ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Ground State of the U infinite

Hubbard Model in two Dimensions

Thesis submitted for the degree of

“Magister Philosophize”

CANDIDATE SUPERVISORS

Michela Di Stasio Prof. Giuseppe Morandi

Prof. Arturo Tagliacozzo

October 1991

TRIESTE







S,
i

- N ~:

SISSA (\%

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI
INTERNATIONAL SCHOOL FOR ADVANCED STUDIES

Ground State of the U infinite

Hubbard Model in two Dimensions

Thesis submitted for the degree of

“Magister Philosophiz”

CANDIDATE SUPERVISORS

Michela Di Stasio Prof. Giuseppe Morandi
Prof. Arturo Tagliacozzo

October 1991






Acknowledgements

It is so difficult to write down aknowledgements! Also because Gus-
tavo (my English supervisor) is in Bariloche.

First of all I want to thank my supervisors Arturo and Giuseppe.
Not only for they have introduced me in this field and for the technical
help that I have always received from them and bla bla bla (this should
be quite natural), but also for the spirit of this collaboration and their
very kind ospitality in Napoli and Ferrara.

Thanks to Erio Tosatti for his criticism, his humor and for the
stimulating discussions.

Finally I would like to give a special thank to all my friends here
in Trieste (it should be read SISSA). During these years they always
helped me both teaching me to deal with the “stupid” machine I am
writing with (only one name for all the others: Pasquale), and for the
frequent friendly scientific discussions (again, as the same as before,

Just two names: Michele and Pepe).






Table of Contents

Table of Contents 1
1 Introduction 3
2  From Hubbard to t-J model 9
3 Path integral expression for the partition function in the restricted
subspace 17
4 Static Approximation and Saddle Point Solutions 27
4.1 Meanfield phases . . . . . . . . . .. e e e e e e e 34
4.2 Free Emergy . . . . o i i i e e e e 39
5 Gaussian fluctuations 45
T /75 o T o Y s LY 48
5.2  Collective excitations . . . . . . o v« v v v it e e e e e e e 51
5.3  Single particle excitation spectrum . . . . . . ... Lo 54
6 Free Energy including Gaussian Fluctuations 57



Table of Contents

Extension away from half filling

Evaluation of the second derivative of the total effective action

Zero modes in the Flux phase

Diagonalization of the curvature matrix

Zero modes integration

Bibliography

...................................

65

69

75

79

85



1 Introduction

The discovery of superconductivity in the Copper-Oxides compounds [1] and the Ander-
son’s suggestion [3] of the relevance of the large U limit of the Hubbard model has triggered
a renewed interest in this model and more in general in strongly correlated electron sys-

tems.

The Hubbard model,proposed in 1964 by Hubbard himself [2], stimulated the search
for a variety of approximate and exact techniques to understand its behaviour. However,
only the one dimensional case is by now well understood due to the existence of an exact
Bethe ansatz solution, and to the possibility of applying well-known field theory techniques

such as renormalization group techniques and bosonization method to study it.

The Hubbard model contains two contrary playing terms: the kinetic one, which tends
to delocalize electrons in bands, and the Coulomb repulsion that favors localization of
electrons. Approximate treatments succeded in describing the so called Mott-Hubbard

insulators and the charge-transfer insulators [5].
Whether the essential properties of the Copper Oxygen planes in the High T, supercon-

ductors could be described by a two dimensional extended Hubbard model or not is still

a matter of debate [4]. For the two-band Hubbard model with Coulomb repulsion only in
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the Copper sites a single band effective Hamiltonian was derived [8]: the t-J Hamiltonian.

Of particular relevance in order to understand HTCS are the following questions:

What are the phases of the extended Hubbard model?

Does the ground state exhibit long-range spin order?

What are the low-energy excitations?

Can superconductivity occur?

The answers to these questions for the strong repulsive case are still lacking. As fully
interacting many-body systems, neither the Hubbard nor the Heisenberg Hamiltonian can
be treated by standard many-body perturbation theory, since no small parameters are
present.

We are concerned here with the Hubbard Hamiltonian at half filling (one electron per
site) on a square lattice and in the limit U — oo, i.e. the Heisenberg Hamiltonian acting
on the restricted Hilbert space, with single site occupancy. It should also be said that
a careful study of the 2D Hubbard model at half filling and in the strong coupling limit
can possibly yield some insights into the highly non trivial dynamics of a 2D quantum
Heisenberg antiferromagnet.

A brief introduction to the Hubbard Hamiltonian, the large U expansion and the
tentative phase diagram will be discussed in the next chapter (chapter 2 "From Hubbard
to t-J model”). There we also address the still open question of whether, at half filling,
long range Neel order ([6],[13],[15]) occurs or other phases, suggested by mean field theory
([16],[10],[17]), are present.

The original part of this thesis consists in the presentation of an exact method to

implement the constraint of no double-occupancy of sites (U — ), at half filling and at



finite temperature (chapter 3 ”Path integral expression for the partition function in the
restricted subspace”).

The most popular approach to the ground state of the Heisenberg model at half filling
(symmetry group SU(N), N = 2) is the saddle point approximation to evaluate the path
integral expression of the partition function. The result becomes exact for its generaliza-
tion to SU(N) antiferromagnets in the limit N going to infinity.

The large N expansion consists of enlarging the symmetry group from SU(2) to
SU(N). This is very different from changing the representation from § = 1/2 to larger
values of §, which tends to the classical limit. It is also possible to calculate the corrections
inl/N.

An auxiliary field is introduced in the N —component Lagrangian to account for the
average site occupancy of N/2. The large N limit quenches the fluctuations of this oc-
cupation number regardless of the value of U (U > 0)[7]. This also happens when the
constraint is handled within the slave boson method [18].

At finite N the infinite U limit should completely suppress the fluctuations which could

possibly arise. However this feature is hard to reproduce.

Numerical methods are being developed ([9],[11], [12]), while the slave boson technique
is expected not to give reliable results at finite temperature.

At zero temperature, the constraint of single site occupancy (U — oo, N = 2) has
been implemented in recent calculations by means of the Gutzwiller projection, and the
resulting ground state has been found to have good variational energy [14].

Our work originates from the observation that, when N = 2, the constraint of half

filling takes a very simple form and can be implemented exactly at any temperature.
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Therefore, the compromise choice we have made was to project properly onto the restricted
subspace when evaluating the fermion trace with N = 2 and to perform the saddle point

approximation, with no pretention of it being exact in some limit.

The classical theorem[42] in path integral theory, saying that the saddle point ap-
proximation gives the same free energy which one would obtain from an Hartree—Fock
approximation on an original Hamiltonian, doesn’t hold for constrained path integrals and

this is explicitly our case.

The Hubbard-Stratonovich decoupling of the fermion interaction term introduces an
auxiliary boson field. We study two generalized mean field solutions (dimer phase and
flux phase, both of periodicity v/2X+/2) which are the ones first discovered by Affleck and
Marston[16] (AM). (chapter 4 ”Static approximations and saddle point solutions”). We
will not consider, for example, the so called columnar dimer phase (2X1 unit cell) which
has been found[23] to be stabilized by quantum fluctuations against the so called staggered
dimer phase which we are dealing with. Also the Flux phase has been found to be unstable
with respect to a box phase[24] (2X2 unit cell) but it could be stabilized by adding further

interactions[7]. (See the next chapter for other possible phases).

These phases are still stationary points of the action also in presence of the constraint.
The latter has the role of inhibiting classical fluctuations and this will cause an increase

of the mean field transition temperature.

The static gaussian fluctuations around these saddle points give us informations about
the stability of the phases and the collective excitations. (chapter 5 "Gaussian fluctua-
tions”). We will consider only gaussian fluctuations with the same space periodicity as

the mean field solutions (v/2X+/2 unit cell). The U(1) symmetry of the action also implies



the appearence of zero modes which have been identified.

Next we have studied the effect of the constraint on the free energy at any temperature
within the saddle point approximation. The inclusion of the constraint acts as an effective
reduction of the entropy of the system at finite temperature. As a consequence the action
calculated at the saddle point shows the wrong temperature dependence because it is
incresing with temperature, so that it cannot be assumed as an approximation to the
free energy. Therefore, in evaluationg the free energy, we have to include the gaussian
fluctuations (one loop corrections) previously examined taking care of the zero modes.
(chapter 6 "Free energy including gaussian fluctuations”). Because only static fluctuations
are considered our extimate of the free energy can be viewed as an approximation valid
at intermediate temperatures. The free energy of the flux I;hase we obtain is higher than
that of Peierls dimer phase, which again results as the most stable one.

In the last chapter of this thesis we sketch the way how our me’;hod could be extended
away from half filling. (chapter 7 ”Extension away from half filling”). In this case the full
Gutzwiller projector has to be included to garantee no double occupancy of sites. Because
it does not commute with the t-J Hamiltonian the extension of this method away from

half filling is not trivial at all.
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2 From Hubbard to t-J model

This chapter is intended to provide a general framework to our work. A brief introduction
to the Hubbard model and to its large U expansion is given stressing the peculiarity of the
half-filling case. A great variety of possibly occurring ground states has been proposed.
Here we will focus our attention on the dimerized Peierls phases and on the flux phases in
order to better clarify their origins and some of the still open questions.

