(—chlv]) (2.11)
X
and
3 17(X)| < ' exp(~b B)exp(—c'8)* PP (2.12)

where the a,b etc. are positive constants.

2.3 The phase separation. -

This section contains three theorems which study the phase separation phe-
nomenon; they are essentially a rigorous form of the droplet theory of phase
transition [0, The proofs, which we do mnot report, are essentially those that
can be found in Ref. [16]. One has only to use our improved estimates of cluster
expansion, in particular the (2.11) and (2.12). In the following we will denote
differently functions of @ which have different asymptotic behaviour as § — co.
For instance §(8), n(8), £(8) will be functions of 8 which approach zero exponen-
tially as @ — oo; a(B), b(8), d(B) will approach zero as a power. Finally if we are
not interested in the asymptotic behaviour we will write 4(8), B(B), D(8). Let
us now discuss in detail in what sense we have phase separation in the ensemble
M*=(Q,m). Consider the set of configurations Mg~ (Q,m) C M*+~(Q,m) con-
sisting of those X € MT~(Q, m) such that the conditions 1-4 below are verified:

1. X contain just one big contour A and A is such that:
A< NQ+B/B). (2.13)

2. Calling 2, the region above the big contour A associated to X we have:
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(for some p with 0 < p < 1)
1] — el]] < x(8)I02?. (2.14)
3. Calling m™ the average magnetization of the configuration in Q) we have:
m*|Q] = m*a|Q]] < x(8)IQ. (2.15)

4. The total length of the c-large contours is bounded by Nd(3)
As essentially proved in Ref. [9] and reformulated in Ref. [16] the following result
holds:

Th.I. If@>fBand0<a<1,§>1

’?:1 (2.16)

provided the functions x(8), d(3) and the parameter p are “suitably” [18:3] chosen.

From the physical point of view this theorem says that the typical configura-
tions (i.e. with probability approaching one in the infinite volume) of our system
look like two seas of up and down spins, the first onr the top of the other, separated
by a rather well defined surface A at height ~ (1 — @)H. On each of these seas
there are small holes of opposite sign which produce an average magnetization
~ m*.

The following simple and physically deep result establish that the probability
of “minimal” ensemble (having a minimal number of big contours) approach one

in the thermodynamic limit.

Th.II. IfB>8

. Z(Mg‘c') _
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Using the two probabilistic estimates (2.16), (2.17) we can simplify the surface

tension formula to:

.
7= lim i-log Z(Mqg—(2,m), )

Nooo Z(MFTT(Q,m*),8) (2.18)

This last expression is very difficult to handle because the canonical sum have
the fixed magnetization constraint. A possible way to solve this difficulty is to
evaluate the probability in the simpler gran canonical ensemble and to estimate
the probability of canonical ensemble in the gran canonical one; since it holds
indeed

Z(ME=(Qm),B)  Z(MF~(Q,m),B) Z(MF*(Q),8)
ZMFHQ,m*),8) Z(MET(Q),8) Z(MFT(Q,m*),B)

(2.19)

if we have a suitable upper bound on the last ratio we can interchange the two
partition functions in the (2.18). Suitable in this case means that their logarithm
differ by an amount small compared to the order ~ N The estimate which we are

looking for is:

Th. III. 8>3

Z(MF*H(0),) ape y
oy gy S PO I e (RENT). (220

This transforms the (2.18) in:

-
7= lim —log Z(Mq (Q,m),ﬁ)

NI N 1% T 2T, B) 22

2.4 The surface tension.

In Ref. [3] it has been proved that the (2.21) can be transformed in simpler object,

and at the end, the surface tension will appear as the thermodynamic limit of a
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partition function of the ensemble of big contours A, each one having a weight of the
form exp(—2B8|A| + (A, 8)) with |v(A,8)| < a|A|e~®# with a,b positive constants.
To do that one needs only to use the (2.11), (2.12) and the theorems of previous
section.

The proof of the existence of the limit (2.21) needs some modification since
we need a more accurate lemma to adapt to the wider range of temperature on
which we are working.

Following Ref. [3] one have:

T = A}i_r)nooN_l log% exp(—26]|A] — v(A,08)) (2.22)

where the sum is over the class of vertical congruence of big contours compatible

with M$~(Q,m) and where

v = 2 ¢T(X). (2:23)

