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CHAPTER 1

INTRODUCTION

In this thesis we deal with the model case of some variational formulation of a
segmentation problem.

Let £ be a bounded domain of R™. Given a function g € L™(Q), the corresponding
segmentation problem consists in subdividing the domain Q into appropriate regions, and in
approximating, on each region, the function g by a smooth function. More precisely, we have
to find a closed subset K of €2 and a function u defined on Q\XK, such that

(1) uis smooth on Q\X,
(2) uisa good approximation of g on Q\K,
(3) Kisas "small" as possible.

The pair (u,K) is called a segmentation of g. In a good segmentation the set K and the
function u are chosen so that the approximation u eliminates the less relevant details of the
datum g, but preserves some properties of its behaviour.

In the two dimensional case such a problem is suggested for instance by applications to
computer vision. In this setting the function g, defined on a plain domain, represents an
image: g is the grey level, i.e. g(x) measures the intensity of the light at x. One expects the
functon g to be discontinuous along the lines corresponding to sudden changes in the visible
surfaces (e.g. the edges of the objects, surface markings, shadows, different colours). The
image segmentation problem consists in finding a pair (u, K ) such that K is a set of curves
decomposing the image into regions with relatively uniform intensity, while u is a smooth
approximation of g on each region. The set K will be interpreted as the union of the lines

which give the schematic description of the image.
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For a general treatment of this subject we refer to A. Rosenfeld and A. C. Kak [23].

Similar situations arise in many other contexts, like the perception of speech, which
requires segmenting time, the domain of the speech signal, into intervals during which a
single phoneme is being pronounced, or radar data, in which g(x,y) represents the distance
from a fixed point P in direction (x,y) to the nearest solid object.

The variational approach to the segmentation problem proposed at the beginning consists
in minimizing an energy functional, depending on u and K, expressed by a sum of terms each
measuring the deviation from one of the desired properties.

In order to confront the image segmentation problem D. Mumford and J. Shah [20], [21]
developed this variational idea, proposing the following functional, defined for every closed

subset K of Q (Qisa plain domain ) and for every function u CI(Q\K):

(1.1) E(w,K)= [IVuldx + [lo-gldx + yH'(X),
ONK ONK

where Vu is the gradient of u, H ! denotes the one dimensional Hausdorff measure (see
[14], 2.10.2 ), and v is a positive real number.

In the expression of E the first term requires u to vary smoothly on each connected
component of Q\K, while the second term forces u to be close to g. The last term, which
penalises the total length of the discontinuity set K, is introduced in order to avoid a
subdivision of the domain Q into too many regions. Dropping any of these three terms
inf E = 0 and in general we have no meaningful solutions.

For the proof of the existence of a minimizer for the functonal E, conjectured in [21], see
G. Dal Maso, J. M. Morel, and S. Solimini [10] and E. De Giorgi, M. Carriero, and

A. Leaci [13] for the general case of the space dimensionn 2 1.
Given an open bounded subset  of R" and a function g € L>°(Q), the n-dimensional

version of functional (1.1), involving the (n-1)- dimensional Hausdorff measure H n-l, 18
defined by

(1.2) E(wK)= [IVulPdc + [lu-gPdx + yHYIK),
Q\K \K




for every closed subset K of Q and for every functionu € CI(Q\K).

Both the proofs [10], [13] are based on the use of a new function space, named SBV(Q)
(see [3] and [12]), whose elements admit essential discontinuities along sets of codimension
one. More precisely, a function u e LI(Q) belongs to SBV(L2) if and only if its distributional

derivative Du is a vector measure which admits the Lebesgue decomposition

Du = (Vu)dx + (u"—u") v, ﬂfnul]s ,

u

where Vuin LI(Q,R“) is the approximate differential of u, §;; is the set of all jump points of
u,Vy is the unit normal to S, and u™,u” are the approximate limits of u from both sides
of S, (see Chapter 2 for the precise definitions).

In order to study the minimization problem corresponding to the functional (1.2) E. De

Giorgi suggested the following weak formulation in SBV(Q):

min { E(u) : ue SBV(Q) ),
where

(1.3) Ew= [iVuldx + [lu-gPdx + yH™sSy),
Q Q

(see [2], [3], [101, [12], [13] ).

By relying on a general compactness and semicontinuity theorem due to L. Ambrosio [2],
it is easy to show that functional (1.3) achieves its minimum on SBV(Q). The existence of a
minimizer of the functional (1.2) is then proved by studying the regularity properties of the
minimum points in SBV(2) ( see Chapter 3, Section 1 for more details ).

Further results about these problems can be found in [5], [11], [18], [19], [25].

The Mumnford-Shah model, though quite simple, presents some limitations: it is unable to
detect crease discontinuities (i.e. points where the function is continuous, but the first
derivative is discontinuous ) and presents the so called "gradient limit" effect. We wy to
explain what it means by a simple example modeled on the one-dimensional version of

functional (1.2) ( g1 is reduced to the counting measure on R ). On the open interval



I=(0,1) let us consider the ramp g, depending on a positive parameter m,defined by
g(t)=0 on (0, l), g(t)=mt- %— on (%,?2) and g(t) =—I§]- on (%,1). Let us examine the
minimization problem corresponding to g. If the gradient m of the ramp is less than some
threshold g, called "gradient limit", then the solution u is continuously differentiable on the

whole interval {0,1). On the contrary, if m exceeds g, at least one discontinuity appears in

the reconstruction of the ramp (at t = % if there is only one) and u might have even multiple

breaks on the interval (%, %) if m is much greater than gy {see [6], 4.1.5). To sum up, from

our point of view u is not a good approximation of g for m large enough, since their
qualitative behaviours are too different. Moreover, some crease discontinuities seem
meaningful in the shape of the datum and u never reconstructs them. In the two dimensional
case it is easy to construct an analogous example, showing the same limitations for the
functional (1.1) as a model in image reconstruction.

In order to overcome the deficiencies of such a model, A. Blake and A. Zisserman [6]
suggest to modify functional (1.1), including the second order derivatives of u and a penalty
for unit length of crease discontinuity.

Following the ideas of these authors, we propose the functionals, below defined for every

pair of disjoint closed subsets Ky, Ko of @ and for every function

ue CUQNKg) N CHQN (KgUKy)) as

2
(14) G(u,Kp.Kz)= [IVuPdx+ [IVulPdx+ [lu-gPdx+
Q 0 Q

+o H" MKy + B HKy),

(1.5) H(wKg,Ka)= [1Vuldx+ [lu-gldx++ad™ UKy + p H™(Ky),
Q Q

2 )
where o and [} are nonnegative real numbers, and Vu denotes the Hessian matrix of u.
Another possibility is to consider the square laplacian instead of the quadratic variation

(1.6) H(u,KpKo)= Jlaulde+ [lu-gPdx+o HVI(Ke)+ B #HMHKy),
Q ]

where Au denotes the laplacian of u.




A. Blake and A. Zisserman deal only with the numerical aspects of these segmentation
problems: making use of the finite element method they study the minimization problems
associated to the functionals (1.4), (1.5), and (1.6), observing a better approximation of the
datum in the cases of H and H. On the contrary, the functional G, including at the same time
the first and the second order derivatives, has the worst of both models (1.2) and (1.5), the
gradient limit of the first order energy as well as the additional computational load of the
second order one.

It is easy to prove that functional (1.4) has a minimizer on a suitable space of functions of
bounded variation, under the following restrictions on the values of the coefficients o and p:
(1.1 0<B<a,

( see Chapter 3, Section 2 ). The one suggested in this thesis is a possible weak formulation
of the minimization problem corresponding to G, since no regularity theorems have been

proved yet. The result is obtained by applying the compacmess and semicontinuity theorems

(2] and [4], due to L. Ambrosio, successively toa minimizing sequence (u;,) and to the

vector valued sequence (uy» Vuh).

On the contrary, including the second order derivatives of the unknown function u,
instead of the first, in the expression of the functional implies considerable mathematical
difficulties. For instance, in dimension larger than one, it is not known whether it is possible
to givea weak formulation of the minimization problems corresponding to the functionals
(1.5) and (1.6), such as the one described above for the study of the functional (1.2).

As a first step in this direction, in the last part of this thesis we study the minimization
problem associated to the functional (1.5) in dimension one, and we prove an existence
theorem by applying the direct method of the calculus of variation.

More precisely, fixed the open interval I = (0,1) and given a function ge L?‘(O,l), we
consider the functional below defined for every pair of disjoint finite subsets Ig, Jo of T and

for every function u e CY(I\Jg) N CXI\(JgUla)) as



1 1
(1.8) F(u,Jo,J2) = [lu"Pdt + [lu-glPdr + o #g) + B #(J2),
0 0

where u" denotes the second derivative of u, o and B are two fixed nonnegative real
numbers, and # is the counting measure on R.

