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1 Introduction

In the last years two dimensional Field Theory has attracted a lot of attention. The
approaches where quite different, partly originating from the interest in string theory,
and on the other hand from statistical physics. The mergence point turned out to be
conformal field theory.

Let’s forget for the moment how the interest in this field came up, and what was the
motivation. Observing two dimensional systems from its own right, one can try to find
out properties and classify this space of theories. In this thesis I will concentrate on one
special class of theories, integrable ones. From a practical point of view their importance
lies in the fact that they can serve as a starting point for perturbation theory for realistic
models ( e.g. in surface physics). On the other hand there is the hope that they can
be completely classified. For example conformal field theories: they are integrable, and
describe the critical point of second order phase-transitions. Classifying those theories
would amount in classifying the possible universality classes of statistical models in two
dimensions.

But the conformal invariant theories do not exhaust the set of integrable theories.
There are also integrable non-conformal theories, well-known for a long time such as for
example in statistical mechanics the Ising-model or in soliton-theory the sine-Gordon
model. What is their relation to conformal field theory? Since at the critical point
they reduce to conformally invariant theories, the inverse process should be possible:
starting from a conformal invariant theory one should be able to obtain those models by
perturbation in some relevant direction in the space of couplings of the theory.

There are different ways to describe the resulting systems either one looks at them
as lattice statistical models or as field theories. If the field theoretical model contains
only massive particles, one has the possibility to describe the dynamics by the S-matrix
approach. Against the lagrangian formulation of the theory this has the advantage that
in the first ones quantization is a hard task, while the latter gives directly a quantum
theory; this is particularly true for soliton theories which contain degenerate vacua, where

perturbation theory cannot be applied. So not having at hand a direct quantization
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procedure for those theories one uses S-matrix theory to describe the interaction of
solitons quantistically.

There is one structure which appears in all of the above mentioned concepts: quantum
groups. They were first noticed in the form of the Yang-Baxter equation ([50] and [72])
which turned up as a consistency-equation for the factorization of the scattering matrix
into a two particle one. Really the Yang-Baxter equation was known before in statistical
mechanics as the Star-Triangle relation, already mentioned by Onsager [55] in his work
about the Ising model in 1944, and later on for finding solutions of other statistical models
[3] .

Another line of development was the theory of factorized scattering-matrix in two
dimensional quantum field theory [77], where the same mechanism is at work as in the
before mentioned models. Both can be related to the quantum inverse method, where
basic commutation relations of operators are described by a solution of the Yang-Baxter
equation. These works led to the idea of introducing certain deformations of groups and
Lie algebras, where from the terminology “Quantum Group” arose [20] . These structures
where uncovered in all disciplines of integrable two dimensional field theory, in conformal
field theory ( see e.g. [32, 51]), in lattice statistical models ( e.g. [64] ) and the S-matrix
approach ( [61],[47] ), and therefore also in soliton theory. It seems to be the unification
scheme of concepts for two-dimensional integrable systems.

This thesis consists of two major parts. The first one is a review of the above men-
tioned concepts and introduces integrable two dimensional systems and quantum groups.
The second part, on the other hand, contains our recent results in this field. It deals with
integrable restrictions of certain soliton theories which can be seen as perturbations of
conformal field theories (CFT) and in addition we will compare these results with those
obtained using S-matrix theory as an axiomatic theory.

Still a lot of work has to be done, many results are still on intuitive grounds. It seems
to be like a puzzle, where one already guesses the picture and tries to fit in new stones.
The beauty in the subject right now is, that the new ‘stones’ built in, fit the picture

generally believed.



Part I

Concepts of Two Dimensional
Physics

2 Introduction to 2D Systems

This chapter tries to give the basic concepts of two-dimensional physics. The subject is
very vast and, in addition, it can be seen from many different point of views. Here we
will try to give a comprehensive treatment of this topic. It contains mainly an account
on systems near a special class of fixed points, called minimal conformal theories. Or to
say it in a more descriptive way, it will introduce conformal field theories, perturbations
of it, the relation to statistical mechanical models and last but not least S matrix theory.
Since the subject is vast and excellent reviews exist ( they will be cited along the way ),

I will restrict myself to give some basic ideas, combined with some results which will be

useful later on.

2.1 Phase Transitions in Statistical Mechanics

Let’s start with statistical mechanical models. They are usually simplified versions of
“matter” ( e.g. solids or gases ) where values are assigned to be sites of a lattice. The
form of the lattice depends on the geometry of the described system, as well as the
values assigned to the sites. A well known example is the Ising model, taking two values
describing the polarization of a metal, or surface models where the fluctuations of the
surface is described by heights, taking integer values.

To introduce dynamics into this system one needs to couple the different sites. In the
Ising model one has a nearest neighbour coupling

H= Z JSiSj+ZHiSi ,

<4 g> 1
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where J is the spin-spin interaction strength and H; the magnetic field acting on the spin
s;, $; = +1, and < 4,7 > indicating that the sum is over nearest neighbours. Though,
this is no limitation. We could equally couple any sites, with different distances and also
with a different number of sites. Therefore we have infinitely many possible systems,
basically characterized by their couplings.

The feature we are interested in is that many of those systems exhibit phase transi-
tions. That is, we observe discontinuities in the physical quantities, varying one or more
couplings of our theory. These phenomena are well known, as for example spontaneous
magnetization or the liquid gas transition. Let us consider a magnetic system ( just to
decide the terminology to use). The partition function is Z = tr T (¢r denoting the
trace). T = ePH is called the transfer matrix, and B corresponds to the inverse of the
temperature. For the Ising system we have

Z=3 B2ty Tsisipiths;
si==%1

and the transfer matrix is a 2 x 2 matrix which can be written as

< 5,|T!S > 6’6[‘]‘93/'{'%(3—}-3’)] )

In the thermodynamic limit ( i.e. [ — co ) the partition function is related to the
largest eigenvalue of the transfer matrix, Ag. This can be calculated for a finite system
(in theory ) since it corresponds to diagonalizing the transfer matrix. To do this one
would like T to be real and symmetric which is achieved restricting the interactions to
be isotropic and the lattice to be hypercubic. This on the other hand implies that A, is
positive, and the corresponding eigenvectoris unique and has strictly positive coefficients.
It is a regular function in 3.

The free energy W is given in the thermodynamic limit as W ~ [In A;. The connected
two point spin correlation function behaves in this limit as

—li—jl

< 8i8; >=< 855 > — < §><s;>~e ¢ y

wherein ¢ = (In f\\f)“l is the correlation length, and A, is the second largest eigenvalue

of T. Therefore for a finite system no phase transition occurs, i.e. the free energy is a
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regular function of the inverse temperature 3, and the correlation length { remains finite,

except for [ infinite.

The situation changes when the transverse size ! becomes infinite. Let’s consider
again the Ising system. Then in the high temperature limit spins up and spins down
are equally distributed which in terms of the transfer matrix is seen that there is only
one non vanishing eigenvalue. Therefore the correlation length vanishes. On the other
hand in the low temperature limit all spins tend to be aligned up or down. At 3 strictly
infinite, both states are eigenvectors of T, corresponding to the twice degenerate largest
eigenvalue. We see that our results of finite systems do not apply any more. Notice that
this corresponds to a breaking of the symmetry between spin up and spin down in the
system (this happens only for d > 1 ). Looking at the correlation length, it diverges
as ¢ ~ eP/""" Therefore no analytic continuation between high and low temperature
situations is possible and thermodynamical quantities must have at least one singularity
in @ at some finite value f,.

Define I'(M) = MH — W(H) where M is the magnetization M = 2. Also let
V = fBJ and H = Bh. Then H = gﬁ%. So it follows that if H = 0, then the magnetization

is given by an extremum of I'. Furthermore since the partition function in zero field is

exp(—IT'(M)) the dominant saddle points are minima of I'(}).

What happens if one varies the temperature and therefore also V' 7 One can calculate
the minima of T'(M) in the mean field limit (which in field theory is the saddle point
evaluation ). When V increases, in general at some value of V' other local minima appear
which eventually become the absolute minima of I'(M). At this point, the magnetization
makes a discontinuous jump, and the system undergoes a first order phase transition.
The correlation length which is related to the second derivative of T'(M), £ ~ (I7(M)z),
remains generically finite (see e.g. [82]). If no absolute minimum appears at a finite
distance from the origin, then at V, the origin ceases to be a minimum of the potential,
and below this temperature 7, two minima move continuously away from the origin. Since
the magnetization remains continuous at V, we obtain a second order phase transition

at V.. At the critical point T”(M) = 0 and so the correlation length diverges.
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Though the former situation is the more common one, we are interested in the latter
one. Because of the divergence of the correlation length, information depending on the
local details of the interaction is wiped out at the critical point. Further one encounters
universality, that is that differnent lagrangians give the same critical exponents. The

criterium when this happens we will analyze in the next section.

2.1.1 Renormalization

Since the correlation length diverges at the critical point, one needs to take in account an
“infinite’ amount of degrees of freedom. That is, to get near the critical point one needs
to look at larger and larger areas of the system. This is the idea of renormalization.
Assume a statistical system involving a set of couplings { K, }. One forms a blockspin,
which is an average over spins of a certain area. One supposes that the resulting system,
formed by the blockspins, can be described by an interaction of the same type as the old
one ( which is the property of renormalizability), and tries to determine the new couplings
{K'}. This means that there exists a mapping in the space of couplings from {K,} to
{K'}. If this mapping is smooth one can study the fixed point structure, i.e. the points
where K* = R,(K?), and their neighborhood. For that we linearize the equation around

the fixed point

_ OR.(K)

5[({; s K(; - K; = RQBK@ 3 Ra;j ——5}'{—3—‘“‘["51‘% y

and determine the eigenvalues A; and the eigenvectors e, of R,3 . The next step is to

change the basis in the space of couplings to that, according to the eigenvectors
§Ko= unel, , that is 3 <el,, 6K, >=u

(R (L) denotes the right (left) eigenvector).These now transform under a renormalization
group mapping according to the eigenvalues, uj = Ayui. Therefore one can distinguish
three classes of couplings:

A > 1 (Ax)"up — oo relevant coupling,

M =1 (M)"ur —»?7  marginal coupling, (1)

M <1 (M) up — 0 irrelevant coupling.



2.1 Phase Transitions in Statistical Mechanics 7

Universality can now be reformulated in a more precise way: Systems which differ only

by irrelevant parameters will have the same behaviour near the critical point.

2.1.2 Transition to Field Theory

Recall that discretizing a scalar field theory, here e.g. ¢! with
Sp = [ d'o{d(~0¢) + u2¢* + 26" + hia)é(2)}

we obtain the discretized generating functional Zg;,

Zgis = Z e2<ij> $i¢i =2 hidi(z) [H gm0~ Ad d¢i] ;
b i
i = p* -+ 2, which is an Ising system with a weighted free spin distribution. Similarly
the discretization of different field theoretical models leads to other statistical systems.
The inverse limit, starting from a discrete system, is more difficult, because taking the
limit of the lattice constant to zero, one obtains singularities which have to be removed
by renormalization.

We consider now the critical theory in the field theoretical setting. Let’s assume we
have an action S(¢), with ¢ being some kind of local field. Then we know that the Noether
current of a translation invariant system is the energy momentum tensor T,,. A scale
transformation acts as z# — e’zH = (1 + A4+, .)m“. It is a non constant transformation.

The action transforms as

68 = /dZ:cT“”aﬂeu ,
In this case ¢, = Az,, and so we get
55 = / 2e[AT" + D8,)]

where D* is defined as the Noether current related to scale transformations, according
to the rule 85 = [d’zD,0"). So we get the equation §,D" = T¥, and see that the
tracelessness of the energy momentum tensor is a necessary condition for the system to

be invariant under scale transformations.
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Consider now special conformal transformations ( always in two dimensions).
o — ¥ + (2242 — *z’)b, .
Remarkably the corresponding Noether current
K" = 2z#2" Ty — T

is also conserved if the energy momentum tensor is traceless. But these generators,
together with the Poincare generators, form the whole of the conformal group. Therefore
we see, that scale invariance in two dimensions implies the invariance under all of the
conformal group. Physically this means that the critical points of a second order phase
transition, which are a scale invariant system, can be described by a conformal field

theory.

Starting from the above observation one can invert the procedure, and try to obtain
properties of the statistical system from the information, obtained analyzing the confor-
mally invariant field theory. This will be done in the next paragraph. The hope is that,
in this way, one can obtain a classification of all universality classes of second order phase

transitions.

2.2 Conformal Field Theory

Conformal transformations in general are defined as coordinate transformations such
that the angle between intersecting curves at the intersection point is preserved. In two

dimensions this means that z — f(z) and z — f(Z) with
0:f(z) =0, 0.f(2)=0,

i.e. it is the group of analytic coordinate transformations. Expand

fe)=z4 3 ez JB)=2+ 3 &t

n=—oo =—0C

This transformation is generated by

I, =2"t9, and I[,=2z2""0; |,
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which means that
p(z+Y ez, 23 85 ) = (14 ealn + 2 Enln) ¢(2,2) .

The commutation rules of these objects are

[lmyln] = (TL - m)lrn+n 3 [lrn,in] - (n - m)lm—{-n I (2)
[ 1] =0
Turning to the quantum theory we need operators L., L, which act on the Hilbert

space of states. The generator of the transformation is written as

?

Uf = ezn enln
or infinitesimally, Uy = 1 + ¥, €n.Ln. The field should transform as
Us®(z,2) ,Ui' = fo®(z,%) .

Let us consider for simplicity a scalar field and only the holomorphic part of the trans-

formation. This means that we impose (f o ®)(z) = ®(f(z)). Now

f(z) = z + e, 2™ M1 Up=1+3 e, L,
l ! (3)
fod=2(z)+¥,eln®(2) Usd(2)U;' = @(2) + L, €alLn, 2(2)]

Comparing the two sides one obtains
[L,,®(2)] = 1,®(2) = z""10,8(z) . (4)
We compute both [L,,,[L,, ®]] and [L,,[Lm, ®]] and find
(L L]y 8] = [has ba]® = (11— )l + 18 = (1 = 1)Ly, ]
The most general equation satisfying the above relation is
Ly Lol = (= 1) Longn + &(myn)

where ¢ is an operator commuting with all fields. Since we need the consistency of the

Jacobi identity we find

A c
é(n,m) = ﬁ(ms —M)bmtno
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Similarly one can find the algebra for the antiholomorphic part with a different central

charge & Summarizing, we obtain as the generators of conformal transformations the

elements of the Virasoro algebra

[Lm7 Ln] = (m — n)Lm+n + igz—(mJ — m)(s,n_,_”‘() . (5)

One could arrive at this point in a much more general framework using a generic field.
One then examines a correlator (X) = (®;®,...) and calculates from the generating
functional Z the Ward identity, which gives the action of the conformal transformation

on the correlator,

(6.X) = —— 4 dze(2)(T(2)X) (6)

w1 Je
If one expands the generators
T(z)= Y =3I, | (7)
one finds the Virasoro generators satisfying the algebra (5).

Now the main problem is to use the representation theory of the Virasoro algebra to
determine the physical content of the theory. One proceeds like in SU(2) where one has
a highest weight state |j,m = j) with the properties X*|7,7) = 0 and H|7,7) = jlj,J)-
Here the réle of H is taken by Lo (see e.g. [30, 35]), and a primary state (or highest

weight state) is defined as
Ly|®) =h|®) , L,|®) =0, n>0, (8)

h is the highest weight. Considering also the antiholomorphic part, one get’s analogously
the highest weight . One defines A = h + h and the spin s = h — h. Secondary states

(or descendent states) are obtained by applying Ly, as

x) = (La)™ -+ Lox )™ |0) (9)

with eigenvalue
Lol) = (h+ Y Am)lx) - (10)

The number ¥ A;n; is called the level of the state. States of different levels are orthogonal.
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The central term causes that in general the commutator in (4) acquires another term.

In these representations the general expression [30] is
(L, ®(2)] = 2"710,8(2) + h(n +1)2"®(2) . (11)

For special values of the central charge and the highest weight & it can happen that at
some level a linear combination of descendent fields behaves as a primary field, due to

the algebraic relations (5), that is
Lo|®y) = (R +1)|®a) , Ln|®a) =0, n>0 (12)

But this implies that it is a null-state, i.e. (®4|®4) = 0. Representations of this kind are
called degenerate. The null states can be used to restrict the degenerate representations.
One can eliminate these states together with all its descendents from a chosen represen-
tation, since they decouple from the rest of the states. A sophisticated analysis ( see [35]
and references therein ) shows that such a reduction is possible only for a very restricted

set! of central charges c and highest weights h. They are called minimal models and are

determined by

6 _ 2
c = 1-— M , P, q positive relative prime integers (13)
rq
Y2 ()2
by = (sp ””4 (p—9) . 1<s<g-1,1<r<p—1 . (14)
Pq

These Formulae have far reaching consequences:

o First of all every theory is defined by a central charge. The only ambiguity left,
remains from modular invariance, which we will analyze later. So we see that the
minimal models can be labeled by two integers. Therefore we can classify them as
M, 4. The content of the theory is specified by respective h,,, that is we have a
finite number of primary states in the theory given by the rational highest weights

B

IThe set here does not exhaust all minimal theories, which can be constructed using larger symmetry

algebras [7]
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o Secondly we would like to translate these results into field theory. Now the L, are

operators acting on fields. These can be divided into primary fields and secondary
fields as before the states. One example of a secondary field we already encountered.