The Hubbard model describes fermions with only one orbital degree of freedom and spin
1/2, when the on—site Coulomb interaction, in a tight binding description, is dominant.

The Hubbard Hamiltonian reads:

H=t Y (cl cio+chocio) + UD mitniy (2.1)

<i, >0
where cia creates a fermion at site i with spin ¢ =T7,|; ¢ is the nearest-neighbour
hopping matrix element and U > 0 is the on-site Coulomb repulsion.
Recently Yang et al. [28] showed that the Hubbard Hamiltonian has a SO(4) symmetry
in the spin and pseudo-spin space. They were able to classify exactly all the eigenstates
of the Hubbard model. Except for this exact result we don’t know what type and in what

parameter regime a broken symmetry state may be stable.
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The first term in equation (2.1) corresponds, for a square lattice with lattice spacing
a = 1, to an energy band e(k) = —2t(cos(kz) + cos(ky)) . A very important peculiarity
of the half-filled ( 7 =1 ) case is the perfect nesting of the Fermi surface; i.e., the Fermi
surface is invariant with respect to a translation by a vector Q = (m, ). Therefore, for n
= 1, the system is subject to an antiferromagnetic instability for arbitrary small values of
U. A gap will open V U/t at T = 0 and the system will be an insulator. For a more
general e(l:c') the system will remain metallic for small U. But for U > U a transition
to a Mott insulator is expected. In magnetically non frustrated systems, this transition
should be accompanied by antiferromagnetic ordering. In frustrated systems (either by
lattice effects or competing interactions) this transition could be from paramagnetic metal
to paramagnetic insulator.

What happens when U is large ?

Clearly doubly-occupied sites are energetically very unfavorable, and will be present
in the low energy spectrum only virtually. However, to have finite values of t/U, we must
incorporate the effects of the virtual processes which connect the reduced Hilbert space
(no doubly-occupied sites) to larger spaces with doubly occupied sites.

An unitary transformation e*® on the Hilbert space can be performed in order to
eliminate high energy processes in lowest order ¢/U. Such a procedure has a long history
going back to the early work of Kohn [26] (1964). Since we are especially interested
in the behaviour at or near half-filling we can neglect the so called three-site hopping

contribution. At first order in t/U we get the ¢t — J Hamiltonian:

' : 1
Hy=P(-t Yy (d,dje+dj,dia)P+7T 3 (Si 55— gninj) (2.2)
<4Lj>.0 <ihj>
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where J = 4t?/U and P = [[;(1 — n;1n;,) is the Gutzwiller projector. This effective
Hamiltonian is valid only in the subspace with no doubly-occupied sites, since it corre-
sponds to the first term of a perturbation expansion in ¢/U in this subspace. For U = oo
only the kinetic term survives, and for exactly one hole Nagaoka [25] showed that the
system is ferromagnetically ordefed.

We mostly discuss the case of half filling in what follows. At half filling the kinetic
energy term exactly vanishes, so that we have a Heisenberg Hamiltonian acting inside a
spin-only subspace.

Generalizations of the Heisenberg model SU(2) for fermions with spin 1/2 to SU(N)
antiferromagnets with n, = 2.5 particle’s colors were introduced in the past. This allows to
study very different limits as n. — co and N — oo. In the former case it has been proved
[43] that the lowest energy state is a Neel state, i.e. it has long range antiferromagnetic
correlations. In this limit, in fact, one moves towards the classical limit. A completely
different physics is given by the large N limit. In this case, the saddle point evaluation
of the partition function becomes exact. Many dimerized spin-Peierls phases have been
found to be degenerate and to have lower free energy with respect to the Neel state. When
including 1/N corrections one can show [23] that a columnar arrangement of dimers gains
energy from special fluctuations. However, the outcoming phase diagram 5 vs. N leaves
the case § = 1/2, N = 2 uncertain.

It is easy to see that the Heisenberg Hamiltonian is locally gauge invariant under a

SU(2) gauge transformation:

dj,T — aidiT‘l‘ﬁidi,l
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&y — —Brdl,+aldi, (2.3)

where | a; |2+ | Bi |*= 1.

A wide class of possibilities arises depending on the choice of order parameters ([27],[9])
used to build up a self consistent mean field theory.

Variational approaches have also been adopted. The proposed "projected wave func-

tions” are of the form:

| ®>=7P | ®nrs > (2.4)

where the Hartree-Fock-Bogoliubov wave function | ®gpp > can be a Fermi liquid
(| ®rz >), a spin density wave (| ®spir >), a Bardeen-Cooper-Schrieffer (| ®pcs >
wave function or a combination of these.

Consider, for example, the BCS case:

| @yrp >=| Bpos >= [ [(ur + vedy 1" ) (2.5)
k

In the most general case, in evaluating the mean field expectation values we must

include both types of averages:

_ o4t T +
Ay = <diydiy —digdi >

& = Y <dl digro > (2.6)

where » = z,y and i + r denotes the nearest neighbour of < in the r direction.
Zhang et al.[30] and Kotliar et al.[18] found that there are many different choises of

A, and & which lead to the same quasiparticle excitations spectrum. The explanation



13

for this large degeneracy in the choice of the fermion state | @y rp >, is the local SU(2)
gauge symmetry of the Heisenberg Hamiltonian when represented in fermion operators.

( A single spin state, which satisfy the projection condition exactly, can be written in
fermion language (P | & >) in very many ways. This very large redundancy in the fermion
language results in a very large class of apparent degeneracies in the mean field theory.)

Affleck and Marston[16], and Kotliar[10] found different types of fermion states which

have the same quasiparticle spectrum:

E(k) = £C4/cos? k; + cos? k, (2.7)

They called it a flux state and a (s + id)-wave RVB state respectively. The AM state
is a form of Hartree-Fock state based on a Slater determinant made up of eigenfunctions
for a single particle moving in a magnetic flux. The choice of an uniform magnetic flux

equal to 1/2 the flux quantum (%) per plaquette leads to the Hartree-Fock Hamiltonian:

H= Y (%dl, dj, +hc) (2.8)
<, i>ie '

While the individual phases §;; do not have physical meaning, due to the possibility of
gauge transformation, the total plaquette phase (3} 5 6;; = ) is a gauge invariant object
which characterizes the state.

From variational Monte Carlo studies[35], the flux state turns out to be a paramagnetic
state with very short range antiferromagnetic order. Recent numerical studies[31] seem
to give good evidence of long range antiferromagnetic order for the ground state of the
Heisenberg model. Up to now the lowest energy found in numerical studies ([33], [34])

corresponds to a state that combines RVB correlations and antiferromagnetic long range
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order.
This is an overview of the situation at half filling.

Away from half filling antiferromagnetic order is unlikely and the flux state may be
a good starting point to describe a paramagnetic state at finite doping. This would be
unstable against antiferromagnetic order in absence of doping[32]. (A different kind of
instability, namely towards a box phase, was found by Dombre and Kotliar[24], however
Marston and Affleck[7] argue that this is no more the case when adding further interac-

tions.)

The flux phase is particularly relevant because of gapless particle-hole excitations at
special points of the Brillouin Zone with linear dispersion, giving rise to an approxi-
mate 2+1 dimensional (massless) relativistic free fermion quantum field theory. This
could be the starting point[19] (by inclusion of frustration) for the so called ”anyon

superconductivity”[20].

In the doped case, H;s is no longer gauge invariant due to the kinetic energy term.
The value of this last term, in the flux phases, depends on the gauge used to represent
the flux. The best choice turns out to be that of the commensurate flux phases. These
are obtained keeping the flux constant in each plaquette and then varying its magnitude

in such a way that it is commensurate with the density ([36],(38]): 6 = X g 8:; = 7(1 - §).

There are however still open questions both from the experimental and the theoretical
point of view. In this flux phases, at finite doping, there is a breaking of time reversal sym-
metry but experimental evidence, for or against this, is still lacking. From a theoretical
point of view, still open questions concern the electromagnetic response[39] and the pos-

sible superconducting properties of these states. These difficulties arise, even at the RPA
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level, due to the very peculiar energy spectrum of non interacting fermions in a 2-d lattice,
when one introduces a flux in the kinetic energy; i.e.: the Hofstadter spectrum[37]. This
is a complex fra;tal pattern which arises from the interference of lattice periodicity with
that determined by the flux. Then, the problem of the electromagnetic response is related
to the dynamical properties of a ”quantum fractal system”. Also for the superconducting
properties, while the simpler description which ignores the complications of the lattice

favours superconductivity, it is not clear if this survives in a realistic description[40].
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From Hubbard to t-J model




3 Path integral expression for the
partition function in the restricted
subspace

In this chapter we set up a way of incorporating the constraint represented by the half filling
projector into the Path Integral description of the partition function for the Heisenberg

model. We are dealing with a two dimensional square lattice at half filling.

