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Introduction

In this work I am dealing with polytopes and simplices, the higher dimensional gener-
alization of polygon and triangle, and with the classification of simplices whose dihedral
angles are integer (non-trivial) submultiples of 7, the socalled Cozeter simplices.

If we ask for a triangle tesselating the Euclidean plane, then the angles are forced
to be integer submultiples of . So we have to seek for a Coxeter triangle. If the
angles are —;’;, g and T then the Coxeter triangle is usually referred to as a (p,q,r)
triangle. The Euclidean condition on the angle sum of a triangle let (p, ¢,7) be (2,4,4)
or (2,3,6) or (3,3,3). If the Euclidean plane is substituted by the spherical one or by
the hyperbolic one, the condition on the angle sum changes, giving other values for
(p,q,7). The possible triangles are no more in finite number. In the spherical plane the
angle sum is greater than = and the possible spherical (p,q,r) triangles are (2,3,3),
(2,3,4), (2,3,5) and (2,2,7), for any » > 2. Usually to the list is also added the non
Coxeter triangle (1,7,7), for any » > 2, which is however a degenerate triangle: two
sides lie on the same line. In the hyperbolic plane the angle sum is less than 7 and
there are hyperbolic (p, ¢,7) triangles for any integer positive numbers p, ¢, such that
steti<l

The aim of this work is to present tools for the classification of Coxeter simplices
in higher dimensions and to keep, as much as possible, a parallel and simultaneous
treatment of the Euclidean, spherical and hyperbolic case.

In the preliminaries I explain what I mean by inner product space structure and
which models I choose for the geometric ambient space of the objects of study. The
more technical proofs are put in an appendix at the end of the work. ’

In the first part I give the definition of polytope and root system: roughly speaking a
polytope is a non-void convex region, whose boundary decomposes into a finite number
of pieces - the faces -, each contained in a hyperplane. Then to each face we can
associate the direction orthogonal to the hyperplane containing it. Given the direction
we choose a vector of unit length, that placed starting at the face, comes out from the
polytope. The vectors so obtained are called roots. The finite set they form is called
the root system of the polytope. It may happen that the root system contains with
each root also its opposite: e.g. in an Euclidean hypercube the hyperplanes are two by
two parallels. But this will not be the general case.

The root system enable us to associate to the polytope a symmetric real matrix:
the Gram matriz, whose entries are the products of the roots.

Can the process be reversed?

The answer is given for the class of polytopes free from obtuse dihedral angles,
which I call non-obtuse-angled polytopes, to whom the Coxeter simplices belong.

The Gram matrix of a non-obtuse-angled polytope has all diagonal entries equal
to 1, and the entries off the diagonal non-positive. I denote the class of matrices with
such entries by A. The characterization of subclasses of A is done by the application
of the Perron-Frobenius theorem on the spectrum of a non-negative matrix.

It is in particular proved that:

A matriz G in the class A is the Gram matriz of a spherical non-obtuse-angled
- simplez if and only if it is positive definite; of an Euclidean simplez if and only if
1t 1s indecomposable positive semidefinite; of a hyperbolic non-obtuse-angled simplex
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1f and only if it is indecomposable of inder one less of the rank. The simplez is in
any of the previuos cases uniquely determined up to a ‘motion of the relative space,
and in Buclidean case up to similarity. And the matriz is uniquely determined up to
wsomorphism of matrices - i.e. a same permutation applied to the rows and to the
columns -.

The effective determination of the polytope is done via the root system. The last
can be explicitly obtained, in most of the examples, by the application of an extended
version of the Gram-Schmidt orthogonalization process, which I have introduced in the
appendix.

In the first part it is also proved that the admissible shape of a non-obtuse-angled
polytope is heavily imposed by the geometry of the space. The only non-obtuse-angled
spherical polytopes are simplices. In Euclidean space the class is enlarged to the
products of simplices. In hyperbolic space there are no restrictions. The situation
and the reason for such a behaviour can be intuitively understood in two dimensions:
the crucial fact is the existence of parallels. Choose a line and the most wide allowed
amplitude for the angles: then choose two different orthogonals to the given line. In
spherical plane they meet: there are no parallels. In Euclidean plane we can choose
one more line to form a non-obtuse-angled polygon: but we cannot obtain more than
four sides. In hyperbolic plane there are ultraparallels and there is no constrainment
for the lines to close to a polygon in a finite number of steps.

A matrix is a discrete object as a graph: in the second part I classify Coxeter
simplices by means of graphs.

To a simplex is associated a graph: to each face a vertex, to each dihedral angle
of value % an edge marked p — 2. (There are some remarks to be done about parallel
faces.) An edge marked 0 means no edge. The graph obtained has no loops. Such a
marked graph is called a Cozeter graph.

Starting from a Coxeter graph consider its adjacency matrix. Then substitute each
entry off the diagonal with its mark and add 2 to it. Then substitute each diagonal entry
with 1. Apply to each entry the function f(*) = —cos(Z). I call the resulting matrix
the Gram matriz of the Coxeter graph and I call the Coxeter graph spherical if its Gram
matrix is positive definite, Euclidean if it is indecomposable positive semidefinite and
hyperbolic if it is indecomposable non-degenerate but indefinite of index one less the
order (which in this case is equal to the rank).

I say that a Coxeter graph satisfies the Coxeter Spherical respectively the
Coxeter Spherical Euclidean condition on induced subgraphs if

CS: Each induced subgraph on all vertices but one is spherical.

CSE: Each induced subgraph on all vertices but one is either spherical or Euclidean,
but at least one is Euclidean.

Each Coxeter spherical CS-graph corresponds to a spherical simplex. On connected
graphs CS and CSE conditions turns out to be sufficient conditions for the existence of
the associated simplex: the geometrical type is decided by the sign of the determinant

of the Gram matrix:
' positive spherical

null Euclidean
negative hyperbolic
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The determinant of a Coxeter CSE-graph is negative and the corresponding simplex
is hyperbolic. It has vertices at infinity (one for each Euclidean induced subgraph on
all vertices but one) and it is unbounded, but of finite volume. A

The following scheme collects the considered concepts:

Coxeter polytope

!

root system

I

Gram matrix — inner product structure on IR

!

Coxeter graph

The correspondence between graphs and simplices is bijective up to isomorphisms
of graphs and up to motions of the space (in Euclidean case up to similarity).

Iintroduce a partial order relation in the class of Coxeter CS- and CSE-graphs. I
define three type of constructive steps to do consecutives: 1) join two vertices that are
not; 2) increase just one mark; 3) take a new vertex and join it by a new edge to a pre-
existent vertex. Then we can start from the one vertex graph and perform consecutives
of type 3): we do the classification of all unmarked CS-graphs and CSE-graphs that
are trees. Then for the trees of given order we perform consecutives of type 1) and 2)
and we obtain all the Coxeter graphs of that order. The method introduced allows a
simultaneous treatment of the three geometric types of simplices: spherical, Euclidean
and hyperbolic, giving a global picture of the three cases. I have added here four
tables. Table 1 contains unmarked trees up to order 10. Table 2 contains unmarked
graphs that are not trees. Table 3 contains all graphs of order 4 from Tables 1 and 2
and their consecutives of type 2). Table 4: same as Table 3 for the graphs of order
5. The names of the Coxeter graphs are not completely standard in the literature and
I have introduced denominations which, to me, recalls as much as possible the shape
of the graph. In the Tables the Euclidean CS-graphs are enclosed by a rectangle, the
hyperbolic CS-graphs are enclosed by a double rectangle, the hyperbolic CSE-graphs
by a triple rectangle. The spherical graphs are not enclosed.

In preparing this work I have primarily consult (in alphabetical order) Bourbaki
[4], Coxeter [7], Grove-Benson [13], Thurston [19], Vinberg [20]. The book of Grove
and Benson treats the spherical case, and that of Coxeter the spherical and Euclidean
cases. Other references (but also those ones) are put in the text.

Prerequisites are notions of linear algebra and matrices (e.g. [2], [11]); and some
elementary notions of graph theory (e.g. [12]).

It must be noted that there is no universal concordance in the denomination of
concepts; so after each definition, if not original, I have put references.

Acknowledgements
I wish to thank prof. Dale Husemoller for discussion and advices about the bibliog-
raphy.






iv

CONETER UNMARKED
5 and CSE TREES






antinuition 7 {?M s j

it
VAL TRES

- st e arsasrss s 2t s e







st ~
FiES Table 2

CORETER UMMARREED C5 and OFFE~
FRAPHS not CYCLE FREE






S I LA A, b W

SHAVHL-d50 Pue

Fd L RO

55§

s d ot VL

JuS |

-‘lm
-J g
e

L6 | (¥ ]

L=
L o

D .

2






[F]

2 m. N_ ﬁ.g I

maA







1X

B et B m-g o 2

Tsammsediinmnmn 12

‘ e "‘? Qg z @m-%“@
o

“nm‘l“v} WlmVL é @

% J i LEHER]
o : d ;m,_‘.‘ 2 ﬁéﬂ
Ca § iﬂ E
Y | i
Femnar™ Q{ig_rl % 2 1

¥ T " T ]
LA T i@lﬁmnm msummgﬁl pn iﬂ i
1 i
i Kt
3
i
L

¥

ﬁ?gll

W

?

l
It
!
FL
- -
('l it
i il
i
'.X' Er‘ I
o ||

i
e

R
=

£l

CHHETER

Y T
b W HWTT

A
i

COE-GRAPHS

RS

LW ...a*







CONTENTS

Contents
I Coxeter unmarked CS and CSE-trees - Table 1 iv
II Coxeter unmarked CS and CSE-graphs not cycle free - Table 2 vi
III Coxeter CS and CSE-graphs on 4 vertices - Table 3 vii
IV Coxeter CS and CSE-graphs on 5 vertices - Table 4 ix
0 Preliminaries 1
I Polytopes and simplices 5
1 Hyperplanes, roots and angles 5
2 Non-obtuse-angled polytopes 8
II Coxeter simplices and Coxeter graphs 26
1 Coxeter spherical graphs 31
2 Coxeter Euclidean graphs 34
3 Coxeter hyperbolic graphs 38
4 Construction and classification 38
IIT Appendix 42
A Gram matrices of system of ;rectors 42
B Existence and uniqueness theorems 44
C Gram-Schmidt extended process 46
D Example 49
References 51
53

Index






0 Preliminaries

Let us recall some general algebraic and geometrical facts and give at the same fime

the notations that we will use throughout the work.
Let R" be the real N-dimensional vector space. The null vector (0, ...,0) will be
denoted by 0. Consider a real bilinear symmetric form B on RV

B:RVxRY >R

The symbol B will denote also the matrix associated to the form when the basis is the
standard one:

e1 = (1,0,...,0), ez = (0,1,0,...,0), ..., ex =(0,...,0,1).

If we start with a real symmetric matrix B = (b;;), we define the form on the elements
of the basis
B(ei,e;) = bij
and then extend by linearity.
Instead of B(z,y) the symbol z -g y will be used. If z and y are considered as

column matrices, then z -p y is just the matricial row-column product z* B y.
We say that B defines an inner product on RY and (R",-g) is an inner product

space [14]. :
Let I,, be the identity matrix of order m and 0,, the null matrix of order m. Let us
I, 0 0 ;
denote the matrix || 0 —I; 0 by I(m,1,t); in particular if ¢ = 0, we will denote
0 0 0 S o

I(m,1,0) just by I(m,1).

Example 0.1 :
Let consider B = Iy, the inner product is just the usual scalar product on RN

‘ N
T Iy Y = Z T; Y-
i=1
This gives to RY the usual Euclidean (vector space) structure, EV, so it will be written
-g wnstead of -, .

Consider z € EV then z -g = > 0, unless z = 0. A bilinear form B with this
property is called positive; so the inner product -g. If instead, z -p z < 0 unless z = 0,
the inner product is called negative.

In a positive inner product space we have the socalled Schwarz inequality [11, ch.9.5]

(z-8y)’ <(z-Bz)(¥y-BY)-
Example 0.2
Let be B =1I(N —1,1); then
N-1

T ‘(N-11) Y = Z Z; ¥Yi — TN YN

i=1



and (RY,-7(nv-11)) is the pseudo-Euclidean vector space of signature (N — 1,1) [11]
usually denoted by EN-11,

Henceforward instead of the symbol -yn_11) we will use the symbol -5 since the
hyperbolic space is represented in EN-11, as we will soon see.

The inner product -5 is found in relativistic studies, so terms there costumary will

be also used:

z : z-pax >0 s called spacelike
z :zpz=0 lightlike

z :zpax<0 timelike
The inner product -4 is not positive. In fact
ev-aenv = —1 and even (ey—1 + en) ‘s (en-1 + en) = 0.

Inner products which admits both vectors with positive and negative "square” are called
indefinite. Non-null vectors with null selfproduct, as ex_; + ey, are called isotropic.

The B-lenght of z € R" is |z|p = (Jz -5 z|)7. The vector z is a B-unit vector if
|z|p = 1 (this definition extends the one given by Ryan for (R?,4) in [17, ch. 7]).

Given two vectors in IR™ they are said to be orthogonal relatively to -5 or B-
orthogonal if ¢ - y = 0. The B-orthogonal complement for a subspace W of RV
is

, W e ={zecR"|z-5y=0, Vyec W}
If -p is positive then for each subspace W we have W N W1z = {0}. If the inner
product is indefinite this is not always the case. A subspace W C RY is said isotropic
if there exists a non-null vector of W B-orthogonal to W,i.e. WNW<s £ {0}. W is
said totally isotropicif -glw = 0 [3, §4]. A non-null vector is isotropic if and only if it
generates an isotropic subspace or equivalently a totally isotropic subspace, as the two
definitions coincide for 1-dimensional subspaces.

In examples 0.1 and 0.2, R" is non-isotropic. This happens if and only if the
determinant of the matrix B is non-degenerate. Then the inner product is said non-
degenerate.

Consider an (N — 1)-dimensional linear subspace H of R" and its linear algebraic
defining equation

a2y + .. + ayzy = 0, (a1,..,an) #(0,...,0).

In EV the orthogonal direction to H is spanned by the vector ng = (a1y...,an), while
in EV-11 the orthogonal direction is spanned by npx = (a1,...,an-1,—an). (N.B. ng
~and ny are not necessarily unit vectors.)

