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1 Introduction.

571103 belongs to the family of oxygen-containing perovskites, the typical representative
of which is BaT'iO3. The latter being known to be ferroelectric for a long time, S77:03
was extensively studied in search for a possible phase transition into a ferroelectric phase.
Actually it was found to undergo a structural phase transition at 7, = 105K when its
structure changes from simple cubic high temperature phase into tetragonal low temper-
ature phase. The tetragonal phase, however, is not ferroelectric, and is characterized by
an antiferrodistortive rotation of the oxygen octahedra with respect to their positions in
the cubic lattice. In fact, S77'i03 under zero stress has never been observed to become
ferroelectric, not even at T = 0, in spite of the fact that its dielectric constant acquires
very high values (~ 10*) at helium temperatures. For this property it was originally
termed as incipient ferroeleciric and later as quantum paraelectric. Recently a new indica-
tion for a possible phase transition has been reported in [11] and it is predominantly this
phenomenon which motivates the present work. The aim of the introduction is first to
summarize the known experimental facts concerning the incipient ferroelectric behaviour
of 57Ti03 and then to point to the current level of the theoretical understanding of that.

After this we describe in detail the recently discovered anomaly and propose a possible
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explanation, which will then be further developed in subsequent chapters.
1.1 Incipient ferroelectric behaviour of 5r7T%0;3.

The ferroelectric behaviour, according to the soft-mode theory, is related to a strong
temperature dependence of the frequency of a particular zone-center TO phonon mode.
We therefore start with several general remarks concerning the phonon spectra of SrT303.
The structure of its high temperature phase (T > T, = 105K) is cubic perovskite which
consists of 5 interpenetrating simple cubic lattices and contains 1 formula unit per unit
cell. Symmetry analysis [3] shows that in the center of the zone we have (apart from 3
acoustic modes with w — 0) one triply degenerate optical mode I'p5 and 3 triply degenerate
optical modes I';5. Each of these latter triplets is for any finite wavevector split into a
longitudinal mode and a doubly degenerate transverse mode. The mode of our interest
is the lowest lying TO mode corresponding to I';5 (or Fiy,), which is dipole-active, and
would therefore yield ferroelectricity upon softening. In the tetragonal phase below T,
this mode becomes split, because the point symmetry group of the crystal is now Dy
instead of O}, and gives rise to a single A;, mode and a doubly degenerate E, mode. The
former, at least to our knowledge, has never been observed experimentally, but according
to the measurements of the c-axis dielectric constant [6] its frequency should be about
twice that of the F, mode. It is therefore the latter which is responsible for incipient
ferroelectricity and quantum paraelectric phenomena strictly parallel to the (001) plane.
It has been extensively studied by various techniques, particularly Raman and neutron
scattering. The temperature dependence of its frequency is shown on the Fig.1.1. We see
that both techniques are in very good agreement, and indicate softening above ~ 35K,

but not below.
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Figure 1.1: Temperature dependence of soft optical mode at ¢ = 0. Several selected values of
the results of Raman scattering experiment by Fleury and Worlock are given by squares. Solid
line corresponds to the temperature dependence calculated with Lyddane-Sachs-Teller relation
and observed values of ¢;. Dashed curve is calculated assuming Curie-Weiss type temperature
dependence in €. (After [7].)

According to the generalized LST relation the frequencies of the optical branches are
related to the static and high frequency dielectric constant ¢; and €., respectively, as

follows

& _ [Liwio 11
== (1.1)
€o  Iiwiro

provided the phonon system is quasiharmonic and the mode damping is low. If we assume
that the frequencies of all modes except for the soft mode are temperature independent,
then (1.1) implies a relation between the temperature dependence of ¢, and that of the

soft mode frequency w,(0)

A A
wl(O) = ‘\/—6_0, (12)
where A = -ITHL:}O—ex. (1.3)
1>2 ¥ TO

As we see on the Fig.1.1 this relation is very well satisfied in the whole temperature range
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under investigation down to the lowest temperatures. The dielectric constant € behaves
for temperatures 7' > 60K according to the Curie-Weiss law with a critical temperature
T. ~ 37K. Below 60 K, however, considerable deviations from this behaviour are observed
and €, instead of diverging at 37 K ceases to increase and gradually stabilizes at a high
value ~ 2 x 10%. The most striking feature is that for 7 < 3K this high value is completely
temperature independent, as Miiller et al. have shown in [12], measuring down to 30mK.
This kind of behaviour has then been termed as quantum paraelectric behaviour. The
simplest qualitative explanation of it can be worked out within the frame of a dynamic
mean-field single mode theory, as was shown in [12]. We consider it instructive to review
their derivation briefly because it clearly illustrates the basic physics of the problem.