The existence of a minimum point is obtained by relying on the compactness and the
lower semicontinuity of F with respect to the Ll convergence.

Since the functional does not control the first derivative of u, except for the total number
of its discontinuities, we expect that the functional F has a minimum point only under further
restrictions, with respect to (1.7), on the values of the two coefficients o and B.

More precisely, we prove the compactness of the functional along sequences of functions
on which F is bounded, provided that both the coefficients « and [3 are strictly positive. This
is a natural condition: in fact if we set o = 0 or §§ = O the infimum of F is always zero and in
general the associated minimization problem has no solutions (see Examples 4.2.4, 4.2.5,
and 4.4.3). The proof of the compactness theorem makes use of some interpolation
inequalities for intermediate derivatives in order to apply an already known compactmess
result on appropriate subintervals of I. The limit function is then constructed by using a
diagonal argument.

Moreover we study the lower semicontinuity of the functional F with respect to the
Lh convergence. It is easy to see that the first two terms are lower semicontinuous. On the
contrary, the third and fourth terms are not semicontinuous separately ( see Examples 4.3.3
and 4.3.4). However, assuming the inequalities B < o <28, we prove that the sum of the
last two terms of F is lower semicontinuous with respect to the L convergence along the
sequences (uy, ) on which the whole functional is bounded.

Besides, we show that such conditions on the coefficients o and } are necessary to
assure the lower semicontinuity of F (again Examples4.3.3and 4.3.4).

The proof of the semicontinuity theorem is obtained by studying accurately the limits of

the singular points of the sequence ( uy ) converging to u.




Combining the compactness and the semicontinuity results, we prove that the
minimization problem corresponding to the functional F has a solution if 0 <B<a<2p. If
one of these inequalities is not satisfied, then it is possible to construct functions g such that
the associated functionals F have no minimizers (see Examples 4.4.3, 4.4.4, and 44.5), so
we cannot assure the existence of a solution independently of the choice of the datum g.

This thesis is organized as follows: in Chapter 2 we recall some definitions and known
results about the spaces BV(L2), SBV(Q), GBV(L2), and GSBV(Q) of functions of bounded
variation, without giving proof; in Chapter 3 we expose the existence and regularity results
concerning functional (1.2) and we prove the existence of a minimizer of functional (1.4) in a
suitable generalized sense; finally Chapter 4 contains the main results on functional (1.8): in
Section 4.2 we prove a compactness theorem, in Section 4.3 we study the lower
semicontinuity of the functional, hence in Section 4.4 we obtain the existence of a minimizer.

The results of chapter 4 are contained in [9].



CHAPTER 2

SPACES OF FUNCTIONS OF BOUNDED VARIATION

In this chapter we introduce the space BV(£) of functions of bounded variation on a
bounded open subset Q of R". In Section 2.1 we list a series of definitions and well known
results; in particular we specify the notions of approximate continuity, approximate
differentiability, and jump set of a bounded variation function. In Section 2.2 and 2.3 we
recall the definitions of some new spaces of functions of bounded variation introduced to

study the segmentation problem described in the introducton.

2.1. The space BV{Q) of the functions of bounded variation

Let us begin by listing the basic notations used in this thesis. Let n 2 1 be an integer and
2 be a bounded open subset of R". We denote by B(Q) the ¢-algebra of Borel subset of Q.
By LH(B) we denote the Lebesgue measure of a Lebesgue-measurable subset B of R, and
by }[n'i(B) the Hausdorff (n-1)-dimensional measure of any B & B{Q) ( see [15], 2.10.2 ).
Let A, B € B(L2); when we write A c < B, we mean that the closure of A is a compact
subset of €) containing in B. Letk 2 1 be an integer; a Borel function u: Q — R¥is a vector
u = (uy, ..,uy), where each u; is a Borel measurable function : Q — R. In the sequel we
identify the space of matrices with k lines and n columns with the vector space R™K,
Moreover for every ¢ e Co(Q2) we indicate by supp ¢ the support of .

Let v : B(£2) —» R" be a vector valued Radon measure on Q ( see [15], 2.2.5 ). We

introduce the total variation of v as the positive scalar measure | vi defined by




(2.1.1) [VI(A) = { sup ‘EN VAl s A= LI{J A;, Aje B, A; mutually disjoint }
1€ 1E

for every A e B(Q) ( see [24], Chapter 6 ), where || denotes the euclidean norm in R". We

say that v is a measure with finite total variaton in $ if v I(£) <+ oo,

Definition 2.1.1. ( see [24], 6.7 ) Let A : B(Q) — [0,+os), v : B(Q) —> R be measures
with finite total variation. We say that v is absolurely continuous with respect to A and we

write v << A, if A(B)=0 implies that v(B)=0 forevery B e BQ).

If v << A, then by the Radon-Nikodym theorem ( see [24], 6.10 ) there exists a function

in LI(QJ\.), denoted by %, such that v(A)= | VX dA forevery A € B(Q). This function
A

is usually called the Radon-Nikodym derivative of v with respect to A.

Definition 2.1.2. ( see [17], Chapter 1 ) We say thatu e LI(Q) is a function of bounded

variation in £ if its distributional derivative Du = (Dqu, ..,Du) is 2 Radon measure of finite

variation on 2.

For the general theory of functions of bounded variarion we refer to [151, {16], [17],
[27], [28], [29].

The space of the functions of bounded variation will be denoted by BV(Q); moreover the
space of all the functions belonging to BV(£2') for every open set ' c < Q, will be indicate
by BVoo(Q). It is easy to verify that W'(Q) € BV(Q), where W(Q) is the Sobolev
space of the functionsu € LI(Q) with disiributional derivative Du € LI(Q,R”).

Letue BV(Q). Itis well known that for every open set A < Q we have

fDul=sup { fudivgdx : ge CT(AR™), lgl<1}.
A Q 0

Endowed with the norm

10



Il u ”BV(Q) =|lq IILI(Q) + g{ Dul,

BV(€2) is a Banach space.

Letk=1beanintegerandu: Q — R¥ be a Borel function.

Definition 2.1.3. ( see [15], 2.9.9 ) We say that x € Q is a Lebesgue point of u if

there exists U(x) € RE such that

im r flu(y) - Ge0ldy = 0,

-0t .

where B, (x) is the ball centered at x of radius r and |- denotes the euclidean norm in RX.

By S, we denote the singular ser of v, defined as the set of all xe Q which are not
Lebesgue points of u. If u e LY(Q,R¥), then ( see [15],2.9.9) £L™(S,) =0 and u=38
a.e.on O\S,. Note that S is uniquely determined up to sets of Lebesgue measure zero.

If ue BV(L), then the set S, is counrably (n-1)-rectifiable in the sense of Federer ( see

[15], 3.2.14 ), i.e.

(2.1.2) SuS(UTHUN,

where I'; are hypersurfaces of class cland n‘l(N) = (.

Moreover, for 1 a.e. xe §, there exist two real numbers u™(x) , ut(x) and a unit

vector vy(x) € R" such that

(2.1.3) u(x) < ut(x)

m r—n jlu(y) —ut(x)ldy = 0,
T—0% B+
T

Im ™ Jlu(y) —u (x)ldy = 0,

r—0+

where Bf(x) =B.(x)Nn{ye R": (y—x, £ v (x)) > 0) (see [14], Theorem 4.5.9 ). It is

11




clear that u™(x), u™(x), v,(x) are uniguely determined by (2.1.3) and do not depend on the

choice of u in its equivalence class with respect to equality almost everywhere.
An equivalent definition of the triplet (u™(x) , u™(x) , v,(x)) is the following.

Letk21beanintegerandu: Q — RK be a Borel function. Let A e BKQ) and x e Q.

Definition 2.1.4. ( see [15], 2.9.12 ) Let C e B(Q). The density of the set C at the point

x with respect to A is defined as

AN B (x) N Cl
r-0 B .(x)nCl

Definition 2.1.5. ( see [15], 2.9.12 ) We say that o e RK is the approximate limir of u at

X with respect to the set A, and we write

w = ap lim u(y),
y—X
ye A

if and only if for every neighbourhood W of ® in R¥, the set Q\u~L(W) has density 0 at x

with respect to A.

Definition 2.1.6. ( see [15], 2.9.12 ) We say that u is approximately continuous at x if
and only if ap lim u(y) = u(x).
Y3

In the scalar case, i.e. for a Borel function u : £ — [-o0,+], we can also define the

approximate upper and lower limits u*, 0™ : Q — [-e0,+00] as

(2.1.4) u*(x) =inf { (e [-o04oo] : rgﬂg}+ lBr(X) M {YIBEr(gl su(y) >t} =O}

and

B, Q- L)1
(2.1.5) u(x)=sup { te [-eo,+e] : lim )0 [yl]i(x)l ny) <t =0}.



Then u™ and u™ are Borel functions ( see [15], 4.5.9 ).