The Heisenberg Hamiltonian reads:

H = ——ZJZ*]’S;-SJ‘ (3.1)

or, expressing the spin operators in terms of the Fermion operators as:

where the o, g are the elements of the Pauli matrices o>,

1 : 1
=-3 Tijelacipe) gtia = 7 2 Jii(mit = mi1)(nsg = nj) (3.3)
(i) (:9)

This Hamiltonian can be rewritten in terms of the transfer operators defined by:

17
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Xii = 2 Clatia (3.4)
o

where x;; = X}i and x;; = n; = n; | + n; 1 as:

1
H = -3 Z Jin:ijij (3.5)
(i.9)
Here we have neglected additive terms which depend only on the occupation number
operators n; and are constant at half filling. We will consider here J;; = J for i,j nearest
neighbours and 0 otherwise. To fix further the notation we will denote by Z(i, 3) the sum

over ordered nearest neighbour pairs. The peculiarity of the half filling case is that the

occupation number operator and the Hamiltonian commute:

[ni’X;thk] =0 Vi, h, k (3.6)

Because we want to evaluate the partition function of the model at half filling, the
particle number is fixed, so that the Canonical ensemble will be adopted. The partition

function in the set of states in which site occupancy is one is:

Z = Tr{Pexp(—BH,)P} = Tr{exp(—LH,)P} (3.7)

where the single occupancy projector is given by P = []; n;(2 — n;) and the ciclic
properties of the trace have been used together with the properties of the projector P2="P.

Define now a new Hamiltonian:

H=H,- %Z zin; | (3.8)
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where, for the time being, the z;’s are taken as arbitrary real parameters. In terms of

H we can build up the following generating function:

2[2] = Tr{eap(~BH)} (3.9)

The original partition function can be easily obtained performing partial derivatives

of this new function :

Z= H %(2 - Bazi)zp] (3.10)

2=0

Partial derivatives with respect to z;’s are non ambiguous because n; and Hy commute.
For a lattice with N sites the Hilbert space of states contains altogether 4N states,
while the subspace of half filled states spans half of the Hilbert space, i.e. a manifold of

states of dimension 2V. Correspondingly, for J = 0, we obtain from eq. 3.7:

Z | jmo= Tr{P} =2V (3.11)

This implies of course that, in the limit J = 0, the only contribution to the Free Energy
comes from the configurational Entropy, which is NkpIn2 for the half filled subspace,
where kp denotes the Boltzmann constant. It would be Nkgln4 for the whole Hilbert
space, i.e. in the absence of the constraint.

It is standard procedure to express the generating function Z[z] as a Path Integral

over Grassmann variables[41]:
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1
2] = [ [T PWuDbiaesp { - [ dr w1 (r)(0r - 2)iat

BJ L—

+5 3 [ (s isialr () (312)
(1.7) o8

Here 7 is a scaled imaginary time variable ranging from 0 to 1, the ¢’s and 9*’s are

Grassmann variables obeying antiperiodic boundary conditions in 7 at the extremes of the

interaval [0, 1], and the symbols Dyf, and Dy, , stand for the path integration over the

Grassmann variables.

We introduce next the Hubbard Stratonovich fields:

Usi(T) = D PEa(T)i a(T) (3.13)
Jel

And use the identity:

exp {%7 > /U 1 dﬂﬁ?,a(T)lb?,a(T)%ﬂ(T)?ﬁLa(T)} -
o,

/Duij exp {—W /U1 dr (l Us(m) |* = f‘gj‘Z( Fa(TUii(T)hj0(T) + c-C-)>}
(3.14)

where the symbol [ DU; represents the integrals over the Real and Imaginary parts
of the auxiliary boson fields U;;: [ dR{U;;}dS{U;;}.

Note that the U/’s obey periodic boundary conditions in 7, and satisfy moreover:

Z/{:;(T) -’:u]'i(’T) (315)
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This means that if we consider U/ as a matrix in the site indices, I/ is an Hermitian

matrix:

ut(r) = u(r) ; T €[0,1]

It is useful to introduce the Fourier transforms of the various fields, i.e.:

e i o (wn)

1/}1',04(7') =

cOo
n=—od

[o.¢]
m=—-—0oC

where on account of the boundary conditions:

wyp =(2n+ 1)m ; Qm = 2mw

(3.16)

(3.17)

(3.18)

that are the Matsubara frequencies for fermionic and bosonic fields respectively. Note

that the hermiticity condition on U(7) reads now:

Uij(Om) = U (= 0m)

(3.19)

Finally performing the Hubbard Stratonovich transformation, moving to Fourier space

and using the definition of the Kroenecker delta:

1 .
5wmwn; :/ dTe—z(w"—*"')T
0

we find that the generating function is given by:

(3.20)
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Z[z] = / H DU;; HDzﬁzangi'aezp{—w Z Z | Uii (D) I* +
(4,0) i, (dg) ™
IS (wn) AT ba(wh) + coc)} (3.21)

(i,7) & n,n’

where:

AP = (iwy + 2)6; ;60 — ¢ Usj(wn — why) (3.22)

and ¢ = /7fJ/2.

Note that L{i'}'"l is hermitian when considered as a matrix in the site and the fermion
frequency indices:
7nl po— ,7
U = Uy (3.23)

Now the integration over Grassmann variables is standard, since we have a quadratic

form in the % fields, and yields:

Zlz] = / 1] Dttij exp{-= Z Z | Ui (QUn) |? +2Tr1n A} (3.24)
(4.4) (Gg) ™

where the factor 2 comes from the summation over spin indices.
This result can be rewritten in terms of the single particle Green’s function G, for

J=0, whose matrix elements are:

n.nl 1
(Go),’j = {Jr:5i,j5n,n’ (325)

that is antihermitian, and of the matrix:
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()5 = 28 j6nm — cUhij(wn — ). (3.26)
We get:
N/ T] Dthij exp{—= Z S Ui () |? +2Tr Inf1 + G2} (3.27)
(i,4) L) ™
The normalization factor is N = exp[ZTrln G;1] = 4" when evaluated using standard

contour—integral techniques.

An effective Action can be introduced:

SepflU] = —=2T7In[1 + GU] (3.28)

At this stage we can take the appropriate derivatives with respect to the z;’s and set
z; = 0 to obtain the partition function at half-filling.

According to the equation (3.10) the partition function becomes:

/ H DU;; exp {-—71' S5 | Ui () 12 = Sepsletd] + Zln4B,~[u]} (3.29)

(z.g) ™

where the last term arises from the constraint of half-filling, with:

(3.30)

= [ OSers ] 08ess U] (0SessUT\
BZ[Z/{] - ( 3222 821 - ( 621' ) )

Differentiating with respect to 2; and exploiting the cyclic invariance of the trace, we

z2=0

find:

8SessU] =1 p.
I8 oty (1= GG R} (3.31)
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From the point of view of site indices, taking traces of powers of U correspond to
building up loops of appropriate length in the lattice. If we specialize our results to the
case of a square lattice and of nearest neighbour couplings, it is not difficult to convince
oneself that only loops with an even number of sites will be allowed, and hence only even

powers of U will survive the trace operation. In this case, the first variation of the effective

action is:

0SerslU]

62{ z=0

=—-1-2Tr { CQ(GOU)Q)z GoPi} (3.32)

T (GU)?
In the Wannier rapresentation, P; is the projector to the Wannier function localized
on the i — th site of the lattice, so that (F;);x = 6;%6;-
The second derivative of S.¢; can be evaluated along lines similar to those leading to

(3.32). The result is:

= 2T+ {[(1- cGU)'GoP] }

= oTr { [(1- cZ(GOu)Z)*GOPi]Q} (3.33)

The partition function can be rewritten as:

z = | [] Dijenp{~BFess U} (3.34)
(i.7)

where an effective free energy is introduced:

BFepsU) =7 Y D UG > +8epslcUd] - > In4BiU] (3.35)
( i

i.j) ™
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The constraint acts as a term which reduces the entropy. In fact we shall find that B;

is larger than 1/2 in the static approximation to be discussed in the next chapter.
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4 Static Approximation and Sad-
dle Point Solutions

Having set up the general formalism in the previous chapter we discuss now the static
approximation for the Path Integral. This amounts to restricting the integral to paths

that are constant in ”time”, i.e. that satisfy:

M:}’n = U;j6n n (4.1)

where the matrix {{ is now hermitian in the site indices. The static approximation

brings about a great simplification of the formalism since all the frequency sums decouple

from those over site indices.

The explicit expression for Scs¢ is given by the series:

XASp Z:l)k] (4.2)

Tr{G'Z/l Zzz+2z

where xx = 3.,(:2-)* and xory1 = 0 and the symbol ”Sp” indicates the trace over
site indices alone.
Its first derivative with respect to z; reads:

Bt _ 1 1Y axusplet® ' P (+3)

k=1

27
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For a square lattice and only nearest neighbour interactions %%{Lﬁ o= —1. In fact the
trace over site indices of powers of the auxiliary bosonic fields corresponds to building up
loops of appropriate length in the lattice. In this case only loops with an even number of

sites will be allowed and hence only even powers of I/ will survive the trace operation.

The second derivative of the effective action is given by:

0%Sess
32?