Since we defined the L, to be the Laurant coefficients of T'(z) we have
LaX(2) = § d((¢ = 2" T(O)X(2) | (15)
and with this, calculating L_»I, we find that

(Loal)(2) = T(z) - (16)

Now define the operator L, to give the action of L, on the correlator of primary

fields as
(®1...8,L_+®) =L {(®...2,9) . (17)

Through the Ward identity these can be determined in terms of differential opera-
tors. That means that a null relation now becomes a differential equation for the
correlator. Using that the L_j are the Laurant coefficients of T'(z) (7), and the
Ward identity (6) one can also determine differential equations for the correlators
of secondary fields [30]. So in theory one can compute all correlators of the theory,
though in practise it is not said that it is a straight forward task to solve actually

these equations.

A third very important consequence is related to statistical physics. The dimensions
of the primary fields are intrinsically related to the critical exponents of statistical
models [10, 83] . For example in conformal field theory (CFT) the two point function

of primary fields can be determined to be

1
Z2hteh’

(0]®n(2)®n:(0)[0) = Snpe (021 (1)]D) (18)

On the other hand take a statistical system, for example once again the Ising model.

The correlator of the order parameter o has at criticality the behaviour

1
T

ol ~ 1
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( for the Ising model the exponent 7 has the value 7 = ; ). Therefore we can assign
[10] the values A, = A, = —= to this field. But this in the above classification is
the field ®;, ( i.e. the field with weight A, ) of the CFT M; 4. Also the other
operators of the Ising model can be brought in correspondence to those of the

theory M3 4. This renders the identification of the critical Ising model with the

model M3, complete.

Similar other systems have been identified , e.g. the models M, 5, M;g, Mg 7 with

C:T

tricritical 3-state Potts model respectively. Therefore, classifying all CFT (which

L, 2,8 were identified with the tricritical Ising model, 3-state Potts model and

SIS

Y

—

are not exhausted by the minimal models), would amount in classifying all possible

critical behaviours. From the above it follows, that the critical behaviour should

be determined by rational exponents.

Above we only mentioned some examples of statistical models. Really all minimal
models have been found to be critical points of statistical models [2, 34]. But our examples
have another peculiarity: they were all of the type M, 1. The reason for that is the

following:
In order to select our models we did not include unitarity as a constraint on our theory.
One can show ([30, 10]). that unitarity restricts c and A to be positive, and so only models
of the type M, 4, survive. The problematic feature of a non unitary theory is that it
contains correlators which diverge for large distances (compare (18) ), since the theory
contains at least one weight h smaller than zero. This, in the field theoretical setting,
is an obvious inconsistency, but has applications in statistical systems as for example in
polimer physics [21].

The simplest non unitary system is the Yang-Lee model. It corresponds to the sin-
gularity in the Ising model above its critical temperature in a non zero purely imaginary

magnetic field th. If one describes this as a field theory, the action becomes that of a

single scalar field, with

S = /dQT(%(VcI))Q +i(h - B)® + éz’gqﬂ) . (19)
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The imaginary coupling renders the theory non unitary. At the critical point only one

relevant operator survives, which is the field itself, and can be shown [11] to have Ay =

2 These are, on the other hand, the

o

3]

—+. The central charge of the system isc= —

conformal data of the minimal model M, ;.

2.2.1 Integrals of Motion

Since our theories posses an infinite number of degrees of freedom, we expect also an
infinite number of conserved quantities. A first one we already found, since 8;T(z) = 0,
because of conformal invariance. On the other hand we saw in (16) that T'(z) = L_.I.
Similar one finds that

1

R O (20)

Applying successively operators L_, one obtains
Ty(2) = (L-2LoaD)(2) = $ (¢ =2 T(OT() (21)

which is interpreted as the regularized square of T, Ty(z) =: T? : (z). Let L be the
module spanned by the descendents of I. The highest weight is zero. We can decompose

this module into

oC
L=PL, ,

g=0

since application of L_, increases the spin. But these objects do not contain a Z depen-
dence, which makes them all integrals of motion 8.L = 0. Every one of them, labeled as

T*, « numbering the elements at given spin s, gives rise to infinitely many operators
jédgT;*(g)(c )t = 0,41, 42

which are integrals of motion.

But, these operators are not algebraically independent, since they are related to the
Virasoro generators. A basis must be formed modulo the Virasoro algebra. But there
is a further linear dependence, because a very simple reason. We saw (11) that L,

corresponds to a derivative 8,. Therefore states formed by applying L, are linearly
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depending. Since L contains all possible derivatives, one has that L_;L C L. Then a
linear independent basis can be formed, constructing the factor space L =L/L_L.

For example let us try to construct the first elements of L. For spin zero we have the
identity operator I. At spin one we have L_;I, which is linearly dependent. At spin two
we could apply twice L_;, which again we discard, and we remain with L_,J = T. At

level 3 we have L_3I which gets rewritten in term of the Virasoro algebra and becomes

a derivative, ... . So for the lowest spins we obtain the following base elements
spins 01 2 3 4 S 6
‘ T = 18,1 (22)
basis vectors | I |0 | Ty =L oI |0 | Ty = L?,1|0
T = 12,1

For conformal systems defined on a torus there exists a general formula to calculate the
dimensionality of a submodule (for any primary field ), at level k. Since we are interested
in this situation ( which means periodic boundary conditions in both directions of the
lattice of the statistical models ) we can use this result. On the torus the partition

function takes a simple form [10]

Z = q Hig Hir(¢0g) . (23)
Let’s decompose this as
Z(9,9) = Y Muaxn(@)xa(@) (24)
h.h

where we define the character x as

Xn(q) = ¢ Ftragh = ¢ 5 di(n)g” (25)

n={)

dn(n) is the degeneracy of states in a representation at level n. Note that the quantity
we are interested in is given by dy(n) — do(n — 1). The numbers N, ; is fixed by modular
invariance. This means that one requires Z to be invariant under modular transforma-
tions, which characterize special base changes on the torus. For a given central charge
there can exist more than one theory satisfying these requirements. They are classified

in the so ADE series, found in [9].
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If there were no null states we would have dy(n) = P(n) (the partition of the integer
n), because all states of the form (9) would be independent. But for minimal models the

character expansion is not so simple. It is given [62] by

e 1 &

_ [2kpp'+rp—sp')?—(p-p')?*] / 40P
XrslC) = q q — (8 & —s , 26
(()=afp5 2 | (s = —3)] (26)

where p,p’ are relative coprime, and 1 <r <p'—1,1< s <p—1and rp—sp’ > 0.
P(q) is given as P(q) = [1°2,(1 — q"). So, to get dx(n) one needs to calculate all relevant
terms in this expansion, and count the number of times the term ¢” appears. It is useful

to let a computer do this work.

2.3 Perturbations

In the last section we found that conformal minimal field theories are integrable. This
corresponds to the critical point in a statistical model. But there exist also statistical
models which are integrable also away from criticality. For example the Ising model: it
is integrable away from criticality for a zero magnetic field as well as in a magnetic field
but at the critical temperature T,. This means that we have special directions in our
space of couplings, for which the system remains integrable.

Let’s turn back to CFT. We know that we can get away from the critical point only

by adding a relevant field 2. So we will make the ansatz
H = Hepr + A/ o(z)dz | (27)

with some relevant field ®(z).
What about integrability? The quantities T® which we have in CFT (see page 14)
cannot serve any more as integrals of motion, because since we haveleft the critical point,

the energy momentum tensor is not any more traceless. At lowest order we have

8:T = [H,,T(z)] , H,= A/@(m)d% . (28)

2Tn minimal CFT there appear no marginal fields.
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But these are quantities of the CFT, and therefore the commutator can be determined
([76, 22]), giving
0:T = 0.(A(1—h)®) . (29)

This can be symbolically written as 8;L_,] = L_;®. So let’s try to construct a deformed

current for the next current of CFT, namely Ty = L?,I. That is, we want to obtain
BELQ_QI = element of ®, , of derivative form .

This could be L_yL_, or L?,. If L_53 appears Ty can not be deformed to give a conserved
quantity. But assume we have a null state at level three. Then L_; can be expressed in
terms of the other two elements. But this means that we have a conservation law at level
three.

This analysis can be generalized, and is called the ‘counting argument’. For, let L
be again, as in CFT, the space of independent descendents of I. Now 0.l,,, must take
values in the space P, (as before in the example ). P and P are constructed analogously to
L and L but constructed over ® instead of I. If the dimension of [, is larger than that
of P, one can find a quantity which maps onto L_;®,_; and therefore defines a conserved
current. The respective dimensions can be computed using the character expansion (26).

For example for the perturbations of the type @, 3 one gets

s 112]3/4/5/6/|7
dim (Cop1) | 1]0[1]0[2]0]3 (30)
dim (B,) [0/1]02|1]3]2

We obtain conserved charges for spin s = 1,3,5,7.

Simply as it is, the counting argument has also its limits. It works only for low
spins. Of course if dim (L,41) < dim (P,), this does not mean that there cannot exist a
conserved charge at this level, but it has to be found by other means. Nevertheless it is
very powerful. Doing a similar analysis for other operators @, ; one finds that only 3 of
them are selected to have conserved quantities: ®; 3@, , and ®, . For the series @, ,, for

example, one finds the conserved spins s = 1,5,7,11.
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On the other hand it is not a conclusive analysis. First of all we need an infinite set
of conserved quantities to get an integrable theory. The existence of an infinite number
of conserved quantities, for example all s uneven for @, 3, has to be conjectured at this
point. Secondly the integrals of motion should be in involution. There is a plausibility
argument that this is indeed the case. Since [Todds Todd) = Teven, but we don’t have any
T...n in the set of our conserved quantities, their commutator should be zero.

We have constructed integrable field theories perturbing CFT, constructing three
series of noncritical models, using only the information of the critical point. Following
this trajectory we should arrive at another fixed point in the infrared limit.

There exists a general result for unitary theories. It is called the c-Theorem [78], and
shows tﬂat there exists a function C()) ( ) being the couplings), which is decreasing along
the renormalization group trajectory and is stationary at the fixed points corresponding to
M, ,+1. Moreover this function becomes the central charge at the fixed point C(A*) = c.
Trying to construct such trajectories is a more difficult and results are known for the
flow between the Ising model and the tricritical Ising model [81]. Also one should note,
that there is no corresponding theorem for non-unitary theories, and it is not clear, how
renormalization group trajectories evolve.

. We know that perturbed conformal field theory corresponds to some statistical model,
but how can we describe it in a field theoretical language? For this scope we introduce
Liouville theory, which can be interpreted as a realization of CFT, and is a special example

of a wider class of theories, Toda field theories.

2.4 Toda Field Theory
Let’s analyze the lagrangian
L= Lo,g0mp— =Y e 31
=3 0" — ”IB‘} X:l € . (31)
]:

Herein the notation is as follows: The action is built intrinsically over a Lie algebra. Let
r be the rank of a finite Lie algebra G [18] and let ¢ be an 7 - component scalar field.

The exponential interaction is determined by the ; which are chosen to be the positive
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simple roots of G. The equations of motion in light cone coordinates are
1< ,
0,.0_¢; = —E Z et
=1

or redefining ¢ = a;¢
1 .
0,0_¢; = y; > a;ef (32)
=1

a;; is the Cartan matrix of G, a;; = %ﬁ% The energy momentum tensor, in light cone

coordinates takes the form

1
B

Herein p = 3 fundamental weights . So it is traceless and we have a classically conformal

1
Tiy = “'2“5&:¢6i:¢+ pOid Tz =0 .

invariant theory. This property survives after quantization. Computing the conformal
algebra generated by the quantized energy momentum tensor [33], one finds that the
central charge is related to the coupling as

1
g

h being the dual coxeter number of G [18]. We will mainly examine A, for which h = n+1.

=129+ 87 =r (L A+ G+ 97 ()

g

Our aim is to obtain realizations of minimal models. We see in (33) that this is impossible
for a real coupling constant, so we perform an analytic continuation to imaginary coupling

constant v = 10 [33]. The simplest algebra is Ay, for which A = 2. Let v = 2 in (33),

which becomes

6 . 2
eop -9
Pq

the value we found in section 2.2 . Using different algebras, not 4, there are only single

cases how to obtain a minimal model as for example for Eg with the coupling 7* = —;5

4

which gives ¢ = 1, or A, with v* = 3 giving ¢ = 3

. Leaving aside these exceptional cases

we will concentrate on the algebra A;. In that case the equation of motion become

2 L.
62 — ____e,ﬁra ,
$="3

which is the Liouville equation.
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What happens if we try to use an affine Kac;l\/[oody algebra instead of a finite algebra ?
‘We can write down the action in the same way, but now including also the 0‘* root. That

is, we add a term

5V () = B—;e"““"’ , (34)

to our lagrangian (31). The minimum of the potential becomes now
Zaieﬁai-d’ — /\aoeﬁaoé ,
which is finite, where before, for the conformal invariant theory it was zero. Call the

solution of this equation ¢(), and look for perturbations around the vacuum, i.e. analyze

1 . B ’(0)+l A B ('(0)-{—('
V:_/B_E;e,a(tp <P)+B_28, o(d b) ,
and use the fact that ay can be expressed in terms of the other roots ay = — 3.7 _; nia;.

With this one can rewrite V as

k') r
—-l—‘;z =0

n; edu;.fp ’

Vv

where the constant k is given by k% = AeBeos® Expanding around the minimum ¢ = 0

we get

an ﬂ/[2 ab¢ ¢b + Cabc¢a¢b¢ +. , (35)

1=()

summing over indices a,b,c. We have therefore acquired a mass matrix
bAndb q
2 a b
(M*) g QL ,

and three point couplings
e = k23 Z n;afalal
The relevance of this construction is that it preserves integrability. That is, as well the

conformally invariant, as the perturbed Toda field theories, are classically integrable [54].

Let’s consider again A;. Now we have two possibilities to get affine Toda field the-

2 —2 »
ories. Or we take A(ll), corresponding to the Cartan matrix , OT A.(;), with
—2 2
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2 —4
(a) = : . Let us write down the corresponding equations of motion. For A(ll)

-1 2

we find 8%p = % sinh B¢ or for complex coupling, which we are interested in

0 = 2 sin vy
Y
This is the sine-Gordon equation, well known as a soliton equation, since it exhibits
degenerate vacua. Analyzing this perturbation in terms of the conformal operators for
vt = ?:2 one finds that this is equivalent to perturbing the Liouville lagrangian with the

conformal field ¢, 3. For A we obtain

O = 57 —2) (36)

which is called the Bullough-Dodd equation, and it admits also solitons for imaginary
coupling.

We just briefly mention here the case of real coupling Toda field theory. They have
been analyzed in detail [13, 8], and the masses and couplings for the respective algebras
have been calculated. But since they do not provide perturbations of minimal models,
we will not consider them further.

Let us look at Aﬁ”. The classical analysis would say that one gets one scalar massive
field, which is twice degenerate. This is true for real coupling constant, but for imaginary
coupling constants this analysis proves to be superficial. In this case these particles are
a soliton and anti-soliton respectively and can build bound states. So we need to give a

closer look to the system in order to decide its particle content.

2.4.1 The Sine-Gordon Model

To get some idea of the basic features of soliton theories, let us review some facts about
the sine-Gordon model. The minima are infinitely degenerate, with the values ¢, = ZE.
Rewriting the lagrangian

1u _1.2}2~.
£=20,80°-U(4) , (= 5(08) +5(0:9) v)
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the equations of motion are
doo— ¢ +U'(¢) =0 |
Solving this equation one finds the time-independent solution
¢ = % ta.n_l(ei‘/ix)

The solution with the + (-) is called the (anti-) soliton.

These are not the only classical solutions. There exist periodic solutions of the form

d(z,t) = -;—arctan (%) ,
wherein 77 = li_:————'“—i and w is a parameter characterizing the solution. Analyzing this
solution ome finds that this state can be interpreted as a soliton and an anti-soliton
oscillating such that no translational motion occurs. These states are called breathers.
Both, solitons and breathers, can be found also in quantum theory. In a semi-classical
approach one finds the solitons, and the breathers are given by the DHN-formula, which

is a generalization of the Sommerfeld quantization ( see [14] and references therein )

which yields in our case

12 8
E, =2M sin 71671 where n=10,1,2,... < il

(37)

2
1o é
v = I (38)
T

The sine-Gordon equation is the simplest soliton equation we encounter in Toda field

theory. Already here, one meets difficulties to quantize the theory, and the best one can
do remains on a semiclassical level.

To improve this situation we will introduce the S matrix approach. Though this is
an indirect way to deal with the soliton theory, it will lead us to a quantum mechanical

analysis of the problem.