Proposition 2.1.7. ( see [15], 2.9.13 ) A Borel functionu : Q — RK s approximarely

continious at almost every x e £2.

The approximately continuous representative of u will be indicated by 1.

By N(u) we denote the set of points x € Q, which are not approximate continuity points
of u. This set is negligible with respect to £ by Proposition 2.1.7. If u e LI(Q,Rk), then
N(u) differs from the singular set S, of u, defined above, up to a set of H n-1 measure zero.

In the scalar case N(u)={xe Q: u(x) <uf(x) }; a point x € N(u) is called a jump
point of u, and N(u) is the jump set of u.

In the sequel, when it is possible we will identify the sets N(u) and S, .

Clearly, from Definition 2.1.6 it follows that x € N(u), where u = (uy, ..,uy) : Q -3 RK

is a Borel function, if and only if there exists an index i € {1, .., k] such that x is a jump

point of u; , i.e.
k

(2.1.6) N{u) = U1 N(u;).
1=

Letx € Q and u e BV(Q). There are the following possibilities: either the approximate
himit of the function u at x exists and therefore, changing the value of this function at the point
X we obtain u approximately continuous at x, or we can find one and only one (n-1)-
dimensional hyperplane such that at this point there exist the approximate limits with respect
to each of the half-spaces separated by the hyperplane. The normal to this hyperplane will be
denoted by v, and concide with the unit vector defined in (2.1.3) up to sign.

The points where both the two conditions above are not satisfied consist in a set negligible

with respect to H™ .

13




Definition 2.1.8. Let u : @ — R¥ be a Borel function, Let x € Q\S such that T(x) # oo.

We say that a linear mapping L R i the approximate differential of u at x if
pping pp

ap lim fa(y) - G(x) - <L,y-x>1

Y% ly -x1 =0.

If the approximate differential of u at x exists it is unique, and we will denote it by Vu(x).

We observe that the function u is approximately differentiable at x if and only if all the k

components u; are approximately differentiable at x. Moreover the set
{ xe Q\§, : U(x) = oo and exists Vu(x) }

belongs 1o B(Q)) and Vu is a Borel function from this set into R,

Proposition 2.1.9. (see [8] ) Letru e BV(Q,Rk). Then u is approximately differentiable

almost everywhere in Q.

Proposition 2.1.10. ( see [27], 4.5 ) Let u € BV(L)). Let us consider the total variation of

Du, defined in (2.1.1). Then Dul(C) =0 for every C e BQ) with H"(C) =0.

Proposition 2.1.11, Let u € BV(Q). Then the distributional derivative Du is a measure

which admits the decomposition
Du = (Du), + (Du),,
where (Du), is absolutely continuous and (Du), is singular with respect to LP. In addition

the approximate differential Vu e Ll( Q.R™ and

(Du)(B) = [Vudx for every B & B(Q).
B

Notice that the approximate differential Vu is the Radon-Nikodym derivative of (Du),

with respect to the Lebesgue measure.

14



2.2, The space SBV(Q) of the special functions of bounded variation

In order to define the space SBV(Q) we require a deeper analysis of the distributional

derivative Du of a function of bounded variation.

Proposition 2.2.1. Let ue BV(Q). Then the distributional derivative Du can be
decomposed into three mutually singular measures:
(2.2.1) Du=Vu L0 + Ju + Cu
The first term in the right hand side of (2.2.1) corresponds to the absolutely continuous part
with respect to L, accordingly to Proposition 2.1.11. The second term corresponds to the

"jump” part of the derivative, and is related 1o Sy ut,u by

(2.2.2) JuB)= j(u‘* —u") v, dy o1 for every B e B(Q).
BMS,

The measure Cu is a bounded Radon measure on Q with values in R™ such thar
(2.2.3) ICul(B) =0 whenever 3" (B) < + oo,
Moreover the following implications hold

ue Wl'I(Q) & ﬂ{n'l(Su) ={, Cu =0

ue WPQ) = H"P(S,) =0, Cu=0.

For the proof of (2.2.2) see for instance [27], 4.4; for (2.2.3) see [2], Section 3; for the
last two implications see [15], [29].

The measure Cu is "diffuse” and it may have support on sets which have Hausdorff
dimension between (n-1) and n. Recalling the well-known Cantor-Vitali function,

E. De Giorgi and L. Ambrosio [12] called Cu the Cantor part of the derivative Du; for this

function, in fact, we have Vu = 0 almost everywhere, Sy=9, and Du =Cu.

15




Let us consider the functional (1.3); since it controls only the n-dimensional and the (n-1)-
dimensional part of the derivative it does not seem natural to consider as admissible solutions

functions like Cantor-Vitali's. Therefore we need to construct a subspace of BV(Q) in order

to avoid pathological functions and to gain compactmess of the sublevels of the functional.

Definition 2.2.2. (see [2],[12] ) We say that a function u € BV(Q) is a special function of

bounded variation if Cu=0.

The space of all special functions of bounded variation in €2 is denoted by SBV(L).

For the properties of a function u € SBV(Q) we refer to [2], [3], [4], [22].

Of course we have the inclusions WI'E(Q) c SBV(Q2) « BV(£2), and u in SBV(Q})
belongs to W'1(Q) if and only if #H™Y(S,) =0.

Endowed with the BV norm, SBV(Q) is a Banach space. Clearly a function u € SBV(£2)

satisfies all the properties of a bounded variation function.

2.3 The spaces GBV{Q), GSBV(Q) of the generalized functibns of bounded

variation

In many cases the compactness of the sublevels of functionals like (1.3) may fail (see for

instance [4], Example 5.3) and an enlargement of SBV((2) is needed.

Definition 2.3.1. Let u: Q — R be a borel function. We say that u is a generalized

function of bounded variation in Q if

D) e BV (Q)  forany @ e CH(QRY) with supp(V®)  c RX.

We denote by GBV(Q,Rk) such class of functions. The class of functions GSBV(Q,Rk)

is defined similarly, by requiring ®(u) € SBV o (£2).

16



For the properties of these spaces we refer to 2], [3], [12], [22].
In the case k = 1 it can be easily seen that
ue GBV(Q) ¢ (uaN)v(-N)e BV}, (@) foranyNe N.

A similar equivalence is true in GSBV(£2). In the case k > 1, the space of test functions @
can be taken equal to C(l)(Q,"Rk).

If u e L=(Q,RY), then
(2.3.1) ue BV (QRY & ue GBV(Q,RM)
and the corresponding equivalence holds for GSBV(Q,Rk).

The generalized functions of bounded variation inherit many properties of the ordinary
funcrions of bounded variation. In particular, given a function u € GBV(Q,RY), we can
define the singular set S, as above ( see Definition 2.1.3), and S, is countably (n-1)-
rectifiable in the same sense of (2.1.2). In addition, for H e xe S, there exists a unit
vector v, € RP so that there exist the approximate limits with respect to each of the half-
spaces separated by the hyperplane orthogonal to vy .

If u e BV(Q) then (2.1.3) implies that u(x), ut{x) € R for ﬂ{n'l ae.xe S;.0nthe
contrary, for a function u € GBV(£}) it may happen that

H"((xe §y:ut(x)=ee or u(x)=c0})> 0.

For a funcrion u € GBV(Q,Rk) Proposition 2.1.9 continues to hold ( see [4],

Proposition 1.4 ). Nevertheless the approximate differential Vu may not belong to Ll(Q,R“k)

. . Tt
( consider for instancen =1,k =1, Qz(-g, 5 ) and u(x) =tg X ).
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CHAPTER 3

EXISTENCE RESULTS FOR SOME FUNCTIONALS
WITH FIRST ORDER DERIVATIVES

In this chapter, which is principally based on [2], [4], [10), [13]), we describe the
existence and regularity results proved in literature in order to study functional (1.2). In
Section 3.1 we explain how the existence of a minimizer had been proved. The method,
proposed by E. De Giorgi, is a typical application of the classical direct method of the
calculus of variations. Finally, Section 3.2 is devoted to an application of the results of the
previous one. We prove the existence, in a generalized sense, of a minimizer of functional
(1.4), whose leading term contains both the first and the second order derivatives of the

unknown function.

3.1. An existence result for the Mumford-Shah minimization problem

Minimization problems for functionals like (1.2) are typical examples of a larger class of
variational problems, called free discontinuity problems (see [11] ), arising from mathematical
physics. Such problems occur for instance in the mathematical theory of liquid cristals ( see
[14], [26] ) and in a lot of interesting situations where the functional to be minimized is the
sum of a surface energy and a volume energy.

For problems of this kind E. De Giorgi and his school have proposed a unified approach

( see [2], [3], [10], [12], [13] ) based on the use of the space GSBV(Q) of the generalized

special functions of bounded variation (see Chapter 2, Section 3).