For vanishing interaction, J — 0, we have:

oo k
=23 xapken) D SPIU)H P (U) I P (4.4)
k=0 q=0

2=0

5255ff _ 1
(_ﬁzf ) l=0=—3 (4.5)

and Ses; itself vanishes. That assures the correct limiting value of the Path Integral
and of the partition function; i.e. 2V.
The full expression for B; is:

1 1
BjU]=1 +.225p[i P,

P (4.6)

wn, — cld iiwn —cld
The effects of the constraint are entirely contained in the functionals B;[U{]. As we
anticipated before the effect of the constraint is to reduce the entropy contribution to the
total effective action. That is what one would aspect on physical grounds, resulting from
the reduction of the available portion of the Hilbert space due to the enforcing of the half
filling projector.
It is very important to prove that the average of the occupation number operator on
the site 7, is exactly equal to one. We can easily prove it for a square lattice and in the

static approximation for the auxiliary fields Uf;;. Indeed we have:
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9 0S.;; <L __, 0B
o] - [ Bt
= (i:j) t =1 ! z=0

exp (——71' Z | Us; |2 —Serr+ Zln(4Bk)) (4.7)
(4,7 k

where:

OBy  03Scrr 0% Seqs ( 35eff)
= - 4.8
Oz  0z0z% 2 020z, L+ Oz (48)

and, at z=0, 88.7/0z|,_, = —1. So that to prove < n; >= 1 we have to prove that
the third derivative of the effective action vanishes. In fact, we have:

OSess = —4)  Sp{x{ Pix;l Pix; P} (4.9)
8220z ~ neSAn T EAR

where x} = (iw, — cld)~! (see Appendix A for explicit derivations), and this third
derivative is explicitely an odd function of /. We now argue that this derivative is always
zero when calculated at z = 0 In this case we have I/ = —cl{. The expansion of the

previous term gives:

O8eit 4y (i> > (L> Mt Sp (Ut PUIPU' P} (4.10)

2 - . .
0270z twn /) j \iwn

Frequency sum forces A + ¢ + [ to be odd. Moreover:

Sp{U"PUIPU P} = (UM )ks(UY) s (Ui (4.11)

with no summations on 7 and k. On a square lattice, ({?);; must contain an even

number of U’s so that ¢ must be an even number. To go from site ¢ to site k one can
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make only an even or an odd number of steps whatever path in the lattice is chosen. So,
kh and [ must be both even or odd. But then A+ g+ cannot be odd. This proves that the
third derivative of the effective action is equal to zero and finally, that the average on-site
occupation number is exactly equal to one.

The solution with /;; constants is not a minimum due to the perfect nesting instability.
It appears that the minimum amount of symmetry breaking which allow a locally stable
minimum is an increase of the unit cell length by a factor V2X+/2. Following AM; we
restrict the random fields /;; to be translationally invariant along the diagonals of the
square lattice. The rapresentation of the fields U/;; and of the projectors P; in Fourier
space will considerably simplify the calculations.

The resulting bipartite lattice will be made of even sites surrounded by odd sites and
viceversa. This correspond to a doubbling of the unit cell and leads to an halved Brillouin
zone, i.e. a reduced Brillouin zone (RBZ).

Denote by the lattice site indices the basis of Wannier states: | ¢ >. We want to
perform a change from this basis to a basis denoted by: | a, k > where k is in the RBZ
and o takes two values, even or odd, distinguishing the two sublattices. These new states

~

are eigenfunctions of the translation operators along the diagonals, @ = Z + 7, b=a— R

T, | osk >= B ONIPR SN (4.12)

As usual we have that the two basis are related by:

2 i
<i|lak>= —N—e"k'R‘c?,',a (4.13)

Then for the matrix U;; we have:



31

Figure 4.1: The Reduced Brillouin Zone and the bipartite lattice with definitions of the auxiliary
fields

<ok |U|BRA> = D <ok|i>Uj<j|Bh>

i?j

2 FR . iR
= ﬁZ6—lk'R’Mij62h'R35i,a5j75 (4.14)
L,J

It easy to see that I/ will be diagonal in the indices & and antidiagonal in the indices a.
U;; will connect only nearby sites lying in different sublattices and will be parametrized by
four indipendent complex fields U} 2 34. We introduce the matrix elements of the auxiliary

fields as:

<o k|U|eh>= b :Mk) (4.15)

where:
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A(E) = U et 4 uge—iky + Use = 1 Z/{;*e““y (4.16)

The convention are depicted in the figure (4). The lattice constant is taken to be unity.

Similarly one can construct the matrix elements of the projector:

S <ak|l><I|P|m><m|B k>
[,m

9 s oz
- -ﬁel(h_k)Riéa,ﬁéa,i (4.17)

<Q7E|Pi|,67l—7:>

that is diagonal in the o indices. Note that the matrix I/ can be easily diagonalized and
its eigenvalues are +E(k) and E(k) =| A(E) |. U? will be diagonal with doubly degenerate
eigenvalues: E2(k).

The )\(E)’s have already been introduced by AM. However, due to the presence of the
constraint, they cannot be interpreted anymore, in a straightforwrd way, as quasiparticle’s
energies at the mean field level as they did in their original work. We come back to this
point later.

Given these approximations we can evaluate S.¢s[cl{] in terms of the eigenvalues of

the matrix (2.

2h

o}
Seysl 2:

—-Qh.

X?hSP (u h 2h Z X2h Sp (Z/(2 h .Zh] (4:18)

where x2n = 3, (iwy)
Introducing a dimensionless coupling constant g, g € (0,c¢), by letting clf — gl and
differentiating with respect to g, after a standard summation on the Matsubara frequencies,

we find:
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%Seff[gu] =-2 Zk: E(k) tanh (gE;k))

This last equation can be easily integrated, yielding:

SerslU] = —4zkzlncosh (‘:Ez(k)>

After some straightforward algebra the constraint contribution becomes:

Bi=1 - | (%)22 E(k)? . E(k)

kK
cE(k)

B~ p(wy tann <))

<E(k) tanh( —

indipendently of the site index 3.

The first term in the total effective action is:

N &
™ )|Z/{l]| 5 E | U; |

(4,7 1=1

(4.19)

(4.20)

(4.21)

(4.22)

This term suggests that values of the order parameters Uf; of physical significance should

scale with /8. We define new dimensionless order parameters as:

d; = ﬂJL{i

c
dp = BjA(k)
zr, = cE(k)

The total effective action now reads:

(4.23)
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BFers = NBIS | di|> —4) Incosh(z/2) — NIn4dB (4.24)
v k

and

(2 zi tanh(z/2) — zp tanh(ze /2)
B=1 (N) > ) (4.25)

k!

Again, when J — 0, B — 1/2 for any temperature. On the other hand, at zero
temperature, we have B = 1 no matter what d is. Therefore B decreases smoothly from 1
to 1/2 when the temperature increases. This means that, for any configuration, the effect

of the constraint is to reduce the entropy term in the total effective action.
4.1 Mean field phases

Minimization of the effective total action yelds the mean field configurations of the order

parameters dj.

The self consistency procedure runs as follows:

0F Oz
T —u - 22 T (4.26)
where
Dr = ta.nh(wk/z ZD(zk,mk/ (4.27)

and the second term introduced by the constraint is:

D(z,y) = (22 jyz)z (;E::hzmy/;)) - (2% + y*) tanh(z/2) + 2zy taﬂh(y/z)) (4.28)
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From equation (4.26) one can build up a self consistency equation for the order pa-
rameters d, defined via equations (4.23), (4.16):

dg

2
dy = ¥ Z(cos(qx — ky) + cos(gy — ky))Dk:zz_kt (4.29)
k

We are in position now to generalize the work by AM to include the constraint within
the saddle point approximation. We collect here the results for the dimers or Peierls phase
and for the Flux phase which are still found as extrema of our effective action. The dimer
phase considered here is altermating on the bonds, so that the translational symmetry

along the diagonals of the lattice is preserved according to the ansatz of eq.(4.16).
a) Peierls phase

This phase is, in mean field approximation, a bond-centered charge density wave in which
each site forms a dimer with one of its nearest nieghbours and in fact break the transla-
tional symmetry. Here the electrons are localized on individual dimers and the electronic
excitation spectrum turns out to be completely gapped.

In our case the interpretation in term of quasiparticle spectrum is no longer true but
the characteristic of the phase are always the same.

Here only one of the d;’s fields is different form zero and it may be made real by a

gauge transformation.

d =d dy=ds = dy = (4.30)

‘We have for the constraint term :
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.6 HII’HTIIHIllHIIIIIH

0 IIH]IIH[II,IIIIIIIIIIH

0 1 =2 3 4 5
t

|
|
|
|
|
|

Figure 4.2: Temperature dependence of the order parameter d as a function of the reduced tem-
perature in the presence (full curve) and in the absence (dashed curve) of the constraint.

1 /tanhz 1
Bp=1-- 4.31
P 4 ( z + cosh? m) ( )
and we define:
Dp = ——6—1115’ | (4.32)
p=z-InBp |a—dj2 .