To show that the limit (2.22) exist we will prove a weak form of the subaddittivity

property for the function

Sn(B) =log »  exp(—=2B|A| — v(,B)). (2.24)
(N

We start observing that if § > 8 the X appearing in the sum are bounded by 2N
thanks to the property 1 of the ensamble M{,‘“’(Q, m). This gives us the possibility
of founding a column C in the original lattice Qn with the following properties :
(a) The strip of width one immediately to the right of C only contains one
horizontal step of A.
(b) The strip of width 2N'/® centered at C contains a portion of A at most
N1/2 long.
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These properties can be proved as follows. Define N, and N,, the number of
columns with, respectively, intersection simple or multiple with A. It is easily
seen that a multiple column consumes at least 5 units in the length of A; at least
three step are in fact consumed in the horizontal direction and two in the vertical
direction in order to connect the horizontal ones. Hence 5N, + N, < |A| < 2N
which gives N, > 3/4N. This bound, which trivially prove the (a), is essential to
prove the (b). Consider now for each simple step the strip of width 2N1/3 centered
at its left end, and let L be the shortest length of A contained in any of these strips.
Let M be the maximal cardinality of a family of disjoint such strips; it is easy to
see that if the strips of this family are widened to 4N1/3 their union will contain
all simple steps. Hence M -4N/® > N, > 3/4N. Moreover, LM < |X| < 2N, so
L <2N/M <11N'/® < NY/? if N is large. This prove the (b).

Using the property (a) we can now construct a mapping F which associates to
any pair (An, An+) coming from Sn(8) and Sni(8) a Av+ne in Snyn(B); we cut
An and Ay at some Cn and Cpn+ as described above and join them together in
the given order on a cylinder with circumference N + N’ to a closed path Ay+nr.
The property (a) says that the so constructed A4y is an allowed contour in
Sn+n'(B). Considering that the mapping F can have a N - N’ degeneracy and
using the property (b) one can prove 3] with cluster expansion techniques that
v(A,B) is weakly additive:

ifB>p

w45, 8) = v, B) = v(An, B)] < (W2 - N%) - (2.25)
and hence in the same range

Snine(B) = (NN') " exp(—e(N*/2 + N /2))8n (8)Sn(8). (2.26)
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from which the existence of the limit (2.22) immediately follows in the range 8 > 3.
Using the result in Ref. [15] which establishes the identity of (2.22) and (2.1), our

final result became:
ifg>p

. _ Z(M*—(Q,m), )
7= lim N llog Z(M++(Q,m*),ﬁ)

N—co

= —20 — log(tanh(3)). (2.27)

2.5 Comments.

The knowledge of the two-dimensional Ising model can be considered one of the
most satisfactory in the entire field of statistical mechanics. Our simple result is
not intended to add some basic progress to that knowledge: it simply provides
further support to the conjecture that in the coexistence phase, i.e. for 8 > . as
it has been proved in Ref. [21], it is possible to produce phase separation with the
Onsager value for the surface tension.

It can be interesting to compare our result with the one obtained in Ref. [22].
One can find in that reference the elegant theorem which establishes the abstract
existence of the limit (2.8) at any value of the temperature simply using duality
property and Griffith’s inequalities. Our result is in some sense complementary
to that one since we have a complete functional control of phase equation in a

slightly smaller range.



Conclusions

As explained in the introduction, the present work was motivated by the interest of
investigating theories with rigorous perturbative methods in a range of parameters
as wide as possible; in this way one can first obtain good estimates for critical
parameters and consequently the knowledge of phase equations in a wide phase
space range. One underlying problem which emerges directly from this analysis is
whether cluster expansions are suitable methods in order to obtain indications on
the order of magnitude of critical values for those parameters which control phase
transitions.

The analysis done in this thesis gives, in our opinion, some indications which
suggest a positive answer to the previous question.

We have in fact obtained, in the examined problem, an estimate from above
of the critical beta to within 25%. Our conviction is not based on this percentage
which can be or cannot be a satisfactory result according to the context on which
it is considered; it rather relies on the fact that we have obtained such a result
without drastic changes in the old strategy which was intended only to establish
the phase separation phenomenon and the functional dependence of surface tension
for large enough beta, no matter how large.

Summing up we have explored only few possibilities for optimization proce-

dures: the general one in the polymer context with the optimization of the norm,
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its improvement in the particular contours case in Z2, and finally the remake of
the series of theorems and lemmas of Ref. [3] trying to obtain better estimates.

A less naive procedure, possibly a subject of further investigations, could be
performed giving up the particular Kirkwood-Salsburg type equations considered
in our case; they are not, of course, the only possible iterative equations suitable to
establish convergence theorems and, may be, one could take advantage considering
an entire class of them with the appropriate norms and finally take the best.

Since the first application of cluster expansion methods many weak points
have been pointed out, and many attempts have been done to found alternative
ways to obtain the same results [23:24], This dissatisfaction, actually not commonly
accepted, is relative to the fact that while both the problems treated and the results
obtained have a clear physical meaning the intermediate steps have not and also
to the fact that the entire cluster expansion technique seems a very cumbersome
machinery.

Without enter in the details of this debate we observe only that up to now,
in spite of the fact that some of the alternative ways to cluster éxpansion avoid
the mentioned problems, the power and the generality of this technique have not

yet been reached by none of them.
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