18



The general method consists in the following steps:
- weak formulation of the minimization problem in the space GSBV(£2);

- proof of the existence of a minimum point in GSBV(£2);

- study of the regularity properties of the solutions, such as the smoothness of the

discontinuity set S and the differentiability of the solution u on its approximate
continuity set £\S .
Let  be a bounded open subset of R". Given a function g € L?‘(Q), let us consider the
following functional, defined for every closed subset K of Q and for every function
ne CHQ\K) as

(3.1.1) E(e,K)= [IVuldx + [lu-gldx + yH MK,
K NK

where Vu is the gradient of u, 9‘{[1'1 denotes the (n-1)-dimensional Hausdor{f measure, and
¥ is a positive real number.
As pointed out in the introduction, E. De Giorgi suggested the following weak
formulation in GSBV()
min { E(u) : vue GSBV())}, where

(3.1.2) Ew= [IVulPdx + [lu-gPdx+ aH"S,).
[¢] Q

The existence of a minimizer of functional (3.1.2) is proved by relying on a general
compactness and semicontinuity theorem of L. Ambrosio (see [2] and [4]), adapted below to

our problem.

Theorem 3.1.1, Ler vy be a posirive real number and k 2 1be an integer.Given a function

ge LZ(Q,R}{), let (uy )y e N be a sequence of functions in the space GSBV(Q,RK) such
thar

) £ C

2 2 n-1
(3.1.3) [Vugfax + Jluy-glaxe yH76S,

for some finite constant C> 0. Then there exists a subsequence (uh}, )je N converging
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almost everywhere in L to a function ue GSBV(Q,Rk). In addition the approximate

differentials Vuhj converge to Vu weakly in LYQR™) and
HVYS,) < hminf HYNS,

D
i oo h;

The proof of this theorem ( see [2], Theorem 2.1, and [4], Theorem 2.2 and 3.5) is
obtained by extending the one dimensional result, which is easy to prove, to the general case
of the space dimension n > 1, using the slicing properties of functions of bounded variation

( see [2], Theorem 3.3 ).

Remark 3.1.2. Hypothesis (3.1.3) implies that the sequence (up) is bounded in
L?”(Q,Rk). In fact, for every h € N we have

fluPdx € 2 ( [lu,-gPdx + Jlgidx) < 2 (C+ [lgldx)=M.
Q Q Q Q

Remark 3.1.3. Indeed, the subsequence (uhj) found in Theorem 3.1.1 converges strongly

in Lp(Q,Rk) for every 1 <p < 2. This follows from the fact that (uhj) is at the same time

bounded in L?‘(Q,Rk) (see Remark 3.1.2) and convergent to u almost everywhere in . In

fact, of these two conditions the former implies that the sequence (Iuhj Py is equi-integrable

on Q, hence we conclude by the dominated convergence theorem. Nevertheless, in general

.2 c . .
we do not have strong convergence in L"(Q,R}‘), because the sequence (luhj 12) is not equi-

integrable (in the case n=1, k=1, and Q=(0,1) consider for instance the sequence (up)

defined by uy (1) =vh if te (0,% ), u (1) =0 if te {%,1), which satisfies (3.1.3)

for any g).

Remark 3.1.4. Let us prove that, corresponding to the subsequence (“hj) found in
Theorem 3.1.1, the approximate differentials Vuhjconverge to Vu weakly in LZ(Q,R“k).

By hypothesis (3.1.3) the sequence (Vuy,) is bounded in LZ(Q,R“k). Therefore, by the
Bj
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weak compactness of a bounded sequence in a reflexive Banach space, from every

subsequence of (Vuhj) we can extract a further subsequence convergent weakly in

LZ(Q,R“k) to some function f. By the uniqueness of the weak limit f= Vu, hence the whole

subsequence ( Vuhj) converges to Vu weakly in LZ(Q,R"k), by the Urysohn property.

By applying Theorem 3.1.1 (for k=1) to a minimizing sequence for the functional

(3.1.2) we prove the existence of at least one minimizer in the space GSBV(Q).

Corollary 3.1.5. Given a function ge LQ(Q) and a positive real number v, let us consider
the funciional E defined by (3.1.2) on GSBV(). Then the minimization problem
(3.1.6) min { E(u): ue GSBV(Q) }

has a solution .

Proof _ Let (uy) be a minimizing sequence for the problem (3.1.6). The Compactness
Theorem 3.1.1 provides a subsequence (uhj) converging a.e. in £ to some function
ue GSBV(Q). Moreover, from the Fatou's Lemma and the weak lower semicontinuity of
the L? norm, it follows that (see Remark 3.1.4)

jlu—gl*dx <lim inf jluh_-glzdx and iju!zdx < lim inf jIVuh,Izdx.
Q j=r e QO Q jo o Q i

"Therefore the functional (3.1.2) is lower semicontinuous along the sequences of functons

converging a.e. in £2 on which it is bounded. In particular functional (3.1.2) is lower

semicontinuous along the subsequence (uhj ), that is
E(u) £ him E(uhj) = inf [ E(u):ue GSBV(Q) }.
1

Hence u is a minimizer of the functional E and this concludes the proof. ¢

Remark 3.1.6. If the function g & L™(Q), then it is easy to prove { see [3], Section 3 )

that the solution u of the minimization problem (3.1.6) belongs to SBV(Q) N L™°() and
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Hull, <lgle ( the special functions of pounded variation are discussed in Chapter 2,

Section 2 )-

(3.1.1) attains its

Giorgi, M. Carriero, and A. Leaci proved that functional

of the function g € L7

In[131E. De
Q). Moreover the minimum values of

inimum for every choice
(3.1.1) and (3.1.2) are equal and are achieved at (essentially) the same minimuI points, n

the following sense (see Remark 3.1.6 ):
oint of (3.1.2), then (§,Sg), where qis the

ne SBV(Q) isa minimum p
rminimum point of (3.1.1) and

(a) if
approximately continuous representative of u,isa

MG A\S) =06
(byif (uK) isa minimum point of (3.1.1) then U (arbitrarily extended 0 Kn)isa
4 HONENS) =0

m point of (3.1.2) on SBV cK an

mminimu (Q); moreover Sy
The proof of these results relies on a Poincare - Wirtinger inequality for functions in
es developed for the study of minimal oriented

SBV(Q) and on regularization recniqu

pboundaries.
d to the dimension W0, anot

her proof of the same result is due © G. Dal Maso;

Limite
ompletely different ideas and techniques,

ctionu € SBV(L).

ecently proved, in

7.M. Morel, and S. Solimini {10] and ig based on €
such as some interesting estimates o0 the singular set of a fun
Without assunung the function g 10 be essentially pounded, A. TeaciT
the two dimensional €ase, that the minimization problem corresponding to the functional

of the space dimension

solution if g € Q) with 1> 4. In the general case

(3.1.1) has 2
says that we have the existence of a

due to E. De Giorgi, which

nz1,thereisa conjecture,
fge LF(Q) with r > 2n.

minimizer of functional (3.1.1)1
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3.2. Some functionals with first and second order derivatives

In the introduction we have proposed the followin g functional, including at the same time
the first and second order derivatives, defined for every pair of disjoint closed subsets Ko,

K3 of £ and for every function u e CO( O\NKp)n Cz( Q\(KpuwKa),as
)
G(u,K0,K2)= [IVulfdx+ [IVaPdx+ [lu-gldx+
Q Q 0
o HV N Ky) + B H" N Ky),
2
where Vu denotes the Hessian matrix of 1.

As a weak formulation in a generalized sense, we suggest the following functional G, well

defined on the space X = { ue GSBV(Q) : Vue GSBV(Q,RY) }, as

2
(3.2.1) Glu)= [IVuPdx+ [IVuPdx+ [lu-glPdx+
0 £ Q

o HUS )+ B AT (Sy,\S,),
2 5
where Vu = (V,u, .., V_u) is the approximate differential of u, Vu in R is the matrix of
the second approximate differentials ( (&u)ij is the absolutely continuous part of Dj(Viu) ),

n
Sy is the singular set of u, and Sy, = ul Sy, is the singular set of Vu ( see Chapter 2 for the
i=

precise definitions ).
In this section we prove an existence theorem for the minimization problem corresponding

to functional (3.2.1) on the space X by applying Theorem 3.1.1 successively to a minimizing

sequence {ug ) and to the vector valued se uence (u,,Vu, ).
q h q h:¥Yp

To do this, first me must rewrite functional (3.2.1) in order to obtain a more tractable term

containing SVuh-
Let us observe that §, U Sy, =( Syu\ S, ) WS, with (Sy,\S, ) NS, =@; hence
HUNCS, U Sy )= H (S \S, )+ H™ S, ).

Therefore

o HTHS )+ B AT Sy NS ) = o HYIS )+ B AHTNS, U Spy) - p AT, ) =




—(o-PBYHMS )+ B AHTHS, LSy ) =a HUHS) + b HMHS, U Syy)
where weset a=co - Band b=J.
Functional (3.2.1) can be rewrite as

(3.2.