2.5 The S Matrix Approach

We are posed with the following problem. We are dealing with a theory, which is inte-

grable, classically and quantistically. Now the scope is to write down the solution of the
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theory, i.e. the correlation functions. In “ordinary” quantum field theory we are used to
analyze the symmetry of the lagrangian, and further to proceed by perturbation theory.
But this can never unravel the structure we have to deal with. Since solitons connect
different vacua of the theory, they are intrinsically non perturbative objects.

There are principally two possibilities: one is to go to the lattice, and study in this
regularized scheme the corresponding statistical system ( which for the sine-Gordon sys-
tem should be the six vertex model). Alternatively one studies the scattering matrix,
which shows the reaction of particles, when they interact. In this approach we postulate
the integrability of the theory and derive a set of conditions to fulfil. Using symmetry
arguments one can then conjecture the S matrix of the theory under investigation.

Only then we compare the results with the semiclassical analysis obtained in the last
section. There is no direct way to verify our results. This on the other hand does not
mean that we cannot compare our theories. In the S matrix approach one can, in theory
( modulo serious technical problems ), compute the correlation functions and therefore
critical exponents 3. But for sure, calculating the S matrix is the first step in direction
to resolve the integrable quantum theory.

Since our work deals basically in this field, this section will introduce some more
technical details as the previous ones. The S matrix is introduced into quantum field
theory most easily in the Lehmann-Simanzik-Zimmermann formulation. Suppose we have
a massive quantum field theory, which we assume ( for simplicity ) has a physical spectrum

with only one excitation. There are two sets of creation and annihilation operators

Ulin(ﬁ)a a;(n(ﬁ); aoul(ﬁ)v a‘;ut(ﬁ) )

which describe the physical particle asymptotically for ¢ — —oo,t — co, where they
are supposed to be free. We parameterize the momentum p, in terms of the rapidity G, .

defined as

po(B) =mecoshB  p(B) = msinhf

3This program unfortunately has been carried out only for the field theoretic correspondence of the

Ising model [75]
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These operators satisfy canonical commutation relations. One also supposes that there

is a common vacuum for these operators

ain(8)[0) = aou(B)|0) = 0

These states should be connected by a unitary transformation, which is the scattering

matrix, i.e.

a(Br) .- L, (B)I0) =3 (B ... BLulBr - - Bu)agu(B1)asu(B,)|0)dB,d . . By,
Further one needs locality in the theory. These properties restrict the form of the func-
tions S(B]...580L161..-Bn)-

We will not discuss further the general formalism, but turn to the case of integrability.
The main characteristic feature is the existence of infinitely many local conservation laws.
The first of them are I, = py + p1 and I_; = py — p1 being the integral of T(z) and T(z),
with eigenvalues Me® and Me™® respectively, where M is the mass. Higher conservation
laws I, have eigenvalues of the form M, €% | M,e %%, M, being a constant depending on
the spin s. Due to locality of I, their eigenvalues on multi-particle states are the sums
of one particle eigenvalues.

The S matrix must commute with I,,I_, and therefore eigenvalues of “in” and “out”
states coincide. So if we have the rapidities {3, ... 0.} after scattering, we should satisfy

the infinite set of equations

)i et i M, = Z e**% M,

j=1 j=1
for any conserved spin s. The only solution, consistent with analyticity, is » = m and
even more, {8 ...8.} = {B1...Ba}. This means that the scattering is purely elastic.
This implies factorized scattering, which means that the n-particle scattering matrix
reduces to a product of n(n — 1)/2 two particle scattering one. The argument for this is
conceptually the following:

Since we have massive particles the interaction should be short-range. Now split the

interaction region into domains such that

|m1—m2|2R, |z —z;| >R, |zi—z| >R, lz; —z;| > R, 4,7=3,4...
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/o

Figure 1: Factorization of multi-particle scattering

In this region we can describe the process as a two particle scattering while the others
behave approximately as free ones, compare figure 1. Because the conservation laws must

hold after every one of these processes, factorized scattering follows ( for a more precise

argument see [77] ).

We have reduced the problem to calculating the two particle S matrix. This can be

represented as follows

S;L:; = <0!a'out( ) out(ﬁZ) Ain cl(ﬁl) in, m( 2)[0> = 6(ﬁ1 - ﬁ1)5(ﬂ2 _/BZ)S::::

with 8y > 81 , 85 > B! and the ¢, labeling possible internal degrees of freedom. Sw:, (B —

32) depends only on the difference of rapidities, because of Lorentz invariance.

Denote B;; = (B; — B;). Now consider a three particle scattering. This can be de-
composed in two different ways into two particle scattering, both of which should be

equivalent. The result is

ST SAG(Br — Ba)SCih (81 — Bs)SEL (B — Bs) (39)

imurua
EL 6 EJ

= Y S53(8: - B)SGE (By — B) SELLE (B — o) (40)

(41)

€ €2 €y
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0 4m?

Figure 2: Cuts and poles of the S matrix in the s plane

or in graphical terms, drawing the trajectories in space time

(42)

which is the Yang Baxter equation.

2.5.1 Analytic Structure

Let’s analyze the analytic structure of the S matrix amplitudes in terms of the invariant

energy squared
B2

) (43)

s = dp*p, = 4m” sinh(

The matrix S';isf is analytic in the complex s-plane, with two cuts along the real axes
s < 0 and s > 4m?. This si pictured in fig. 2, wherein dots indicate poles, which
correspond to bound states. The cut for s < 0 corresponds to the threshold in the
variable t = (p; — p4)?, which we keep fixed. For example consider a diagonal S-matrix,
which means that our particles do not posses internal degrees of freedom. Then our
Riemann surface is composed of two sheets and the two cuts can be replaced by a single

one going from s = 0 to s = 4m?. The transformation to the rapidity

6-1n (s —2m? 4 /s(s ——4m2)>

2m?
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Imé

left cut

> bound states

t right cut Red

Figure 3: Analytic structure of the S matrix in the 6-plane

Figure 4: Analytic continuation corresponding to crossing

which is the inverse of (43), transforms the physical sheet of the s-plane into the strip
0 < Imd < m. The edges of the right and left cuts of the physical sheet get mapped
into the axes Imf = 0 and Im§ = 7 respectively. The axes Imf =Ir , I = —1,42...
correspond to the edges of cuts of the other complex s plane sheets ( see fig. 3 ). The

unitarity requirement can be written as
Se’leé €1 €9 ﬁ — 56'1 50'_7
€1€2 (ﬁ) ﬁ’l’e!}’(— ) T Ve Tely

The last important ingredient is crossing symmetry: if we regard both s and t as complex
variables, we can reach the region ¢ > 4m? , s < 0 by analytic continuation, which de-
scribes the ‘crossed’ scattering process( see fig. 2.5.1). The corresponding transformation
in sis s — 4m? — s or in terms of the rapidity, 8 — 1w — B. This yields the crossing

symmetry relation

SEE(B) = cqerSeh? (im — B)ciet’ (44)

€1 €2 €)'er

where c is the matrix of charge conjugation.



28 2 INTRODUCTION TO 2D SYSTEMS

2.5.2 Bound States and the Bootstrap Principle

Let’s analyze, for simplicity, only diagonal S matrices of self-conjugate particles. That is,
we deal with scalar particles. Therefore our S matrix can be written as Sap a,b indicating
the kind of particles which scatter. If we require spatial reflection symmetry we obtain
that Sgp = Spa(—0), i.e. the order of the indices is irrelevant. Now we enumerate our
poles as 8 = 1ut, to indicate that it is the pole of Sqp(f) forming the bound state ¢ in the

s channel. But this means that in this channel s = m2 or
a2
m? =m? +mi + 2m,mp cosuf,

wherefrom we can determine the mass of the new particle. Because of crossing symmetry
there must be also the pole § = 7@¢, where @S, = m — ug,. How can one decide which
is the physical one ? For a unitary theory one decides on the grounds of the residue
at the pole. This can be seen roughly because of the following argument: Consider the

Feynman diagram

a a .
>5___g< ~— (45)
s —m?
b b
which should correspond to
RC
R

Therefore R, the residue, should be positive. This is not any more true if we consider

imaginary couplings, so we loose this requirement and have an arbitrariness in our theory.
Assume we know the scattering amplitudes So¢ and Spa. Now we would like to com-
pute the scattering amplitude for Scq, ¢ being a particle corresponding to a pole in the

amplitude S,p. For that we analyze
Sabd(0102,03) = Sap(012)Sad(013) Spa(F23)
and at the location of the pole

Sabd(gle'bgi}) = Sab(el?.)scd(gc — 9&) 3
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which diagrammatically corresponds to

84 _

/
Bc bc

Analyzing the rapidities appearing in this equation, one obtains
Scd(H) = Sad((g -+ iﬁgc)de(H - iﬂgc) , (46)

which is called the bootstrap equation. In principle this allows us to start from a given
amplitude S, and calculate all amplitudes of the particles appearing in our theory. For

scalar particles unitarity and crossing read as
Sab(G) = Sab(i’fr - 9) y 5(1(,(9)5& (—6) =1 . (47)

There is a general solution to these equations, which is

0 -

T

olshola
_*_

§ =T120) - (48)

—Tz

T

This means that without any input from the model we want to examine we have restricted
the possible form of the S matrix to that given in (48) .

In order to examine models with internal degrees of freedom, i.e. non diagonal S
matrices we need some more technology. We will see that factorizable S matrices can be
assigned a quantum symmetry. Then crossing- and bootstrap equations have a natural
explanation in terms of quantum groups. Therefore we need some basic information in

this field, which we will introduce in the next chapter.
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3 Introduction to Quantum Groups

The purpose of this chapter is to collect the basic items in the theory of quantum groups.
Since I would like to keep it self-contained, but on the other hand oriented at the ap-
plications I have in mind, I'll not put too much emphasis on mathematical peculiarities.
T'll introduce the notation of a Hopf algebra and then go over to analyze the structure

of quantum universal enveloping algebras. Most examples will be given for the algebra

U, (sl(2)).

3.1 Hopf Algebras and the Appearance of the Yang-Baxter
Equation

Here I will just flash how the R-matrix is defined in the mathematical framework of
Hopf-algebras [71] [48]. Recall the concept of an algebra: The basic ingredients are a

multiplication map m,

AQA A ¢ (a,b)—ab (1)

ARA®AS >A , (2)
zd®m A®A m

id being the identity map. In terms of elements the relation is (a.b)c = a(b.c). Further it

which is associative,

has a unit map @ = a.1 = l.a, which in terms of diagrams can be viewed as

1d A , (3)

A=AQC
WA@A%

wherein 7 denotes the inclusion map 7 : ¢ — A.
Let’s now consider the dual space A* with the opposite structures, i.e. since m :

A®A — A we introduce A : A* — A* ® A* which we define as AD(a®b) =
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I(a.b) | € A*, a,b € A. Where, since it is an object of the dual space, [ is meant to
be a map | : A — C, s.t. l(aa + 8b) = al(a) + BI(b). A is called the co-product.

Co-associativity is defined by the inverse of diagram (1.2)
A A*® A* ®id
A A* ® A*

Also the unit has an analog, called the co-unit ¢, satisfying

A* 1d A®C=A" |
A\A*@,A*%

or €e®1id ) (5)

or in formulae (1d®e)o A = (e®1d)o A = id. The vectorspace equipped with co-product
and co-unit is called a co-algebra.

What is the motivation for introducing these structures? We will have to deal with
objects which are neither algebras nor groups. Although many things can be generalized
from the theory of algebras, the direct product of two irreducible representations for
example, will no longer be a representation itself, but has to be substituted by the co-
product.

We would like to merge the algebra and its dual, the co-algebra, into one object,
which we will call bi-algebra. But in A there are only products and in A* there are
only co-products defined, so we need an additional axiom to make the two structures

compatible. This can be done defining A and € to be algebra homomorphisms, i.e.

Ala.b) = A(a).A(b), (6)
e(a.b) = e(a)e(d) . (7)

To enlighten those concepts we will give two examples.

(I) Group: or more precisely C(G), which is the vector-space of all smooth ( con-

tinuous) complex-valued functions on G, a Lie-group. The product is defined by
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(f, f)(g) = f(g)f'(g). The co-product is A(f)(g1,92) = f(g192), 91,92 € G and
the co-unit is given by €(f) = f(e), wherein e is the unit in G. From the multiplica-
tion law we see that this constitutes a commutative algebra (i.e. m = moo, o being
the permutation-map o : AQA’ — A’®A). Now let’s see whether the algebra is co-
commutative,i.e. coA = A. Decompose A(f)(g1,92) = % F'®f"(91,92) = f(g192)-
But 0o A = f" ® f'(g1,92) = f(9291). Therefore the algebra is co-commutative if

and only if G is abelian.

(IT) Algebra: Let G be a Lie algebra and Uy its universal enveloping algebra (i.e. the
tensor-algebra on C generated by 1 and the elements of G modulo the defining

relations of the algebra), one can define the co-product by
Alz)=zQ1+1Q@z , e(z) =0 . (8)

From the basic commutation relations [z;, z;] = c*.z; the algebra is commutative if
J 1] g

and only if G is abelian. It is co-commutative from the definition (8).

In our bi-algebra structure we are missing an ingredient which we have in groups: the
inverse element. Introducing a similar concept, called antipode, one obtains a Hopf

algebra. The antipode S is a bijective map S : A — A, such that

S(a.b) = S5(b).S(a) and (9)

To understand its importance we give its form for the two examples above, which become

Hopf-algebras with

S(f)lg) = f(g™') for C(G) ,
S(z) = —=z for U,(G) ,

(11)

where the analog to the inverse element is visible.
We finish this series of definitions of mathematical objects by introducing the concept
of a quasitriangular Hopf algebra. This is a Hopf algebra, containing an element R which

is invertible and satisfies

(A@’Ld)R = R13R23 y (12)
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(id® A)R = RizRi2 , (13)
(c0A)h = R(AR)R™', Yhe A . (14)

R is an object acting in the tensor-space, i.e. R =Y, R ® R(®), or in general
R;=51®...0RY®...0 RP®...01 .

Here R is on the it* position in the tensor-product and R(?) at the j**. The first two

equations give as a consequence the Yang-Baxter equation
RipRi3Ras = RosRigRia - (15)

The last equation (14) can be viewed as a substitution of co-commutativity. Though co-
commutativity is not requested ( this would give an ordinary universal enveloping alge-

bra), the non co-commutativity is controlled by the R- matrix.

3.2 Quantum Universal Enveloping Algebras

Up to now we did not explain yet the term Quantum Group. It arises from deforming
groups or algebras to become quasitriangular Hopf algebras, which are neither com-
mutative nor co-commutative. This terminology appeared since this can be viewed as
quantizing a classical algebra [26, 27], by introducing into the commutation relations a
quantization parameter A ( like the Planck’s constant ).

Let’s take any simple Lie algebra and write its commutation relations in the Chevalley-

basis [18]
[Hi,HJ‘} =0, [‘X;F,ij—] = (5in]' ) (16)
[H:, X]] = a X} , [HuXj] = —aiX;
1—aij 1 — Qi _ l-ajj—n + A\ . s
> ()7 () =0, i
n=0 '

wherein 1,7 =1,2,...,1

n n!

m ml{n —m)!
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The elements X;t, H, span an sl(2) subalgebra. Remember that for a simple Lie algebra
G with rank [ there are ! simple roots 7; and ! fundamental weights A; related by the

Cartan matrix

2(7'1"7']') l
az] (Tj, 7'_7) ) TJ ; ICLIJ )

and (7;,7;) denotes the inner product of the root vectors.
An irreducible representation D(N) is denoted by its highest weight /V and the states in

the representation space Vi by the weight m. N and m are expressed in terms of the

fundamental weights,

N =

l
1=

(N)jAj , m= ;(m)ﬂ\j

1 J

Example: Consider the Algebra si(2) defined by the commutation relations
(Xt,X"|=H , [HX%=+2X*

The representations are labelled by N = 7 = 0, %, 1...,and m goes from -5, -7+ 1,...,7,

i.e. a representation with highest weight j is 27 + 1 dimensional.

Into the algebra one can introduce a complex parameter g to obtain the deformed

algebra Uq(g). The new commutation relations are

[H;, H;] =0, kikj = kjki
[F.,X] = ke Xy | kX =gk
[vaXj_] = 5ij[H]q ’

(17)

n=0 Vs

T 1 —ai; 1-ajj=n n .
Z(~1>”[ } (xF) XE(XF) =0 i#5

q

but now with the symbols
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and the abbreviations
ki =q7 , gj=gqm)

This algebra can be given a Hopf algebra structure by means of the co-product
H "
AH)=H@1+1@H , AXF)=X"®¢7 +¢ 7 @XF, (18)

and the antipode
'7(Hl) = '"Hi ’ 7(Xzi) = —qui:tq—p ’

p:ZHl )

ri€AL

wherein A, is the set of positive roots of G. This can be seen as a deformation of our

algebra, since in the limit ¢ — 1, the commutation relations (17) go over into those of

the algebra (16).

3.3 Representations

For q not a root of unity (that case we will treat later), representations of U,(G) can be
obtained as deformation of representations of the classical algebras U(G). The reason for
that is that both algebras have a common Cartan subalgebra, formed by the H;. The

consequences are.

e The finite dimensional reducible representations of U,(G) are completely reducible.

e The irreducible representations are parameterized by the highest weights A of
the algebra G. The modules can be decomposed into the sum of weight spaces
VA = @,V*(u), and the dimensions of V*(u) are the same as for the irreducible
representations of G. Therefore any irreducible representation can be considered as

some irreducible component of corresponding tensorial powers of basic representa-

tions.