The self consistency equation for the order parameter is:

d 1
2d =t — 4 = 4.33
anh 57 + 2DP ( )

In figure (4.2) is drawn the temperature dependence of the order parameter d as a
function of the reduced temperature t = El—j in presence (full curve) and in absence (dashed

curve) of the constraint.
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The mean field transition temperature is found to be higher ( t. = 5/12), than that

found in the absence of the constraint (¢, = 1/4).
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b) Flux phase

In order to leave the Lagrangian invariant under the local U(1) gauge transformation,
the auxiliary fields U/;; must transform as link variables of a lattice Abelian gauge theory.
We can identify the phase of U;; =| U | ¢'®J as a spatial gauge field A through ¢;; =

j;j A.dl Going to the four link variables d; the plaquette operator:

[[ di = didadsdy =] dy || do || d3 || du | e'? (4.34)

has to be gauge invariant. By Stoke’s theorem, & is the flux due to a fictitious magnetic

field penetrating the plaquette.

@:quij:){zf-df (4.35)
a

The Flux phase here considered carries 1/2 quantum flux per plaquette, (per hole in

our half filling case). A special choise of the gauge which makes the phases equal among

the bonds is:

d; = de'™/* Vi (4.36)

and d(k) = 2d(cos(k,) — i cos(ky)).
We recall that the translational invariance, along the diagonals of the original square lat-
tice, implies that the k vectors span the RBZ. In the thermodynamic limit, the momentum

sums can be converted into integrals according to:
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. /R Ly (4.37)

Bz 2m?
We define ¢, = (cos k2 + cos k2)'/2 and € = f ke = 0.918.
In this case the self consistency equation for the order parameter reads:
d’k dey,

= — € tanh — + — 4.
4d oy 22 anh e 5B (4.38)

where:

2 2 1./
53:/ ak / dk_& nh—e—’fé +
rpz 272 \ & JRrBZ 27% & — &,

21,/ 2
LB st 1)

——— 4.39
d Jrpz 27? ei — e,zc, t 2d ( )

The transition temperature is found to be equal to that of the Peierls phase, both in
presence and in absence of the constraint. The behaviour of the order parameter as a

function of the reduced temperature is plotted in Figure (4.3).

4.2 Free Energy

Within mean field approximation the free energy is just given by the effective total action

of eq.(4.24):

BFers=NBJIY |di|* =4 Incosh(z;/2) — NIn4B (4.40)
? k

evaluated at the configurations of stationarity we have described in the previous chap-

ter.
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Figure 4.3: The order parameter in the Flux phase as a function of the reduced temperature
inpresence (full curve) and in absence (dashed curve) of the constraint.

In absence of the constraint the expression for F can be easily interpreted as what

results from non interacting fermions with single particles energies given by £E(k).

This is an essentially classical result in the theory of path integrals [42]. A saddle
point evaluation of a path integral yields the value of the free energy one would obtain by
performing a mean field (Hartree) approximation on the original Hamiltonian. There is no
reason however for the theorem to hold true also in the case of constrained path integrals
as those we are considering here. For this reason we will call “generalized mean field
approximations” those corresponding to an evaluation of the free energy at its stationary
points. It may not be possible to identify a quasiparticle spectrum in a straightforward way,
as in the usual mean field approximation. In particular the F(k)’s introduced before are
useful parameters which however do not define quasiparticle excitation spectrum, unless

one sets B = 1. In the general case we expect the quasiparticle energy spectrum, identified
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Figure 4.4: Free energy per particle versus temperature in presence (full curve) and in absence
(dashed curve) of the constraint (Peierls phase)

through the poles of appropriate Green’s functions, to be given by functions of E(k) that
reduce to the latter when B = 1.

We find that in presence of the constraint, the effective total action of eq.(4.24) cannot
even be considered as the mean field approximation to a physically meaningful free energy.
In fact it shows the wrong temperature dependence for both phases.

The effective free energy for the Peierls phase is given by:

v Fo ,
0= ny d* — 2tIn(cosh(d/2t)) — tIn4Bp(d/2t) (4.41)

The zero temperature results are the same as the AM results, i.e. d(t = 0) = 1/2 and
O (t=0)=-1/4.
In figure (4.4) is plotted the free energy per particle versus temperature in presence

(full curve) and in absence (dashed curve) of the constraint.
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Figure 4.5: Free energy per particle versus temperature in presence (full curve) and in absence
(dashed curve) of the constraint (Flux phase)

As the same as before we have for the Flux phase that the effective free energy is given

by:
0 2 = d’k 2dey [t
forp=4d —2de—2t/ —— In(1+ " ***) ~tIn B (4.42)
RBZ 4T
One finds, for t=0, the results of AM: d(¢t = 0) = €/4 and fgff(t =0) = —& /4 = —0.2295.

But the temperature dependence of the saddle point free energy plotted in Fig.(4.4)
for the Peierls phase and in Fig.(4.5) for the Flux phase turn out to be unphysical when
the constraint is included.

Due to the limited contribution coming from the entropy of the saddle point configura-
tions, appearing in the free energies, the latter are found to increase with the temperature
in a certain range of temperature. Such a behaviour would yield a negative entropy at

those temperatures. This implies that the bare saddle point contribution to the free energy
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is not enough and gaussian fluctuations should also be included, at least.
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Static Approximation and Saddle Point Solutions




5 Gaussian fluctuations

In this chapter we calculate the gaussian fluctuations of the total effective action due to
variations of the the auxiliary fields If;’s around their stationary values. We consider only
fluctuations of the same space periodicity as our saddle point solutions. They are also

chosen to be static so that quantum fluctuations are excluded;

§A(k) = 6Uye™*= 4 SUze v + §Use™ = + ST (5.1)

and §A*(k) which is considered as indipendent; i.e. we vary separately both the real
and imaginary parts of the four plaquette fields §14;.

This provides a qualitative measure of the stability of the saddle point solutions, with
respect to this type of fluctuations. We do not reproduce the result by Dombre et al.[24]
which shows instability of the flux phase with respect to a "box” phase which is defined in
a 2.X2 unitary cell. Similarly the instability of our alternating Peierls phase with respect
to the columnar one with a 2X1 unitary cell is also ruled out [23].

The global symmetries of the action are also found as zero eigenvalues of the 8X8
curvature matrix. These zero modes correspond to the residual gauge symmetries which

are not broken by the mean field solutions.

45
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Non zero modes give the collective excitations that are examined for the two studied
phases.

We can also evaluate the mean square fluctuations of the order parameter correspond-
ing to the eigenvalues which give the most divergent fluctuations as a function of temper-
ature and compare it in presence and in absence of the constraint.

These mean square fluctuations give the temperatures, according to the Ginzburg
Landau criterion, at which there is the breakdown for mean field solutions and the onset
of criticality.

These calculations allow us not only to point out the amuont at which thermal fluctua-
tions around the mean field solutions are depressed as an effect of the half filling constraint
but also to recover a correct behaviour for the effective free energy versus temperature
when the contribution of these fluctuations to the free energy is added.

Our starting point if the effective free energy:

BFIU] = qufj | U 2 +5es[U] — NIn4B[U] (5.2)

=1
where, recalling that we defined = = cE(k) :
SerslU] = —4Zlncosh§—k- (5.3)
k 2

and

2\%  zi tanh z;/2 — z) tanhz} /2
=1-|= - 5.4
B=1 (N) Z z; — T, (5:4)

kk!

Here we give only the final results obtained after the trace is performed in Fourier

space and the Matsubara frequency summations are performed using standard contour
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integral techniques. The Appendix A contains the general line of calculations.
The complete expression for the second variation of the total effective action per par-

ticle, in units of J, is:

) ) 52B  (6B)?
5feff_2;1<sd[ —asf—t(—B—— B?) (5.5)

Explicit calculations can be found in Appendix A. Here:

> 16 = (2) X | e (5.6)

i=1 k

—5 Seff'—2< )Zk:( !dk] | 6d |2 4R [(5dk (];i; |)~q(| di ])5dk}> (5.7)

where:
_ 1 | di. | B 1
Q(ldr|) = Ak anh — RETIEAY (5.8)
and .
q(l d ) = L jann L2 1 ! (5.9)
| di |

2t 8t coshQ(%@l)

In absence of the constraint the gap equation is readly written in terms of @ and gq as:

1+Q-9g=0 (5.10)

The contributions due to the constraint given by §B and §2B are reported in Appendix

A.
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The variations of the complex variables d;’s and d*’s around their equilibrium values,
change the free energy according to an 8X8 curvature matrix.

If we exclude zero modes we will find a positive determinant so that the two saddle
point solutions studied are infact local minima and are stable with respect to this type of

fluctuations. The curvature itself provides a qualitative measure of the stability.

5.1 Zero modes

Because of the chosen symmetry for the random auxiliary fields d;, we end up with an
order parameter with four complex components. Therefore, the dynamical matrix around
the stationary point solutions is an 8X8 matrix. Its diagonalization gives us eight normal

modes. Four out of these are amplitude modes:

di— (1+66,)|d|e™* (5.11)
therefore,
6—3—1 = §6, (5.12)

is a real quantity. The other four modes are phase modes:
dy — (1+1466;) | d]| ™/ (5.13)
and therefore,

15% = 166, (5.14)
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turns out to be a pure imaginary quantity. Among the phase modes there can be-
Goldstone modes corresponding to global symmetries of the total effective action that are
not broken by the mean field solutions. The corresponding eigenvectors give the phase
space directions for the fluctuating fields that leave the total effective action unchanged.
They have zero eigenvalues.