~2

2
) G(u)= {IVuldx+ j’IVngdx+ jlu-glzdx+
Q Q Q

+a H™ NS )+ b HYHS, U Sy )
We can expect to have a solution of the minimization problem associated with functional
(3.2.2) onlyif a=0and b > 0; infactif b=0we get inf { G(u) :1u e GSBV(Q) } =0and
in general we have no solutions.

Now we are able to prove the following theorem.

Theorem 3.2.1. Ler a,b two real numbers such that a>0,b> 0. Let () be a sequence
of functions in the space X such that

7
(3.2.3) [IVa, Pdx+ [IVy,Pdx+ [lug-gldx+

Q Q 9]

+a 9L[“‘1(suh )+ b %H_I(S% USyy) £ G,
Sor some finite constant C > 0. Then there exists a subsequence (uhj) such that
1) (uhj ,Vuhj Yconverges strongly in LI(Q,R““) ro(u,Vu)withue XmLz(Q),

Vue LYQRY),
7 7
(ii) (Vuhj) converges weakly in LZ(Q,RUE) to Vu,

iy HUs, ) < liminf HPNSy ),
h— oo h
i) HYNS, USy,) € liminf H"NS, U Sy )

Proof. By hypothesis (3.2.3) we obtain in particular that

2 2 n-1
g)!VuhI dx + glluh-gl dx+ aZ T (Sy,) = C

Therefore we can apply Theorem 3.1.1 (for k = 1) to the sequence (u;,) of functions in



the space GSBV(2) in order to extract a subsequence, which we continue to label with (),
such that ( see Remark 3.1.3 and Remark 3.1.4 )
(3.2.4) (uy, ) converges strongly in Ll(Q) to some function u e GSBV(£2) mLZ(.Q),

(Vuy,) converges to Vu weakly in LZ(Q,R"),
HUUS,) < lim inf HHSy, ).

h— oo
As a second step, let us consider the vector valued sequence (z; ) of functions in the space

GSBV(Q,R““), defined by z;, = (uy ,Vup ). By the definition of the singular set of a
vector valued sequence ( see (2.1.6) ) we get SZh = Suh U SVuh .

Again by hypothesis (3.2.3) we have that

) -
[IVuy Pdx+ [1Vu Pdx+ [l -gPdc+ b HPNS, LSy, )<C,
O o) 0 h h

which implies (see Remark 3.1.2) that

2 -
[y P 190, P ax o 1Vu, i dx + [lup P ax+ 20" 'Sy, © Swy, ) <K,

for some finite constant K > 0. This inequality can be rewrite in term of 2, as

[1Vz, ? dx + yzhlz de+ HNS, Y<K

Therefore, we are in a position to apply Theorem 3.1.1 (withk =n + 1 and g=0) to the

sequence (zy, ) in the space GSBV(Q,R™). From this theorem there exists a subsequence of
(), which we still denote by (z,), converging strongly in L'(Q,R™) o some function z

€ GS‘BV(Q,RnH) { see Remark 3.1.3 ). Recalling (3.2.4), this means that (uy, ,Vuh)

converges strongly in LI(Q,R”“) to (u,Vu). In addition
(Vz,) converges to Vz weakly in LZ(Q,R“(HH)),

2 2
which implies that (Vuy) converges to Vu weakly in L?‘(Q,an). Finally, we get also

HUS ) < lim inf ﬂ“‘l(szh ), that is

Z

h— oo
HYUS, USyy) < lim inf 9'{”‘1(3uh U Syy, ),
h— o
which concludes the proof. ¢
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To sum up, using the same arguments as in the Proof of Corollary 3.1.5, we obtain that
(a) functional (3.2.2) has a minimizer if a2 0and b> 0,

(b) functional (3.2.1) has a minimum point if 0 <P <o



CHAPTER 4

ONE DIMENSIONAL EXISTENCE RESULT
FOR A NEW FUNCTIONAL
WITH SECOND ORDER DERIVATIVES

In this chapter we study the minimization problem corresponding to functional (1.8) and
We prove an existence theorem by applying the direct method of the calculus of variations.

The existence of a minimum point is obtained by relying on the compactness and the
lower semicontinuity of the functional with respect {o the Lh convergence. More precisely, in
Section 4.2 we prove the compactness of the functional along sequences of functions on
which F is bounded, while in Section 4.3 we prove a semicontinuity theorem under some
restrictions on the values of the two coefficients o and B. Finally, in Section 4.4 we obtain
the existence resnlt and we present sorme examples showing that, failing the conditions on o
and B, we cannot assure the existence of a minimizer independently of the choice of the
datum g.

All the results of this chapter can be found in [9].

4.1. Preliminary results and formulation of the minimization problem

Letu:(a,b) 5R,—co<a<b<++eo, beafunction in the space Lz(a,b). We indicate

by u' and u" the first and the second derivatives of u in the sense of distributions.

By Hz(a,b) we denote the Sobolev space of the funciions u € Lz(a,b) such that both u'

and u" are representable by a square-integrable function. Let us fix u € Hz(a,b). By taking

W]
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the appropriate representative of u in its equivalence class with respect to equality almost
everywhere, both u and u' are absolutely continuous, hence bounded, on the closed interval
fa,b] (see for instance [7], VIIL.2). In the definition of Hz(a,b) we can require the square-
integrability only for the function u and for its second derivative u”, by means of the

following interpolation inequality.

Proposition 4.1.1 _ Ler ue Lz(a,b), and suppose that 1" € L?‘(a,b).

Then u e H?‘(a,b) and
b b b .,
fle@Pde € R ( JluPde + [lu")Fde),
a a a

with R depending only on the length of the interval (a,b) in the following way

R(a,b) =2-92 max { (b-a)?,(ba)?].

Proof _ It is enough to adapt the proof of Lemma 4.10 of [1].

We begin by showing that u' e AC([a,b]). To this purpose, let us define on the interval
x .
(a,b) the function v(x) = [u"(t) dt, in such a way to get v & AC([a,b]) and
a
v'(x) = u"(x) for almost every x € (a,b). Then the distribution (v —u') has the derivative

identically zero, which means that u'=v + ¢ for some constant ¢ and gives u' € AC([a,b]).

Note that we have also proved thatu e Hz(a,b).
2
Now, suppose for the moment that a=0and b=1 and fix 0 < £ <% and ’3—‘ <7 < 1.

Since u is continuous on the closed interval [£,7] and derivable on the open interval (§,1m), by

the Lagrange's theorem there exists A € (§,n) such that

Eu‘(k)l:lMI <3lu@l+3luml.
n-¢§
Using the absolute continuity of u', it follows that for any s € 0,1
X 1
fue) =1y + Ju'@dt] € 3lu@i+31am !+ fla"tde .
0

A



Integratmg the above inequality with respect to & over ( 0, 3 ) and with respect to M

over (3 ,1), we obtain

: 1/3 1 1 1 1
glue s jlu(§)1d§+ jlu(n)ldn+9j'|u(t)idt <j|u(t)idt +— jlu"(t)ldt

Therefore, by Holder's inequality, we get
1 1

lw'e) P < 2.92 [lu@Pde + 2 [1u() P de for every x = (0,1),
0 0

which allows us to conclude that
1 1 1

[lu@ Pdr £ 292 ( Jlu@Pdr + [lu@2do).
0 0 0

Finally, by a change of variable, we obtain
b

b
[le@Pd < 2.9 (b-a)? [1u@®Pd +2.92 (ba) [lu"() 2dt,
a a a

which is our thesis, if we set R{a,b) =2 - 9% max [ (b-a )2 (bea )-2 I, .

We point out a well known compactness result concerning sequences of functions in the

space H (a,b) (see for instance [7], ch. VIII, Théoréme VIIL 7).

Proposition 4.1.2 _ Ler ¢ Up e N De a bounded sequence in Hz(a,b). Then there

exist a subsequence ( Up, henN andafunciion ue Hz(a,b), such thar
(1) Uy, —> U strongly in Hl(a,b), weakly in Hz(a,b), and uniformly on (a,b),

(ii) ut']k — u' uniformly on (a,b).