As an illustrative example how this works, let’s consider U,(sl(2)). The R-matrix is

known ( see e.g. [20, 40, 63]). It is

HoH 1—q?) u, —H o \p nnol
R=g#t S LT gt o g g (19)
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To find irreducible representations we can deform the Borel-Weyl construction [1]. The
fundamental representation has two states: spin up and spin down. These two states are
represented by two variables u and v. Irreducible representations of spin j are given by

homogeneous polynomials of degree 2j. A basis is given by

) ydtmyi—m ] ] )
el = 3 m:“]am]+13"-7] ’ (20)

JG +m)lG —m)!
and the operators X*, H are represented by differential operators

0 0 0 0
t = g T = yY— — Y— — P
X" = ugs X Vg H U TV, (21)

This construction is embedded in a geometrical framework [1]. The g-deformation is con-
structed using the same polynomials in u and v as a basis, but deforming the generators

as g-derivatives, i.e.

fqu) — flg™'u)
D, f(u) = . 22
) (g—qu (22)
In terms of this new derivatives the generators for s{(2), are
0 0
X* =uD, X~ =vD, , H=u— —v— ;
X uD, , v ugpe T UG (23)

explicitly we then find

X+e{n = \/[.7 +m+ 1][j —m], E'rin-i-l ? JY_e{n = \/[.7 —m+ 1g[j + ml e'rin—l (24)
Hef” = 2m efn

Inserting these expressions into (19) one can also find the matrix elements of the R-

matrix[40]. We give here only as an example the R-matrix for the two dimensional

representation.
g 0 0 0
|01 g—gt 0
R=gq? (25)
0 0 1 0
0 0 0 q

Another property of this matrix is crossing symmetry: Let w be the generalization of

the Weyl element. It can be represented as

wej, = (-1 g,

(26)
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Introduce the linear antiautomorphism 7(X*) = X¥F, and 7(H) = H. Then
waw™ ! = TS(CL) Va € Sl(z)q )
Therefore also R has a definite transformation behaviour, which is
(r®id)R = (w®)R(w ' ®1) , (27)
or for the representations we considered
-1\ B . .
((Rnn) > = w R Pwil w=w'®l

wherein ¢; means transposition in the first space.

3.4 Clebsch-Gordan Coefficients and 6j-Symbols

Since the U,(G) is a tensor algebra we want to study the properties of tensor-products of

G. For that we introduce the representation of the R-matrix in the form
Rk = PAA(D; @ D)) (28)

P72 is the permutation matrix pii V. Vi, — V;,V;, and Dj; denotes the representa-
tion. From now on we restrict ourselves to s/(2),. Many formulas are valid also for other
algebras, and others are easily generalizable [59] [60]. But since our applications will be
purely for the case of s[(2),, we keep all of this part restricted to it.

For the above representation the Yang-Baxter equation takes the form of the braid-

equation [29]
(ijjz ® 1)(1 ® lejs)(Rjzja ® 1) — (1 ® Rj?ja)(lejll ® 1)(1 ® Riijz) , (29)

where the action of the operators takes from V7t @ V7 ® Vis » Vis @ Vi @ V7. Let’s
take the tensor space V7' @ V72, and assume that Vi is a subspace of it. Then the

(Clebsch-Gordan coefficient

K7 (ga): V2@VE =V,
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is a projection-matrix onto the subspace V7. Herein a labels the multiplicity with which

V7 appears in V7' @ V7. Our normalization is such that
Jida Jiia b s
K}'*(g,a) (K} (g,0)) =87 - (30)

Since in the applications we have in mind we will not encounter multiplicities larger than
1, we will skip the general theory [59], and restrict the discussion to a = 1.

R can be viewed as ‘diagonal’ matrix with the eigenvectors K}‘jz. That is
. - t e - t
(RJlJz(q) KJJ.”?(q)) = (1)t geime o (Kjll?(q)) ’
KjR(q) Ri2(q) = (=1 gvmanmkGiig) (31)
The c; are the eigenvalues of the Casimir operator in the respective representation, and

have the value j(j+1). On the contrary one can decompose R77 in terms of the Clebsch-

Gordan coefficients

Rix.‘iz(q) — Z (_1)j1+j2—j qoi T T rp}ljz(q) ’
j€D; ®D;,
(RiF@@)" = 3 (A g PR, (32)
jeD; 3Dj,

defining
PRI (g) = (KJJ_uz(q)) KI7(q) .
The P are projection operators on the respective representations.

Example: Let’s analyze the three dimensional representation. Using (24) we get

010 00 0 20 0
Xt=100 1 2, , X =|100 2], H=|100 0
000 01 0 0 0 —2

Putting this into the expression (19) we obtain
R=g ¥ (14 (¢ - DEQF+ (¢~ 1@+ DE @ F?) (33)

where we have introduced

g7 Xt =q /2B, ¢ TX = /2F
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Since for s(2) we have “3®3 = 5@®3@®1” we can find the projectors simply from inverting
the relations
Ry = poPo+p1P1+ p2P2
(Rn)™" = pyPo+pPr+pePs
P = Po+Pi+ P

Recall that P is the permutation operator and the last relation equals (30). The p; are

obtained from (32). Therefore the projection operators onto the representations are given
as

Po ~ Rip—(Ru)'—(¢'—q¢ )P,

Py~ —¢*Riy— g (Ra)™' +(¢* —¢7%)P ,

Py ~ @R — ¢ (Rn)" + (" —q)P , (34)
where we omitted the normalization factors. Note, that we are using in this example an
R matrix which is not multiplied with the permutation matrix ( compare (28) )

Another useful identity results from restricting the defining identity (12) to an irre-

ducible representation. The result we will called pentagon identity

(%), = (K37) () ()

L R - (35)
RJ ! (KJJ,LJZ)H = (K}}]Q)QB (Rh])l’l (RJ?J)Qf} 9
with sums over repeated indices ji.
3.4.1 Graphical Representation
Let’s represent the R-matrix as
N
(RJLJ?) —_ (36)
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The Clebsch-Gordan-Coeflicients are drawn as vertices

: (38)

and the transposed coefficient turning the diagram (38) upside-down. The crossing-
matrix we represent as

m n

(W) — ﬂ : (w}l)mn——» \7/ : (39)

Now we can translate the previous equations into graphical language. For example

the Yang-Baxter Equation

/ .
J1 .
J3
J2 / -
/ (40)
The projector lejz becomes ,
and therefore the decomposition of the R-matrix (32) is drawn as
(_1)j1+j2“j qu“le“ng , (41)

and similar for R=!. The pentagon identity takes the form

iy I
]2 /

\ - - . (42)
-
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The crossing symmetry amounts in rotating the diagram about 90 degrees, as shown

below.

(43)

3.4.2 6j-Symbols

We want to entangle still further our representations. How can we get an irreducible
representation out of a three-fold product of spaces Vii@ V2 @Vi 7 We obtain different
bases in this space if we start by decomposing the first two or the last two spaces. Let

Vi Vh = éBijj”, and the other one Vit @ V72 = B, V72 then the two bases become

o jl'Z j3 .7 jl j3 jl? : : -
J127( 4. 2 s — J1 J2 73
em (.71.72‘.7-3) - Z eml ® em-l ® em;; I (44)
mimamy | My M3 M my M3 M2
q q
and
" J2 J ] J2 Js  J : . .
J233( 3 1 g A = Ji J2 J3
em (JIIJQJS) - Z eml ® emg ® em;, ) (45)
mymamg | My Moz M Mo M3 MM23
q q

where we have used the matrix-elements of the Clebsch-Gordan coefficients (38).

The elements of these two bases are connected by the 65-symbols, i.e.

jl j'Z jl'.? e, ..
el (7117273) (46)

ef,ﬁ?j(jij‘z |J3) = Z

s | Ja 7 J23

or graphically

(47)
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In our representation (24) they are given as

{a b e} = /[2e + 1][2f +1] (—1)tdHzema=t
d c f .

A(abe)Alacf)A(cef)A(dbF) T,(—1)*[z — 1]! x (48)
([z—a—b—¢lllz—a—c— flllz—b—d—flllz—d—c—e¢]l X
[a+b+c+d—z}![a+d+e+f—z]![b+c+e+f~z]!)"l

wherein we use the conventions that [0]! = 1 and [z] = 0 if and only if z < 0 in the sum.

_ [—a+b+c]lla—b+c]lla+b— ¢! 3
Alabe) = ( [a+b+c+1]! )

3.5 The Shadow-World Representation

Another identity involving the 6j-symbols will be the starting-point for introducing a
“shadow-world”, which will be a different representation of the same algebra. We will
also exam the analog in statistical mechanics. The identity [40], which can be proven

using the graphical formulation of the last section is written as

J2

Ji 713 — Z(__l)jw-f'jw*j*jl ch+cj1 “Ci3 <Gz x

Ji2

J3 Jv Jis
J2 3 iz
q

Now we redraw this identity in the following form:

j13

(49)
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(50)

The double line, called the “horizon”, parts the ‘world’ from the ‘shadow-world’. The
graphic equations seem much more comprehensible, since they amount to simply moving

the horizon.

The rules assigned to the elements of the graphs though, are different in the shadow-
world. First of all, we place j’s onto the strings and in them. In the world instead we
place ( as before ) j’s at the strings and the matrix-indices m on the end of the strings
( which we have omitted in most equations for simplicity ). 7’s assigned to lines remain
the same crossing the horizon. So we can extract the the rules for the shadow-world
graphs, comparing with the corresponding real-world graph. For example comparing

(49) and (50) we extract

, (_1)jlﬂ+jl‘1_j“j1 q"'j‘*’"jl"cim—cilz X

j3 jl j13 (51)
Jo J Ju
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Or let’s redraw graph (47) as

(52)

J23

Jo3

wherefrom we extract

J3 It jzs} . (53)

v 3 Ju

Similarly one gets

, (_1)—j13—j12+j+j1 q"Cj"CjL‘{"Cjw‘}“le-l %

s 7 J} 54)
jz Vi j12

q

or the analog of the crossing matrices

U T
— J1+J2“JL2 [ Jiz T § 071 95
/—\]2 _— J [2]1+1] (.71.7-]12) 9 ( )
Dz ) 2712 + 1]
JL+J)—JL 1.2______5 0 71a) . 56
- {2].1 n 1] (]1J~]1~) ( )

In this way many identities can be transported into the shadow-world , like the Yang-

Baxter equation (15) and the pentagon identity (35). So the shadow-world appears to
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be a different representation of the same algebra. This is true, in fact. It corresponds
to the transition from vertex- to IRF-models in statistical mechanics 3] . Note that the
R-matrix in this representation has become proportional to a 6j-symbol. Let’s elaborate

a little bit on this point.
Take a square lattice, rotated about 45° with N x M sites. Assign to each link a

‘state’ taking m + 1 possible values. Present these by a vector e;; 1 <4 < n + 1 among

the weights of the fundamental representation of sl(n+1). The partition function is

Z =tr (X, X3)T (57)

where

Xy = TiTss...TnanN

Xy = TpsTys.. . In-aN-1 5 (58)
are the column to column transfer-matrix. The R are the Boltzmann weights of the
vertex-configuration specified by the states

€; €k

T(ei®e;) =Y, (er®er) - (59)

€€l /
J

€, €]

These can be transformed to Face Models assigning values at the dual lattice as

Aterte=
/\+e,j—l—ej

€;

Consider for examples sl(2). The weights are e, and e, = e;. Since there are only 2
values, they are usually represented by arrows, and the heights on the dual lattice take
their values in Z. This is the usual correspondence between the six vertex model and

BCSOS ( Body-centered Solid on solid ) model [3] [4].
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The T-matrix in the vertex basis is written in a direct product basis
T:V @V, =V ®Vy
i.e. the matrix elements are
(Fame|(Frm|T|jim} ) [joms)

The transition to the face-basis amounts in taking direct products and decomposing them
into irreducible representations. The transformation formula amounts to be exactly rela-
tion (49) [56] [57]. This is the foundation of the shadow-world formalism, hereby proving
that our thumb-rule of assigning rules to shadow-world graphs and re-drawing graphs in
the shadow-world are really allowed. The generalized vertex-model characterized by the
weights of sl(n) introduced before, is connected with the A, quantum group.

The use of this formalism is twofold: first of all with the help of shadow-world dia-
grams one can find new identities for 6j-symbols,which otherwise can be proved by rather
involved algebraic calculations. Secondly in representing our algebra we can change the

basis, to the one which is more convenient for describing the physical problem at hand.

3.6 Representations when ¢ is a root of unity

Up to now we always assumed that g should not be a root of unity. We'll try now to
clarify the peculiarities happening in this case.
We will use for this discussion a spin-basis, i.e. we represent

+

Xi:ZXii:Zq%"®...®q%®%—®...®q‘%{, (60)

4

where the term E; is sited at the i** place, and let these act on the usual spin states

For example take the representation j = 1 for which

c 0'+ o o

X+=q-il®—é~, X" =—®q™

3]
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The representation takes the form

@) = [ 17)
17
X-la) = g*| 1)+ ¢ % 1T) |B) =g 3| 7)) — q?| {1) (61)
7
(X7)?a) =1 1])

We get, as in the case of s/(2), a triplet and a singlet. Now let ¢” = £1. Note that [p]; = 0
and therefore [z + np|, = [z],. Further (X*)? = 0 [58]. So, looking at a representation

with dimension larger than p, we have certainly some null-vectors in our representation

space.
Consider the simplest case: ¢ = ei':f‘, and take the product space (C;)>. In analogy
with the Lie algebra case this should decompose into “2®2® 2 =4 2@ 2”. But take
the state | 177), and apply (X ~)3. We cannot reach | ||]) since it gives 0.
So the structure becomes more difficult in this case. Reducible representations are not
any more completely reducible. But one can avoid these complications. Because up to the
point j < 1(p — 1) everything is fine. One can restrict the representations to those ones.
For this purpose one needs to restrict also the tensor product to the “good” representa-
tions. This is done by keeping only the highest weight vectors which are annihilated by

X~ and at the same time are not in the image of (X )7, that is: only representations

with spin 7 < 3;—:5 appear. The remaining representations have the following features [1] :
e they are highest weight representations
o |j) # (X*)P~!|anything) for any highest weight vector 7).
o The highest weight vectors are in the space |j) € Ker Xt/ Im (X*)P~!
Analyzing the decomposition of representations one finds that
min(ji 4o p—2=71 —jz)

Vi@V = > & (62)

i=li sl
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3.7 Introducing a Spectral Parameter

Recall the Kac-Moody algebras and the corresponding current-algebra [31].
[J%(=), J*(3)] = kT (2)6(z — v) -

The commutation relations of our previous algebra have gained another continuous pa-
rameter. This is a motivation to study affine quantum groups, to arrive at solutions of
the Yang-Baxter equation with a spectral parameter. These are the R-matrices which
appear in statistical mechanics context [64].

As for U,(G) , G a simple algebra, we construct it from the Chevalley basis of our
algebra. But now we have an additional root in our Cartan matrix, usually denoted by
¥ equals minus the highest root of §. The commutation relations (17) are now valid for
all generators of the affine group. Let U= ff(AS\I,)) be the algebra defined by taking (a;;)
the Cartan matrix of Af\l,) with generators gt X#, with 0 < i < N. One can define a

mapping U’ S U® C(X,A™'), which is an algebra homomorphism. This maps

gt 5 g2 i=0,1,...N,
(XY -SAxE (XY X, =1, (63)
(XU—)/_L,,\XU— , (Xi—)'i»X; , 1=1,...N.

Though, this is not a Hopf algebra homomorphism, i.e. does not commute with the

co-product

(@A =Aae

where we abbreviated o o A = A’. Now let’s make an ansatz [37] for the new co-product

in our affine algebra by taking
(X§Ye1=2Xf®l 1®(X;)=10pX] (64)

and taking the co-product given before (18). To make this an Hopi-algebra we need to
satisfy (14)
A'R=RA . ' (65)
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Written explicitly, these relations become

RO, mAXFE) = A(XE)R(, p), (66)

Ho Hy ~Ha - - Ho
RO AXE®q ™ +q7 @pXE) = (¢77 ®AXF +pXF ®q7 )R(Ap) -(67)
The solution space of these equations is one-dimensional and the solutions satisfy the
Yang-Baxter equation (as they should do). The result depends only on the ratio of A and

. — A
l1.e. & = —.
Hy "

For example for the fundamental representation of A%-), the R-matrix becomes
R(z,q) = gizRi» — g te 'Ry} . (68)

Or for example the R matrix for Agz) in the fundamental representation can be written

R(z) = (7' = 1)¢Ria(g) + (1 —2)g Ry (a) + ¢ 7(¢" = (" + DI, (69)

with Ry, being the R matrix of the spin 1 representation of U,(sl(2). Many properties

carry over to affine quantum groups. For example the decomposition into projectors is

now

R(z,q) =2 pu(2,9)Ps - (70)
This is the same decomposition as before, but now with factors depending on the spectral
parameter. For example for (68) this becomes

R(z,q) = (zg+z ' ¢ )P+ (g™ —2¢" )Py . (71)

The R-matrices with spectral parameter have been found and classified in [37]. We
will not need more than the two examples of above. For details on affine quantum groups

see [38] and references therein.