A linear homomorphism ¢ of RY, which also preserves the inmer product -z, is
called a metric homomorphism (3, §4, n.3]:

(]5(1:) ‘B ¢(y) =ZT-'BY, V:B)y € ]RN-

As
1
fc-By=5((iv+y)-a(:c+y)—w-sm—y-sy)



the condition can be equivalently stated

#(z) B ¢(z) =z -pz, Yz € R",

This happens if and only if the matrix ® associated to @, relatively to the fixed basis

of (RY,-g), is such that
$ B% = B.

If -5 is non-degenerate each metric homomorphism is an isomorphism and will be called
a motion.

Given any symmetric real matrix B of order N there exists a basis of IRY such that
. expressed via this basis has matrix I(indez(B),rank(B) —indez(B), N —rank(B)).
This basis gives a decomposition of R" as an orthogonal direct sum S; @ S, @ 53 where
(S1,-Bls,) is a positive subspace, (Sz,-Bls,) is a negative subspace and (S53,-pls,) 1s 2
totally isotropic subspace. The Sylvester law of inertia [11, ch.IX,§2], 14, ch.1-4] says
that the dimensions of S;, S; and S are uniquely determined. It implies that, up to
congruence, there are N + 1 different non-degenerate inner product space structures
on RM.

The objects I am interested in, the polytopes, either live in the n-dimensional
Euclidean (affine) space E™, or in the n-dimensional sphere S™ or in the n-dimensional
hyperbolic space A™. The spaces S™ and A™ will be briefly introduced hereinafter. To
avoid any confusion each geometrical name will be prefixed with a letter to denote
in which geometry it is situated, e.g. an S-line in S? is a great E-circle of S?. The
letter S will stand for spherical, E for Euclidean and the Cyrillic A of Lobacevskij for
hyperbolic. :

Let consider Euclidean geometry. The Euclidean space as a set of points is an affine
space, i.e. no point singles out with special properties [8, ch. 1,7]. We can nevertheless
treat points as vectors [15, ch.1]: the coordinates of a point = are the components of
the vector from the origin to z. An Euclidean polytope is a set of points of the affine
Euclidean space, its roots are elements of the Euclidean vector space.

Let consider spherical geometry. The set of points is 5™, the n-dimensional sphere
contained in E™t!:

S"={z € E"!z-gz =1}

The metric structure is that inherited from E™*! and -g is just -g. A hyperplane H
in S” is the intersection of S™ with a linear n-dimensional subspace H of E™*! j.e.
an E-hyperplane through the origin. The E-orthogonal direction to 7 will be called
the S-orthogonal direction of H. The S-dihedral angles formed by two hyperplanes H;
and H, are the E-dihedral angles formed by H; and H,.

Let now consider hyperbolic geometry: we will introduce the hyperboloid model of
A™. Consider the set
Q={z€ E™|zyz=—-1}

It is an E-hyperboloid: its equation motivates the name sphere of imaginary radius.
Q@ has two connected components



Qt={2 € Q| Tap1 >0} and Q = {z € Q| Tny1 < 0}.

The upper sheet @+ (with the restriction of the inner product -5) is chosen as a
model for the hyperbolic n-dimensional space A™.

Let z,y € Q. Then z -5 y < 0 if and only if z and y belong to the same component
of @ [11, 9.22], [16, ch.5,lemma 29].

A subspace W of E™! is called spacelike [16, ch.5] [11] or elliptic[19] if the inner
product restricted to W is positive; W is called timelike or hyperbolic if the inner
product restricted to it is non-degenerate and of index one less the dimension; W
is called Lightlike or parabolic if the restricted inner product is degenerate. The A-
orthogonal hyperplane of a timelike (spacelike) vector is spacelike (timelike) [16, ch.5,
lemma 26]. Each isotropic direction of E™! determines a point at infinity of A" or as
it is also called an ideal point of A™. In the contrast the points of @ will be called
ordinary points.

A hyperplane H in A™ is the intersection of Q* with a linear n-dimensional hyper-
bolic subspace H of E™1. The A-orthogonal direction, in E™!, to H has the generating
vector spacelike. I will called it the A-orthogonal direction of H. The angles formed
by two hyperplanes H; and H,, intersecting in A™, are the A-angles formed by H; and
H,.

A motion of A™ is a motion of E™! which preserves Q*.

The hyperboloid model is isometric to the Poincaré disc model and to the upper
half-space model [21, sec. 2.4]. ‘

The symbol X" will stand for anyone of the three geometric spaces, when there will
no distinction to be done. And the prefix X- or the X used as an index, will denote a
concept or a symbol referred to the geometry in X™.

Few lines else about notations on matrices and submatrices. k’
Let M be a matrix. Its entries will be either denoted by m;; or (M);;. M} will

denote the submatrix obtained deleting the i-th row and the j-th column; M_;l‘;;’;: the

submatrix obtained deleting the rows 1,15, ..., 1, and the columns j1,j2, ..y J4- ML[ZZ;‘:]]

will denote the submatrix obtained taking only the entries with row index 1,1, ..., %,
and column index ji, Ja, ..., Js- E.g. M[[J'} = m;;. |M| will denote the determinant of M.



Part I
Polytopes and simplices

The two dimensional notion of polygon, bounded intersection of halfplanes, can be
extended in any dimension to that of polytope, intersection of half-hyperspaces. In
three dimensions a polytope is also called polyhedron.
The definition can be given in spherical, Euclidean and hyperbolic geometry.
. The formal definition is

Definition I.1 A polytope is a convez non-void region of the space X™ enclosed by a
finite number of hyperplanes.
The following special requirements are put

1) Finite volume.

2) Each hyperplane determines an half-hyperspace which contains the polytope: none
half-hyperspace contains the intersecion of the others.

Every polytope has finite volume in spherical geometry. But in Euclidean case the
finite volume request implies that the polytope is bounded. In the hyperbolic case there
are allowed vertices at infinity. The given definition does not exclude, in spherlcal case,
that a polytope contains antipodal points.

The second requirement will be referred to as the economical choice, since we con-
sider the minimum number of hyperplanes needed to determine the polytope.

Let us consider the generalized notion of tnangle

Definition 1.2 A simplex is a polytope of X™ enclosed by n+ 1 hyperplanes such that
each hyperplane does not contain the intersection of the remaining n.

1 Hpyperplanes, roots and angles

Let denote by H;,7 =1,..., N, the hyperplanes bounding the polytope P C X™.
Then H; NP is an (n — 1)-face of the polytope P. Suppose s > 1, then N{_; H;NP,
if non-void, is an (n — s)-face of P. The term face will denote an (n — 1)-face, the term
edge a 1-face and the term vertez a 0-face.
Consider for H; its X-orthogonal direction and let it be generated by v;. Then
v;oxv; >0 and

H ={ze X" z-xv;=d}, for some real number d;,
in the case X® = 5™ or A",d; =0, =1,..., N. In the sequel we wil suppose v;-xv; = 1.
H; determines two closed half-hyperspaces
H ={ze X" z-xv;<d;} and H}={ze€ X"|z-xv;>d}

The polytope P is contained either in H or in H;". Suppose v; has been chosen
such that P C H; .
The finite set of vectors {v;};=1,. v is called the system of roots or root system of

P.



Note 1.3 It is to be mentioned that in other contexts where root systems are introduced,
e.g. wn Lie groups contezt [4], the roots have to verify integral conditions so they are
no more chosen of unit length; the root system is supposed to generate the whole space
and to be symmetric, so each vector belongs to the root system with its opposite.

The intersection, in E3, of three halfspaces, whose roots form a basis, is called
trihedron. It is an unbounded polyhedron. More generally, a polyhedral angle is an
unbounded polyhedron obtained as the intersection of more than three halfspaces, such
that the bounding planes have a (but only one) common point and the root system
contains a basis. I give the following :

Definition 1.4 Consider n hyperplanes in E™, such that their roots form a basis.
Choose for each hyperplane one of the two hyper-halfspaces it determines. The inter-
section of the n hyper-halfspaces is an n-hedron. If we have more hyperplanes than the
dimension, then the intersection might be void. If non-void we will call it a polytopal

angle.

Let P = N~ , H{ be an n-hedron in E”. We want P to be non-void. Then the
lines conta,ining the edges generate the whole space E". Choose a (non null) vector f;
on each edge ﬂk# H,NP,i=1,..,n. Then {fi}iz1,..n is a basis of E™. Let v; be the
root of P correspondmg to the hyperplane H;:

vi'g fr =0, k;éz,1<k<'n ~and wv;-p fi #0.

Then the roots are linearly independent: given a null combination, multiplication with
fi shows that the i-th coefficient is null, s = 1,...,n. So they form also a basis of E™.
In the case P is a polytopal angle the system of roots have more than n vectors, but
contains in any case a basis of E™. ‘

If X» = 5" or A™ a hyperplane H is obtained intersecting the model of the space
with a subspaces H of E™*! respectively E™!. In the Euclidean case consider H to be
the translated of H through the origin of E".

Proposition 1.5 Let P = NY, H-. Then the root system of the polytope P C S™
(A" respectively E™) contains a basis of E™*! (E™! respectively E™) if and only if

N H: = {0}.

Proof The orthogonal of the null subspace is the whole space and

o = (O = (Uowr) = (Upa).

i=1 i=1 =1

Then {v;}i=1,.n contains a basis of the respective inner product space if and only if
N H: = {0}.

B

There are polytopes which do not satisfy the condition, e.g. the (1,7,7) triangles
cited in the introduction. But the condition is satisfied by polytopes in Euclidean and
hyperbolic space (remember that for a polytope we mean a finite volume one).

A polytope P is called non-degenerate [20] if N, H; = {0}, i.e. equivalently if the
root system contains a basis. This is enough since we have the finite volume condition



on polytopes. In general it is necessary to ask that the bounding hyperplanes H; have
no common ordinary point nor (in the hyperbolic case) a common point at infiniiy.

Each n-simplex in X™ is non-degenerate.

A spherical degenerate polytope contains at least a couple of antipodal points. In
hyperbolic case it has to be considered the character of N, H;: it can be spacelike,
lightlike or timelike. If it is spacelike the polytope has a face at infinity so infiniie
volume. If it is lightlike or timelike all the hyperplanes has a common point at infinity
or at least an ordinary common point, it follows that it has infinite volume (the situation
can be pictured in the upper halfspace model).

The matrix

G, = (vi *x vj)ij=1,..N

is real symmetric and it is called the Gram matriz of P. Its determinant is called the
Gramian of P.

Corollary 1.6 If the polytope P is non-degenerate then its Gram matriz G admits a
non-degenerate submatriz of ordern+1, if X™ = S" or A®, and of ordern if X™ = E".

Proof By the previous proposition the root system contains a basis of the respective
space. Consider the submatrix of the G which contains only the inner products of the
elements of the basis. This submatrix is just the Gram matrix of the basis. And the
Gramian of a set of linearly independent vectors is non null [prop. IIL.1].

B ‘

Given a polytope P in X", let H; and Hj, ¢ # j, be two bounding hyperplanes.
Then H; and H; are adjacentin P if their intersection contains an (n — 2)-face L;; of
P. In such a case the dihedral angle they form and which contains P, is the dihedral
angle a;; of P at L,J

Let V =1 be a vertex of P. Then V is the vertex of an X-polytopal angle
containing P: ﬂ,_l , where ny > n. Consider an (n — 1)-X-sphere ¥ centered at V
of small enough radlus such that no other vertex of P belongs to X. Then (;Y; H;, NZ
is a polytope on %, Wthh has the same dihedral angles of the unbounded polytopal
angle N;Y; H; : recall that an X-sphere is X-orthogonal to the X-lines through its
center. This polytope is called the vertez polytope at V. If V is an ordinary point then
the vertex polytope is spherical. If V is a point at infinity (hyperbolic case) the vertex
polytope is Euclidean, since an horosphere is isometric to the Euclidean space of same
dimension.

Suppose that the vertex polytope at each vertex V of P is a simplex. Then P is
called polytope of simplicial type [1]. The simpler example of polytope of simplicial
type is a simplex. There are three Platonic solids of simplicial type: tetrahedron, cube,
dodecahedron.

For dimensional reasons the minimum number of hyperplanes that intersect at a
vertex is n, giving rise to at least n edges concurrent at the vertex. This minimum is
attained at each vertex of a polytope of simplicial type:

Proposition 1.7 In a polytope of simplicial type P C X", at each vertez the number
of concurrent edges is equal to the dimension n.



Proof Each vertex polytope is an (n — 1)-simplex and it has n vertices. The edges
of P concurrent to a vertex are in bijective correspondence with the vertices of the
vertex polytope, so are in number of n.

| :
This does not happen in the octahedron and in the icosahedron (4 respectively 5
edges concurrent at each vertex). ‘

2 Non-obtuse-angled polytopes

A polytope is called non-obtuse-angled if all its dihedral angles are acute or right,
acute-angled [5] if all its dihedral angles are acute.

The non-obtuse-angled polytopes are constrained by the geometry in which they
live to assume particular forms [5, thm.1,thm.2]:

Theorem I.8 A spherical non-obtuse-angled polytope is a simplez.

Proof The proof goes by induction, with base n = 2: every non-obtuse-angled spherical
polygon is a triangle.

Consider a non-obtuse-angled spherical polygon P with N > 3 vertices and let V
be one of this. Join V', with S-segments, to all vertices but its adjacents. In such a way
we obtain N — 2 S-triangles. The sum of the angles of P is just the sum of the angles
of all the N —2 (sub)triangles. On S? the angle sum of a triangle is greater than =. So
the angle sum of P is greater than (N — 2)w. The polygon P has N angles; if all were

N=-2

less than or equal to “F*7 a contradiction will follow. So at least one, say « is greater

than %7&'. Then by the non-obtuse-angled hypothesis made on P we have that

N -2
N

<a<ZI
iy a —_
=73

which implies
N < 4.

As N > 3, it follows N = 3.

Now assume the thesis true in dimension n — 1.

Let P C S™ be the non-obtuse-angled polytope. Then by inductive hypothesis, P
is of simplicial type. We want to prove that each 2-face is a triangle.