Proof _ By hypothesis, the sequence (up ) is bounded in Hl(a,b). Therefore, by the

compactness of bounded sequences in a reflexive Banach space, we can pass to a

subsequence u,, converging weakly in H}(a,b) to some function u. Moreover, a weakly

convergent sequence in Hl(a,b) converges strongly in 1.2(a,b), which implies that, up to a




subsequence, we can suppose that up, converges to u almost everywhere. By the same
argument, applied to the sequence u1'1k ( also bounded in H! ), we get a function v € H'(a,b)

such that, passing if necessary to another subsequence, u;]k —3 v strongly in L?(a,b), almost

everywhere on (a,b) and weakly in Hl(a,b). By the uniqueness of the weak limit, v

coincides with u' and this concludes the proof. +

By ﬂg(a,b) we denote the space of the functions u in Lz(a,b) such that it is possible
to find a partition of the interval (a,b) by means of a finite number of points
x0=a <x! «.. <x¥<b=xkt! (k € N), such that the restriction of u to the
subinterval ()':i , xith belongs to I—I?‘(xi , <1, for every i=0, .,k

Letusfixue r3‘-I:2(a,b); by the properties of the functions in the space Hz, u is absolutely
continuous and bouﬁdcd on each subinterval (xi, xi*‘l). Moreover u is continuously
differentiable on each (x!, x*1), in the classical sense that there exists the limit of the
difference quotient. The function so constructed will be denoted by 0 and we will refer to it as
pointwise derivative. On each subinterval u is absolutely continuous; in particular there exist
the right and the left limits t(x! + 0) and u(x! - 0) of 0 at every point x! of the subdivisionand
they are finite.

By the derivability properties of the absolutely continuous functions, starting from u itis
also possible to define almost everywhere the second pointwise derivative of u, denoted by
1, in the same sense explained above. Moreover 1 coincides with the distributional derivative
u" almost everywhere on each subinterval (x!, xI"1), hence 1 is square integrable on the
whole interval {a,b).

Let us fix an index i e {1,..,k}; for the corresponding point xl in the subdivision we
give the following definitions.

We say that xt s a jump point of u if uxl +0) # u(x! -0) and we denote by S, the set
of jump points of u.

We say that x! is a crease point of u if xl is a point of continuity of u, but
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a(xi+ Q) = I:I(Xi - 0). Hence the set of crease points of u is Sp\ S, -
Notice that if a point x! of the subdivision is neither a jump nor a crease point of u, then
f) - . + . - .
we H(x!"!, x1*1) and xi can be removed from the subdivision.

For every open subset A of (a,b) and for every uc ?rilz(a,b), we denote by Jg(u,A)
the cardinality of the set SynA and by Jj(u,A) the cardinality of the set

(Sg\NS ) M A | In the particular case A = (a,b), we write Jg(u) and J;(u) for the total
number of jump and crease points of u, respectively.

Finally, we are in a position to formulate our minimization problem.

Given a function g & LE(O,I) and two nonnegative real numbers o and B, let us consider
the following functional

1 1
(4.1.1) F(u)= [12Fdt + [lu-glPdt + o o) +B I,
0 0

which is well defined for ue H2(0,1)-

In this chapter we study the minimization problem
(4.1.2) min {F() : ue H30,1) )
and we prove the existence of at least one minimizer.

We conclude this section mentioning the connection between the space HZ(O,I) and the
space of the special functions of bounded variation on (0.1) ( see Chapter 2, Section 2 ). It is
easy to see that HE(D,I) is contained in the space X = (ne SBV(0,1): Vue SBV(,1) },
where Vu is the approximate differential of u ( see Definition 2.1.8 ); more precisely the first

and second pointwise derivatives 0 and U coincide a.e. on (0,1) with the approximate

differentials Vu and un. In addition the extension of the functional F 1o the space X is well
defined and the minimization problem (4.1.2) is equivalent to

min { F(u) : ue SBV(0,1)Vue SBV©O,1) },
in the sense that the minimum values are the same and they are attained at the same minimum

points.
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4.2, Compactness Theorem

In this section we prove a compactness theorem for sequences of functions in the space
HQ(O,I) along which the functional F, defined in (4.1.1), is bounded. The purpose is to use
this result, together with the semicontinuity of F (discussed in the next section), to apply the
direct method of the calculus of variations in order to prove the existence of at least one

solution of the minimization problem (4.1.2}.

Theorem 4.2.1 (Compactness) — Ler (uy )y n b€ a sequence of functions in the space

’3‘{?’(0,1) such that
1 1

(4.2.1) [1a,Pde + [lu-glPdt+ algley) + Bhfuy) < C
0 0

for some finite constans C> 0. If both the coefficients o and P are strictly posirive,then

there exists a subsequence (uhk)ke N converging strongly in LI(O,I) 1o a function

ue 3{2(0,1). In addition (fshk) converges 1o U a.e. and ('Lihk) convergesto uweaklyin

L%(0,1).

Remark 4.2.2 _. Indeed, using the same arguments of Remark 3.1.3, we can prove taht

the subsequence (uhk) found in the Compactness Theorem 4.2.1 converges strongly in

LP(0,1) forevery 1<p<?2.

We premise to the proof some examples showing that Theorem 4.2.1 does not hold

when one of the coefficients o and B is zero. The following example show that we can

construct simple sequences of functions satisfying (4.2.1), but not compact in LI(O,I).



Example 4.2.3 — Letus fix ¢ =0, 32 0, and a function g € Lg(O,l)‘ The sequence

1, te(%,z—lé;;—l), K=0,. . h-1,
Uh(t)= o
o1, te(%bzhh&-—l,&%-—l), k=0, .,h-1.

1
is not compact in Li(O,l), but satisfies (4.2.1): in fact F(u,) €2 (2 + fig 2 dt) for
0

every h. In the case o >0, p =0, we obtain the same conclusions by considering the

sequernce

snt-(ak+1),  te (S EEL L k=001,
Uh(t): -

ahra(4k+3), te (L ko0, h-1.

. . . . . 2
Nevertheless, even if the sequence we are considering 1s compact in L.7(0,1), we cannot

assure that the limit function belongs to the space H2(0,1).

Example 4.2.4 — Letus fixc =0, p2 0, and g & L20,IN3£(0,1). Tt is well known
that there exists a sequence of siep functions (uy) in the space ’:1{2(0,1) such that

Nup-glij2< % for every h. Since for every he N we get lih =0, Ji(uy) = 0, and

1
fluy - gl’”} dt < 1, the sequence (uy) satisfies the hypotheses of Theorem 4.2.1 (with
0

=0 and P =0), but every subsequence converges swongly in LZ(O,I) to the function g

which does not belong to '3‘{2(0,1).

Example 4.2.5 - Let us consider o > 0, B =0, and a function g as in the previous

example. By the density of the piecewise affine functions in L?’(O,l) we can construct a

sequence (up) 1in the space 3—[,2(0,1), converging to g strongly in LZ(O,I), such that for
i

every h € N we have u, =0, Jo(uy) =0, and fluy - gl:Z dt < 1. Therefore the
0
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sequence (u;,) satisfies the hypotheses of Theorem 4.2.1 (with o > 0 and B = 0), but every

subsequence of (v; ) converges strongly in L2(0,1) to the function g which does not belong

10 32(0,1).

Proof of Theorem 4.2.1 . By Remark 3.1.2 the sequence ( uy, ) is bounded in L2(0,1). More

precisely for every h € N we have

1 1
4.22)  [luPdt € 2 (C+ Jlgldi)=M
0 g
By hypothesis (4.2.1), we deduce also that Jo(u, ) + T1{uy) < ¢ + % , hence forevery h
o

. . . m
€ N there exists a finite number of points 0 < x}] <. <X hh < 1 such that

. C
SUh U S&hm { xt11 e s x:h ]} with my < ~(-:~+— . Up to a subsequence we can assume
o

that my=m forevery he N. Let us consider now the following (m + 2) sequences

S DI C 1 FRRURN 1o SR i B

where we set xg= 0, XEHl:l for every h . By the compactness of the interval I, we can find

m points 0 <x! <. <x™ <1 such that, passing, if necessary, to a subsequence with

respect to h, x;l — xI for every i=1, .., m. Therefore there exist (m + 2) distinct

limitpoints (m€m) x0=0<x! <. <xT < l=x™+

and a partition (I )¢=0,..,m+1
oftheset {0,1,..,m+1 ]} such that the following two conditions are satisfied:
(a) iel,jelg,r<s = 1i<j;

(b) xlh — xf Viel, Vr=0,.,m+l.
Let us consider now the subsequence of (uy;,) corresponding to the increasing sequence of

indices determined in the previous consiruction.
The idea of the proof consists in using the interpolation inequality of Proposition 4.1.1 in
order to apply the compactness result of Proposition 4.1.2 onappropriate subintervals of

(0,1).
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To this purpose, let us fix an index re {0, 1,.., m } and consider the corresponding
subinterval (x7, x™1). Let o be the greatest index in Ip: ( xg) is the greatest sequence
converging to x', while (xﬁ”l) is the least sequence converging to x™!. As xf < x™!, for

every €< (xI+.xf )2 there exists hy € N sufficiently large such that xg< x' +£& and

xgﬂ >x™ _¢ for every h2 hg, which means that [ x*+¢,x™! —¢] does not contain
any jump or crease point of uy, forevery h>hg.