3.7.1 The Fusion Procedure

Up to now, we have constructed the R-matrices for a representation directly from the

requirements of the quasitriangularity of the Hopf algebra (12 - 14). There is though, an
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alternative approach, called the fusion procedure [38] . If one knows Ry and Ryniv,
one can write down a new R matrix, which is an intertwiner between the spaces V" and
VeV as

Rywvgri(z) = (I @ Rvnvr(zyn))(Rune(2y2) ® I) (72)

and

Rygyivn(z) = (Rive(ey:) @ I)(I ® Rinvn(zys)) - (73)
With an appropriate choice of y; and y» these new solutions can be restricted to a subspace
of the product space V ® V'. The condition for this is, that Ry (y2/y1) is a projection
operator. Let Ryn-(y2/y1) ~ Py, that is W € V. ® V'. Then the restriction of R to W,

i.e. Rywny(z) = Rywvgyr | vugr is the R matrix intertwining the space V' @ W.
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Part II
S Matrices for Integrable

Restrictions of Soliton Equations

4 The S Matrix of the Sine-Gordon Model

The sine-Gordon S matrix has been derived in [77]. We will discuss the quantum group
symmetry and how the shadow-world representation can be used to determine the particle
content at rational values of the coupling constant ( see section 2.4.1 ). On the other
hand we will use the constraints provided by factorized scattering, to select consistent S
matrix systems. The exciting result of confronting the two approaches is, that for the

analyzed class of systems, only the ones, deriving from the sine Gordon 5 matrix survive.

4.1 The Hidden Quantum Group Symmetry of the Sine-
Gordon S Matrix

The S matrix of the sine-Gordon model was derived using the assumption of factorized

scattering and the O(2) symmetry of the model *.

Denote the soliton as A and the anti-soliton as A. Then the S matrix amplitudes can be

written as

AB)A(B) = S(Bi2)A(B2)A(B)
AB)A(B) = S(Bi2)A(B)A(B) »
AB)AB:) = Sr(Biz)A(B2)A(B1) + Sr(Br2) A(B2)A(B1) - (1)

The amplitudes are given in [77]

s

s(8) = Sosinh(éw—m)) 2)

1This symmetry is not obvious, but corresponds to the rotational symmetry of the disorder parame-

ter [77]
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Sr(8) = —Sosinh (’—gﬂ) (3)
Sr(B) = —Sysinh (%) (4)

The function S, is an infinite product of T’ functions ( see page 54 ). Here we use the

notation £ = 17?2, where ~'? denotes the renormalized coupling constant (38). Taking

A
S = ( ) one can write this in matrix form as

A
S
St Sr
(S®1)(B1) (1©5)(B) = (1®5)(8) (5@1)(B) (35
Sr St
S
Crossing symmetry takes the form
SZST(iW—ﬁ) ; SR———SR(iﬂ'——,@) . (6)

One notices that the scattering matrix is identical with the T matrix of the six vertex

model ( see page 45 ). We have assigned weights to the vertex configurations, as

| | | | | |
| | | S o

a b c

and the T matrix which we defined in section 3.5 , is written as

c b

a

In solving the model one is led to the parameterization (3]

a=psin(A—u) , b=psinu , c=psindA ,
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which are essentially the functions we found above.

We impose periodic boundary conditions, as usual. Then we must have the same

amount of weights

€] = and ¢ = in each row.

[3+]

Since the partition function (57) depends only on the products of the weights, one may

give ¢, and c, different weights, i.e.
-TUu

c] = ce and ¢y = ce™

and write the corresponding T matrix as

ru

ce™F b

a

This matrix corresponds to the R-matrix (68) [64]. We would like to apply an analogous
transformation to the S matrix, in order to unravel the quantum group structure®.
We represent our n-particle soliton state as |3,...,8n)s¢, corresponding to the op-

erators S which get exchanged by the S matrix. Scattering applied to these states acts

as
1Bn -+ Bis Biy1y - - P1)56Siit 1 (Bi — Bi1) =
1B -+ Biv1s Bis - - - Br)sc Piitr (9)
and similar for states s5(B1,...,B8x| which are dual i.e.

5G<ﬂ1a' . 7ﬁn‘/617' x aﬁfn)SG = 5’""H£(ﬁi - ﬁ:)] -

5Also the form 8 can be interpreted as an R matrix in the so called principle gradation. It is not

clear yet, whether it fulfills the conditions of the quantum group in higher representations [25]
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Then the base transformation is written as [69]

lﬂl)-"yﬂn> = ﬁe—%a?ﬁilﬁl7"'7/@n>SG ’

i=1
SG(ﬁlw-anI:(ﬂlr"a/@nlﬂe{?giﬁi . (10)
1=1
The new bases (B1,-..,58:| and |Bi,...,Bn) are again dual, but do not have any more an

apparent physical interpretation. The states cannot any more be interpreted as doublets

of solitons and anti-solitons. The S-matrix on the other hand has now the form

sinh(’—g (B8 — 1)

(11)

Defining § = PS this can be related to the R matrix as § = SyR(z,q) with the parameters
z = e and qg= —e—ijéi and R(z,q) given by (68).

Now we could adopt the opposite way of reasoning: we start out with an R matrix

and try to construct the corresponding S matrix. Since the Yang-Baxter equation is

satisfied one needs to obtain unitarity and crossing, i.e. S(z,q)S(z " 'q) =1 and S(z,q) =
5(~—1%(—],q). From (32) and (68) we derive that '

R(z,q)R(z™',q) = (z7'qg — eqg gz —z7g7) . (12)

Therefore we require for the multiplier S, that

1
(z=1qg —zq~')(qz —z~1g7!)

SU(:E)SU(a:"l) =

l

Further since the R matrix already satisfies crossing symmetry (27) we require

So(z) = 50(~;%) .

The solution to these equations is

1
SolB) = SmhZ(B — )
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=) 2kxm B8 2k1r 2kn i3 2kn 2 i3

XHF(2+1+%)P( +1 )P(k +I41- %)r(:+f+i) i~
2kmw i 2kw 2w K - 7
"=°F(T“‘?)F(T+E+?)F(T+E+1+?)F(T+? 2)

which can be represented as an integral [67]

1 . oo sin k7 sinh( %2k
S.(8) = ‘ _ / 707 Ik 14
o(6) sinh (8 — F) P ( *Jo Ecosh =k sinh & (14)

We give an outline of the derivation of the solution:

Introduce
u(z) = (¢ 'z~ ~ qz)5u(z)
then u(z)u(z~!) =1 and

s =z T(A+pD(L=A—p)
o T—gz . DI

where we parameterized z = e~™* and ¢ = —e~'"* Now take every term and expand

w(z"Nu(~-z ¢t = ) (15)

it that that one divide it into two pieces: one belonging to p, the other one to p + A, in

order to to satisfy (15). So for example
T(A+ g)T(2A 4+ ) ... _
TRA+p)TBA+p)...
- H T(2kA + A + w)T(2kA + 2X + 1)
2k/\ 22X+ )T (2(k+ DA+ A+ p)
and similar for the other terms. Then we find

w(p) = [ SRAT A =D+ DAY TR Y1+ P)T(2EA + A +1 — p)
#I= U DR+ A+ T2k + 1)A = p)T(2RA + 1 — w)D(2kA + A+ 14 4)

Putting in the physical values and transforming back to Sy we find the result (13).

This result is not unique. There is a whole class of solutions, which differ one from each
other by the so called CDD-factors, which are of the form (48). Here in this case we knew
the answer ahead, but if we didn’t, the situation would get more complicated.

A hint to decide about physical solutions is, whether the resulting poles correspond
to particles which transform under a definite representation of the quantum group. That
is, that the R matrix at the corresponding value of  degenerates into a projector.
Let’s see whether this is here the case.

Analyzing the poles of S, we find that they are located at

B =1r —iné n>0,
B =iné n>0,
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in the physical strip. Choosing 8 = ir — iné as s channel pole this corresponds to
z = (~1)"q"!, and from (71) we find that the R matrix degenerates into a 1 dimensional
projector at these points. Physically we interpret this result, that scalar particles are

created, which we expected from our analysis of section (2.4.1).

4.1.1 Bootstrap, and S-matrices involving Breathers

Now we would like to compute the complete S matrix, i.e. also the S- matrices for
the breathers. In [77] they have been calculated using information for the semi-classical
analysis. We would like to calculate them from the fusion procedure introduced in section
(3.7.1). Let’s calculate the S matrix of the soliton and the first breather. The pole
corresponds to Gy = 7 m — i¢. Therefore in terms of z and ¢ we need to shift by the values
Yy — g~ and y, — ——iwq%. But now we deal with degenerate particles. Therefore
the bootstrap applied to the matrix part, which is represented by R, we take in account
using the fusion procedure. The way how the variables have to be shifted, we determine
from 46 . So, first, we can apply the bootstrap to Sy, which becomes

SU(IB+ %/Bb) ‘S’U(ﬂ - %/Bb) = 0 ! 3in? g ; . it i (16)

“ 2 )smh( =24 l T)

sinh(§ — £ + i}‘)smh(_ + ’E + ”')
3 by i 3
2

(17)

Then we calculate the matrix term, calculating

(7’o®1)(I®R(ﬁ+%—3§-)> ( (ﬁ—~+z£)®I> (Py®I)

In the second term we can use the decomposition (71) directly while in the first part we
need to compute the product explicitly. We find that the first two factors in (17) cancel

out and the S matrix for scattering of soliton and breather reads

+ i_ﬁ)smh( + L )

(18)
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4.2 Reduction at rational values of the coupling constants

We know that for rational values of the coupling constant, which enters into ¢, we can
restrict our representations of the quantum group. For this we turn to the shadow world

representation [47, 6]. That is, we simply substitute in (68), i.e.
L i _1p-
R(zaQ) =zqi Ry —q 7z 1R‘zl1 )

instead of the R matrix the shadow-world objects

ab
) - (__1)a+c—b~d qu+Cb“Ca—Cc

(1 SN e e
-
o~
-t
Ne)
p

and similarly for R]}.
22

There are several points to clarify: first of all the bases. We do not have solitons as

a basis any more, but the new objects can be interpreted as kinks interpolating between

different vacua. That is, our bases become

|ﬂ17j1k“¢ﬁ27jﬂ091"'[an—1|ﬁnkn>

B; are again the rapidities, j; are the U,(sl(2)) spins which also automatically distinguish
breathers from kinks and a; are the values assigned to the dual lattice. Then we can
interpret the S-matrix as scattering of kinks. The Kink-Kink amplitudes can be pictured

as

k-1 Gf

!
A+ Oy

Recall that we applied a gauge transformation to obtain the formulation in terms of the
R-matrix. This mechanism introduce a non-trivial crossing symmetry (compare (6) and
(44)), so to get a trivial crossing symmetry we have to do another gauge transformation,

but now in the shadow world basis. This can be accomplished by ([5]) including a factor

< [2a; + 1][2a} + 1] )“i
[2ak-1 + 1][2ak+1 + 1]
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into the amplitudes. Only after this transformation we obtain the crossing relations

ag Qf—1
oy !
ag-1 Q1 a a
’ crossed
£33 Qp41

Unitarity is automatically satisfied since the R-matrix also in the shadow world represen-
tation satisfies (12). To complete, one has to clarify how one can restrict the represen-
tation of the quantum group symmetry and how to relate, in the case of rational value
of the coupling constant, this to physics. Let —f— = f. The mathematical recipe is very
simple . In section 3.6 we found that the values of spin cannot exceed 3(p—2)if gt =1,
therefore the values a,b,... are constrained by jmar = £ — 1. On the other hand for the
decomposition of representation (62) we have the constraint that

1 . 1
lag — -él <agpr < 111111(%—}-5,1)—5 — a)

In a physical way, this can be interpreted as the kinks are restricted in their form, that is,
that they can only connect certain vacua. So in some way the other vacua are effectively
decoupled from the theory. This idea was formulated in [24], showing that in the sine-
Gordon theory there exists a BRST symmetry which decouples the higher soliton sectors.
Recall that the values of the coupling constant coincide with those for which the Liouville
theory is equivalent to a minimal model (see section 2.4), and on the other hand, sine-
Gordon is interpreted as a ¢; 3 perturbation of the minimal models. So we conclude that

the obtained scattering matrices describe integrable perturbations of minimal models [61]

4.3 The Series Mj 9,43

Let us analyze what result one would obtain looking at ®3 perturbations of Moy s,43.

27

T Because of the

The scattering matrices become particularly simple, since § =
restriction a; < 1%3, we see, since p = 2 that the solitons completely decouple from the

theory and only breathers survive. From [28] the S matrix of the breathers takes the
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form
min(a,b)—1
Sab = fla=oi fass (Fla=sieze )* (20)
Tnf1  Intl k=1 n41
27
a,b=1,...,n and =z = 1

We would like to take now a completely different point of view. We have found with
the above method scattering matrices corresponding to integrable field theories. They
satisfy all the requirements deriving from factorized scattering. But now we want to see
how strong these requirements are: that is, do these requirements allow a larger class of
S-matrices than the ones, we found ? This analysis has been started in [44], and we will
here resume the results found there.

Let’s summarize the constraints found in section 2.5. They were: unitarity and cross-

ing
Sab(:B)Sab(_‘ﬁ) =1 ) (21)
Sap(B) = Sa(im — )
the bootstrap equations
Sea(B) = Ssa(B — 15, Sad(B + 78, (22)

where the resonance angles u¢, were related to the masses of the particles A,, Ay and A,

by
2 2 2
. mc _ ma — mb
cosuy, = 23
ab 2mamb 7 ( )
and the consistency equations
a isﬂgc b i&igc — [#4 24
73 € + ’75 € - 73 ? ( )

for which we required a non-trivial solutions ¢ # 0 in order to obtain a conserved current
at spin s. Suppose that there are nontrivial solutions of (24). Normalizing the nonzero
eigenvalues of the lightest particle A; to 1, it is easy to show by induction that all other

eigenvalues are real and eqs. (24) can be written in terms of two equations

(25)
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Figure 5: Multiscattering process responsible for higher order pole singularities in the

S-matrix

and
(76)? = (72)2 + (12)7 + 273ve cos(sugy) - (26)

Eq. (25) is particularly useful because in order to have a non zero value for ¥¢ and 7}
the above tatio of sines should be independent of any bound state 4. appearing in the
channel | 4,4y >. Therefore, knowing the resonance angle of one bound state in this
channel we can use this equation (a) to correctly identify the location of the other ones
or (b) to prove that it is not possible to have higher order conserved charges compatible
with the bootstrap.

In order to have a consistent set of elastic S-matrices, one has also to analyze the
additional constraints related to the the higher order singularities introduced by the
bootstrap equations. The basic idea is due to Coleman and Thun [15] and has been
generalized in [13, 8]. In two dimensions, a box diagram corresponding to multiparticle
scattering is singular if it can be drawn as a geometrical figure with all internal and
external lines on-shell (fig. 5). This is equivalent to evaluating the discontinuity of this
graph by the Cutcowski rules: the point interactions correspond to S-matrix elements

and the lines to the on-mass shell propagators. The higher order poles are located at

Bap = 27 —ul, — up, - (27)

If S, in the middle is regular at this value of the rapidity, we obtain a double pole,
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otherwise if Sy is itself singular at 8.5, we get a higher order singularity. Of course this

explanation only works if we can actually draw such graph, 1.e. if
ul 4wl <m . (28)

If this condition does not hold, it is not possible to explain the appearance of higher order
poles in terms of the principles of analytic S-matrix theory.

In particular, as it was noticed in [8], the scattering amplitude S7; of the lightest
particle cannot have higher order poles because the resonance angle of two heavy particles
with the lightest one is greater than 2m/3 and therefore it is impossible to draw a figure
like fig.2 with the particle A, on all four external legs and the internal ones on-shell.

Let us consider a bootstrap system with
Su = f(8) - (29)

Our approach consists in applying eqs.(22) as far as there are singularities in the functions
S.. identifiable as bound states®. We prove that there is only one possible way to im-
plement the bootstrap which satisfies the consistency equations. (25) with the spectrum
given by

k
my = 2msin?;E . (30)

Moreover, if we also require a consistent explanation of the higher order poles, we have
to put the mass of the lightest particle Asny; produced by the bootstrap equal to zero,
and decouple this particle from the massive sector of the theory. This is equivalent to

have the following quantization condition for z

27

— 1
e 2n + 1 (3)

Mant1 = 0,

In order to get familiar how this works, let us first study the cases when z is close to

27 /3.