Suppose n = 3. There are three S-planes meeting at each vertex and forming a
trihedral angle. The vertex polytope P’ at V is an S-triangle. Denote by «, 3, v its
angles and by a, b, ¢ its sides. The angles a, 3, v coincide with dihedral angles of P;
whereas a, b, c are (dihedral) angles of 2-faces of P. By the Law of Cosines in spherical
geometry, e.g. [17, Ch.4,thm.38],

cos v = sin a:sin 3 cos ¢ — cos a cos B.
Recall that 0 < «,8 < %; then 0 < sina,sinfB,cos a,cos § < 1. So

cosy < cosc, and a priori we know that 0 <~,c < .



The cosinus function is decreasing in [0, 7] and v < 7 then

v

T
— v > c.
9 =
Similarly, from

cos a = sin 3 sin-y cos a — cos 3 cos v
and

cos B = sin asiny cos b — cos a cosy

it follows
a,b<

| S

Suppose now be n > 4. We want to reduce to the previous case. Let us denote by
Hi the hyperplane in E™*! such that H; = S® N H;. Consider an (n — 3)-face

L,',j,k = H; N Hj NH.NP
and the (n — 2)-dimensional Euclidean subspace
Lijr=H;NH; N Hy.

Let W be an internal point of L, ;. Consider the roots v;,v;,v; and the space they
generate in E™t! together with the vector from the origin to W:

W;,_.,',k = (v;,'vj,v,;, OW) and ‘VVi,j,k = W,',j,k n.set.

Then L; j is an (n — 2)-dimensional subspace of E"+! orthogonal to the 3-dimensional
subspace (v, vj,vx) and L; jx N (vi,vj,ve) = {0}. It follows that L; ;N W x = (OW)
s0 Lije N Wijr = {W} and L; j is an (n — 3)-dimensional S-hyperplane S-orthogonal
to the 3-dimensional S-hyperplane W ;.

The Grassmann relation applied to H; and W;; gives

dim (H,' N W,',j,k) =dimH; + dim W,',j,k —dim ('H,’ U W,',j,k) =n+4— (n + 1) =3

so dim (H; N Wi;x) = 2. Also dim (H; N Wi i) = 2 and dim (Hx N Wi i) = 2.
Then in the intersection with W ;; the three hyperplanes H;, H;, Hy bound a trihedral
angle. The dihedral angles are preserved, since we have intersect by an S-orthogonal
3-dimensional S-hyperplane. The previous conclusions obtained for n = 3 can be
applied.

Then the 2-faces of P are non-obtuse-angled and so S-triangles.

Let V; be a vertex of P. There are n edges concurrent to V; since P is of simplicial
type [prop. L7]; denote Vi,...,V;, all the vertices of P joined to V; by edges. The
2-faces through V4 V] are:

Vohile, ..., oWV,

Among the edges concurrent at V;, there are
ViVo, ViV, .., ViVi;

there cannot be others as the number of n is already reached. We can find in the same
way that the edges concurrent at any other vertex V; are only

V;%; V:"/l)-"’ I/:'I/i--la ‘/:I/l:-i‘ls”w T/IV;I-
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So P has n + 1 vertices and is so an n-simplex.

H
Note that an n-X-sphere

Yor={z€ X dx(z,z0) =71}, 7>0

is a model for spherical geometry, so theorems proved for polytopes in S™ are valid
in any n-X-sphere.

Corollary 1.9 Each non-obtuse-angled polytope with ordinary vertices is of simplicial
type.

Proof Each vertex polytope is spherical and non-obtuse-angled, so by the theorem
above it is a simplex.

Let now consider the Euclidean case.
Lemma 1.10 An Euclidean acute-angled polytope is a simplez.

Proof Let proceed by reductio ad absurdum: consider an Euclidean polytope P C
E™ that is not a simplex. The idea consists in projecting the polytope onto an n-sphere
of sufficiently large radius (consider in E™*! an osculating n-sphere to E™ in a vertex
of the polytope; project as in the stereographic projection but from the center of the
sphere. In this way hyperplanes bounding P are mapped to S-hyperplanes). The
image is a spherical polytope whose dihedral angles are as close as it is need to those
of P. Choose the radius so large that the image results a non-obtuse-angled spherical
polytope and the previous theorem gives the absurd. k

B

A polytope which is the product of mutually orthogonal simplices, with one common
vertex, is called simplicial prism. (By definition also a simplex is considered to be a
simplicial prism.) The "factors” of this product are called constituents. The symbol
P = [P1, P2, ..., Ps] will denote that P is the product of Py,...,P,. The k-simplex will
be denoted by AF.

Theorem 1.11 An Fuclidean non-obtuse-angled polytope is a simplicial prism.

Proof Let P C E™ and N be the number of bounding hyperplanes.

In dimension 2, just follow the proof of spherical case: now the angle sum is equal
to (N —2)r. Then 3 < N < 4. If N = 3 then P is a simplex A% if N = 4 then P has
all angles right and is a rectangle [Al, Al].

In dimension greater or equal to 3 the property of being non-obtuse-angled transfers
as in the spherical case to the faces of P: in fact, let n = 3, an angle of a 2-face is the
side of some vertex simplex; let n > 3, we consider once again the vertex simplices.
They are spherical, so we can proceed as in the proof of the previous theorem and
reduct to the 3-dimensional case. So the 2-faces of P are Euclidean non-obtuse-angled
polygons, so either triangles or rectangles.

Suppose n = 3.
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The polytope P is non-obtuse-angled, so of simplicial type [cor. 1.9] and at each
vertex there are 3 concurrent edges [prop. 1.7]. Let f; denote the number of faces with
i sides. Then the number of edges is 1(3f3 + 4f4) as each edge is the side of two faces.
And the number of vertices is 1(3f; + 4f4) as each vertex belongs to three faces. A
substitution in the Euler formula for polyhedra:

number of vertices — number of edges + number of faces = 2
leads

% fz3+ —;— f1=2, with % 13, :,1)'- f1 non-negative integers.

An arithmetical analysis shows that there are only 3 possibilities (f3, fa) = (4,0}
or (2,3) or (0,6) which correspond respectively to the tetrahedron A3, the triangular
prism [A?, A'] and the rectangular solid [A!, Al, Al].

Suppose n > 4.

Each bounding (n — 1)-face is non-obtuse-angled, just by the same considerations
which prove us that the 2-faces are non-obtuse-angle. So by inductive hypothesis an
(n—1)-bounding face is a simplicial prism: it decomposes, in the product of one or more
simplices. Let fix attention on a vertex Vj; its vertex polytope is an (n — 1)-simplex
P’. The 1-skeleton of P’ -the vertex 1-skeleton- is a complete graph on n vertices
K., a socalled n-clique. Let F be an (n — 1)-face containing V5. Then F intersects
P’ in an (n — 2)-simplex F': let colour in red the edges of the 1-skeleton of F’ that
are contained in the constituent factors of F. Let colour in blue the remaining edges:
they correspond to right angles of bounding 2-faces. So they remain blue taking the
spanned subgraph on any other set of n — 1 vertices of P’ and repeating the procedure
of colouring according to another (n—1)-face of P at V5. This means that the colouring
is consistent. Moreover it is only necessary to fix colours on three (but not less than
three) different (n — 1)-cliques of the vertex 1-skeleton, to colour all the edges. Take
now an edge VyV; of P. Each (n — 1)-face through V,V; allows colours to travel from
one (n — 1)-clique of the 1-skeleton of P} to an (n — 1)-clique of the 1-skeleton of
P;. The (n — 1)-faces are in number of n — 1. Since n — 1 > 3, the coloured vertex
1-skeleton is the same at each vertex and characterizes P. So the assumption n > 4,
i.e. n —1 > 3, turns out to be crucial to prove that the same colouring occurs at each
vertex 1-skeleton.

Note that from the previous analysis, the coloured 1-skeletons in dimension 3 are:
red-red-red (tetrahedron), red-blue-blue (triangular prism) and blue-blue-blue (rectan-
gular solid).

To conclude the inductive step, it remains to prove that the red connected com-
ponents of the coloured vertex 1-skeleton are cliques. Consider the 1-skeleton of P’.
Remove a vertex of it, say v. Then the red connected components of the complete sub-
graph on all vertices of P’ but v, are cliques as by inductive hypothesis each (n—1)-face
is a simplicial prism. If all edges concurrent in v are blue, there is nothing to prove.
If v is connected by one red edge to a red component, then it must be red-connected
to each vertex of this component, since otherwise there would be a 3-cycle coloured
red-red-blue which is impossible as observed above. There can be a red edge from v to a
1-vertex (red) component. So in any case the red components of the vertex 1-skeleton
are cliques and they single out the constituents of P.
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N.B. Each K, determines an s-simplex A’ constituent of P.

Corollary 1.12 The number N of bounding hyperplanes for an Euclidean non-obtuse-
angled polytope P C E™ is between

n+1<N<2n.

Proof Let P = [AP,A9), A! C E'. Where EP x E9 = E" and n = p+ ¢. An
(n — 1)-face of P is obtained either from the product of a (p — 1)-face of AP and
A7 or from the product of AP and a (¢ — 1)-face of A?. So they are in number of

=(p+1)+(¢g+1) =p+qg+2. In general let P = [A™,...,A™], n; > 1, then
ni+..+n, =nand N =n; + ..+ n,+s = n+ 3. The number N increases
with 8,1 < 3 <n. So N > n+1 (n-simplex) and N < 2n (rectangular hypersolid
(AL ..., Al]).

|

The Gram matrix of an non-obtuse-angled polytope cannot have arbitrary entries.
Since the roots are chosen unitary the entries of the principal diagonal are all 1.

Proposition 1.13 The Gram matriz of a non-obtuse-angled polytope has all entmes
off the diagonal non-positive.

Proof Let P = NY, H be the non- obtuse—angled polytope, {v;} its oot system and
a;; the dihedral angles ‘

Let X™ be E™: then if H; and H are ad_]acent they form a non-obtuse a.ngle iy
0<a< Z. The angle between v; and vj is the supplementary of a;;j as v; and vJ are
- orthogonal to the faces and external to the dihedral angle of the polytope - E :

‘ ‘, v, EvJ ;’—cos(a,J) < 0.

T may also happen that two hyperplanes are parallel by the economlcal ch01ce of
hyperplanes and since the polytope is not a void set we have that H; N H; # @ and
H N H;’ = 0. So v; and v; are parallel but opposite:

Vi*EV; = -1.

Let X" be S™: then the angles of the spherical simplex are the angles of the
polytopal angle centered at the origin of E™*! and the root systems coincide. Then we
conclude by the Euclidean case.

Let X™ be A™: remember that A™ is represented in E™! by the hyperboloid up-
per sheet Q. The hyperplanes H; and H; are obtained intersecting @* with the
n-dimensional linear subspaces H; and H;. Then H; N H; is an (n — 1)-dimensional
subspace of E™! and (v;,v;) is its A-orthogonal complement. There can occur three
possibilities according to the fact that ;N 7H; can be hyperbolic, parabolic or elliptic.

‘H: N'H; hyperbolic H; and H; intersect in an (n — 2)-dimensional hyperplane of A™
(are adjacent faces) and v;, v; generate an elliptic (spacelike) plane of E™!. The
restriction of the inner product to a spacelike subspace is positive definite. Then
the Schwarz inequality is available, so |v; -5 v;| < 1. The A-angle formed by v;
and v; is supplementary to the A-dihedral angle a;;

Vi AV = — coe(a;j) < 0.
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H; N 'H; parabolic H; and H; are parallel; let w be a non null vector generating the
isotropic direction of H; N H;; then (w) C (vi,v;); vi,v; are A-orthogonal to w
and stand in different halfplanes determined by (w): then v; + v; is isotropic
which implies that

viav; = —L.

‘H; N 'H; elliptic the hyperplanes H; and H; are not adjacent, they do not intersect
and are ultraparallel. The 2-dimensional subspace (v;,v;) is hyperbolic (timelike)
and intersect Q@ in the common perpendicular to H; and H;. Then by a formula
relating the inner product to geometrical quantities [6, ch.10], [19, ch.2] we have
that

v; o vj = — cosh(dp (H;, Hj)) < 0.

|

We are primarily interested in n-simplices in X™, n > 2. (A 0-simplex is just a
point; a 1-simplex is a segment.) The root system of an n-simplex has n + 1 vectors,
and its Gram matrix is an (n + 1) X (n + 1) square matrix.

Before stating general results we will consider in dimension 2 three propositions,

which are provable by elementary techniques.

Proposition 1.14 Let P be a non-obtuse- angled spherzcal 2-simplez. Then its Gmm
matric G is positive definite. :

Proof Let o, 8 and 7 denote the angles of P. The positivity of the Gram matrlx
will follow from the inequality about angle sum « + B+ 7> v

1 —cosa —cosﬂ
G=| —cosa 1 —cosy
—cosf3 —cosy 1

The matrix G is positive definite if and only if its leading principal minors are
positive [2, ch.17]. There are 3 principal minors to check:

Gal = 5

2, 1 —cosa| . 2 _ 2.
Gyl =  cosa 1 =1—(—cosa)? =sin’ o
Ghzll = 161 =

= 1—2cosacosfBcosy —cos?a— cos?f8 — cos?y

The first two minors are obviously positive. Let us prove that this is so also for the
third.

The 2-simplex P is spherical non-obtuse-angled; so its angles a, 8 and v fulfil the
following inequalities:

a,B,y <
a+B+y >

A o)
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then g>a>1r—(,3+7)20.

Applying the cosine function, decreasing on [0, T}, to the above inequalities we have

0 < cosa < cos(r—(B+7)) = —cos(B+7) < 1
and 0 < cos’a < (—cos(B+7))? < 1
so —cos’a > —cos’(f+v) and —cosa > cos(B+7).

It follows that

|G| > 1+ 2cos(B+7)cosfBcosy — cos’(B+ ) — cos’ B — cos® v

= 1+ 2(cosBcosy — sin Bsin~y) cos B cosy — (cos B cosy — sin Bsiny)?

—cos? B — cos® v
= 14 2cos®Bcos’y — 2sin fBsin~y cos f cosy — cos® B cos®
+ 2sin Bsin~y cos B cosy — sin® Bsin’ 4 — cos? B — cos® v

= 1+ cos® B cos?y — sin® Bsin® vy — cos® f — cos®
1+ cos? Beos? 4 — (1 — cos® B)(1 — cos®y) — cos? B — cos® v
1+ cos® Bcos?y — 1+ cos? B + cos?y — cos? B cos? v — cos? B — cos? v
= 0.