Consider an element g of the invariance group of F,;; which is parametrized by a
continous variable 4, g = g(#). The application of g to the mean field solution is still a

solution of the mean field equation, gd?"f' = dl'-"‘f'(ﬁ). Because gF does not depend on 9,

§F  6F8d

5= 5790 =" (5.15)

N
Therefore, %2,—0%@ is an eigensolution of the first variation of the total effective action.
The number of these independent Goldstone modes is the order of the reamining

syminetry group of the system in the ordered phase. The first of these mode is immediately

recognizable: it is the U(1) symmetry mode

de — dye” (5.16)

It is easy to show that the gauge transformation U(1) leaves the free energy unchanged
both for the Pierels and the Flux phase. We can calculate, in absence of constraint, the

second variation contribution to the free energy due to §d; = id§6:

55 = =3 [ dy I (1+ Q| di ) - R{a(] di )}) (86)° (5.17)
k

In the Peierls phase | di |= d and we have:
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2 1 d> 2
= — - 59 — ‘1
58 (1 tanh ; ( ) 0 (5 8)

due to the gap equation (4.33).

In the Flux phase | di |= 2dex and

§%8 = —J?V—}: <4dzei — deg tanh 5'5:-’3) (66)* = 4d* —ddd =0 (5.19)

k
using again the gap equation (4.38).
This is the only zero mode in the Peierls phase. For the flux phase two other zero
modes are found:

The second zero mode corresponds to:

dy — d e10

d3 — d ew"’

(5.20)

that gives:

e—-i()g

od . 0
59, " d A
0

(5.21)

Where | di, |— 2 dé, with & =| cos(k, — 62) — i cos(ky) |.

The third transformation is given by:
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d1,3 - d
d2 — d e_i(g3

dy — de®

(5.22)
that gives:
0
ad —em0s
— =1id 5.23
86; " 0 (5:23)
¢is

Here d — 2 de'™ *(cos(kz) — i cos(k, — 03)).
In Appendix B the proofs that these modes do not change the total effective action

are given.
5.2 Collective excitations

Diagonalization of the dynamical matrix of the fluctuations around the stationary point
solutions (whose explicit calculations are reported in Appendix C) leads to the following
results:

a) Peierls phase

A part from the zero mode described previously, there is one non degenerate mode
with eigenvalue A, and six degenerate modes with eigenvalue A;.
We have noticed that the zero mode is associated with a phase change of d;. We can

easily see that the Ay mode, wich is an amplitude mode, is associated with a change in the
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Figure 5.1: Mean square fluctuations of the order parameter in the Peierls phase as a function of
the reduced temperature. (Full curve corresponds to A;, dashed curve corresponds to A;.

amplitude of d;. It is physically reasonable to see that it takes the largest value because
our free energy directly depend on | d; |. The remaining six eigenmodes will be associated
to changes in amplitudes and phases of dq, d3, dy.

The corresponding mean square fluctuations of the order parameter:

< (Ad)? > t
2 dnd? (5.24)

plotted in Figure (5.2) as a function of the reduced temperature t, are lower for the
first mode than for the second degenerate modes.

b) Flux phase

Here we have found three zero modes which are phase modes related to the possibility

of changing arbitrarily three phases of the order parameter keeping the total phase in the
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Figure 5.2: Mean square fluctuations of the order parameter in the Flux phase as a function of the
reduced temperature. (Full curve corresponds to A, dashed curve corresponds to A, and dotted
curve corresponds to As.

elementary plaquette fixed to be equal to . Therefore, the collective excitations are given
by one phase mode which changes the total flux in the plaquette (dashed line in Fig.5.2),
one amplitude mode (dotted line in Fig. 5.2) which changes the modulus of the order
parameter and three degenerate amplitude modes (full line in Fig.5.2) which change the

relative amplitude of d;, dy, dg, dy keeping | dj | fixed.

The corresponding mean square fluctuations, plotted in figure (5.2) as a function of the
reduced temperature, are higher for the three degenerate amplitude mode, ;. That is
what one would expect on physical ground because our free energy depend explicitely only

on the modulus of d; and on the total flux in the plaquette.
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5.3 Single particle excitation spectrum

We do not comsider the constraint at the moment and assume that the single particle
excitation spectrum can be deduced from the energies £E; = ¢ | A(k) |. We note that,
in the Flux phase these cannot be considered as single particle energies because they
are gauge dependent. In fact in the case of the three zero modes they change with the

symmetry parameters 6, 02 and 03 as:

El = |cosk,—icosk, |
E} = |cos(k, —0;)~icosk, |

E} = |cosk, —icos(k, — 03) | (5.25)

This gauge dependence does not lead to any inconsistencies since the physical excita-

tions consist of particle-hole pairs confined together on the same site.

As we mentioned before, in presence of the constraint, it is no more clear how to
isolate quasiparticle energies from the free energy. In this case one should evaluate the
single particle Green functions and identify single particle energies from their poles. In
order to do that one should include from the beginning, in the generating functional, source
fields coupled to the single particle creation and annihilation operators. The generating
function we are dealing with at the moment should be replaced a generating functional as

we outline shortly in the last chapter.

In the Flux phase we can construct a gauge invariant quantity out of the +FE}’s that

is the single particle (particle-hole) excitation spectrum given by:
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Figure 5.3: Schematic picture of the particle-hole excitation spectrum in the crystal directions I'M
and I'-X

wg = {Ekiq + Bxi by k + g € RBZ)} (5.26)

where:

Eiyq+ Er =2 d y/cos?(ky + q;) + cos?(ky, + g(y)\/cos2 ky 4 cos? ky, (5.27)

As one can see from the Fig.(5.3), the excitation spectrum has zero energy modes at
g = (0,0), (0,7), (,0) and ¢ = (m, 7). Therefore, the Lieb, Schultz and Mattis
theorem saying that for half integer spin antiferromagnets there must either be broken
translational symmetry or gapless excitations is satisfied by the flux phase solution. The
translational symmetry is only apparently broken by our choise of the mean field solution
in fact it can be easily recovered performing a gauge transformation.

In the Peierls phase the excitation spectrum, w, = 2 d, is completely gapped. In this
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phase the translational symmetry is broken what again agrees with the LSM theorem.



6 Free Energy including Gaussian
Fluctuations

While the Path Intergal for Z is unaffordable, the fields configurations which minimize
the effective free energy are easily found.
The main result up to now is the writing of the partition function of the interacting

system in the form:

Z= /pu,- exp (—BF. s [U]) (6.1)

with F. sy given by equation (4.24). We have been able to integrate out the fermions at
the cost of introducing a random external field seen by otherwise non interacting particles.
Again we stress that only static fields will be considered. The lowest approximation to
the evaluation of the path integral is the saddle point. This implies that a self consistent

field is chosen which minimazes the effective free energy:

0F

=0 i=1,2,3,4 (6.2)

Within mean field approximation the free energy is just given by the evaluation of
eq.(4.24) at the configurations of stationarity. As we noticed before, due to the limited

contribution coming from the entropy this mean field value of the total effective action
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was found to increase with the temperature in certain range of temperature. This is an
unphysical behaviour and implies, of course, that the bare saddle point contribution to
the free energy is not enough and gaussian fluctuation have to be included, at least. In

order to do that, the path integral we want to perform is:

e~ BFers — o= BF0s; H/d25dije—w5d*1\1'5d (6.3)

where, using the chosen symmetries for the 2N bonds variables, we have:

N
H/d26d__e—r6d*z\f’6d _ [ﬁ/d25d_e—wﬁd*ﬂflﬁd] ’ (6 4)
iy = i .
17 i==1

In the general case we can define the projection of the curvature matrix M’ on the

subspace orthogonal to the zero modes: M/ . In block matrix form we have:

A
w=l5 ] (6.5

The standard integration procedure[41], when the zero modes %ig have been identified,

gives:

Z = P~ / . 1/2
”detﬂ/[’ =1
= (), (6.6)

Y

where the symbol 'prime’ in the productory means the product of the non zero eigen-

values, v is the number of zero modes and the »X» matrix M has elements given by:

4
; T (6.7)
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Figure 6.1: Reduced free energy per particle vs. reduced temperature (including gaussian fluctua-
tions around the saddle point) for the Peierls phase without (broken line) and with the constraint
(full curve).

Explicit calculations that can be found in Appendix D, give us:

v=1, vy =4d in the Peierls phase

v=3, 73=(2d%)%?1.203 in the Flux phase (6.8)

a) Peierls phase

At the end of the day, for the Peierls phase, we get:

~ t [ 1
feff:fé)ff—iln( X'?_X;d> (6.9)

The result is plotted in Fig.(6.1) in presence and in absence of the constraint for
comparison.

The effect of the constraint on this gaussian fluctuations is clearly seen in the plot
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Figure 6.2: The relative mean square fluctuation of the order parameter vs. reduced temperature.
Broken curve: Peierls phase without the single occupancy constraint. Full curve: Pelerls phase

including the constraint.