6We will not make the distinction between real and virtual states which appears for instance in the
discussion of sine-Gordon. We base our analysis only on the bootstrap egs. (22) and on the requirements

we discuss in the previous paragraphs.
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Figure 6: Mass spectrum generated by Si; = f, with z close to 2m/3

a) ¢ > 27/3. In this case the singularity at 8 = imz corresponds to a bound state A,

with mass mo less than m,

™2 - 9cos= . (32)

my 2

aﬁd therefore contradicts the assumption that A; was the lightest particle. This fact alone
is not necessarily a drawback since we were aware that the bootstrap allows computing
scattering amplitudes choosing any arbitrary particle as starting point. Therefore it could
only mean that our initial identification of the lightest particle was wrong. But the real

difficulty comes when we compute
Suy = fau(fe)® - (33)
because we see that in this amplitude (which is now that of the lightest particle) appears

a double pole which cannot occur. Hence there is no consistent set of S-matrices starting

from Sy, = f, when = > 27/3.

b) z slightly less than 27/3, z = (2/3 — €)m, (¢ — 0). In this case the bootstrap

produces three bound states with masses (fig.3)
k
mk,:2msin-2£ . k=1,2,3, (34)

and S-matrices

Sll’_‘—fzy 512:f~ f Sllizfrf‘z.ry

ol
woly
-

(35)
Saa = fZ:L(fav).2 ) Soz = f%f%(f."g_l‘)z ) S33 = f').r(frf’z:r)z .
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As in the case a), we obtain a particle As with mass mg less than m; we started with. Sy
contains as well unwanted double poles. The only way to make this system consistent
is to push m3 — 0 and correspondingly decouple A3 from the rest of the theory. In
this limit all S-matrices involving As go to the identity and the other particle state A,
becomes identical to A;. The initial three-particle system collapses to that one with only

one particle state and S-matrix

511 - f%(ﬁ) . (36)

This corresponds to the S-matrix of Yang-Lee [12].
Let us consider now the general case and let us prove that there exists only one path
in the bootstrap tree which respect the consistency equations. The proof is by induction.

Starting with S1; = fz, we obtain a new bound state whose mass can be written as

my z 2msine
2 9coss = s 37
mi 02 2msinZ (37)
where m is an arbitrary mass scale. We can compute Si» by applying eq. (22)
T .z
S12 2511(ﬁ—15)511(5+1§)=f%£f§ (38)

We get a function with four singularities: those at § = iwz/2 and 8 = (1 —z/2)r, from
‘the fz term, and those at 8 = i3/27wz and B = i(1 — 3/2z)7 from the fq_; term. Among
these, that one at 8 = i(1 — z/2)7 corresponds to the bound state A,. Therefore we
have correctly identified this angle as the resonance angle due to a bound state. We can
now apply eq. (25) in order to decide which of the two poles in faz corresponds to a new
bound state As;. The answer turns out to be that one at § = ¢3/2rz. This means that we
cannot use the other singularity at 8 = (1 — 3/2z)x to implement further the bootstrap
if we require a non zero solution of the consistency equations but we are obliged to follow
3

the path defined by the resonance angle v}, = 3Fz. The mass of the new particle is

™3 2m sin -———"’;T

= . (39)

my 2m sin &F

We can compute

Siz = Si2(B — 1033)511(8 + Wis) = fufow - (40)
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Repeating here the same reasoning of before, we can identify the pole at 8 = (l—z)m as
u?, and in this way fix the ratio of the conserved quantities 7, /7; in (25). The singularity

due to a new bound state A, is that at § = iuj; = 12wz. The mass of this new bound

state is
my _ 2m sir%(277_rx:n) (41)
my 2m sin 5F
The process can be continued up to the particle Aynyy where n is defined by
2T
< 42
2n+3<m"2n+1 ’ ( )

and has to be completed by the computation of the remaining S-matrices. The mass

spectrum is given by

k
7M=2mﬁh§, k=1,2,...2n+1 . (43)

The particle A,y is the lightest one and its Sy-matrix has a plethora of double poles.
We can get a consistent set of S-matrices only if we put ma,y, = 0 and decouple this
particle from the theory. In this limit the remaining 2n particles become identical in

couple and we end up with a n-particle system with generic S-matrix [28, 67]

min(a.b)~-1
2
Sab = f%% fjfﬁ_b_[ ,};—__:[1 (f]a;:f-l‘:k) . (44)

(a,b = 1,2,...n). All double poles have now explanation in terms of multiscattering

processes and the conserved spins are all odd numbers but multiple of 2n + 1
s=1,3,....2n—1,2n+3,...,4n +1 (mod 4n +2) . (45)

The price to be paid is that these S-matrices are not one-particle unitary and as we know
they correspond to the ¢;j deformation of the non-unitary minimal models My,

12, 28, 67].

4.4 Going Back to the Critical Point

We would like to have a criteria to check whether our S matrices are the right ones.
To do this, there are mainly two approaches. The truncation space approach and the

thermodynamic bethe ansatz.
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The former one relies on the fact that one can form a basis in the Hilbert space
using the primary fields of the conformal field theory and their descendents. Then the
energy spectrum can be computed, since the matrix elements of the potential ( being
the conformal field ) are the three point functions of the conformal theory. Then the
method consists in truncating the base of the Hilbert space and diagonalizing the resulting
hamiltonian, giving upper bounds to the energy levels [74, 45, 46].

The thermodynamic Bethe ansatz goes the other way around, using the S- matrix as
input. In this sense it is the inversion of the ordinary Bethe ansatz. We noted in section
2.1 that the partition function is related to the largest eigenvalue of the transfer matrix
T. The Bethe ansatz consists in explicitly solving the corresponding eigenvalue problem

Tg = Ag writing down an ansatz for the wave function [3]

g(:cl, e :I:”) = Z ‘4p1,...pneiklml . eiknmn :
P

P denoting the set of permutations of the numbers p;. From this one obtains an equation
for the wavenumber of ¢g. In the thermodynamic limit this equation can be written as an
integral equation, and can be solved.

In the S matrix approach we do not have as input the hamiltonian of the theory
but only the § matrix. So the problem is to write down a Bethe ansatz for the system
using the information available from the S matrix. This probiem has been understood
only in the case of diagonal S matrices. The main condition is that the scattering must
be factorized, so that we can assume that the wave function of our particles are well
described by a free wave function in the intermediate region of two scatterings. We make

the ansatz for the wave function as
Y(@y .. Pn) = € 277 Y A(P)O(zp)
P
A(P) are coefficients of the momenta whose ordering is specified by

1if =z, <...zp,
O(zp) =

0 otherwise

The A(P) are determined by the S matrix of the theory. Let the permutation P differ
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from P’ by the exchange of the indices ¢ and j. Then
A(P") = S5ij(B: — Bi)A(P) - (46)

We impose antiperiodic boundary conditions for our wave functions, which provides that
two particles cannot have equal momenta [80]. This leads to a condition on the coeffi-
cients,

A(t,p2y. . yPn) = —ei”"LA(pg,...,pn,i) , (47)

L being the length of the strip on which we consider the theory. If one now compares
(46) and (47), one can find the condition
gilmisinhBi TT 6.8, — ;) =—1 for i=1,2,...N . (48)
J#

We introduce the phaseshifts §;(8; — B;) = —iInS;;(8:i — B;). In terms of these the
equation become

Lm;sinh G; + Z 6:5(B: — B;) = 2mn; for i=1,2,...,N , (49)

I

n; being some integers. These coupled transcendental equations for the rapidities are
called the Bethe ansatz equations. Now one proceeds as in the case of the ordinary Bethe
ansatz. One tries to solve those equations in the thermodynamic limit introducing a
density of rapidities and transferring the equations into integral equations. Then one can
study the thermodynamics of the theory and examine the ultraviolet limit, calculating
the effective central charge and the scaling dimensions of the operators.

We will not pursue the general theory further ( see (80, 41]), but use only one particular
application of the method. It is to calculate the central effective charge, in order to tighten
the link of the S matrices as describing perturbations of conformal field theories.

The link is the ground state energy Ey. On a cylinder ( i.e. thermodynamic limit) it

has the form
mé(r)

E(R) = Rf(R) = - =2

f is the free energy and R the circumference of the cylinder. The quantity r = %, where

R. = ;1—% is the largest correlation length corresponding to the smallest mass my in the
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theory. The fact we will use is, that &(0) is the central effective charge given as

., 6 |
() =1~ . (50)

We would like to calculate this quantity from the TBA. We give here just the result:

As in the Bethe ansatz, one introduces the rapidity density pl?)(B) for any particle
species a. To obtain &(0) two limit processes are involved. First of all a minimization
process, in order to obtain E, and secondly the limit process r — 0. In this limit the

n

effective central charge can be decomposed into a sum ¢ = 377 Ca, corresponding to the

different particle species. The ¢, can be obtained by integration

. 6 o zT+%
Cq = —=

:E._—.—_—.——
w2 Jo ertea 41
The values ¢, are obtained solving the nonlinear system of equations
N
€a=— Nuln(l+e ) . (51)
b=1

Let @ap(8) = 3%5(11,(,8). Then the matrix Ny, in (51) is given as

N = [~ ) = 5-(Busfo0) = bun(=20)) - (52)

—o0 2T 2T

So the recipe is first to solve the system (51) for the ¢,, then to calculate the partial
central charges ¢,, and sum over them.

The matrix N, is very simple to determine. Since we deal with diagonal S matrices
we know that the general form is Su(8) = II; fr;(8). Analyzing (52) for this situation
one sees that wu(8) = ¥, ¢[fs](B) so that one can sum up individual contributions
coming from the single factors fz:(B). Then Ny = 3 N{[f.,] whichis Ny = 2 sgn(z;) for

—-1<ez<l.

4.4.1 ¢ for Mja,s3 Theories

The solution of (51) can be obtained in closed form. One finds [41]

cal A _ Sin(;_’r_s)sin( (r;:i);')
e“(Maanys) = sing(—j—“)
2n43

(53)
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To do the summation over the integral one uses the identity

[ a S — i Ly, (54)

exte + 1 -

where L(z) is the so called Roger’s dilogarithmic function, given by

1 = 1 In(1 —
ny+n( y)]

L(z) = Wl ”

=3/, (55)

There exist sum-rtules for these functions which allow one to calculate ¢ exactly. One
finds that ¢ = 71% which is the right result.

Conceptually the TBA provides a non-perturbative approach to discuss the ultraviolet
limit of § matrix theory. So to say, we have closed the cycle. We started from the critical
point and perturbed the corresponding conformal field theory. For the resulting model
we calculated ( or better conjectured ) the S matrix. A strong confirmation that the
approach is right, we found in calculating the effective central charge, which can be done
exactly.

For the sine-Gordon model this seems to be a double verification of things we already

knew. In the next chapter we will construct S matrices for which less information 1is

available. There these techniques will be necessary to support our conjectures.
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5 S Matrices for restrictions of the Izergin Korepin

Model

We have seen in chapter 2.3 that perturbations by the operators 9, P13 and Py lead
to massive integrable models. We have treated the case of @13 perturbations in the
last section. The ®;, and ®,; perturbations are related to the Izergin-Korepin model,
which describes the field theoretic action whose equation of motion is the Bullough-Dodd
equation 36. We will undertake an analysis similar to that in the last chapter, in order

to construct the S matrix using the quantum group symmetry.

5.1 The Izergin Korepin Model

We mentioned in section 2.4 that the complex Liouville theory can be understood as a
realization of minimal models at the quantum level. To understand the role of the & »
and &, perturbations, we need to examine this approach in more detail.

The identification of the Liouville model with minimal models goes across the Coulomb
gas approach ( for example see [19]). This approach describes a massless scalar field em-
bedded in a space with a charge, placed at infinity, whose value is —2 oy, where oy 1s a

rational number. The primary fields are not the fields itself but vertex-operators
‘/pq — eiap,qq)(a:) ,

with
. [(l—p)a++(1 —Q)a—} (56)

Qpq = 9

and p, g positive integers and ayr = ay £ a2 +1. The central charge is given by
¢ = 1 — 24a2. The weights of the vertex operators are those given in (14). Taking
the classical limit which corresponds to take ¢ — oo we would like to identify the

corresponding classical objects. To do this we use the relation

o __\/1——ci\/§5—c
+ — \/QZ
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We see that any operator V,, with p > 1 will explode in this limit. So, only operators
of the kind V;, can be seen in a classical analog of the theory. These operators have

classical dimensions —"le, and can be identified as the operator
e P (57)

in the Liouville theory. Now we perturb the Liouville Theory by these operators. Taking
n = 3 we find the sine-Gordon model, and with n = 2 the Izergin-Korepin model [36],

corresponding to the lagrangian

ig .

[ = %(8;1975)2 + _}_eiﬁé = (58)

AL
g

These two perturbations can be found as classical lagrangians. But what about ¢, per-
turbations which should be integrable, as well? We need to understand this perturbation
directly in a quantum formulation. Note that interchanging ¢, » and ¢, corresponds to
interchanging a4y nd a_ in (56), or changing the role of 7 and s. These changes should
be made only at a quantum level of the theory. We will examine the consequences of this
hypothesis [66] in chapter 5.6.

Now that we have written down the lagrangian of our theory, we find ourselves im-
mediately in troubles. Obviously the lagrangian is not real and the corresponding hamil-
tonian not self-adjoint. That is, our model as it stands is not properly defined. The
corresponding S matrix is non-unitary. The way out of these troubles is the quantum
symmetry of the theory. Even though the whole theory is inconsistent, one can try to use
the approach, developed in the last section in order to analyze the restricted models at
rational values of the coupling constant. The resulting scattering matrices should then

be examined for their consistency and be interpreted as perturbations of minimal models.

5.2 Constructing the S Matrix

Our approach will go along the same line as in the last section. We write down the S

matrix as

S = Sung(m, q)
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but now R;, being the R matrix of Agz). Note: In this chapter we will not work with
R matrices defined as in (28), but the ones which are not multiplied by the permutation
matrix, we need to modify identities of chapter 3 in order to utilize them here. This, just
to clarify that differences arise from this fact.

The parameters  and g have to be related to the parameters in our lagrangian. Here
we rely on the fact that we study the affine extension of the quantum group U,(sl(2)).
Therefore the parameter g should be the same for both algebras. Using this fact one can
fix ¢> = e%ﬁ, x = Lm. The parameter z we can fix by crossing symmetry. Using (26)

and (69) one can find that
Rip(—¢°z7,q) = a3 (59)

But the crossing relation for the S matrix (44) should read
S12(i71' and ﬂ) = 615:‘1}_561 (60)

We make the ansatz ¢z = eg{"g, and find from comparing the two equations that

27 6w’
0 L on+1) nez (61)
¢ X

One chooses n. = —2. Even though at this point this choice seems arbitrary, it turns

out [66] that only in this way one can interpret the resulting 5 matrix as an analytic
continuation of the real coupling Toda field theory.

So our S matrix should be defined as
S12(8) = So(B)Raz(e <7 e ™) (62)
The function S, can be derived by the same techniques used in section 4.1. It is con-
structed in order to guarantee that S(8)S(—fF) = 1. The R matrix satisfies now the
identity

1

R(z,q)R(z"',q) = (z3q® + ¢’z #)(z 1 ¢* — ¢ *z?) (63)

S, becomes a more complicated function now. It takes the form

so(m:;%r(”zw)r(5‘2‘iﬁ)r(i”;*ﬂ)r(g“i’g“w) =(8) , (64)
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where ¢(0) is the following infinite product

.— ﬁ ( + 2kmw— zB)P( : + 2k7.~£+i,8) 11(1 4 2kmti8 _kn+zd )P(%C + kaf-iﬁ)
._. P ane-}-lﬁ )I‘( + 2kw— zﬁ)r(l + 21."6—1d )F(-EE + Zkﬁ;—iﬁ)
T L "Ar—{—z@ T B + an'——zB I\ 2w +3€ + 2kw—:i10 T 5w+3€ + 2kr4-13
X (37-6 Qkﬁf—iﬁ) (JE _kr€+1ﬁ) (2r+J£ lkrE—{—zB) ( —fl%f lkrs—iﬂ) (65)
D(F + 220 (5 + )T(== + T + =)

which again has an integral representation
5 _
So(B) = (sinh%(ﬁ — iﬂ')sinh% (ﬁ — ﬂ))

o dg sin Bz sinh ZF cosh (5 — L
X exp (——21'/ = (6 Z) . (66)
0

T cosh ZF sinh ‘5’

It seems that the objections about the physicality made above are not true, since we
could satisfy the requirement S(3)S(—8) = 1. But even if this relation is satisfled we do
not necessarily have unitarity, simply because for |g| = 1 and z € R, which is a physically
interesting situation, one has that Rj,(z) # Rai(z~1), so in that case the S matrix is not
unitary.

Nevertheless we continue to examine the S matrix. A first check whether the so
defined S matrix is senseful, is to examine the pole structure. That is, whether the S

matrix degenerates into projectors at the corresponding values. The poles are given at

= { i — iém, iém, - m >0 (67)

%"_i_ié“m, -’g-&-ifm, m >0
Note that the first line corresponds exactly to that of the sine-Gordon model pole struc-
ture. Also here the poles im — iém correspond to breathers. Since z = exp(%ﬁ) and
= exp(%g—i) these poles correspond to z = —q°. Using (34) we find that the R matrix
degenerates into a 1-dimensional projector.The S matrix of the fundamental breather can
be calculated using the fusion procedure, in the same way as for the sine-Gordon model.