I

Proposition I.15 Let P be a non-obtuse-angled Euclidean 2-simplez. Then its Gram
matric G is degenerate of rank and indez 2.

Proof Do the same computations as above, but substitute inequalities by equalities
-in Euclidean case a+ 8+~ =7 -.

Proposition 1.16 Let P be a non-obtuse-angled hyperbolic 2-simplez. Then its Gram
matriz is non-degenerate of indez 2.

Proof The angle sum for a hyperbolic triangle is less than =:
at+B+y<m

Suppose there exist at least two angles, say @ and v, with sum > 7. Then

O<a<m—(B+7)<

S

and the previous computations apply with reversed inequality signs.
If this does not happen, the above procedure fails as

cos(B+7) < 0.
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But observe that in this case 8 ++v < %, a+79 < 7 then
T ™
<——y,a< - —
B<g—7 5 7
™ . ' ™ .
cos 3 > cos(é-—'y) = siny >0, cos a > cos(E—A/) = siny > 0
cos 3 cos a > sin’ v
—cos’ a < —sin?y, —cos?’ f < —sin’ 7, —cosacos B < —sin’y
and
|G 1+ 2(—cos acos B) cosy + (— cos? a) + (— cos? B) — cos® v

< 1—2sin?~ycosy — sin?y —sin®v — cos?~y

—2sin% v cosy — sin? 5

= —sin’qy(2cosy+1) <0
So G is non-degenerate and has index 2.
B

Let now return to the general case and first of all to the spherical one.

Proposition 1.17 The Gram matriz of a spherical non-obtuse-angled n-simplez is pos-
e definite.

Proof The root system of a spherical simplex P C S™ is a collection of n + 1 vectors of
E™t1, As we have already seen in proposition 1.5, the root system contains a basis. In
this case the root system itself is a basis of E"*!. So the Gram matrix of the simplex
P is the Gram matrix of a basis. Then it is congruent to the Gram matrix of any other
basis in the given inner product -g [prop. III.3]. In particular it is congruent to I,;+1
the Gram matrix of the standard basis of E™"*! and therefore positive definite.

Proposition 1.18 Let G be the Gram matriz of a non-obtuse-angled n-simplez P. If
P is Euclidean then |G| = 0. If P is spherical then rank(G) = indez(G) =n + 1. If
P is hyperbolic then rank(G) = n + 1 but indez(G) = n.

Proof

If P C E™ the n+1 roots are n+ 1 vectors of an n-dimensional Euclidean space, so
linearly dependent. The Gramian of a set of linearly dependent vectors is null: |G| =0
[ prop.s III.1 and III.2]. The simplex is bounded. Let V; be the vertex opposite to
the 1-th face H;

1,n+1
Vi= () Hey, i=1,.,n+1.
k ki
The vertex polytope at each V; is a spherical (n — 1)-simplex, and its Gram matrix is a
submatrix of the Gram matrix of the simplex P. So by proposition 1.17 the rank and
the index of G are at least n.

If P C S® C E™! we conclude by proposition 1.17.

If P c A® C E™! the n + 1 roots form a basis of E™! then G is congruent to the
Gram matrix of the standard basis of E™! [prop. IIL.3], so rank(G) = n + 1 and
indez(G) = n.

H
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Lemma 1.19 Let G be the Gram matriz of a non-obtuse-angled (n —1)-simplez. Then
the cofactor of each entry is non-negative.

Proof [5, lemma 9.1]

We will proceed by induction. Start with the simply case of a 1-simplex: n = 2.
Then |G}| = |G}| = a12 <0, so (—1)1*2|G?| > 0.

Suppose now the assertion to be true for each s-simplex s < n — 2: we want to
prove it for an (n — 1)-simplex P. The Gram matrix of P has order n. Each principal
submatrix of order n —1 is positive semi-definite since it is the Gram matrix of a vertex
polytope. So |G} >0, 4 =1,...,n. Apply the inductive hypothesis to the submatrix
Gp of order n — 1:

then (-G >0, 1<4,j<n—1.

Let consider the submatrix G of order n — 1. Compute the determinant by the
cofactor formula on the (n — 1)-th row of G% (the n-th row of Gas 1 <i<n—1):

n-—1 i
IGil = Y gag(—1)*"t |G,

=1

So

n—1 .
(=1*"G] = Do (=gag)(—1)Y G

=1

n—1

= Y (g ) (~17¥|GEm])

J=1
> 0

<

as all the terms in the sum are non-negative.
The general case can be proved from this just applying the transposition (jn) to
the columns and rows of G.

|
Lemma 1.20 Let G be the Gram matriz of a non-obtuse-angled (n — 1)-simplez. Sup-
pose an entry (and its symmetric) is decreased. Then the determinant of the resulting

matriz 1s also decreased.

Proof Let g;;, 7 < j is decreased by k € R*. Denote by G’ the new matrix:

g1 .- g1 - gij -« Gin
Gii - Gii - Gij—k . Gin
GI: . . . .
g1 - Gii—k .. gii - Gin
Jin e Jin e gin - Gnn
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Consider two matrices that coincide except for the i-th row. The sum of their
determinants is equal to the determinant of a third matrix, which coincides with the
first two except for the i-th row: this is, entry by entry, the sum of the i-th rows of the
initial two matrices. Applying this result in the opposite sense, we have:

g1t ees G1i e gij e din G111 eee G1i .- gij .- din
g1i e Gii oo Gij ee- Gin gii .- gii  eee Gij  ee- Gin
G = : : : ARSI : : ;
gi; .- gij .- gi; e gin 0 .. -k .. 0 ... 0
Gin -+ Gin e gjn .- Gnn gin <« Gin .- Gin - Gnn
gi1 - G1i e G1j e+ Gin gir - Gii e G135 - Gin
0 ... 0 .. —k .. 0 0 .. 0 ... —k .. 0
+] : : AR : : L=
gij - Gij e gjj - Gin 0 .. -k .. 0 .. 0
gin - Gin .- gin .- dnn gin < Gin .- gin - Gnn

= |G+ (—R)(=1YH(GE| + (—R)(=1)HIG + (~1)2+2(=1)(=k)?| G-
Then by the hypothesis on G and by previous lemma
|G| - |G| = —k(—1)"|G}] — k(—1)|Gi] — K*IGI < 0,
which proves the assertion for ¢ # j. If i = j then |¢’| = |G| - k|Gi| and |G'| = |G| < 0

as before.

|

Coxeter calls a-forms [7, §10.2] the quadratic forms whose associated matrices have
non-positive entries off the (principal) diagonal. Henceforth A(n) will denote the set of
square symmetric matrices of order n with all the (principal) diagonal entries equal to 1,
and non-positive entries off the diagonal; As(n) the subset of positive definite matrices
of A(n); Ag(n) the subset of degenerate matrices of A(n) with rank = indez =n—1;
Ax(n) the subset of non-degenerate matrices of index n — 1.

Lemma 1.21 Let G € Ag(n) then each entry off the diagonal has absolute value
strictly less than 1.

Proof Since G is positive definite each principal minor IGEﬁl is greater than zero.

1 gij

]| —
0 < |Gl = g 1

So 1 — g% > 0 and |gi;| < 1.
|
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Lemma I1.22 Let G € A(n) be positive semi-definite. Then each entry has absolute
value less or equal to 1.

Proof Just repeat the previous proof: now the principal minors ]G’R’ﬁl are non-
negative.

Lemma 1.23 Let G € Ax(n) and suppose Gi€As(n—1), k=1,..,n. Ifn>2 then
each entry off the diagonal has absolute value less than 1.

Proof For each 1,7, i # j G’Eﬁ is the submatrix of G£, for some k, so lemma I1.21
concludes.

B

The previous lemma is never true if n = 2: if G ¢ A(2) then |G] =1~ g2, < 0,
but G: € As(l).

The positive semi-definite matrices of A(n) share a very special property which will
be proved by the use of the theorem of Perron-Frobenius.

Recall that a matrix A4 is said decomposable [20] if it can be written, after maybe
a possible permutation of rows and the same permutation of columns, as the direct
sum of matrices of strictly less order (i.e. an isomorphic image of it, is written as a
direct sum). It is said indecomposable if this does not happen. This definition has
an interesting interpretation in the language of graphs. Let A’ be the (0,1)-matrix
detecting the non null entries of A: a;; = 1if and only if a;; # 0. Interpret A’ as the
adjacency matrix of a graph I’ on n vertices. Then A is indecomposable if and only if
I is connected. '

Note 1.24 The definition of indecomposable matriz can be given for non-symmetric
matrices and then results slightly different (10, ch.1].

The Perron-Frobenius theorem is proved for irreducible matrices [9], which in gen-
eral are different from indecomposable ones, but which coincide in the symmetric case.

Let us state the theorem directly in the case we are interested in, that of indecom-
posable symmetric matrices:

Theorem I1.25 (Perron-Frobenius) An indecomposable symmetric matriz with non-
negatwe entries admits a positive eigenvalue, which has geometric multiplicity one and
it is not exceeded by any absolute value of other eigenvalues. Any eigenvector of it has
components all positive or all negative; moreover algebraic multiplicity is also one.

Proof [9],[18]

|

In the following proposition we will show that the hypothesis of indecomposibility
made on a positive semi-definite (but not definite, since otherwise the result would
be trivial) matrix of A(n) constrains it to belong to the class Ag(n). Before, we will
prove a characterization lemma for the eigenvectors of the zero eigenvalue of a positive
semi-definite matrix.
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Lemma 1.26 Let G be a symmetric positive semi-definite matriz of order n and qc
the quadratic form on IR" associated to it: qo(z) = z-¢z = * Gz. Then the quadratic
form qg vanishes on a vector © if and only if x is an eigenvector of the zero eigenvalue

of G.

Proof Since G is positive semi-definite (but not definite) its determinant vanishes
and 0 is an eigenvalue of G.

Let = be an eigenvector of the zero eigenvalue: Gz = 0. Then g¢(z) = z' Gz = 0.

To prove the other implication we will need the positive semi-definite hypothesis.
Let a € R and y € IR™. Suppose gg(z) = 0, then

0 < go(y +az) = g6(y) + 2a(y ¢ =), Va€eR.

Since the above inequality is true for all ¢ € R, then

0=y-g:v=thm=Zy,~(Gz),-.

=1

We can choose arbitrarily the vector y € R" so Gz must be the null vector and z is
an eigenvector of the zero eigenvalue of G.

Proposition 1.27 An indecomposable positive semi-definite (non positive definite) ma-
triz in A(n) has rank n — 1 and all submatrices of order n — 1 are positive definite.

Proof Let G € A(n) be positive semi-definite. Then G is degenerate and has 0
among its eigenvalues.

All the eigenvalues are real, as it is symmetric, and are non-negative, as it is positive
semi-definite. Since all the entries of G off the diagonal are non-positive then the matrix
I, — G has non-negative entries. Moreover it is indecomposable, since the principal
diagonal entries, also in a possible permutation of rows and columns, remain diagonal
entries. I.e. the zeroes on the principal diagonal do not bring decomposability to
I, — G, if this is not brought by G.

The theorem of Perron-Frobenius applies to it.

Now, A is an eigenvalue of G if and only if 1 — A is an eigenvalue of I, — G:

|G — AL = (-1)"]| -G+ AL,|
(—1)"| = G+ I, — I, + AL,|
(- |-G+ I, —(1-A)I,]

Il

So the greatest eigenvalue of I,, — G is the least of G. Then A = 0 is a simple root
of the characteristic polynomial of G and all the others eigenvalues are positive.

We have now to prove that any principal submatrix of order n—1 is positive definite.

Let us consider the quadratic form g on IR" associated to G: gg(z) = z'Ge = z-gz.
Then q¢ is positive semi-definite:

ge(z) >0 for any z € R".
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Fix j € {1,...,n}. Consider the quadratric form associated to the principal submatrix
G7: '
i

qG;;(ml, ey B 1y Tg 1y ey Bn) = GG( L1y eeey Tim1, 0, Tjp1y ey Tn)

i 1s positive semi-definite since so is gg. Let ¢ € IR™ and gg(z) = 0. Then ei-
J

ther z = 0 or z is an eigenvector of the zero eigenvalue of G. The Perron-Frobenius

theorem implies that the coordinates of = are all positive or all negative. So if

Qi (@15 ey i1, Tj41, oy Tn) = 0 then ge(z1,.mey 2j-1,0,2541, 0y 2,) = 0 and so z; =
J .
s = Zj_1 = Tj41 = ... = T, = 0. This means that g, is positive definite and so is G7.
Since j was any number between 1 and n, we have proved also the second assertion.
[ |

In the following lemma we will see what happens if we allow the principal subma-
trices of order less by one, to be Euclidean.

Lemma 1.28 Let G € A(n) be indecomposable and suppose n > 2. Suppose G either
belongs to As(n — 1) or is indecomposable and belongs to Ag(n — 1), i = 1,..,n;
suppose moreover that there exists at least one k, 0 < k < n such that |Gf| = 0. Then
G e AA(TL)

Proof Since G! is either Euclidean or spherical then —1 < gi; <0.

We have to determine the rank and the index of G. Let us first verify that the
determinant is negative. To this aim we will consider a particular congruent matrix of
G.

Suppose |G%] = 0 and |[Gh_}'n| # 0; the order of G is n — 1. Let ey, ..., e, be the
standard basis in IR". Let denote the submatrix G* by A. The matrix A is the Gram
matrix of eq,...,e,-1 in (R*71,-4).

There exist n — 1 vectors €y,...,6,_1 [ app. C] such that their Gram matrix in

n— . | In-2 O
(R™1,.4) is 02 0

of the Gram-Schmidt orthogonalization process, so each vector ¢; is a linear combina-
tion of ey, ....,e;, i =1,...,n— 1. The vector €,_; is isotropic for -4: €,_1 *4 €n_1 = 0.
Since the associated quadratic form g4 on IR is positive semi-definite, the vector
€n—1 is an eigenvector of the null eigenvalue of A. Since A is indecomposable, by the
Perron-Frobenius theorem we are sure that its components (ay, ..., a,_1) are all positive
or all negative. Since {e;} is the standard basis and €,_; is a linear combination of
€1,..., €n_1, We have £,_1 = 77! a;e;. We want to show that e,_1 ‘g e, # 0. In fact

. The new basis is obtained by the use of the extended version

n—-1 n—1
€n-1°'GEn = Z G,’(E,‘ ‘G en) = Z aiGin-
=1 i=1 )

Since G is indecomposable at least one among gin, ..., gn—1,» is different from 0. So all
the terms in the sum are all negative or all positive (according to the sign of the a;)
and at least one is different from 0: then €,_; ‘g e, # 0.