.. 2 .
By the definition of H.°(0,1), we obtain that up € Hz(xr +g,x™! —¢g) forevery h 2> he .

Moreover, by the interpolation inequality of Proposition 4.1.1 and the boundedness of the

sequence (uy) in LZ(O,I) (see (4.2.2)), for every h=h, we have the estimate

Xr+1-8 Xr—i—l_e xr-i—l_E
flupPde £ R [lupPdi+  [lupdt) € R(C+M),
X'+ xl+e XT+g

with R=R(x"+¢g, x™! —g),
This is equivalent to say that (uy,) is bounded in H2(xT+e, x™1 - £).
Finally, we are in a position to apply the compactness result of Proposition 4.1.2 to the
sequence (1, ) in order to find a subsequence such that |
@ u, — u swonglyin Hi{x"+e, x™1 _¢) and uniformly on ( x* + g, x™1 _g),
(i) 1, — u' uniformly on { x” + g, x™+! _g),
(i) U, — u" weakly in L(x"+g, x™1_g),
for some function ue HX(x+¢, x*1.g).

. o 2 o
Besides, the weak lower semicontinuity of the L* norm implies that

xtl_ g xr"'l-E
(4.2.3) flu"Pdt < Hminf 14,7 dt
i+ g h— oo yxitg

Since for every integer j> 2/(x™1 - xT) we can construct a new subsequence of (uy,)

satisfying conditions (i), (ii), and (iii) with €= 1 , using a diagonal argument we get a

j

subsequence such that




(i) u, — u stronglyin HIIGC( x*, x™1) and pointwise on { x%, x™1),

(i)' vy, — u pointwise on { xT, X,

(i) u, — u weaklyin LE(K) for every compact subset K of ( x%, x™1),

\ 2
for some function ne F (xF, x™1).

loc
Since it is easy to see that the subsequence (u ) so found converges to u strongly in

Ll( T, x**1 ) (the arguments are the same as in Remark 3.1.3), to complete the first part of

- : )
the proof it remains to prove that u e H™( X, xTH),
K+l

Since u, — u pointwise on ( X%, x**! Yand [lu, |* dt € M for every h, from the
h P h ry
T
X

Fatou's corollary it follows that u e LZ( xT, x™1). Moreover, inequality (4.2.3) implies that

Kr-i—l_ £ x”‘l
Jlu"dt € Hminf |1 ay, Pdt £ C  forevery & positive sufficiently small,
T+e h— e %7

x I+ 1

which gives [ [u" Pdt < C as € —= 0. Since u" e L?‘(xr, x™1), we conclude that the

XI'

function u belongs to the space Hz( x,x™1) by applying Proposition 4.1.1.

Finally, since the sequence (1y) is bounded in Lz(xr ,x™1) and conditdon (iii)' holds,

’ .- . . 22
we can pass to a subsequence of (uy, ) such that (uy,) convergesto u weakly inL7( x7, x™1),

using the weak compactness of bounded sequences in a reflexive Banach space. Since we can

repeat the whole construction on every subinterval and the number of the subintervals is

finite, the proof is complete. ¢

4.3. Semicontinuity Theorem

In this section we study the lower semicontinuity of the functional F, defined in (4.1.1),

with respect to the Lh convergence. The main difficulty lies in the fact that the last two terms,
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which penalise jump and crease points of u, are not lower semicontinuous separately.
Nevertheless, the following theorem shows that the sum of the last two terms of the
functional is lower semicontinuous, along the sequences on which F is bounded, under some

restrictions on the values of the coefficients ¢ and P.

Theorem 4.3.1 (Semicontinuity) _ Ler (up )y e N be a sequence of funcrions in the space

H?'(O,l) such thar
1 1

(4.3.1) [1oPdr + [lu-gPde + olo) + Blity,) < C
0 G

Jor some finite constant C > 0. Assume also that
(i) O0<P<a<2p,

(if) (uy) converges strongly in Ll(O,l) to some function u e Ele((),l)-
Then

(4.3.2) alow) + BIw < liminf (oJolu) + BJiu)).

h -3 oo

Remark 4.3.2 _ In the statement of Theorem 4.3.1 it is not necessary to require that

ue }{12(0,1), since, under assumption (4.3.1), it follows directly from the Compactness
Theorem 4.2.1 that the strong limit in LI(O,I) of a sequence of functions in the space

3{2(0,1) belongs to the same space. Moreover, under the hypotheses of Theorem 4.3.1, we

have that the second pointwise derivatives up, converge weakly in L7(0,1) to u.
In order to explain better the relations on the coefficients o and B, we present here some

examples showing why the semicontinuity inequality (4.3.2) is not satisfied, failing these

hypotheses.

Example 4.3.3 _ Letus fix o> 2B > 0. The idea is to construct a sequence of functions
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with two crease points, which become a jump point in the limit function. Since the penalty for
a jump point is larger than the one for two crease points, inequality (4.3.2) might not be

satisfied. Let us consider the sequence

0, if te (0,3),
w©=9 M (t-2), if te [ 5, 3+y]1, (h=23, M>0)
M, if te (T+3.1),

which converges strongly in L2(0,1) to the function u e HQ(G,I), defined by u(t) =0 on
(0,17, wt)=M on (%,1). Clearly, for every h we have Jp(uy,) = 0 and Ji(uy) = 2,

whereas for the limit function u it results Jo{u) = 1 and J1(u) = 0. This shows that the sum of

the last two terms of the functional F is not semicontinuous along (uy, ).

Example 4.3.4 — Suppose now that the penalty for a jump point is less than the one for a

crease point: 0 € o < 3. In this case, if we consider the sequence

0, if te
up(t) =
M (¢t -

)+ if te ., (M >0)

3 |—

we conclude as in the previous example that the semicontinuity inequality (4.3.2) does not
hold. In fact Ip(u,) =1 and J1(u, ) =0 for every h, while for the limit function u, that is

u(t)=0 on (0,27 and u@)=Mi-¥ on (3,1), we have Jo(u) =0 and J1(u) = 1.

Remark 4.3.5 — Examples 4.3.3 and 4.3.4 show also that Jg and J; are not lower

sernicontinuous if they are considered separately.

The following lemma is a first step in the proof of Theorem 4.3.1; in fact it is introduced
in order to solve the main difficulty we meet with, that is to prove that a sequence of crease

points cannotoriginatea jump point inthelimit function. More generally, Lemma 4.3.6

concerns some properties of the limits of the singular points of the sequence (u;, } converging
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to u.

Lemma 4.3.6 . Let (up dh e N De a sequence of functions in the space H?‘(O,l)and let
(a,b) be a subinterval of (0,1). Ler us consider a sequence (xy,) of points in (a,b)
converging to some point x € (a,b). Assume also tha:
(i) ({jl [ 2 dt + gll Up, Pdt) is bounded by a constant C independent of h,
(ii) uy has no jump points in (a,b) and no crease points in (8,D)\{xy ],
(iii} () converges strongly in LY0,1) 10 some function ue H(0,1).
Then ue Hl(a,b) s Hz((a,b)\{x}), which meansthat u has no jump points on (a,b)

and x is the unique possible crease point on (a,b).

In addition if u, e Hz(a,b) Jor h sufficiently large, thenu e Hz(a,b)-

Proof _ It is easy to see that if uy, € H?'(a,b) for h large enough, thenu e H?’(a,b). In fact by

hypothesis (i) and Propositon 4.1.1 the sequence (uy) is bounded in Hz(a,b), hence
ue Ha,b) by Proposition 4.1.2 and hypothesis (i),

Let us suppose now that x; is a crease point of uy, frequently with respect to h. By
hypothesis, for every h the functions .up, and Lsh belong to AC(a,x, ) M AC(xh,b) and
every Xy 1isnot a jump point of u, . Iris well known that these conditions allow us to say .
that ilh is the first derivative of uy, in the sense of distributions on the whole interval (a,b).

Let us show that this sequence of derivatives is uniformly bounded in Lz(a,b).

As up e Hz(a,xh) M H?'(xh ,b), by Propesition 4.1.1 we get the estimate

b *h Xh ) b b
frupPde < RE ([ Pde+ JlugRd) + R ( Tl Pde+ [luy P de)
a d a Xy Xh

with Rtl1 and Rﬁ depending only on the length of (a, Xy ) and (x,b) respectively. Since

. . . . . 2
(x},) converges to the point x in the interior of the interval {a,b), R& and Ry converge to some

finite constants R and R> (see Proposition 4.1.1). By hypothesis (i) our claim is proved.