The result is [66]

where f.(8) = tanh 3(8 + iz7) coth (8 — izm).
Now consider the second set of poles in (67). For the poles 2 —ifm, X takes the value

¢! and using (34) and (69) we find that the R matrix degenerates into a 3-dimensional
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projector at these points. Hence, these poles can be interpreted as those corresponding

to the creation of higher kinks.
So the hope is that the RSOS restriction of the R-matrix yields S-matrices which have
a sensible physical interpretation. For that we change to the IRF basis and take ¢" = 1.

The RSOS states appearing in the reduced model
Iﬁl;jl,kla]a’l | ﬁ27j27k27--- | an—1 l /Bnyjn,kn > (69)

are now characterized by their rapidity B;, by their type k (which distinguishes the kinks
from the breathers), by their Uy(s!(2)) spin j and by the variables a; characterizing the

dual lattice, constrained by the limitations

-2
a; <= lag—1] < appr < min(ax + 1,7 =3 —ag) - (70)

= 2 3
The S-matrix of these RSOS states is given by replacing in (69) the R matrix by the

6j-symbols as in (19). One finds

Q-1 4ag

i

S| B — Bry1

!
Qp+1 Qg

1 1 ap.y ag
— 50(Bx — Brs) 1

/
1 Q1 A

% ((exp <—2Z7r—(/5k+1 _ ﬂk)) . 1) QCak+l+Cak_1—Cak-r:u;c-kll(_l)u (71)

- (eXP (~-2.g—r(/5k+1 — /Bk)> - 1) q—(cuk“Jerk—L—Cuk_ca;‘Jrg)("l)—U)

+q7%(¢® + 1)(g" — 1)bayq

Herein, c, are as usual Casimir of the representation a, ¢, = ala+1), v =ar+ aj —
ars1 — ar—1 and the expression of the 6j-symbols is given in (48).
Now we again analyze our S matrices for unitarity. In the IRF basis the relation is

written as

k-1 Gk Q-1 Gy
Z a’;cS IB S —/B = 5a;"ak

7 1
ar+1 Gy Qr4+1
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Hence we need to check that

!
Ap—-1 Qg Ap—1

S|B =58

!
Qg1 ap Qi1 Cf

This requirement is fulfilled if and only if the 6;-symbols are real. This happens for the

following values of v: (a) v = 5, which correspond to the minimal unitary models
M5 (b)y = 2511 and v = 33 :H, which are related to the nonunitary minimal models

M ons1 and M3 gnyi. For these values of 7, the maximal allowed spin is 0 and é Hence,
the kinks disappear from the reduced space and only breathers remain as asymptotic
states in the spectrum; (c) v = 4—:%, which correspond to the nonunitary minimal model
M int1. For this series the maximal allowed spin is equal to 1 and, according to the

RSOS restriction, the kinks behave as scalar particles.

5.3 S-Matrices of the ¢;, Perturbed Minimal Models M3 2,11

The Kac table of the minimal models Myo,41 extends along one row. The counting
argument and an explicit computation for the ¢, perturbed models show the existence
of a conserved current with spin s = 5 but not that one with spin s = 3 [76]. The fusion
rules of these CFT do not have any internal symmetry. These two facts together allow
the possibility to have the "®?”- property in the S-matrices of the ¢, , perturbed models.

From the analysis made by Smirnov, we know that in these models the kinks play the
role of quarks, in the sense that they form bound states which can occur as asymptotic
states but themselves they cannot [69]. How many breathers are in the spectrum? We

claim that for the models My 3,11, their number is (n — 1). The reason is the following.

For these models, { = 3= and a very special situation happens at these values (see
appendix). The (n — 1) poles between i and 22t (and the crossing ones), which are

those of the breathers b; (¢ = 1,2,...n — 1), are now third order poles whereas all other
poles relative to the kinks become fourth order poles ( see figure 5.3). According to the
interpretation of the odd and even order poles put forward in [13, 8], this precludes the
possibility of creating higher kinks. Therefore, all breathers (which, generally, are bound
states of kinks) are just the (n — 1)’s relative to the third order poles in the amplitude
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Figure 7: Pole-structure of the kink-kink S matrix

of the fundamental kink?. This conclusion is further supported by the analysis of the
S_-matrices of the breathers b; with the fundamental kink: in these amplitudes there
appears only the pole of the fundamental kink and no other singularities.

We now construct the S-matrix in the sector of the (n — 1) breathers b;. Using (68)

one finds for the fundamental particle b,

S, (8) = FL (B)f2(B)f-n=(B) - (72)

3 an

2T

We identify as the physical poles ul, = % and uj, = 7. The first one is interpreted
as a bound state corresponding to the fusion b;b; — by — byb;. This means that this
S-matrix has the "®3”- property and therefore we cannot have a spin s = 3 current in

the set of conserved quantities [76]. The second pole we assign to the breather b,. Its

mass is given by

me  Sin -
m,  sin iin ' (73)
1 6n

Using the bootstrap equations [76, 77], we can compute the amplitude Sy, 5,

Soiby(B) = f o (B)f 1 (8)fzzss (B) f=2nss (B) - (74)

6n 6n

Herein the pole ul, = 2% corresponds to the particle 1. Only if n is larger than 3, we get

a new particle by at the pole u}, = Z. Otherwise, for n = 3, this factor cancels with

T Although S), is not really sensible of a physical interpretation, as we discuss in the next section, its

analytic properties enter the structure of singularities in the RSOS physical sector.
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the zero f-ms(B). Treating similarly the scattering of b, and by, a new bound state b,

appears and so on. By induction we obtain the whole sequence Sy, 4, (k= 1,2,... <n—1)
Shib, = f%%_ fke_-;lL_ f'lniml:-—l f—'lnﬁinkil . (75)

The remaining scattering amplitudes are obtained again by induction, applying the boot-
strap equations. Finally the general S-matrix Sppb (for b >p=1,2,...n~ 1) is given

by

Sb by — fk+E(fk+E—2 v fk-g+2 )sz—e
P 6n 6n 33 6n
X f')n+k+g—2 v f'ln+k—-p+'..’ f'.’n+k-—1 (76)
6n 6n tn
X f——2n+k—p+2 v f—2n+k+g—-'z f—-'2u+k+£
6n 6n 6n

The exact mass spectrum is

k
me = sin—~ | k=1,2,...n—1 . (77)
n

Postponing the discussion on the analytic structure to the next section, here we make
some comments about the above S matrices. First of all, notice that the first line in (76)
corresponds exactly to the structure of the S matrices found for the ¢, 3 deformation of
these models [12, 53, 28]. Further, these are the poles identified as physical ones, and
therefore also the mass-spectrum has the identical structure as in the ¢ 3 case. Secondly,
the number of poles in the physical sheet given by the functions in the second line of (76),'
coincides with the number of zeros given by the functions of the third lines. Therefore, for
what concerns the computation of the effective central charge in the ultraviolet regime
of these scattering theories, the matrix N, which enters the thermodynamical Bethe
ansatz (TBA) coincides with that of the deformation ¢1.3 (see section 4.4 ). Then it is
not surprising to find also in this case the correct values ¢ = %?ll In [43] the TBA and
the Truncation space approach have been applied. The truncation spectrum is in good
agreement with the S matrices. Also the scaling region of the system was examined in the
TBA, and the exponents of the theory calculated. All results obtained ( which involve

complex numerical techniques ) confirm that the above S matrices describe perturbations

of the models My ony; in the direction @q..

2,4
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5.4 Pole Structure of the S-Matrix

Looking at equation (76), it seems that the bootstrap program has not been carried out
to the end. In fact, there are still poles in the S-Matrix which have not been identified
as particles. This, because above we only analyzed those poles which give rise to the
breathers, corresponding to the first line of the general amplitude (76). Besides the
argument we already gave for the truncation of the spectrum to the (n — 1) breathers
only, the unphysical origin of these remaining poles also shows up in the conservation
laws. If interpreted as singularities due to new particles, these spurious poles would not
be consistent with conserved quantities of higher spin [76], and therefore the entire theory
would be spoiled.

The domain of analyticity of an elastic S matrix consists of a two-sheet Riemann
surface with square-root singularities at the threshold points of the s and u channel,
respectively at (m; + m2)? and at (m; — my)?. The mapping

B =In (S —mi—mit \/((S — (my + m2)?)(s — (m1 — mz)2)>

(78)

2m1m-_;

transforms the physical sheet of the s plane into the strip 0 < Im B < w. The second
sheet is mapped into the strip —7 < Im £ < 0, and both repeat with period 2mi. In
order to understand the origin of the spurious poles in the 5 matrices (76), it is better
to interpret the singularities in a function f_. not as zeros on the physical strip but as
poles on the second sheet of the Riemann surface. Concerning this point, let us observe
the following facts. The expression of the mass of a bound state A, in a scattering state

| A, Ap) is an even function of the resonance angle ug,
2 2 2 ; -
m2 = m, + mj + 2mamp COS Uy, - (79)

Hence, reversing the sign of u¢;, the value of m. does not change. Moreover, suppose we

have given a closed bootstrap system with a generic S matrix of the form?®

Sab(ﬁ) = Hflx(lg) ’ (80)

8Tor simplicity, we consider here the case of purely elastic diagonal S matrices. The argument given

in the text can be easily generalized to the other cases.
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1 dm
2 __ 2% T2 = 7
Y11 5 2 3
Uiy = 75
3 __dm
Ugy = 7

Table 1: Resonance angles of the Aﬁf) model.

where all z; > 0. Let us change all factors fs,; into f_s;. If we now apply the bootstrap
equation to the zeros instead of the poles we again end up with a closed system with the
same spectrum as the original one.

Hence, if one has an S-matrix with poles only in one sheet, the interpretation is the
usual one. All odd-order poles must correspond to bound states. These, according to
the bootstrap-principle, have to be followed and must give rise to conserved quantities of
higher spin. The interesting situation though occurs, when poles appear in both sheets of
the Riemann surface. For special values of their positions, it may happen that, through
the bootstrap, they overlap each other and produce spurious poles. In these cases it is
also possible that expected particles disappear from the spectrum and reappear as zeros.
In order to understand this mechanism better, let us consider a particularly simple and
illustrative example, i.e. the second model of the A(gzn) Affine Toda Field Theories {13, 8].

The whole set of S matrices of this system is given by

Sy = f—bf%fb—%
Siw = fafisfifos (81)
522 = f—bf%fb-%f%fb—%f%f—b—%

The poles corresponding to the bound states are given by the b-independent terms (which

are the minimal S matrices). The values are in the Table 5.4. The mass spectrum is

m =M , me = 2M cos—75E . (82)

The remaining functions in (81) introduce zeros on the physical sheet. The conjectured



5.4 Pole Structure of the S-Matrix 79

expression of b(g), as function of the coupling constant g of the Lagrangian, reads [13, 8]

1 g
P T (83)

For a finite value of g, the terms containing b(g) do not modify the spectrum. But,
increasing g, the zeros move around and, for g — oo, they overlap with the poles,

producing the following set of S matrices

Suzf%(f.é)g , 512:]”_%]5% , S =f_ (84)

Grlske

If we retained the usual interpretation of the bound states as poles in the physical strip
of the amplitudes, we would conclude, that in the above system the bound state A, has
disappeared from the amplitude S as well as A, from S,,. Actually, as result of the
collision of the zeros with the poles, we see that these particles have been moved onto
the second sheet.

The same pattern is easily established for all other models of the Affine Field Theories
Agf) On the other hand, using the analysis made in [13, 8], it is possible to see that the
S matrices of the Affine Toda Field Theories of the simply laced algebras (ADE) do not
show this overlapping behaviour. A natural interpretation of the peculiar features of the
series AEE} comes from its group origin. This series is obtained as a folding of the simply-
laced models Agln) under the Z, automorphism of their Dynkin diagram. This folding
projects the 2n fields of the original theory onto a n-dimensional subspace. n particles of
the original AQ,} theories rearrange themselves as the new particles of the reduced models
Aé”:l) (and then they appear as poles in the physical strip”), but we may think of the other
n’s of the initial model as particles living on the second sheet of the Riemann surface of
the latter one. They only show up in the S matrices in the strong coupling limit g — oo.

A similar mechanism is responsible for the spurious poles in the S-matrix (76) of the

¢, » deformation of the My 2,11 models. The only difference is that the locations of the

zeros are now not adjustable parameters but they are fixed from the beginning. The first

9Here we also remind that the A(zi) theories are the only non-simply laced theories which seem to be
consistent without inclusion of other fields in the Lagrangian. For instance, the one loop corrections do

not spoil the classical mass ratios (13, 8].
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one occurs in the amplitude Sy, through the term f_n-.. If we calculate the mass of
an

the particle corresponding to it, we find m, = i- sin(Z=27). But we also get the same

dn—

mass at the spurious pole in Sy, s,, namely at uf, = =Ly, Therefore this singularity can

be interpreted as a zero which through the action of the bootstrap appears as a pole in
the physical sheet.

The whole analysis of the analytic structure of the S matrices is based on some basic
steps which we clarify through the first non trivial model of our system!?, that one

corresponding to My,7. This model has two physical particles with S-matrices given by
oo, = fifafoz 5 Sow = Fafr s Sbm = fafifs (85)

Let’s now follow the above interpretation and calculate the S-matrix relative to the pole
at 8 = —i% on the second sheet of the Riemann surface of Sp,p, - Denoting this spurious

particle by a;, we have

Soar = (F2) fsfosfoy 5 Swa =AY ffefy s Sam = (F2P(F)2(f-2) -
(86)
In the amplitude Sy, we can easily identify the particles b, (relative to ug‘lal = 127) and
by (with ulb"fal = ég’—’) The pole at § = —% on the second sheet gives rise to a new spurious

particle a, and turns up as a pole in the physical sheet of the amplitude Sp,p,, i.e. that
one at uj?, = 3F.

Still we have not finished the analysis of this model. There remains one spurious pole
in the amplitude S,p, to be explained. This is the singularity at 8 = i%. But, looking
at the general amplitude, we see that it arose from a cancellation of a zero with a double
pole coming from the multi-scattering graph of the figure 5.4. This is exactly the same
mechanism we encountered in the example of ATFT Ag‘:,), i.e. fine tuning the value of the
coupling constant to a special value, one can boost a pole from one sheet of the Riemann
surface into the other.

The analysis in the case of @ perturbations is much more involved than in the &3

10Notice that for » = 2 we have the Yang-Lee model, in which holds the identification ¢, 2 = ¢1,3.

Therefore, the S-matrix for this system reduces to that one discussed in [12].
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Figure 8: Multiscattering process responsible for higher order pole singularities in the

S-matrix

case but the basic mechanisms explained in the example above, successfully applied to

all the models defined by (76).

5.5 @14 Deformation of My

In a recent paper, Martins [49] pointed out the connection between the models My g+
and Mgg+ b1 2. Basically, the argument relies on the identification of the fields ¢, with
the vertex operators given in (57). This equation implies that the field ¢; »(7) is related to
the field ¢ 5(7), provided that y = 45 . In the model M3 we have ¢1,4 = ¢1.5. Hence,
it should be possible to recover the ¢, deformation of this model using the analysis
of the ¢, deformation of the unitary model Mggo. The above observation also makes
less mysterious the origin of the integrability of the ¢, deformation, which is usually
prevented by counting argument and null-vector considerations.

Smirnov [69] found, that for the model Mgy, the spectrum consists of four particles:

two kinks with the masses

™
M 2M cos — 7
. Mo (87)

and two breathers with the masses

4
9M sin — ) 4M sin — cos — . (88)
15 1

111} is also necessary to make a corresponding rescaling in the exponential term of the Liouville action.
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The S matrices of the fundamental kinks and of the fundamental breather are given by
egs. (71) and (68) respectively. If we would like to construct the S-matrix proposed
by Martins from the massive theory Mgy + ¢1,2, We need to restrict the space of states
such that it contains only particles with scalar behaviour and not kink-like. Hence we
have to find a combination of the kink amplitudes which give rise to the S-matrix of
the fundamental particle of the ones given below (91). The combination of the kink S

matrices we are looking for is

11 11 T m () 2w
S(8)=$ |8 L5 = 5y(8) sinh = (8 + im) sinh = (g + —.-)
11 \ 2 2 3 3 3
(89)
Simplifying the expression (66) for Sy, i.e. with { = 8% one obtains
F2(8)f2 (B)f1(B)f- L (B)f-2(P)
o(B) = sinh%(,@ + i7) sinh%(ﬁ + %) (80)

As explained in the next, it gives rise to the S-matrix of the fundamental particle of
the perturbed system Mg + ¢1,4. Using the above expression (90), the expression (89)
reduces to the S matrix proposed by Martins for the fundamental particle of Mog+ o).
[49]. It satisfies the usual requirement of unitarity and it is a crossing symmetric function.
Therefore it is breather-like and a restriction to a subspace of scalar particles is possible.
Now we want to analyze the bootstrap system which comes from (89).