Let C be the non-singular matrix of the change of basis from ey, ..., e, to €1, ..., En_1, €n.
Then G is congruent, via C, to the Gram matrix of the new basis €1, ...,€,_1, €n
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[prop. I11.3]

1 0 R 0 €1°G €n
0 1 0o ... 0 €2 G €n

Ct GC — . . . .
0 0 .1 0 E€n—2 °G €n
0 0 e o e 0 €n—-1°G €n

€1'G€n €2°GEn < +« « En-1°Gé€n 1

So |A] = —(en-1 ‘G €n)? and it is negative as €,-1 ‘¢ en 7 0. The sign of the

determinant of two congruent matrices is the same then also |G| < 0.

Since |G| < 0 then the index (the number of positive terms in the canonical form)
is less then the order, and the difference rank(G) — indez(G) must be odd. Then we
have indez(@) = rank(G) — 1.

|

We will now consider the problem of the existence of the non-obtuse-angled polytope
given the matrix G. Obviously G must belong to the class A.

Let G be a symmetric matrix of order N and of rank n < N. The Sylvester’s law
of inertia tell us that the index of G is well defined, i.e. there exists a well defined
integer 5, 0 < s < n, such that G is congruent to I(s,n — s, N —n). Then there exists
a collection of N vectors in IR" with Gram matrix G, and defined up to a motion of
(IR™, *1(s,n—s)) [theorem IIL.5]. This collection of vectors will be called a root system of
the matrix. Given the roots of the matrix we will interpret them as the root system of a
polytope. I have developed an extended version of the Gram-Schmidt orthogonalization
process to explicitly construct, even if G is singular, a collection of vectors whose Gram
matrix is G [see app. C]: the condition on G is to possess a submatrix of maximal rank
with all leading principal minors different from zero.

Theorem 1.29 Let G € Ag(n + 1). Then G is the Gram matriz of a spherical non-
obtuse-angled n-simplez.

Proof The rank and the index of G are both equal to n 4+ 1. Then G is congruent
to I,41. There exist n+ 1 roots v;, 1 = 1,...,n+ 1 for G [thm. II1.5]. Since their Gram
matrix is non-singular, the n + 1 roots form a basis of E**! [prop. III.1].

Counsider the n + 1 hyperplanes E-orthogonal to the v;’s:

Hi={z€ E"*zgv,=0}, i=1.,n+1L

We will prove that
n+1

N H #0

is a simplicial unbounded open (n + 1)-hedron.
Since {v:}i=1,.n+1 is a basis of E™"t!, each vector # can be written uniquely as
z = ) z;v;. Substitute the expression of z in the system of inequalities

{zgv;<0, i1=1,.,n+1
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we obtain a system of linear inequalities in the variables z;

n-+1
{Zm,-g,ngﬂ, j=l,...,n+1

i=1

which has infinite solutions. In fact there is a bijective correspondence with the (n+1)-
hedron of E™*! defined by

l{ijO, j=1,..,n+1:

for each (n + 1)-uple (y1,...;Yns1), ¥ < 0, the system

{Zgiﬂ’j =y, 1=1,.,n+1

has a unique solution by the non-degeneracy of G. The intersection with S™ gives the
spherical n-simplex, whose root system is {viti=1,..n+1-

We have —1 < g;; < 0 [lemma I.21] and the dihedral angle of the (n + 1)-hedron
enclosed by H; and H; is «;; = arccos(—g;;). And the angle between H; = H;NS" and
H; = H;NS" is by definition the angle between H; and #;. The simplex is determined
up to a motion of E”*! (thought as a vector space).

Theorem 1.30 Let G € A(n + 1) be positive semi-definite (but non definite) and
indecomposable. Then there ezists a non-obtuse-angled Euclidean n-simplex determined
up to simalarity, whose Gram matriz is G.

Proof By the hypothesis we have rank(G) = indez(G) = n [prop. 1.27]. There
exists a root system {v;}i=1,.. ny1 C E™ [thm. II1.5] and we can suppose that the first
n roots v, 1 =1,...,n, form a basis of E".

Consider the hyperplanes

H; = {22 € E"I T pU; = O}, 1=1,..,n
and the half-hyperspaces
H ={z € E"| z-gv; <0}.

Then N, H; is an n-hedron with vertex at the origin [thm. 1.29]. A root determines
the E-orthogonal hyperplane up to translation; the last hyperplane H,;; = {z €
E™ z g vny1 < d} has to be chosen in the pencil of parallels hyperplanes determined
by vn41,1i.e. we have to choose d.

The eigenvector ¢ = (cy,...,cny1) of the 0 eigenvalue, gives the coefficients of the
null linear combination of the n+1 dependent roots: in fact G ¢ = 0 represents globally
the null vector so we have

ntl ntl n+1
0 = Z 9ii¢ = sz‘ ‘EVjCj = Vi'E (Z cvj), 1=1,..,m,
Jj=1 J=1 j=1

just considering the first n components. Then as {v;}i=1,... is a basis,

CiV1 + ...+ Cnt+1VUn+1 = 0.
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By the theorem of Perron-Frobenius ¢ has compoﬁents all positive or all negative. So
Upy1 = 1/1'01'+ v+, and v, <0, =1,..,n.
Suppose z be an‘interior point of N™; H then z-gv; < 0,72 =1,...,n and
z g Uny1 = v1(T EV1)+ e + (T 5 Ua) > 0.

The origin is the vertex of the n-hedron N2, H;, and we want it to belong to the
hyper-halfspace H,,: so we have to choose d > 0. Since we want also interior points
of the n-hedron to belong to the hyper-halfspace, we have to choose d > 0. So d
can be any positive real number. The hyperplane H,,; is not parallel to any of the
hyperplanes H;, 7 =1,...,n, since the eigenvector ¢ has all components different from
zero. Then N! H is an Euclidean n-simplex. The dihedral angles are determined
as in the previous theorem.

Different values of d, give rise to similar n-simplices.

|

Let drop the assumption of indecomposibility on G.

If

G=G oG ®..0 G

G; € Ag(N;), N; > 2, G; indecomposable: to G; corresponds an Euclidean non-
obtuse-angled (N; — 1)-simplex; then the direct product of the k simplices gives a
non-degenerate Euclidean non-obtuse-angled polytope in E*, n = Y% | N; — k. The
rank of G is n and the index is n — k.

But if G € Ag(n + 1) the indecomposibility is constrained by finite volume request
on the polytope. Let consider an example.

Example 1.31 Let G € A(3) be the following matriz:

1 0 0
G=|0 1 -1
0 -1 1

this does not correspond to a finite volume Euclidean 2-simplez.
With the procedure described in the appendiz, we find that

o 100
c*cc:i 02 0 “ where C=1]0 1 1
0 0 1

A root system for G is vy = (1,0), vo = (0,1) and vz = (0,—1). Seek for the polytope
as in theorem 1.30. The result is an infinite half-strip.

This happens because the index is one less the order and among the G;, 1 = 1,..., k,
only one can have index less by one of the order (Euclidean simplex), all the others
must be positive definite (unbounded s-hedrons, for some s). Then the direct product
polytope results of infinite volume.

In the hyperbolic case there are no more restrictions on the order of the matrix [20].
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Theorem 1.32 Let G € A(N) be indecomposable of rankn + 1 and indez n, (n+1 <
N). Then there ezists a convez non-obtuse-angled non-degenerate hyperbolic polytope
P C A" whose Gram matriz is G. The polytope P is uniquely determined up to a
motion.

Proof

The matrix G has rank(G) = n + 1 and indez(G) = n. There exists a root system
{vi}iz1,...y C E™! [thm. IIL5] such that the first n + 1 roots v; form a basis of E™1.

Each root is spacelike, as v; - v; = 1 by construction. So the linear subspaces of
codimension 1

H,’Z{:DEE"’II:Z:-A’U,‘:O}, 1=1,..., N

are hyperbolic (timelike) and they intersect the sphere of imaginary radius Q in the
hyperplanes H;, 7=1,...,N.

Let consider the half-hyperspaces

H;:{zEE"’lim-Av;SO}, 1=1,..,N.

We have to prove that their intersection X = N, Hy is a non-void convex polytopal
angle with vertex at the origin of E™! and that we will obtain a polytope in the
hyperbolic space, i.e. that X intersect in an open subset one of the two sheets of Q
and that the hyperplanes H; contain the faces of this polytope.

Apply Perron-Frobenius theorem to G: let A(< 0) be the least eigenvalue and
c=(c1,..en), ¢ >0, i=1,..,N a corresponding eigenvector. Consider the vector

z =} ;c;v;. Then

T AV = ZCJ"UJ' AV = chgj,' = Zgijcj- = (GC),‘ = (/\C),‘ = AC,’ < 0
J J J

so z€K; mmoreover -z = Zc,-(:c A v;) < 0.
J

Then ¢ = oy €@ = QtUQ™ and ¢ € K. Let us suppose ¢ € Q*+. (This is not

restrictive, since if ¢ € Q= then ¢ = —¢ € Q+, and this can be achieved just replacing
all the roots v; with their opposites —v; or ¢ with —c).

Take w € Q~. Then w and ¢ belong to different components of the hyperboloid @
and so { -p w > 0. Let y € K: by definition of X we have v; -5 y < 0. Then

cay=Y cujay<0,asc;>0. SoKNQcCQ.
J
Consider the A-orthogonal projection z’ of z on H;:

TaY V; =T — (23 ‘A ’UJ')’U_,‘.

T =z
Vi A5

It follows that z’ # 0 since z is timelike and v; is spacelike. Suppose i # 7, then

AU =T op U — (2: ‘A vj)(vj ‘A ’U,') = A Vi — g,'_,'(z A vj) <0 so z'ek.

]

We have that {’ = ;Z— is the A-orthogonal projection of £ on H; = H; N Q* (¢’

e

belongs to the plane generated by ¢ and v;, that intersect @+ in the A-line A-orthogonal
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to H;: ¢ is the foot of the A-perpendicular to H; through £). Let P = X N Q*. The
A-orthogonal projection of P on H; is in fact contained in H; NP and contains a
non-empty open subset of Hj, this implies that H; bounds P.

Then P is the wanted polytope. Its Gram matrix is G. The polytopal angle K
is unique up to a motion of E™! [thm. III.6]. A motion of A" is a motion of E™!
which preserves Q1. Then also P is unique up to a motion, as K intersects only one
component of Q. ‘ '

|

Let consider the case of a simplex: N =n+1and G € A;(n+1). Then the simplex
is bounded if Gf € As(n), k = 1,...,n+1; it has finite volume if Gf € As(n)U Ag(n),
k=1,..,n+1[20, thm.4.1].

Denote by {v;}i=1,..n41 the roots. Let suppose Gf € Ag(n). Then

1,n+1
We= (] H

i, ik

is 1-dimensional in E™!. The subspace orthogonal to W is generated by all the roots
but v, and it is spacelike since G¥ is supposed positive definite. Then W is timelike
and it intersects the sphere of imaginary radius in an (ordinary) point of the hyperbolic
space. Let suppose G¥ € Ag(n). Then the subspace generated by all roots but vy

<’Ul, ....,’f};, seny ’Un+1>

is parabolic (lightlike) and contains one isotropic direction

1,n+1
Wi= ] He
i, ik
Then W is isotropic so determines an ideal point. So the simplex has a vertex at
infinity.
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Part II
Coxeter simplices and Coxeter
graphs

A non-obtuse-angled simplex P = N¥!' H7 C X" (of finite volume) is given the
appellative of Cozeter’s if any two hyperplanes H;, H;, i # j, bounds P in a dihedral
angle of value g Mii €L, mij > 2. Le. all dihedral angles are integer (non trivial)
submultiples of 7. If H; and H; are disjoint then we put n;; = co. In a simplex this
happens in Euclidean case for n = 1 and in hyperbolic case for n = 2 (parallel edges
with a common vertex at infinity).

To each Coxeter simplex P is associated a discrete object I': a simple graph marked
on edges or alternatively a multiple graph with allowed parallel edges [4, ch. IV,§1,9],
15, p.619], [19, ch.13].

We will denote the set of vertices with V(T') and the set of edges with £(T).

To each hyperplane corresponds a vertex: 4; «» H;, 1= 1,...,n+ 1, then

V(T) = {71,000y Tnsa }-

Two vertices ; and +; are joined by an edge 7y = [yi7;] € £(T) if the corresponding
hyperplanes H; and H, enclose an angle of f?,-" and n;; > 3. To 7 is associated the
mark n;; —2; mark oo if the hyperplanes are parallel, but we do not consider directions
on edges. Usually the mark is written above the edge, mark 1 is omitted and an edge
with mark 1, in the text will be referred to as an unmarked edge.

The marked graph T is called Cozeter diagram [19] or Cozeter graph [4] of P. The
cardinality of V(I') will be called the order of I'. The unmarked underlying graph will
be called the support of T.

There is an alternative description, in which the edge 7 of mark n;; —2 is substitued
by n;; — 2 parallel edges connecting +; and +;. So an edge marked k is the same as k
parallel edges.

The given definition follows the one given by Thurston in [19]. Tt allows to collect
more cases in one single notation. Note that Coxeter [7], Bourbaki [4] and others define
the mark to be n;; and omit marks 3.

Proposition II.1 Given a spherical Cozeter simplez, its Cozeter graph is cycle free.