We conclude that u € Hl(a,b) as strong limit in LI(O,I) of a sequence bounded in
H'(a,b).
It remains to prove that u € HZ((a,b)\{x}). As u has no jump points on (a,b) and

belongs to EH,Q(O,I), it is enough to show that u has no crease points on (a,b)\ {x}.
To this purpose let us fix a point y € (a,b)\(x] and an open neighbourhood U of y

contained in (a,b)\ {x}. Since u, € H?‘(U) for h sufficiently large, by arguing as in the first

step of the proof we obtain thatu & H?‘(U), which proves our claim. 4

Proof of Theorem 4.3.1 . By the definition of 'H,E(O,l), corresponding to u there exists a

finite number of points x0=0<x! <..<xk <1=xK*! such that u e Hz( x1, xi*1) for every
i=0,..,k,and S,V §; = {x}, .., xk }. Let us fix xle Sy S, and a neighbourhood
Ui of x!: then ( Suh ) Sﬁh) M Ui # @ for h large enough. In fact, if there existed a

subsequence {uy, ) such that u, € Hg(Ui) for every k, we should obtain that x! is neither a
P hy

jump point nor a crease point of u by Lemma 4.3.6.
Now, forevery i=1, .., k, let us consider a neighbourhood U' of x! so that each Ulis
contained in (0,1) and U'n U =@ if i =].

By the properties of the limit inferior, to prove inequality (4.3.2) it is enough to show that

@33) al(u,U) + BI(u,U) < liminf (oJo(u,,UY + BJi(uy,UY),

h— e
for each one of these neighbourhoods ( the definitions of Ig( u,Ui) and Jq( u,Ui) can be
found in the first section ).
To this purpose, letus fix 1€ {1, .., k }. For the corresponding U , we distinguish three
cases: 1) we have Jo(uh,Ui) + 11 (uh,Ui) > 1 for h sufficiently large;
2) we have Jp(uy, ,Ui) + Jl(uh,Ui) =1 for h sufficiently large;
3) both the conditions J (uy,, U')+ 1 (uy, U') > 1 and J (uy,, U )+ J1 (uy,, Uy = 1

hold frequently with respect to h.

In the first case, since (SuuSh)mUim {xi} and B £a <23, we have
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o Jo(u, U + BIi(u,UY) < o < 2B < alo(u,, UY + BIi(uy, U
for h large enough. This means that inequality (4.3.3) is satisfied independently of the fact

that x* isa jump or a crease point of w.
In the second case, let us denote by x; the unique point in ( Suh U Shh )y~ U

If x'is a crease point of u, again semicontinuity inequality (4.3.3) holds because of the
relation 3 < «, independently of the kind of discontinuity which u; presents in XL .

In the case where x! is a jump point of u, let us observe that (x;l) converges to x.

Otherwise, arguing by conmadiction as above, we obtain that x! is neither a jump nor a crease
point of u. In addition x;] are jump points of uy, for h sufficiently large. In fact if there

. i ) .
existed a subsequence (uhk) such that Xp, Were a crease point of Upy, for every k, then x!

should not be a jump point of the limit function u by Lemma 4.3.6. Therefore, we can

conclude that inequality (4.3.3) is satisfied also in this case.

In the third case it is enough to split the sequence (u},) into two subsequences satisfying
conditions Jo(uh,Ui) + Iy (uh,Ui) > 1 and Jo(uh,Ui) + I (uh,Ui) = 1 respectively, and

to apply the above arguments separately to each subsequence.

As we have shown inequality (4.3.3) in all the cases considered, the proof is complete. ¢

Remark 4.3.7 _ Under the hypotheses of Theorem 4.3.1, from the weak lower
senicontinuity of the L? norm, it follows that (see Remark 4.3.2)
jllumglz dt <lim inf jlluh—gl?‘dt and jlliilzdt < lim inf jiliihlz d .
0 h—= e @ 0 h—w 0O
Therefore we observe that, for every choice of the coefficients ¢ and B such that

0<B<wa<2B, Fis lower semicontinuous along the sequences of functions converging

strongly in Ll(O,l) on which F is bounded,
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4.4, Existence Theorem

In this section we combine the results of the previous two sections in order to prove that

the functional F has at least one minimum point on the space 3{2(0,1).

Theorem 4.4,1 (Existence) — Given a function g € L?'(O,l)and two nonnegative real
numbers o and B, ler us consider the functional F defined by (4.1.1) on ‘:I-E?'(O,l). If
@.4.1) 0<P<a<2p,

then the minimization problem

(4.4.2) min { F(u): ue 5{2(0,1) )

has a solution .
Proof - The proof is the same as in Corollary 3.1.5. +

Remark 4.4.2 _ Every solution u of the minimization problem (4.4.2) is piecewise smooth

and precisely u e C((0,1)\(S,US;)). Indeed, by the definition of the space 3°(0,1),
corresponding to u there exists a finite number of points x® =0 < x! <.. < x¥ < 1=x¥*1 such
that u = Hz(xi, x*1) for every i=0,.,k,and S, uS; =[x, .., xk }. As a

consequence of the Euler equation u satisfies u"¥ +u=g in the sense of distributions on

each subinterval (x!, x1*1), Asu e H*(x!, x**!)foreveryiand g e L2(0,1), from this
equation we deduce that the fourth derivative Ve LZ( xi, xi*1) for every i, which implies

that u™ is absolutely continuous on each subinterval (xi, xi*1 ).

When the coefficients o and B do not satisfy relations (4.4.1), not only the direct method
of the calculus of variations do not apply, but we cannot assure the existence of a solution for

the minimization problem (4.4.2) independently of the choice of the datum g. In the



following examples we construct explicitely functions g such that the corresponding

functionals have no minimizers.

Example 4.4.3 _ [f o =0 or § = 0, using the same arguments of Examples 4.2.4 and
425, forevery ge LZ(O,I)\'H,Z(O,I) we get inf [ F(v): ve H?'(D,l) ] =0, but the
infimurn is never achieved.

Notice that, being g H,z((),l), it is clearly the unigue minimum point.

Example 4.4.4 _ Let us suppose ¢ > 2 > 0 and consider the piecewise constant function

M depending on a positive parameter M, defined by gy, (t)=0 if t€ (O,% ,em(t)=M
if te (%, 1). Corresponding to the datum gy , the functional defined in (4.1.1) will be

denoted by Fy, to emphasize the dependence on M. Therefore, for every v e 5{?'(0,1) we
1 1
have Fu(v)= JIvPdt + JlvogyPdt + alpv) + B L(v).
0 0

The idea is to determine M sufficiently large so that the minimization problem (4.4.2) for

Fpp has no solutions. To this purpose, let us observe that the sequence (uy ) of Example
4.3.3 converges to gy strongly in LQ(D,I) and Fy(u, ) = 2B + %ﬁ; for every h.

Now, since Fyy(gy) = & > 2[3, it remains io choose M in order to get
(44.3)  Fy(v)>o forevery function v e #%(0,1) such that Jo(v) = 0 and Jy(v) < 1,
( for the sake of brevity, in the sequel we will denote by Hg,l this subset of :'le((),l) ).
In fact, if this condition is satisfied, then (uy) is a minimizing sequence for Fy,
nf{Fp(v): ve 3{2(0,1) } =2, but there are no minimizers.

By means of easy calculations, we get
(4.4.4) inf { Fy(v):ve Hy )2 inf[ojII VPdr + g]w_gM Pde:ve Hyq)=

1

1
= M%inf { [19Pdt + [ivog Pdt :ve Hyy ).
0 ) '

Clearly, if
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1 1
(445 nf( [1VFPde + Jlv—gPdi :ve Hyq} >0,
0 0

our claim is proved, since inequalities (4.4.4) imply that inf (Fyy(v):ve Hp; } tendsto
+eoo a5 M — + oo
Finally, the infimum in (4.4.5) is a minimum because the functional

1 1
Fiv)= [1vPdt + [Iv—gPdt
G 0

. . . . 1
is compact and lower semicontinuous on Hg 1 with respect to the L™~ convergence ( see

Compactess Theorem 4.2.1, Remark 4.3.7, and Lemma 4.3.6). Moreover the minimum

value is strictly positive since it is attained at a function different from g (g ¢ Hp 1)

Example 4.4.5 _ Let us fix 0 < o < . Given a constant M > 0, let us define the function

gue HAO) by gy() =0 if te (0,3]and gy(t) =Mr-2 if te (5.1). Again, the

functional defined by (4.1.1) associated to gy; will be denoted by Fj, . The constant M acts
as a parameter and plays the same role as in the previous example: for M sufficiently large the
minimization problem (4.4.2) for Fy; has no solutions.

To prove this fact, let us observe that the sequence (uy ) of Example 4.3.4 converges to

gy strongly in L2(0,1) and Fy (uy) = o + 71? for every h.

Moreover, it is easier than in the previous example to determine the threshold Mg for the
parameter M so that, for every M > Mg, Fy(v) > Fy(gy)=B>a on HZ(O,l).

Therefore, if M > Mp, we can conclude that (up) is a minimizing sequence,

inf { Fy(v): veH 2(0,1) ] = o, but there are no minimuom points.
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