The bootstrap closes with four particles and the full S-matrix is given by

_ 2. 3 1 g, o 1g,. 3
S = fl_l5 f fi’f_Tlgf_?3 Sia f% b

Sw= Uy My UAfgfa(5F Su= Cefp(R)

H 3

—
b (%)

Sw= ffz 'fi Sw= 'ffsfafu

Sau=fzfs °f f;_g(fgl-_g)z (91)

3
10

Sw=(f2) (F2)? (F5)? foyfoz  Ss= 'fofife(Fe) ()

L5 15 ] 15

5;14:(4f§)3 (Ffr)? fa 2 (fu)? f2 -

15 15 13 5 3
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In order to easily identify the appearance of the physical bound states, we have introduced
a compact notation: a factor °f; in a S matrix Sp.-matrix means that this pole gives
rise to the physical particle a through uj, = zw.

The particles A; and Az correspond respectively to the fundamental and the higher
kink and their masses coincide with those given in (87). The other two particles A; and
A, correspond, on the contrary, to the two breathers present in the Mgy + @12 model
and their masses coincide with those in (88).

As before, we realize that in the S-matrix of the fundamental particle poles appear in
both sheets of the Riemann-surface. Hence, we expect spurious poles along the bootstrap
procedure, which appear indeed. The same mechanism we already applied to the previous
systems works successfully also here. We calculate _for the zero’s the corresponding fusion-
angles and masses, and see that these ”spurious” particles also appear on the physical
sheet of the Riemann-surface. For example, consider the zero u?; = —-=. This turns out
to be exactly the "spurious” particle appearing in Sy at uj, = 2. Other singularities
in (91) can be analyzed similarly.

A non trivial check of our conclusions has already been done using the Truncation
Method and, actually, this was the way how the S matrix of the fundamental particle has
been conjectured [49]. We start by checking the ultraviolet behaviour of the S matrices

91. The ultraviolet limit is taken solving Egs. (51), with the S matrices given in (91),
for R — 0 [80]. In this limit the scaling function is easily written in terms of the Rogers

dilogarithmic function

i= S I(w); (=)= ——i; | llﬂ(ly_ v, 11“_?’31 (92)

where

:1:1_1 = 4cos’ (%)
2 2
:1:;1 = (2 cos (—g) -+ 1>
z;! = 4cos® ({é) (2 cos (g) + 1) (93)
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Using the properties of the Rogers dilogarithmic function we can exactly perform the sum
of Eq. (92) and our final result is ¢ = %, which agrees with the corresponding conformal

field theory (see Eq.(50)).

5.6 Restricted S-Matrices of ®;; Perturbed Models

In [66] Smirnov proposed S matrices for the ¢, perturbations. Using the arguments of
the quantum Liouville theory (see page 69 ) he simply exchanged the rédle of r and s in

constructing the restricted models. That is, he proposed

Sip = So(B)Rua(e €, %)

=3
s

Let’s call the the new parameters 5,€. That is, we take ¢ = e% and z = et . Since

v = I7 we obtain that ¥ = Im and g2 = ¢, Finally we obtain also £ = %2:;. That is,
all the formalism developed in section 5.1 can be carried over substituting the respective
- values. Note that also in the restriction (70) now r enters instead of s. As an example

we calculate the S matrix of the Ising model perturbed by the operator ¢,;. We put the

parameter { = 3 into the formula for Sy (see equation (65)) and find

1
sinh(§ — =) sinh(2 — 1F)

Sy =

LY

From the RSOS restriction (70) we find that there are only 2 allowed amplitudes

0 N L

1 1 and g 0 >

0 1
which take the same value S = —1. Since for the theory Ms the operators @21 and ¢y 3
coincide, we can compare the result with the one deriving from sine-Gordon theory and
find that it corresponds.

Encouraged by this, we turn to a more complicated case: the tricritical Ising Model

(TIM). We leave aside now the twiddles over the parameters, but they are implicitly

understood. In the TIM perturbed by the subleading magnetization operator, r = 4 and

¢ =197 From eq. (70), the only possible values of a; are 0 and 1 and the one-particle
9 q
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states are the vectors: | Koi), | Kio) and | Ku1). All of them have the same mass m.
Notice that the state | Kop) is not allowed. A basis for the two-particle asymptotic states
is

‘ K01K10>7 ; K01K11>7 l K11K11>a l K11K10>7 l KIDK()l) . (94:)

The scattering processes are

i
N
gx

| Ko1(B1)K10(B2)) ( ) (B2) Ko
| Ko1(B1)K11(B2)) ( ) (B2) K
| Ku(B1)E10(B2)) = Si5(Br = B2) | K11(B2) Ko
(61) ) ( ) (B2) K11 (B
(81) ) ( ) (B2) Ko (

I
2
=
|
5
2
2

+ 51908, — B2) | Kio(B2) K (61))
+ S(B1 = B2) | Kin(B2)K11(B1))

[
n
@

|
™
[
s
o
=
)

|K11 51 Kll(,BQ )

)
)
B1)) (95)
)+
| K10(B1)Ko1(62)) )+
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S E
S
f
5
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5
2
®

Explicitly, the above amplitudes are given by

7 Fiy

= S&é(ﬁ) = 35 So(B) sinh <§5*i‘5“>

= S6) = 5 S sinh (g8 +i7)

SHB) = 5 Sulb)

— S8 = — SuB) ( (_)

— — — o) o
ot ek — st (o]
I

gl 2

2B

N PN

o5 |

—~— A —

— SNE) = —5 SuB) — (ﬁ)
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where we compute So(8) using (65). It is given by
508) = - (sinh (8- ivr)sinh—i% (8- 3;—"»—1
< (p,—5)w (8-55) » (8r15) (%)
<t(0.3)¢(e-5)t(05): (575 -

where

sinh (—%ﬁ + iwm)

w(f,e sinh (%ﬁ - i7r:z:) ’
_sinh 3(B +1imz)
t(8=) sinh (8 —i7x)

SP(B) SR (=) +Sii(B) SH(=B)=1;

SR(B) SYH(=B)+ S1i(B) Si(-F)=1;

SH(B) SY(=B)+ 511(8) Si(=B)=0 ; (97)
S1(8) Sw(=#)=1;

Sn(B) Sw(=B)=1 .

An interesting property of this S matrices is that the crossing symmetry occurs in a

non-trivial way, i.e.

Si(ir—8) = Si(8) ;
S??(iw":@) = d’ S(,lu,l)(ﬁ) } (98)
Siiim—8) = a S5(B) ;

) "

The above crossing-symmetry relations may be seen as due to a non-trivial charge

where

Gt
N

N

wiira

and s(z) = sin(7z).

conjugation operator (see also [52]). In most cases, the charge conjugation is implemented
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Figure 9: Pole structure of Sy(3): * are the location of the poles and o the position of

the zeros.

trivially, i.e. with @ = £1 in eq. (98). Here, the asymmetric Landau-Ginzburg potential
distinguishes between the two vacua and gives rise to the value (99).

The amplitudes are periodic along the imaginary axis of 8 with period 10 =wi. The
structure of poles and zeros is quite rich. On the physical sheet, 0 < Im B < im, the poles
of the S-matrix are located at 8 = 2—373 and 8 = % (fig.5.6). The first pole corresponds

to a bound state in the direct channel while the second one is the singularity due to the

271

particle exchanged in the crossed process. The residues at g = “&* are given by

ri = Resg oz Su(B) =10 ;

[S&

N——

SIIIN

£

TN
V2] ©n
TN ~

ry = Resaz%—\i a(B) =1

S

~ - ~———
€

Gt fem

r3 = Resg_zzi SHB)=1 w ; (100)
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where

RO HOHOHOE O -
s (@) (@ (@2 0

In the amplitude S}! there is no bound state in the direct channel but only the

0o

singularity coming from to the state | K);) exchanged in the t-channel. This is easily

seen from figure 10 where we stretch the original amplitudes along the vertical direction



88 5 S MATRICES FOR RESTRICTIONS OF THE IZERGIN KOREPIN MODEL

(s-channel)and along the horizontal one (t-channel). Since the state | Kyo) is not physical,
the residue in the direct channel is zero. In the amplitude S}{ we have the bound state
| Ku1) in the direct channel and the singularity due to | K1) in the crossed channel. In
SI1, the state | K1) appears as a bound state in both channels. In Sy} the situation is
reversed with respect to that of S}, as it should be from the crossing symmetry property
(98): the state | Ki;) appears in the t-channel and | Ko, ) in the direct channel. Finally, in
S% there is the bound state | K11) in the direct channel but the residue on the t-channel
pole is zero, again because | Kyo) is unphysical. This situation is, of course, that obtained

by applying crossing to 5.

5.7 Energy Levels, Phase Shifts and Generalized Statistics

The one-particle line a of fig. (1.a) corresponds to the state | Ki1). This energy level
is not doubly degenerate because the state | Kyo) is forbidden by the RSOS selection
rules, eq. (70). With periodic boundary conditions, the kink states | Kyi) and | Ky) are
projected out and | Ky1) is the only one-particle state that can appear in the spectrum.
The results correspond with the ones found in the truncation space approach [16].

For real values of 3, the amplitudes Si}(8) and S}{(8) are numbers of modulus 1. It

is therefore convenient to define the following phase shifts

Se(B) = &0 (102)

SiE) = O

The non-diagonal sector of the scattering processes is characterized by the 2 x2 symmetric

(S}m) Si’%(ﬁ)) | (103)
S31(8) S(B)

S-matrix

We can define the corresponding phase shifts by diagonalizing the matrix (103). The

eigenvalues turn out to be the same functions in (102),

g2ito(8) 0
104
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Figure 10: Intermediate states in the s-channel and t-channel of the RSOS S-matrix.



90 5 S MATRICES FOR RESTRICTIONS OF THE IZERGIN KOREPIN MODEL

The phase shifts, for positive values of 3, are shown in fig. 5. Asymptotically, they have

the following limits

lim €200 = £ (105)
B—too

im 2@ = £F

B—toc

There is a striking difference between the two phase shifts: while §,(3) is a monotonic
decreasing function, starting from its value at zero energy 6.(0) = %, u(B) shows a
maximum for § ~ % and then decreases to its asymptotic value 3. Its values are always
larger that 8,(0) = Z. Such different behaviour of the phase shifts is related to the
presence of a zero very close to the real axis in the amplitude e?%) ie. at § = i5.
This zero competes with the pole at 8 = % in creating a maximum in the phase shift.
Similar behaviour also occurs in non-relativistic cases [65] and in the case of breather-like
§ matrices which contains zeros [17]. The presence of such a zero is deeply related to the
absence of the pole in the s-channel of the amplitude e?®(®), For the amplitude g2i61(9)
the zero is located at 8 = 3233 (between the two poles) and therefore its contribution to
the phase shift is damped with respect to that one coming from the poles. The net result

is a monotonic decreasing phase shift.

Coming back to the 2 x 2 S-matrix of eq. (103), a basis of eigenvectors is given by

| 61(B1)d1(B2)) = A(Br2) (] K11(81)K11(B2)) + x1(Br2) | Kio(B1)Kui(B2))) {106)
| 62(8)¢2(82)) = A(Biz) (| Kun(B1)Kui(B2)) + x2(Br2) | K1o(81)Kuv1(B2)))

where A(B)2) is a normalization factor. In the asymptotic regime § — oo

25 2 8wi
e s a“ + e’

X1 = - . (107)
— 2t 2 3x
X2 = - - (C; e ) )

and the probability Py to find a state | Ki9Koi) in the vector | ¢p2¢p2) w.r.t. the

probability Piq11 to find a state | K11 K1) is given by the golden ratio

Piom 1 <7r>
P ~ cos z (108)
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For the state | ¢1¢;), we have

Pioopn 1

P * = 2 cos (—E) - (109)

The “kinks” ¢; and ¢, have the generalized bilinear commutation relation [70, 39, 68]

$ilt,2)¢,(t,y) = 8;(t,¥)bi(t,w) UYL (110)

The generalized “spin” s;; is a parameter related to the asymptotic behaviour of the

S-matrix. A consistent assignment is given by

s11 = 5-— = )
s12 = 0 (111)
3 51(00)
S99 = T =
- 10 T

Notice that, interesting enough, the previous monodromy properties are those of the

chiral field ¥ = @L%’U of the original CFT of the TIM. The operator product expansion

of U with itself reads

U(z)¥(0) = 1§ 1+C‘”’§?~‘D T(0)+... (112)

Z5 A

where Cy g,y is the structure constant of the OPE algebra. Moving z around the origin,
z — €™z, the phase acquired from the first term on the right hand side of (112) comes
from the conformal dimension of the operator ¥ itself. In contrast, the phase obtained
from the second term is due to the insertion of an additional operator ¥. A similar
structure appears in the scattering processes of the “kinks” ¢;: in the amplitude of the
kink ¢; there is no bound state in the s-channel (corresponding to the “identity term” in
(112)) whereas in the amplitude of ¢, a kink can be created as a bound state for § = e
(corresponding to the “¥ term” in (112)). In the ultraviolet limit, the fields ¢; should
give rise to the operator ¥(z), similarly to the case analyzed in [68].

The problem of finding a theoretical explanation for the energy levels of the ¢
perturbed TIM resulting from the truncation space approach, was first discussed by
Zamolodchikov [79]. He explicitly constructed the S matrix having available these data
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and the requirement of factorized scattering. His result differs from the one above. Both
solutions Are particular parameterization of the “hard square lattice gas” Boltzmann
weights [3]. In [16] a comparison was made between the two different approaches, studying
finite-size corrections of the energy levels obtained by the truncation space approach.
The result suggests that the RSOS S matrix gives a more appropriate description of the

scattering process of the massive excitations of the model.
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6 Conclusions and Outlook

We presented some results on the S matrix approach, in order to describe integrable
deformations of conformal field theory. Our approach was based on the fact that the
S matrix underlies constraints, which can be translated into properties of an R matrix
of a quantum group. It turned out that the S matrix is proportional to this R-matrix.
Perturbations of minimal models were related to RSOS restrictions of this S matrix,
using the representation theory of the R matrix.

A conformal invariant system can be realized as a Toda field theory, corresponding
to the group A;. This is the only posibility to construct a Toda field theory with only
one scalar field. The only affine extensions of this algebra ( containing also only one
scalar field ) are Agl) and Agz). They are identified with the sine-Gordon model and
the Izergin-Korepin model respectively. Using the correspondence to the Coulomb gas
approach one realizes that they describe perturbations of conformal field theory: the
sine-Gordon model is related to the ¢, 3 perturbations and the Izergin-Korepin model
to ¢ 2 and ¢ perturbations. Therefore it is natural to assume, and is also confirmed,
that the S matrices are proportional to the corresponding quantum group R matrices of
Uy(AfY) and Uy(45).

Our results are twofold: First we considered the sine-Gordon model and compared
the results with those coming from S matrix theory. That is, we considered the models
M on43, which contain only one singularity in the S matrix amplitude of the basic
particle, which is a scalar particle. We examined whether there can exist other consistent
S matrices having only one singularity and found that the answer is negative.

This is an exiting result, but is understood to be only the beginning of a much
vaster investigation. One would like to prove, that the class of consistent S matrices is
equivalent with those found by the reduction mechanism, that is, intrinsically related to a
Lie algebra. This hope arose since an analogous situation occurs in conformal field theory,
where the models are classified by the ADE series. Considering basic amplitudes with
more than one singularity, the analysis gets much more involved, and no analytic result 1s

known up to now . In [44] a computer program was used to get information about theories
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with basic S matrices with 2 and 3 singularities, using only general constraints from the S
matrix theory and the bootstrap principle. Also in this case the only consistent systems
found are related to Lie algebras ( E; and Eg ) and can be obtained by the quantum
group reduction. Unfortunately, a numerical analysis of this kind can only be taken as
an indication in the right direction, but does not provide a conclusive result.

Secondly we examined RSOS restrictions of the Izergin-Korepin model, which is re-
lated to the Agz) quantum group. We explicitly calculated the full S matrix for ¢
perturbations of the Mo 5,13 series, which contains only breathers in this case. Using
the TBA we found that the effective central charge in the ultraviolet limit, and indeed it
corresponds to that of the critical theory.

Also the series M3 3n41 and My yua contain only breathers ( or in the second case,
breather-like particles ). It is still an open problem what their full S matrix looks like.
Also the S matrix of the unitary series M, .1 has still not been written down, though
one knows in almost all cases the particle content.

For the ¢y, perturbations only few examples are known up to now. This 1s due to
the fact, that kink scattering amplitudes are more complicated to handle than breather
ones. So also in this case there are still many things to do.

As one sees there are many open problems in the $ matrix description of perturbations
of conformal field theories. But the S matrix is a very basic ingredient for many further
investigations. An open problem is to deal with the off-shell theory, that is to write
down correlation fuctions of the theory, which in principle should be possible through the
calculation of form-factors. Also for the TBA the S matrix is a basic ingredient. Also in
this field there are many interesting open problems: the generalization to non-diagonal
S matrices, how to reduce the enourmous numrical work, in order to solve the TBA
equations, and more fundamentally, to understand the deeper reason how an on-shell
description of the theory can give the right critical exponents and central charge in the
ultraviolt limit. Though S matrix theory is only a first ingredient for these calculations,
it plays such a fundamental role, that it is surely worth spending one’s energy on this

subject.
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