Proof [4, ch.V,§4,8]

Let us proceed by reductio ad absurdum: suppose there exists a cycle

Viy Yig Vi Viy

of length k greater or equal to 3. The inner product space structure given by the Gram
matrix G of the simplex on IR"*! is positive [prop. 1.17]. This means that each non-null
vector has positive length: let z = e;, + e;, + ... + e, then z-.gcz > 0. But

g = (6.'1 + e, + ...+ e;k) e (eil +ei, + ...+ eik)
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= Zez Gez +2Zez °G €ig

i<s

= Zl+zzgz ig

i<s
= k +2[ giyi, + Gigiy + - + gip_,ip, + giyip, + negative terms ]

We have pointed out in the last row the entries of G corresponding to the edges of the
supposed existent cycle: [vi,¥i,], [Vig¥ialy - [¥ip_y %] and [7i;7i,]- Their marks are
greater or equal to 1, so i ji > 3. The function f(*) = — cos T is decreasing for x > 3

and —1 is an upper bound in the given domain. Then Gijis < -1

S0 m-Gmgk—2k—;—=k——k=0.

This is an absurd as z # 0.

H

In the alternative description, with multiple edges, the proposition proves that the
only possible cycles are the 2-cycles.

We want start from a marked graph I'. Let the order of I' be » + 1 and let m;; be
the mark of the edge [v;v;]. Construct a matrix C of order n 4 1 with on the principal
diagonal all entries equal to 1; if i # j define ¢;; = m;; + 2 (i.e. the marks added up
with 2). Remember that if 4; and 4; are not joined, then we can suppose m,; = 0.
The matrix C is called the Coxeter matrix [4] of the gra.ph I'. Apply to the Coxeter
matrix (to all its entries) the function f(z) = —cos £ and f(oo) = —1. We.obtain a
new matrix which I call the Gram matrix of the graph

For short, in the sequel a Coxeter graph will be said spherical, respectively E’uchdean
or hyperbohc if its Gram matrix is positive definite, respectively indecomposable degen-
erate positive semi-definite or indecomposable non-degenerate but indefinite of index
one less the order.

Note I1.2 Let me point out that in topological graph theory spherical graph [12, 1.4,1.5]
is sometimes employed, in place of planar graph [12, 1.6], for a graph which admits an
imbedding in the 2-sphere.

Remember that a graph map [12, 1.1.6] is given by a function on vertices and a
function on edges such that incidence is preserved. For marked graphs on edges, just
require that the mark of an edge is less or equal to the mark of its image.

Proposition 11.3 If two Cozeter graphs are isomorphic then the Gram matrices are
tsomorphic.

Proof An isomorphism of graphs is an isomorphism on vertices and an isomorphism
on edges which preserves incidence relations and marks. The isomorphism on vertices
gives for one matrix a permutation on rows and the same permutation on columns.
This shows that an isomorphic image of one matrix, is equal entry by entry to the
other.

|
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Proposition I1.4 Given a Cozeter simplez P, the Cozeter graph T is connected if and
only if the Gram matriz G is indecomposable.

Proof
The proposition will be proved if we will show that: the matrix is decomposable if
and only if the graph is not connected.

I' is not connected
if and only if

V(I') splits in two disjoint subsets V; and V;, such that for every
possible choice of v; €V, and v; € V2, v and v; are not joined

if and only if
there exist two subsets I;, I, of 7 ={1,...,n+ 1} such that I; N7, =0,
Z,UZ, =7 and g;; =0 whenever 1 €1;, j € I,
if and only if
there exists a permutation ¢ on 7 such that o(Zy) = {1,...,|Z1|},
o(Z2) ={|T| +1,..,n+ 1}, |T;| cardinality of I;, and applied to the rows
and columns of (G shows it, as a direct sum of two submatrices.

The subsets Z; and Z, are determined by V; and V, and viceversa.

The Coxeter graph is a visual tool: the existence and the type of the corresponding
simplex is checked via the Gram matrix developed theory.

Lemma IL.5 A Cozeter graph of order n + 1 corresponds to a Cozeter spherical n-
simplez if an only if its Gram matriz is positive definite.

Proof Start from a Coxeter spherical n-simplex P. Construct, as illustrated, the Cox-
eter graph T’ associated, up to isomorphism of graphs, to P. The Gram matrix of T is
the Gram matrix of P. So it is positive definite.

Start from the Coxeter graph I'. Compute its Gram matrix G. If it is positive
definite it determines, up to a motion, a spherical n-simplex P [thm. 1.29]. The
Coxeter graph associated to P is isomorphic to I.

|

The notion of submatrix of a matrix has its correspondent in the notion of induced
subgraph of a graph [12, 1.3.1].

The subgraph I" is an induced subgraph of T' if V(I") C V(T) and for each couple of
vertices v;,7; € I, [iv;] € E(I") if and only if [y;7;] € £(T) and the mark is the same.

A general Coxeter graph does not correspond to a Coxeter simplex: we introduce
the following conditions.

A Coxeter graph is said to satisfy the Coxeter Spherical respectively the
Coxeter Spherical Euclidean condition on induced subgraphs if

CS: Each induced subgraph on all vertices but one is spherical.
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CSE: Each induced subgraph on all vertices but one is either spherical or Euclidean,
but at least one is Euclidean.

Proposition I11.6 A connected Cozeter graph of order n +1 corresponds to a Cozeter
bounded n-simplez if and only if it is a CS-graph.

Proof In a Coxeter bounded n-simplex all bounding hyperplanes but one intersect
in a(n ordinary) vertex and each vertex polytope is a spherical simplex. So, in the
corresponding Coxeter graph, any induced subgraph on all vertices but one is spherical.

Viceversa, the Gram matrix G of a connected Coxeter CS-graph of order n+11is an
indecomposable matrix in A(n + 1) such that each submatrix of order n is in As(n).
So there exists a Coxeter bounded n-simplex P which admits G' as its Gram matrix
and: P is spherical if |G| > 0; P is Euclidean if |G| = 0; P is hyperbolic if |G| < 0
[thms. 1.29, 1.30, 1.32, lemma 1.28]. So the geometrical type is decided by the sign of
the Gramian.

| ’

Proposition I1.7 A connected Cozeter graph corresponds to an unbounded hyperbolic
simplez of finite volume if and only if it is a CSE-graph.

Proof The difference with the above proposition stays in ideal vertices, i.e. vertices
of the simplex which are points at infinity of A™. A sphere around such a vertexis a
horosphere which is isometric to Euclidean space E™! [6, p.197,p.251], [19, ch.3]; then
the vertex polytope is an Euclidean simplex.

The classification of Coxeter n-simplices can be done by the classification of all
possible Coxeter CS and CSE graphs. It will be done by induction.
Let introduce a partial ordering in the set of marked graphs.

Definition I1.8 Given two graphs, I' and I, we say that ' precedes I”
I' XTI & 3¢p:T 1T, suchthatT = ¢p(T)

i.e. if and only if T' may be embedded in I as a subgraph.
Two graphs, T'=<T' , are said to be consecutives if one of the following operations
tranforms ' in IV

1) adjunct of a new edge (marked 1) between two non adjacent vertices
V(T) = V(I') and there exists v; and 7, © # j, such that E(T) F [viv;] and
E(I") = €(T) U {[vivsl}s
2) increasing of just one mark
V(T) = V(I), E(T) = E(IV) and there ezists v; and vj, 1 # j, such that
ml. = m;; + 1, all the other marks being unchanged;

!
]
3) adjunt of a new vertez to be joined (by an unmarked edge) to a pre-ezistent vertez

VI =V U{y} and EI')=ET) U {11} for some ~; € V(T).
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If we think to an unexistent edge between two non-adjacent vertices as an edge of
mark 0, then case 1) is just a particular case of 2).

To apply induction on Coxeter graphs it will useful to have formulas to evaluate
the Gramian of a graph by the values of its precedents.

Lemma I1.9 Let I be obtained from I' by the adjunct of a vertez +' joined to the
vertez v; € V(T') by an edge [vi7] of mark k. Then |G| = |G| — |Gi| cos® E.

Proof Let n be the order of I'. The submatrix Gf is the Gram matrix of the graph
obtained deleting the vertex 4; and all edges incident to it.

Since the Gramian is unchanged by an isomorphism of graphs [prop. I1.3], it can
always be supposed that 1 = n and 4’ = 4,4;. Then

1 ... gin \ 0

¢ = 0
din - 1 —cosf

0 .. —cos {- 1

To obtain the desired result just evaluate the determinant by the expansion formula
with respect to the last column and then with respect to the last row.

|

The removal of a vertex in a graph means also the removal of all edges incident to
it. So if I is a graph and 4; € V(T'), with the symbol '\ v; we denote the graph, whose
vertex set is

VI \ %) :=V(T)\ {v}
and whose edge set is E(T'\v;) := E(T)\{n € E(T)| Iy € V(I'),v # 7 and 7 = [v:7]}.

Corollary I1.10 Let the hypothesis be as in the above lemma. Suppose that T \ v;
splits in two or more connected components:

I‘\’)’,"—‘IHUI‘QU...UI‘S.

Then -
|G” = lGl — 'Z:OS2 ZIGI, le' IGSI'

Proof The submatrix G, or a suitable isomorphic image of it, decomposes as the
direct sum of the Gram matrices corresponding to the connected components of T'\ =;.
And the determinant of a direct sum matrix is the product of the determinants of the
indecomposable components

[Gl @ @ G_ql - lGll *eres * ]G,I,

just by the Laplace theorem on determinant expansion.

|

These results will help us to conclude that when an edge is added or a mark is
increased, the value of the determinant decreases:

Theorem II.11 Let T’ and I' be two Cozeter graphs, G and G' the respective Gram
matrices. SupposeI' < I and G € AsU Ag U A, then |G| < |G|.
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Proof The lemma will be proved, if it is achieved for consecutive graphs.

If we have added an unmarked edge between two disconnected vertices (consecutives
of type 1)) or if we have increased the mark of just one edge (consecutives of type 2))
then the conlusion follows by lemma 1.20; if we have added one vertex and joined it,
by a new edge, to a pre-existent vertex (consecutive of type 3)) the proof follows by
lemma II.9.

#
Henceforth the Gram matrix of the graph I' will be denoted by the same letter I'
and the Gramian by |T'|.

In the following three section we will discuss the existence of infinite families of
spherical and Euclidean Coxeter graphs and the low dimensional cases (n < 2). The
case of dimension n > 3 is treated in section 4.

1 Coxeter spherical graphs

There exist Coxeter spherical and Euclidean graphs of arbitrarily high order. In the
spherical case there are three families of Coxeter spherical graphs.

Let us denote by P, the standard path on n vertices [12, 1.2.1]

O O O Oo— . . . —O.

Theorem I1.12 The n-path P, is the Cozeter graph of a spherical (n — 1)-simplez for
each n.

Proof Start from the one vertex graph Py: each P, can be obtained as a successive
of P, and we have the chain

PL<P<..<P, < ...

moreover P, is a consecutive, of type 3), of P,.

The first graph, P; is the one vertex graph; its Gram matrix is the 1 x 1 matrix
with entry 1, so |P;| = 1.

The consecutive P, is made up of two vertices joined by one edge; its Coxeter matrix

.13 : o -3
s 4 and its Gram matrix is 1 i S0 |P=1—(—3)=3.
Then for the consecutive of P, we apply the formula of lemma I1.9: and going on
we obtain, in general, |Py 1| = |Py| — i—an__ll.
1
CLAIM:  |P.|= “; .
This is true for n = 1,2. Suppose, by induction, it is true for k < n, m > 3. Then
P _n+l 1 n _ 2n + 2 n ~_n+2
| n+1| - on - Z on—-1 ~  9n+1 - on+l  9ntl”

The claim is proved: so for each n we have |P,| > 0 and the chain on graphs gives a
reversed chain on Gramians:

|P| > |P| > |B] >...> |P] > ..
1 ! 1 !
3 4 n+1

I > 2 > 4 > > oS
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If we remove any of the vertices of P,, we obtain a graph or a union of graphs of the
same type; so each induced subgraph on all vertices but one is spherical. The graph
P, is then the graph of a spherical (n — 1)-simplex.

|

Let T, denote the Coxeter graph on 4 vertices, which can be drawn in form of a

»T7 (10, 1.4,1.1):

O O ]

(o]

and suppose to extend the stem of the ”T” by the adjunct of one vertex and one edge
at time (consecutives of type 3) ). Let T, n > 4, denote the graph of this type on n

vertices. Then
Ty <T5 < ....<T, < ...

Theorem I1.13 The Cozeter graph T, corresponds to a spherical (n — 1)-simplez for
eachn > 4,

Proof The graph T} is obtained as a consecutive P;: adjunct a vertex and join it,
by a new edge, to the central vertex of P3. The removal of the central vertex from P;
leaves the totally disconnected graph on two vertices, i.e. two copies of I; = Py, so:
‘ : 1 ; 4 1 1
Ty =|Ps| — < |L||hl=5—5==.
T = 1P = IRl Al = 5 — 5 = |
T; is obtained from T by the adjunct of a vertex joined to any of the vertices of valence

1:

1 1 14 1
Ts| = |Ty| — = == =-.
|Ts| = | T4l 4!1’31 1 17 "3
Let n > 5: |Tnt1| = |Tn] — %]Tn_'ll. Then
CLAIM: T L
: |T.] = L

It follows by induction: it is true for n = 4,5. Suppose it is true for any k < n, n > 6,

then:
oo L 11 _ 2 1 1
U T 9nT2 T 4903 9n-1  9n-1  9a-1°

The induced subgraphs on all vertices but one of T}, can be

® I'h1
e UL UP,_3

o PUP,_4

e T,UP,_,_1, 4<s<n-—-2

® Tn—l
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so in each case spherical. Then T, is spherical.

Let B,, n > 2, be the graph which support is P,, but such that one of the two
terminal edge has mark 2 .

2

O O o— . . . —0O.

Theorem I1.14 The Cozeter graph B, corresponds to a spherical simplezx for each
n > 2.

Proof Also the B, form an ordered chain of consecutive elements, each obtained
from the precedent by an adjunct of type 3):

By < By <...<B,<..

V2

The Coxeter matrix of B, is 14 and its Gram matrix is 1 2 |l. Then

4 1 —vZ

Bl =1 (—) = L.
Then
|Bs| = |Ba| = || = §
and
Bl = |Bs| - 1|Bs| = 1.
In general
|Bn| = [Ba-1] — §|Bn-2|
and as before, by induction, we can prove a formula valid for each n > 2
CLAIM: B,| = 1
: |B,| = oy
It is true for n = 2, 3; so suppose n > 4 and the claim true for any k < n, then
1 1 1 2 1 1

| Bnt1| = on—2 4 9n-3 _ 9n-1 _ 9n-1 _ gn-1°
The induced subgraphs of B, on all vertices but one can be one of the followings
e P, 4
e [1UP,
e B,UP,_,1, n—2>s5>2
e B,

so in each case spherical.
Then each B, corresponds to spherical (n — 1)-simplex.