Fig.(6.2) of the mean square fluctuations of the order parameter, corresponding to the

eigenvalue which gives the most divergent fluctuation, as a function of the temperature;

Ad)2 L
i.e. <(Ad‘.f) Z = I /\';‘ - One can easily see that the thermal fluctuations are depressed in

, 2
presence of the constraint. In fact the temperature at which —3(3&%13 becomes of the order

one increase from t* = 0.22 to t* = 0.33. This gives the signal of the breakdown of the

mean field approximation and the onset of critical behaviour, according to the Ginzburg

Landau criterion.

b) Flux phase

For the flux phase the final result for the free energy, plotted in Fig.(6.3) in presence

and absence of constraint for comparison, is:
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Figure 6.3: Effective free energy vs. reduced temperature including gaussian fluctuations for the
flux phase. Broken curve: in absence of constraint. Full curve: in presence of constraint

t 1
ferf = Fops — 5ln (73\/ FESYW ) (6.10)

Where 73 = 1.2033(2d%)*/? comes from the integration of the zero modes over the
angular variables 6;’s. ( The explicit calculation can be found in the Appendix D).

The effect of the constraint on this gaussian fluctuations is clearly seen in the plot
(Fig.(6.4)) of the mean square fluctuations of the order parameter, corresponding to the

eigenvalue which gives the most divergent fluctuations, as a function of the temperature;

. <(Ad)?i> ¢
i.e. 7 = InE-

Also in the flux phase the thermal fluctuations are depressed in presence of the con-
straint even if the depression is less significative. In fact the signal of the breakdown of the
mean field approximation and the onset of critical behaviour, according to the Ginzburg

; 2
Landau criterion, given by the temperature at which -3(33‘;)—2 becomes of the order one,
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Figure 6.4: Mean square fluctuations of the Flux phase order parameter in presence and absence
of the constraint

increases from t* = 0.06 in absence of the constraint to ¢* = 0.07 when the constraint is
included.

In conclusion we found that, including gaussian fluctuations and in the whole temper-
ature range in which our mean field solutions are valid, the free energy of the Peierls phase
is lower than the Flux ﬁhase free energy (Fig.(6.5)).

The effects of the constraint inclusion have been analysed. These mainly consist in an
increase of the mean field transition temperature that is the same for both phases and in
a depression of the thermal fluctuations around the saddle point solutions that is more

remarkable for the Peierls solution (Fig.(6.6)).
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7 Extension away from half filling

The superconducting properties of HTCS materials in presence of doping stimulated great
effords in the study of the t-J Hamiltonian away from half filling. In this case, antiferro-
magnetic order is unlikely and many different paramagnetic states have been proposed as
good starting points to describe new kind of superconducting states. Here we present the
formal extension of our formalism for the partition function incorporating the constraint
of no doubly occupied sites.

Moving away from half filling we have to substitute the projector P = []; n;(2 — n;)

with the full Gutzwiller projector that is:

P = H(l - nmniyl) (7.1)

i
Also the Heisenberg Hamiltonian must be replaced by the t-J Hamiltonian. The
Gutzwiller projector does not commute with the t-J Hamiltonian. Nonetheless, it is still
possible to include the constraint operating with functional derivatives on a generating
functional which is evaluated as the trace on the complete Hilbert space, so that standard
methods can be applied.

Here we discuss one-site projector only to make the notation handly. Let us call this
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functional Z[z(7), z)(7)]:

8
Z[z1(7), z,(7)] = Tr {e—ﬁHTTe— Jy d"(nr(T)ZT(T)+711(1')21(T))} (7.2)

Due to the non commuting property of the projector with the t-J Hamiltonian, we
introduce a partition of the imaginary time interval 8 in N small intervals of ”"time”:
¢ = B/N. The time ordered exponential comes from the standard continous generalization
used to handle these non commuting terms.

Define the Gutzwiller projector in the interaction rapresentation as:

P(r)=eHpe ™ (7.3)
that is expilicitely:
P =1-mni(r)ny (1) (7.4)
The partition function:
Z2="Tr {Pe_ﬁ‘q} (7.5)

will be recovered, following the spirit of the half filling case, performing functional
derivatives of the generating functional and letting the source fields z; () to be equal
zero at the end.

The result for the partition function is:

52

Z="1Tr {Pe'ﬁH} = (1 - W) Zlz(1), z)(7)] (7.6)

zp,1=0
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This is the closed formal expression of the partition function that gives the extension

of our method away from half filling.
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Appendix A
Evaluation of the second deriva-
tive of the total effective action

Our starting point is the effective free energy:

BFU] = Nﬂ'i | U |2 +Sesfld] — N IndB[U] (A.7)

i=1

where, recalling that we defined z; = cE(k) :

T
— o A.
Serrltd] 4§h1cosh 5 (A.8)
and
Bo1- (_> Z:cktanh:z:k/Q—:cktanhwk/2 (A.9)
kk' zk_;ck

The first variation with respect to the fields U/ of the effective action term gives:

6Sefr = —cSp [tanh 6—22/—{52/[} (A.10)

Note that:
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cld 1
tanh - = 2 e (A11)
1 1 ~
- —Z <iwn—cbl B iwn+cz,{) - _Z(Xi'—Xn) (A.12)

what defines x=. We can rewrite the variation of the effective action as:

§Sess =y Spl(xt — x5 )oU] (A.13)

and the constraint contribution as:

B =1+ SplxtPxtPi+xtPixy Bl = 1+2) Splx; Pixii Pi] (A.14)

Because is:

§(xE) = £xF Uy (A.15)

the first variation of B reads:

6B = 4cZSp[X::PixiPix1’5U] (A.16)

where we have used the permuting properties of the trace. At the end we get:

50 Fug ] = wSplUdU) + ¢ 3 Spl(xt — X7 )6U) ~ 6B (A17)

In a similar formal way we have for the second variation of the effective action:
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§28.5r = —c* Y SplxfsUx;i6U + x; 6Ux; 6U] = —2c° Z Splxtsuxtsu)  (A.18)

using the properties: n <> —n = x& < FxT. The second variation of B is given

by:

§°B = 4c? ZZSp TPt Poxh sUx SU) + Splxt Ut PixtsUx P (A.19)

Finally, the complete expression for the second variation of the total effective action

per particle, in units of J, is:

§?B §B)?
Phgs =23 10 45— (5 - OOF) (a.20)
=1

Performing the Matsubara frequency summations and expressing the traces as sums

over the reduced Brilluin zone we get:
4 9 :
2_ 2
2
_E— | 6d; |°= (N) Ek | 6dk | (A.21)

2

%wgeff:z( )2};( (1 de ) | 6d |? +R {Mk([;; ') q(ldkl)dde (A.22)

where:

O di |) = —— tann L% 1 _ L

(A.23)
| di | 2t 8t coshg(Lcilig'—l)

and
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1 | di | 1
q(| di |) = tanh (A.24)
( ) | d | 2t 8t cosh® (‘-aé“—l) '
The first variation of the constraint contribution is given by:
2\? z? —z7 TLTy!
6B = (——) (2———1“———tanh:ck/2————————~—tanhmk:/2+
N ka:, ( P zh)? (zf — =3)?
Lk 2
Where we have defined:
d
A.—_A1+i,42:1{’d’°]5d*} (A.26)
k

The second variation of the constraint contribution is given, in explicit form, by:

§2B = By(A1A) + By(A?) + B3(A43) (A.27)

where A’ is a shorthand notation for the & dependence and

Bi(A4)) =4 sraw | (3zp +zj) 2 2 tanhzg/2+
2
WY, (zf — 2f)? | (2 — =f) =«

(3%' +z3) 2 = tanhzy /2 — 2 — tanh® 2y /2 — tanh® z/ /2| A1 4] (A.28)
(2% — z3) =x
By(a2 ( ) Z i [ 4:ck(:z:k+3:ck,)t anh oy /24
P, T, — :ck/ (fck k’)
4$kl($k1 —+ 333k) (Ek + mk’) 2
R zp /2 + 75—y (1 - tanh” 2k /2)+
(zi — z}i)? (2§ — =)

+z; tanh z/2(1 — tanh’ :ck/Z)] A3 (A.29)
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2\ 1 [ 2(e2 + 22
Bs(A§)= ("‘) Z 7 5 [ (zkg mkz) tanhzy /2+

N k! T — Tps mk(mk - mk:’)
——ﬂi——tanhz 1/2 =1+ tanh® 2 /2| A3 (A.30)
mi — iBz/ k k 2 .