We want now to determine all possible Coxeter spherical CS graphs for order less
or equal to 3: this means that we will determine the Coxeter spherical simplices in
dimension n < 2. Note in fact that the dimension is one less the order: if n is the
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dimension of the space, the number of vertices of the n-simplex is n+1. So the number
of vertices, which is for a simplex also the number of faces, is equal to the order of the
corresponding marked graph. A Coxeter graph is spherical if and only if so are all its
connected components. Then we will determine only connected graphs.

n = 0 The order is 1; loops are not admitted, so there is only one graph: P;.

n =1 The order is 2. We have a spherical segment, i.e. a plane non-obtuse angle:
there are infinitely many:

k

o, kel, k>0.

o

n = 2 The graph cannot be a cycle [prop. II.1], and it is connected by assumption.
Suppose one edge unmarked and the other marked k. By the inequality 7 + 5 +

k—if > it follows k < 3. So:
0 O O P3
o o 2 o Bs;
3
) ) )

Suppose that one edge is marked 2 and the other k; then we have to analyse the

_inequality § + % + @3z > m. Which implies ¥ < 1. This happens also if the
marks are 3 and k. So we do not get new graphs. There are three connected
Coxeter spherical graphs on 3 vertices.

2 Coxeter Euclidean graphs

Let now consider Coxeter CS graphs, whose Gramian is null: the Coxeter Euclidean
graphs.

The matrix of an Euclidean simplex is indecomposable, since the system of roots
does not decompose in two subset of mutually orthogonal roots, then the corresponding
Coxeter graph is connected. This means that we have also to start by a connected
Coxeter graph.

Moreover in the defined order on Coxeter graphs, an Euclidean one can only be
the consecutive of a spherical one; never of an Euclidean graph, since the value of the
Gramian decreases. So in an ordered chain of graphs, if there is an Euclidean graph
this is unique.

The formulas for the Gramians of the spherical families P,, T, and B, suggest that
there would be also infinite families of Coxeter Euclidean graphs.

Let P, be obtained from P,, n > 3, connecting by an edge the two ends of the
path: it is the n-cycle C,.
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Theorem I1.15 The Cozeter graph P, is, for eachn > 3, a Cozeter Euclidean graph.

Proof
The Gram matrix of P, is almost the Gram matrix of P,: but both the entries g,
1

and gn; are decreased from 0 to —3.

Apply the computations performed in lemma 1.20 (N.B. k = 1), we have
o 1 n+1 1 1 n+1 n 1 in
1B = [Pl = S(=1 () = (=11 (B ]~ § (PR
The submatrix (P,)} is an upper triangular matrix of order n — 1 with all the diagonal

entries equal to —1. And the submatrix (P,)} is the transposed of (P,),. Finally
(P,)i* = P,_5. Then

~ n+l 1, o 1o, 1 1., 1ln-1
— = n _Thn ___1n+1__n1_«
_on+1 11 11 1n-—1
©2n 22771 292n-1 4 2n-2
= 0.

Since the induced subgraph on n — 1 vertices for each possible choice is P,_1, then

the Coxeter graphs P,, n > 3, all correspond to Euclidean simplices.
|

The graphs B, |B,| = 5:tt, have the property that

n—19

1
| But1] = 51Ba| = 0.

Let construct a graph, which would have, by lemma II1.9, the above expression for
the Gramian.

We have to do a successive of B, ;1: add a new vertex and join it by an edge of
mark 2 or equivalently by two parallel edges (N.B. cos § = —\%) to a pre-existent vertex
whose removal leaves the graph B,,. If n = 1 join the new vertex to any of the two

vertices of B,.
This graphs will be denoted by B,».
Theorem I1.16 The graphs B,, n > 3, are Cozeter Euclidean CS graphs.

Proof The Gramian of B,, m > 4, is null by construction. We might have some
doubt only on Bj, but it will soon disappear:

1
- =1=0.
2

[N

—_ 1
|Bs| = | Bz| — 2 || =

The induced subgraphs on all vertices but one have as connected components graphs
of type B;, P, and/or I}, , for some integers ¢,m, k, so are spherical.

This implies that the graphs B, are Euclidean.

| |

The same happens to T,:
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1
Tnsa| = 51Ta] = 0.

We have to construct a successive of T,,;1: add a new vertex and join it by an edge
of mark 2 or equivalently by two parallel edges, to a pre-existent vertex whose removal
leaves the graph T,,. If T,,;; = T4 join the new vertex to any of the three peripheral
vertices.

These graphs will be denoted by T, ».

We will denote by T, the graph obtained by the adjunct of new vertex done as
above but joined to the central vertex of Ps:

O O 0

Theorem 11.17 The graphs T,, n > 4, are Cozeter Euclidean CS graphs.

Proof Let start with 7, and Ts:

~ 1. 4 1
|T4| = | P3| — 5111|2 =3 5= 0;

Tl =Iml - iRl =3 -5 =0,
The general case n > 6 follows by construction.

The induced subgraphs on all vertices but one have the connected components
among Tk, By,, for some k,m, P; and/or I;. So the CS condition is satisfied: Tn s a
new family of Coxeter Euclidean CS graphs.

|

The graphs T, can also be obtained as consecutives of B,.: join a new vertex by an
unmarked edge to the last but one vertex counting from the unmarked end. This gives

the desired result since

1
|Bra| = 71Ba-1] = 0.

Suppose join a new vertex by an unmarked edge to the last but one vertex of the
stem (the unramified end) of T,, n > 5: we call H,,; the graph so obtained [10, I.1].
We consider H; to be obtained from Ty joining the new vertex to the central vertex of

T,.
Theorem I1.18 The graphs H,, n > 5, are Cozeter FEuclidean CS graphs.

Proof Let compute the Gramian of H; and Hg:

1

~ - =0
4

| =

—_— 1
|Hs| = |Ty| - 1 L) =
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_— 1 1 11
=|T5| — = |Ps|| 1] == — == =0.
ol = Il - 1Pl 10l = 5~ 3 =90
Now if n > 7 we have the general formula
— 1 1 1 1
|Hp| = |Tno1] — 1 | T3] | 11| = g3 " 1 gnTF = 0.

The CS condition is satisfied, since the induced subgraphs on all vertices but one
are among T}, for some integer k, P; and/or I;. So H, are Coxeter Euclidean CS
graphs, as claimed.

We have obtained four infinite families of Coxeter Euclidean graph.

Let now look at what happens in low dimensions:

n = 0 There are no Coxeter Euclidean graphs. (The one vertex graph is spherical since
its Gramian is positive.)

n =1 The only Euclidean simplex is a segment, the roots are opposite linearly depen-
dent vectors; the Gram matrix is

and the Coxeter graph is

n = 2 There are three Coxeter graphs on 3 vertices: the graph must be connected and
the marks (k,m,t) must verify the equation

T + T + T
=1
k+2 m 4+ 2 t 42

The only non-negative integer solutions are (1,1,1), (0,2,2) and (0,1,4): the

3-cycle P

O -0

and
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3 Coxeter hyperbolic graphs

The graph of a hyperbolic simplex is connected, since it follows in the marked graph
partial order Euclidean ones (maybe not Coxeter’s, if we suppose admissible to drop
the condition on integral marks).

There are no infinite families of Coxeter hyperbolic graphs.

Let, as before, n denote the dimension of the space X™ where we seek for n-simplices:
recall that the order of the graph is then n + 1.

n = 0 There are no Coxeter hyperbolic graphs.

n =1 There are infinitely many hyperbolic bounded segments corresponding to A-
angles with vertex at the origin of E''l. But the two vertices of the Coxeter
graph would have to be joined by a dotted edge since this situation is a particular
case of ultraparallels hyperplanes, although such a concept makes no much sense
in dimension one as hyperplanes are points. Moreover this situation does not
appear for the simplices in dimension n > 2.

n = 2 There are infinitely many hyperbolic Coxeter graphs on 3 vertices:

k

those whose marks (k,m, t’)’satisfy

™ ™ T

k+2+m+2+t+2

.

They correspond to bounded hyperbolic 2-simplices. The unbounded hyperbolic
2-simplices of finite volume are obtained if we allow k and/or m and/or ¢ to be
0.

4 Construction and classification

The developed theory allow to classify Coxeter simplices by the classification of
Coxeter graphs. We will do it for connected graphs. Let briefly recall the proved
results.

If a connected Coxeter graph of order n + 1 has all induced subgraphs of or-
der n spherical it is the graph of a bounded n-simplex; the geometrical type is
determined by the sign of the Gramian:

positive = spherical
null = Euclidean
negative @ =—>  hyperbolic
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if induced subgraphs are allowed to be Euclidean, then the simplex is hyperbolic
unbounded but of finite volume.

For each order the condition requires the knowledge of the classification for less
orders: an inductive process will be performed. Keeping mind of the various
Gramians, the consecutives are easily computed by the formula of lemma II.9.

There are added 4 Tables to the present work, from page iv to page ix.

The following method treats simultaneously the three geometrical cases; to dis-
tinguish the geometrical type, in the Tables, we have enclosed Euclidean graphs
with a rectangle, hyperbolic bounded graphs with two rectangles, hyperbolic un-
bounded graphs with three rectangles. The graphs without picture-frame are the
spherical ones.

To perform the inductive classification we might have started for each dimension
n from the totally disconnected graph on n+1 vertices, I,,+1 (as we use to denote
it the symbol of its Gram matrix). The Gramian of I,,4; is 1; Iy is a Coxeter
spherical CS graph. If we construct all its possible CS- and CSE-consecutives
without increasing the order, we would obtain also disconnected spherical graphs;
since we are interested in connected graphs we will proceed differently.

We will first at all start from P;, the one vertex graph. Then make consecutives
by adjuncts of type 3): all graphs will be unmarked. The process looks like an
algorithm:

put P in the Table;

repeat I' := a spherical or Euclidean graph without consecutives from the Table;

while there are vertices v € V(T') which have not been considered do
add a new vertex to T}
join it to ~;
if the new graph I" is a CS or a CSE graph (the induced subgraphs are
unmarked and must be precedent elements in the Table);

then add I” to the Table;

compute the Gramian and enclose I" in the relative number of rectan-
gles

until we have reached the desired order.

Doing such an algorithmic construction a lot of situations repeat by symmetry.
The first steps are very easy since P, has only one consecutive: P,.
Also P, has only one consecutive: P;.

Then there are different possibilities: but the CS and CSE graphs are quickly
recognized.

The CS and CSE graphs so obtained up to order 10 are contained in Table 1.

Note I1.19 Since an induced subgraph must be spherical or Euclidean, the con-
dition applies also to its subgraphs. All induced subgraphs on all vertices but one
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of the induced subgraph of the inital graph must be spherical, i.e. all induced sub-
graph on all but two vertices of the initial graph must be spherical. Going on in
this process it follows that each induced subgraph on n.— s vertices, for 2 < s < n,
must be spherical.

About the values of the Gramians, we see that all are less than |P,| = 1. Note that
a graph can be the consecutive of more than one and also more than two graphs:
its Gramian will be less than the minimum of the Gramians of its precedents.

Recall that a vertex is said to be of ramification if at least three vertices are
incident to it, i.e. it is of valence at least 3. If the graph is a tree the connected
components originated by the removal of a vertex are called arms. The length of
an arm is the maximum of the distances (measured in number of edges) between
the vertex and a peripheral vertex of the arm.

With the Table 1 completed up to order 10 it can be observed that if a graph is
spherical then

e a vertex has valence at most three

e there cannot be two vertices of ramification

o if there is a vertex of ramification and two arms have length greater or equal
to 2 then the third must be of lenght 1

e if there is a ramification vertex, one arm has length one and another length
two, then the third must have length less than five.

Let illustrate the other Tables.

Table 2 contains graphs obtained by an adjuct of type 1) from the graphs of
Table 1.

Table 3 contains the graphs consecutive to the ones of Tables 1 and 2 with 4
vertices, Table 4 those with 5 vertices. In these Tables it is increased the number
of edges.

In spite of a first impression, got from the low dimension examples, the number of
hyperbolic simplices does not grow widely with dimension, on the contrary there
are no bounded hyperbolic Coxeter simplices in dimension greater than 4. And
there are no Coxeter hyperbolic simplices of finite volume in dimension greater
than 9.

This is because the CS and CSE conditions soon become very restrictive.

Let prove for example the following:

Theorem I1.20 The Cozeter graph

2

O o (] o— . . . —0

onmn, n > 3, vertices is spherical for n < 4, is Euclidean for n = 5 and is
hyperbolic unbounded for n = 6.
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Proof If n = 3 the graph is just B3, which we know it is spherical.
Let n > 4 and denote by I',, our graph. Then

1 1n-1
on-2 4 9n-2"

L
ITy| = |Bno1] — i |Pooz| =

% 4 1 5
n— —n
Tol= 3 = =
and |T',| > 0 if and only if 5 > n, [I'x| = 0 if and only if n = 5. If n = 6 then

IT,| < 0 and an induced subgraph on all vertices but one is Euclidean.

For n > 7 the CSE condition is no more satisfied.
|
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Part 111
Appendix

A  Gram matrices of system of vectors

Let (IR",-g) be the inner product space structure fixed on IR*. To a finite set of
vectors {v;};=1,., we associate the real symmetric matrix of their inner products

G(v1yes ) = (Vi B Yj)ijet1,p;

It is called the Gram matriz of the set of vectors {v;}i=1,,. The determinant of
G(v1, ..y vp) is called the Gramian of {vi}i=1,..p-

The Gram matrix of the standard basis {ei,...,e,} in (R", ) is just B.

Recall that a subspace of an inner product space is non-isotropic if the only
common vector with its orthogonal subspace is the null vector.

Proposition III.1 The Gramian of {v;:}iz1,., is different from zero if and only
if the vectors v; are linearly independent and the subspace they generate is non-
isotropic.

Proof Let G = G(vy, ..., vp) and let W be the subspace generated by the v,’s. Sup-
pose |G(v1,...,vp)| # 0. If we suppose that there exists a null linear combination
of the v;’s

¢ = zpjg,- vi=0, with  (£,.m8) # (0, 0)

then the identities 0=0-pv;j=¢-pv;, j=1,..,p show that (¢,...,&,)
is a non-trivial solution of the homogeneous linear system, in the indeterminates
Ads
p
(*) {Z gj,’A,‘ =0 y ] = 1, cens D
=1

But this contradicts the supposed non-degeneracy of G. So we have proved that
the p vectors are linearly independent and so provide a basis of W. In particular
p < n.

Let now prove that W is non-isotropic, again by reductio ad absurdum.

Suppose there exists ¢ € W N W5 and ¢ # 0. Then
p .
£=) &wvi, and EBvj=0, j=1,..,p.
=1

Substitute the expression of ¢ in the last p identities. This shows that (&1, &)
is a non-trivial solution for the homogeneous system (*). Which is once again an
absurd.
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Conversely, let vy,...,v, be linearly independent - a basis for W - and W non-
isotropic. If we suppose |G| = 0 then the system (*) has a non-trivial solution

(£1,-..,&p). The vector &€ = &y + ... + &pup € W\ {0} is such that

S'B’U,'ZO, 1= 1,...,p.

So £ € WB., This yields £ = 0, since the supposed non-isotropicity tells that
W N W-<e = {0}. And an absurd has been obtained.

Proposition II1.2 If the inner product -p is positive then the Gramian of any
set of vectors s non-negative.

Proof

Let {v;}i=1,.., be the set of vectors in (IR",-g). Since -p is positive all subspaces
are non-isotropic, so the Gramian is null if and only if the vectors are linearly
dependent.

Suppose the vectors are linearly independent. Denote by G the Gram matrix.
Then whenever z = (21, ..., z,)" € RP\ {0} the vector 3>7_; z;v; € R" is non null.
So

(3 o) 5 (3 207) > 0

and the quadratic form g¢ defined on IR? by ¢g(z) = ' Gz is positive definite.
Hence G has positive determinant.

Proposition II1.3 Let {v;}i=: ... be a set of n vectors in the inner product space
structure (IR",-g). Suppose that their Gram matriz G = G(v1,...,v,) is non-
degenerate; then G is congruent to the matriz B. In particular if {vi,...,vn}
becomes the chosen basis of IR" the matriz B is replaced by G.

Proof The set of vectors {vy,...,v,} is a basis since G is non-degenerate.

Let v = (v1,...,v,) and e = (ey, ..., €,) collect the basis as row vectors. Let C be
the matrix of the change of basis. Then v = e C. Let z, be the column matrix of
the components of the vector z in the base v, and similarly z. in e. Then z. =

Cz,andz-py=2z!By.=(Cxz,) B(Cy,) =2 C*BCy, =2 Ay, =2z -4 .

Let use the matricial row-column product also with the inner product, whenever
the entries are vectors: then

G=v-pgv=(eC)-p(eC)=C'epeC=C"BC = A.
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Corollary I11.4 Let {v;}i=i, . n be a set of N > n vectors in the inner product
space (IR",-g). Suppose that their Gram matric G = G(vy,...,vy) has the same
rank as the matriz B defining the inner product in the standard basis of R".

Then indez(G) = indez(B).

Proof Apply the previous proposition to a submatrix of maximal rank. It is the
Gramian of a basis, and is congruent to B. So they have the same index.

B Existence and uniqueness theorems

To determine a polytope starting from a matrix we need an existence and a
uniqueneness theorem about collection of vectors having that matrix as their
Gram matrix.

Theorem III.5 Let G be a symmetric real matriz of order N, rank n and indez
8. Then there ezist N vectors in (IR", [(sn-s)) whose Gram matriz is G.

Proof

Start by the standard vectors ey,...,ey in R and consider the inner product
space structure given by G. Then there exists a non-singular matrix C such that
C'GC = I(s,n —s,N —n) [2]. Let €1,...,ex be the new basis obtained by the
transformation given by C:

e =¢eC.

The isotropic vectors of the new basis are the last N — n.
Then e = eC™'; let cj;' denote the entries of C~1.

The totally isotropic part can be forgotten taking the following quotient map
T:RY - RY/(ent1, -y en)
N
where T(e;) =T(D £ic;') = (eijsemcnj)y 3=1,..,N.
i=1
T(e1),..., T(en) € R" and it results
T(ei) 1an-s) T(es) = €i ¢ € = gij-

Note that (€,11,..;EN) = (€1, ey €n)+8 = (RV )15,

The question of uniqueness is answered as follows:

Theorem IIL.6 Let (IR",-g) be a non-degenerate inner product space. Two sys-
tem of vectors, with the same cardinality N, both containing a basis of IR,
n < N, have the same Gram matriz if and only if they are mapped bijectively one
wnto the other by a motion.
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Let before state and prove a lemma, which is a restricted version:

Lemma IIL.7 Let (IR",-g) be a non-degenerate inner product space. Two basis
have the same Gram matrices if and only if there is a motion which transforms
one into the other.

Proof Let {v;}i=1,..» and {u;}i=1,.. be the two bases.

Suppose first that there exists a motion
¢:(R",-5) — (R",-B)

¢(z) s d(y)=z-py, Vz,y € R"

and

¢(vi) =ui, 1=1,..,n.
Then (Gu),'j =U;BU; = (}5(?),') ‘B (}5(’01‘) =V;'BV; = (Gv)ij' So the Gram matrices
coincide. ‘

Suppose now conversely that G, = G,. There is, uniquely determined, a linear
map ¢ from IR™ to IR™ which maps v; to u;. It can be determined by linear algebra
techniques on the vectors of the two bases and then extended by linearity.

The assumption on the Gram matrices implies that
v; g v = u; - u; = ¢(vi) -B P(v;)-

Let express a vector ¢ € R" in the basis {v;}: let z = 3", z;v;. The linearity of
¢ and the invariance of the inner product -3 on the basis imply that

#(z) B p(z) =z -pz, Ve IR".

Then ¢ is a motion of (IR", p).
|
Let now prove theorem II1.6

Proof Let {v;};=1,. ~ and {u;}:=1,...~ be the two system of vectors and suppose
the bases are formed by the first n vectors in both the systems.

If the motion ¢ exists the Gram matrices coincide, just by a matter of computa-
tion as before.

For the converse, by the lemma there exists a motion ¢ such that

QS(’U;) = Uy, 1= 1, ceey T

Let v = ZV,(“U; and up = Z,ufu,-, k=n+1,..,N.

=1 i=1

The coincidence of the Gram matrices implies that

vE=pF, i=1,...,n, &k ::n-:%-l,...,N.

1]
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Then for k=n+1,..., N:
B(ur) = S vhu) = 3o vFg(w) = 3 whui = wi.
=1 =1 =1

So ¢ sends one system of vectors to the other.

All the system of vectors that will be considered will contain a basis of the space.
But if this would not be the case, just consider the generated subspaces.

Somebody would maybe be tempted to ask: ”If two systems of vectors in R™ have
the same Gram matrix in one inner product space structure, would they have the
same Gram matrix also in another?” The answer is evident taking degenerate
inner products of different ranks. But it is also negative in the non-degenerate
case, as shown by the following counterexample:

Example II1.8 n =2

b= (0= (01 = ()0 = (2,222

Then in E* = (IR?,-g) we have G, = G, = I,. But in EV' = (R?,,), we have
Gy = 0 andGu:—“(l)(l)J.

1
0 —1
C Gram-Schmidt extended process

The Gram-Schmidt orthogonalization process can be extended to the degenerate
case (with a non restrictive assumption verified in most of the examples) following
the steps presented in (3, §4] for the non-degenerate case. It will provide us a
practical computational tool.

Let B be a square N x N symmetric real matrix of rank n. Consider the inner
product space structure defined on R" by B:

e;'pej=by, 1<1,7<N.

We want to determine an orthogonal basis, such that the non-isotropic vectors
of it are of unit B-length. Suppose reordering of the standard basis has already
taken place such that the first principal submatrix of order n (cancel the last
N — n rows and columns) is non-degenerate and all its leading principal minors
are different from zero. Let denote in the proof the reordered basis still with

{€e1, .- en}.
Let, for short, B’ denote

if 7 < n, the first leading principal submatrix of order 7, B[[llj]]



47

otherwise the (n 4+ 1) x (n 4 1) submatrix

bin bz .. bin by
biz by ... byn by

Denote by (B7),; the cofactor of b,; in B7.
Define
= .
0; = €; -+ Z(BJ);}I(B])SJ'ES lf] S n

s=1
0j = e; + Z(Bj);jl(Bj)sjes lf] >n.
s=1

We will prove that {o;} is an orthogonal basis for (R",-5). The extension to
what said by Bourbaki in [3] is referred to the isotropic vectors, so let suppose
j>mnand 1 <k <n,then

oj'Ber = Yoy (B?);; (B¥)sjes B er+ (BY);;(BY)jje; B ex

= (B [X1(B)sjbar 4+ (B7);5b1] -

Since {b1k, bok, -, bk, bjr } is the k-th column of B? and {(B?)1;, (B?)z2jy -+ (B )nj, (B?);;}
are the cofactors of the (n + 1)-th column of B and k < n, it follows that o; is
B-orthogonal to ey.

As the subspace spanned by {ey, ..., e, } coincides with that spanned by {o1, ..., 00},
the new vector o; is B-orthogonal to o for 1<k < m.

Now suppose still 7 > n and also k& > n:

0j 50k = |Si_y(B);H(B)sjes+e5] B [roy(B)5](B)sjea + €]
= bjt + (B);] [Ty (BY)usbat] + (B)id [T, (B by ]

+H(BI)FH(BF )ik [0 (B7)s( B Jubus]

Use properties of determinants, in particular the expansion formula of a determi-
nant by the cofactors (first theorem of Laplace) [11, ch.4.16], and keep in mind
that B is supposed of rank n: then

> (B*)ibi; = —(B*)rebrx
=1

> (B),ibs6 = —(B)3b53.

s=1
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Note that (B7);; = (B*)k.

Consider the submatrix of B obtained taking the rows 1,2, ..., 7,7 and the columns
1,2,...,m,k:

b1 b2 .. bin bk
big by ... ban Dok

bln b2n ene bnn bnk
blj bgj aen bnj bjk

Then

n

Zﬁskbsk + ,Bn+l,n+1bjk = ]ﬂl =90

g=1

but the cofactors of b, in 3 are just the cofactors of b,; in B, so

> (B7)ssbak + (B) 505 = 0.
s=1
Substituting in o; -g ok all cancel and it results equal to zero.

Suppose that {o;} has been reordered such that the positive vectors all come
first. Remember that we have define |oj|g = 1/|o; -5 0;|; then put

€; = I—:ﬁ; forj:l,...,n -
€; = 0j fory=n+1,..,N

{e;} is an "orthonormal” basis for (R",-p).
The formulas for the o0;’s can be obtained in an inductive approach:
put

01 =€

then (for the first step it is just a matter of rewriting) the set {o1,es,..., ex} is
a basis and its Gram matrix differs from B in rows 1,2 and in columns 1,2. In
particular the leading principal submatrix of order 2 is

01°B0O1 01 °BE€2
01°'B€2 €2°BEy

So
€2 'B 01
09 = — 01 + €2.
01 B 01
Then {o1, 00, €3, ..., €,} is a new basis and its Gram matrix differs from B in rows

1,2,3 and columns 1,2,3. The leading principal submatrix of order 3 is (we have
supposed n > 3)
01 'B 01 0 01 'B €3
0 02:B0y 02°Be€3
€3°B0O1 €3°'BO2 €3°'BE3
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(Note that the product is -p since the vectors o; are expressed by the e;.)

Then computing the minors we obtain

€3 B 01 €3 'B 02
03 = — 01 — 02 + e3.
01°B 01 02 "B 02
Going on we will obtain
=1l ‘g o
. 8
forj<n 0; =€; — Y o,
s—1 93 'B Os
g
€; ‘B O
; — e it )
forj>mn oj=¢e;— 0.

9—1 %3 ‘B Os

D Example

Consider the following example of a hyperbolic quadrilater in A?:

the hyperplanes Hi, ..., Hy are the intersections of the following linear subspaces
of E?! with Q*
Hy : 2y — 2z =0
Hy @+ 22 — 2 =0
Hg . 2y —}— Zz = O
Hy @ 22 + 2z = 0
the roots are
1
Ui = ﬁ(0,2,1)
1
v, = —(2,0,1
> = ol
1
vz = ﬁ(0,~—2,1)
1
vy = —(-2,0,1
4 \/?"( )
The polygon is P = N, H .
The Gram matrix is
PR
313 -
G =
4 -1 1
I

The determinant of G is zero; G defines a degenerate inner product on IR*.
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We can suppose have started with G, and forget about the polygon we were
started with.

The extended Gram-Schmidt method of orthogonalization applies to the previous
matrix G (without need of reordering) and gives

01 = €
02 = gertep
3
o3 = 2e;+et+e3
04 = —e;+ey—e3z3+es.

In this case there is no need nor to reorder the basis obtained. And the coordinates
of the vectors ¢; are

€1 ( 1, 0, 0, 0 )
e, = (2, 22 g, ()

e = (%8, ¥8, L&)
e = ( -1, 1, =1, 1)

These are the coordinates of the ¢;’s in the base {e;} so the product is still -5.
If we express the vectors of R* in the basis {¢;} then the product to be used is
"1(2,1,0)-

In practice, for our purposes, it is not useful to compute explicitly the coordinates
of €, i.e. the matrix C. We need C~! and this can be obtained easily from O,
which is triangular with all diagonal entries equal to 1:

o; = IO;IG g = (e O)i, 1= 1,...,3
04 = E4 = (80)4
Then
€1 = &
1 2v/2
e = ~3 €1+ \3/_ €2
e = —§ g1 — 2\/—2— € 2\/6 [
3 — 3 1 3 2 3 3
1 4+/2 26
€y = ~—§€1~—' \3/—62'!— \3/_53"“64

So as €4 is isotropic we can forget about it and just consider the vectors in
(IR?,-1(2,1)), which is done by the previously defined map Y. The root system
{T(e:)}i=1,..,4 has the same Gram matrix of {v;};=1, 4. The motion that trans-
forms one system in the other has matrix

d =

”’&"’I& o
|
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