These complet the evaluation of the second variation of the total effective action.
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Appendix B
Zero modes in the Flux phase

We give in this appendix the proof that the second zero mode found in the Flux phase

leaves the total effective action unchanged. This zero mode corresponds to:

d1 b d e—-i@y

dy — de®

doy — d
(B.31)
that gives:
__.e_iGQ
od 0
Mo b (8.52)
0

Where | di, |— 2 dé, with é =| cos(ky — 62) — icos(ky) |. We can show analitically

that this transformation leaves the free energy unchanged. Knowing that:

§dp = 6(2de’™ *(cos(ky — 02) —icosky)) = 2de'™* sin k.60,
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ky
= dksm Z(cos ks + i cos ky )80, (B.33)
€k

and considering, for the sake of simplicity, the case in absence of the constraint, we

have:

9 4 ) (cosk; + icosky) 2
2 k,
= 8d2(692)2~2— > sin’ kg (1 +Q+q- qL) (B.35)
N % €
Using the identity:
2 cos? k, cos k 2 5
Z ==Y Q(2cos’ ky — 1) (B.36)
k & N
we find:
525 = 8d%(56,)° = 3 (3 +(Q — g) cos? k) (B.37)
N 2\2

that is exactly equal to zero due to the gap equation (4.38) which states:

2 62 1 dt'k 1
— - 2k, =Nk tanh — = —= B.38

Exactly the same proof holds for the other zero mode given by the transformation:

d1’3 —* d
dy — de %
dy — de®

(B.39)



77

Appendix B
that gives:
0
ad —e10s
~_— —id B.40
86, 0 (B.40)
ei@;;

Here dp — 2 de™/*(cos(k;) — i cos(k, — 63)), and we can follow the same steps as

before only exchanging &, and k,.
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Appendix C

Diagonalization of the curvature

matrix

Results for the Peierls Phase

Here we have d = de*= and | dr |= d and the second variation of the effective free

energy, equation (5.5), becomes:

4
P fory =T |6d; |* + = 2(R{6d,})*

=2

where

1

r=1- —4m4m4mm4m8  —
4t cosh?(d/2t) ’

4t cosh?(d/2t) 4d 32t

[11

=1

and we have defined:

1 (1 — 2sinh?(d/2t)  #2

t .
® = B coshl(dj2t) \ Geosti(d/2r) T2V d Smh(d/2t))>

79

(C.41)

(C.42)

(C.43)

(C.44)
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and D = nghLB. When D is neglected this is a generalization of the AM re-
sult to finite temperature. The quadratic part of the action is written in the basis:

(6dy, 8d5, 8dy, 6d35, 6ds, §d5, 6dy, §d5) and in this case we have a matrix in block form :

(C.45)

[0
M“[o Mz}

where

M, = < a b ) (C.46)

b a

with ¢ = T and b = E while the matrix M, is a 6X6 diagonal matrix with all the
diagonal elements equal to a. The eigenvalues are A\; = a, six times degenerate , A2 = a+ b
and A3 = 0. When B is taken to be 1, we have A\; = 1 + @ six times degenerate,
A2=14+Q+¢=2) and A3 = 14+ Q — g = 0 due to the gap equation (5.10). In both cases
this zero eigenvalue comes from the residual gauge invariance that leaves the phase of d;
undetermined. This can be easily seen in absence of the constraint when I' and = coincide
so that the imaginary part of d; disappears from the equation (C.41). It is useful and
easy to check the calculation trough the limit of A; as ¢ — t. that must be zero because
the free energy becomes flat at that temperature around the mean field solution.

The same procedure can be repeated in presence of the constraint with the only dif-
ference that now the functions a and b are changed. In the same way one zero eigenvalue
is obtained. As the same as in the previous case one can show analitically that A3 is zero
using the self consistency equation for the order parameter (Appendix B).

Results for the Flux Phase

Here we have:
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di = 2d(cosky —icosky) | di |= 2der, = 2d\/cosz(kx) + cos?(ky)

(C.47)

From the equation (5.5) we can isolate three contributions to the second variation of

the effective free energy which reads:

*

) 2 dy’
0 fers = ’N“Z (Ak | 6d |? +Bk§R{5dkl FAE &d }) +

k
+C > (8d; + 6d7)Ti;(6d; + 8d)

i'j

where:

Ap =14 Q= 5 (1(k) + Ta(k)

Bi= g — 5 (U1(K) — a(k))

and we have defined

(2 1 t e(3e? + €%) de
(k) = (ﬁ) Z 4d%(e? — €'?)? [—E (2 — €/?)? ta,nh(}—){-

t €'(3€? +e’2) de’ €2+ €?
+E(2_m) tnh( )+ 62_6/2(

1- tanhz(de/t)) +

+d7 tanh(de/t) (1 - tanhz(dﬁ/t))}

(C.48)

(C.49)

(C.50)

(C.51)

(C.52)
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2 1 t €24 € de
(k) = (7\?) 2 4d?(e? — €'?) [EE e(e? — €?) tanh(T)—i—
2
d

kl
¢ de
————————(62 — 7 tanh(

_ )+ .;. (1- tanh2(de/t))] (C.53)

(1]

2\2 €€’ t 3e2 + €7 de
= | = - tanh(—
(N) 2 16d?(e? — €'%)? [d e(e? — €?) anh( t A

k.k!
t 3e?+ € de’ 5, de 5, de’
R WL ae e C.54
de’(ez—e’z)tanh(t) 2+tanh(t)+tanh(t) ( )

T = (§B)* (C.55)

We can define the only different matrix elements:

2
ay = EZA[C—{-C
k

2
e = = Zk: Ak(cos2 ky —sin® k) + C

2 cost k. — cos? k,cos? k
b, = — > 2B z z L) -
L= e )¢

2 cos?k,cos’k
by = =3 2B =S
2 N 2B 6,‘3 +C
k
c = (C

(C.56)

The final matrix in the vector base (§d¥, §dz, §d35, 6dy, 6dy, 6d3, 6ds, 6d}) is given by:
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a
ic
as
M= “
—Zb1
ba
ic
b2

—1ic
ay
—1c
az
be
1by
by

—1c

ag —1c 161 bg —ic bg
ic an bg ~ib1 62 ic
ay —ic —1ic bg Zbl b2
ic ay bg ic b2 —’Lbl (0‘57)
ic by ay ic as ic
by —ic —ic a; —ic as
—iby by a9 ic aq ic
bz ’Lbl —1ic ao —ic ay

This matrix turn out to be centrosymmetric and its determinant can be reduced to

the product of two 4X4 determinats. After some algebra one can find the eigenvalues:

Al =
A’z =

A3 =

a; —az — by — ¢
ap —ay+by+ec
a; + az + by + 26y — 3¢
a; + az — by + 2by + 3¢

(C.58)

A1 is three times degenerate and can be proved to be equal zero. A, also is three times

degenerate.
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Appendix D
Zero modes integration

In order to calculate the gaussian correction to the free energy we have to identify the zero
modes. Then we can apply the standard Fadeev-Popov procedure to integrate out these
zero modes and perform the usual gaussian integration on the collective modes described

previously. The standard precedure runs as follows. Given the original path integral:

. a0 , wxflc.s
e~BFers — o=BFLs; H/d%d,-je_”‘” A'6d (D.59)
ij

that we can rewrite, using the chosen symmetries for the 2N bonds variables, as:

~

H/dzéd,,e—vréd*z\[’w_ [ﬂ/d25d,e—w5d*z\[’§d] ’ (D.60)
1] - 1 .

ij =1

In the general case we can define the projection of the curvature matrix M’ on the

subspace orthogonal to the zero modes: M/ . In block matrix form we have:
, o o '
M = [ ) Mi] (D.61)
The standard integration procedure[41], when the zero modes % have been identified,

gives:
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Z=e P /H (detN')1/? (D.62)
1/detM’
the matrix A/, whose dimension is given by the number of zero modes, has elements
given by:

5d1 5d[ (D.63)

ij =

The only zero mode present in the Peierls phase corresponds to

d1,3 — d eiel
d274 — d e‘iai
(D.64)
that gives:
i1
od . —e~i0
o —id ) . (D.65)
—16,

—€e

Here we have dj, — djé’
For the flux phase we found three zero modes, one is the above described and the

second one corresponds to:

—10y

d1 — de

dy — de'?
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(D.66)
that gives:
e—-i@g
ad . 0
3, = id it (D.67)
0
Where | di |— 2 dé, with & =| cos(ky — 82) — i cos(ky) |.
The third transformation is given by:
d1,3 — d
dy — de™®
dy — de®
(D.68)
that gives:
0
ad —eis
— =1id D.69
86; " 0 (D-69)
¢if

Here dj, — 2 de'™/*(cos(k;) — 1 cos(k, — 03)).
It is worth noticing that we used a basis (6dy, 8dF, 8da, §d35, 6ds, 6d%, 8dy, 6d7), because

the gauge transformations and the zero modes turn out to be of much more clear physical

interpretation.

However, the path integral we want to perform is over the real and imaginary parts of
the d; fields. In order to apply equation (6.7) we have to transform %% to the basis of real

and imaginary parts of the d;. Doing that we get:
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o
06,

(—sinb,, —sinby, —sinby, — sinby,7 cos by, —i cos 1, cos §, —i cos f;)

o
06,

(—sin,,0,—sinfy, 0, —7icos b, 0, —7 cosby,0)

od
—_— =
005
(0, —sin 63,0, — sinf3,0, —i cos f3,0, —i cos f3) (D.70)
(D.71)
For the Peierls phase the final result is:
. ¢ d?
FIl = et 5111 (D.72)
VITi A
For the flux phase, the matrix elements of A/ are:
M 4d*
Naa 2d*
J\/33 2d2
ng 2d2 sin 91 sin 92
Nis 2d% sin 0, sin 45
Nz 0
(D.73)

and:
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detN' = (2d?)*(2 — sin® 8, sin® 6, — sin® 4 sin’ 63) (D.74)

so that after integrating over the angular variables we get the final result:

213/2
24?) 1.203) (D.75)

t. [ (
fe :;) —=In
SR ( N3y
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