We consider a single mode hamiltonian as it is usually employed for structural phase

transitions
P} 1
H = gt > U(q) - 5 S upay, (1.4)
l I N
1 290, 1 4
where U(q) = Emﬂoq + 174 (1.5)

is the potential acting on the Ti ion inside a single cell. The corresponding equation of
motion for g is
mq = _mﬂgql - 7QI3 + Zv”’ql’ . (1.6)
/
Now introduce a mean field approximation replacing g —<g>. Moreover, linearize the
37 order term by replacement ¢} — 3<gf>q;, where < > means thermal average. One

obtains the following expression for the zone center soft-mode frequency w
mw? = mO2 + 3y<g?> — v(0) = mQ*(T) — v(0), (1.7)

where Q(T') is the single particle frequency at temperature T and v(0) = > vy. Now if
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the motion were classical, we could calculate the mean square displacement <g?> using

the equipartition theorem which yields

kT
<Q[2> = m . (1.8)

Substituting this into (1.7) and putting w = 0 we obtain an expression for the classical

critical temperature Tg

kT

——C = y(0) - mQ2. 1.9

We can now express the temperature dependence of the soft-mode frequency near the

critical temperature as

ZQQ(TCI)( C) (1 10)

and similarly for the static susceptibility, for which we obtain the familiar classical Curie-

Weiss law
mO?(T¢)

= — e 1.11
X = k(T - T4 (1.11)

For sufficiently low temperatures, however, we cannot use the classical expression for
the mean square displacement (1.8) and we must replace it by the quantum-mechanical

value

coth—}}—ﬂ— , (1.12)

2
<Gz =g g Mo

which yields always a larger value than the former. Moreover for T — 0 it tends to a finite
value f/2mQ(0) whereas the classical displacement tends to zero. Then, if the parameters
of the model are such that mQ3 — v(0) is negative and small, in the classical picture the
phase transition would occur for some finite temperature, whereas quantum-mechanically
we can haveeven at T = 0

2 3vh 5
2 = T 5 (0) — mO2, 1.1
37 <ql > 2mQ(0) > U( ) iy ( 3)
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which means that the soft mode frequency remains finite. This summarizes the present
understanding of the mechanism by which the phase transition in §7T¢03 is suppressed.

We can easily calculate the static susceptibility for this case and obtain

3 M
"~ (Th/2) coth(Ty/2T) — Tg’

X (1.14)

where M = mQ?(Tg)/3vk and T; = hQ(TE)/k. The expression is in this last form valid
over the temperature interval near T¢ and was for the first time derived by Barrett in

[13], however, in a different context.

The above theory is of course too simple to fit adequately the experimental curves of x
versus 1. It accounts, however, for the essential feature of those, namely for the flattening
of x as T — 0. Its main shortcoming is the single-mode approximation, because the
coupling of the soft mode to acoustic modes is not negligible. The adequate microscopic
theory taking into account this coupling in a natural way was for the first time worked
out by Migoni et al. [14] and its main ingredients are the shell model with an anisotropic
and nonlinear intraionic polarizability of the oxygen ions. The results of this theory were
in very good agreement with the measured dispersion curves of SrT:03 and KTaOs3.
The most detailed present version of the theory of ferréelectricity in oxygen containing
compounds is the polarizability model developed by Bilz et al.[15]. Similarly to the simple
model described above, none of these descriptions implies a phase transition at or near
T¢, but simply a crossover from classical paraelectric for T > T¢ to quantum paraelectric

for T < Tg!.
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1.2 Neutron inelastic scattering from the soft mode.

To obtain information about the nature of the soft mode it is not enough to determine
its frequency alone. The linewidth has to be investigated as well and this was done
by both neutron and Raman spectroscopy. The results reveal that the soft phonon is
underdamped over the whole temperature range down to 7 — 0 [5],[7]. This together
with the fact that the LST relation is well satisfied suggests that SrTi03 belongs to
the class of displacive type ferroelectrics in which the fluctuations of polarization are
entirely due to the excitation of optical phonons which can be treated in the quasiharmonic
approximation. An independent evidence for the validity of this picture could be provided
by investigation of integrated intensity in neutron scattering experiment. Since this is a
particularly interesting point, we mention it in greater detail.

Provided the phonon system is quasiharmonic the expression for the total integrated

intensity due to one phonon scattering reads (for g= const.) (8]

do kfn(jé)-i—l A2

where k; and ky are the momenta of the incident and scattered neutrons and (j = l;,' —k f
is the momentum transfer. The phonon wavevector ¢ is given by Q = ¢+ G, where G
is a reciprocal lattice vector, and the occupation number of the phonon mode (7§) with

frequency w(7q) is n(j7). The inelastic structure factor Fin(7Q) for the mode (5) and

momentum transfer @ is

unil cell

Fn(i@)= Y mk%[Q-Wk(jﬂlbkexp(—wk)eXP(ié-ﬁk)’ (1.16)
k

where index k labels the nuclei, and by, Wy and my are the neutron scattering length,

the Debye-Waller factor and the mass, respectively, of the nucleus k. For pure transverse



10 8 1. Introduction.

modes we may assume thaf the Debye—Waller factors for all atoms in the cell are the same
and factorize the momentum transfer § out of (1.16) leaving the reduced structure factor
which depends only on the reciprocal lattice vector G and is periodic in the reciprocal
space. The volume over which it repeats is, however, larger than the Brillouin zone over
which the phonon frequency w(jq) repeats, and therefore for each phonon wavevector ¢
there are several points § in the reciprocal space with different reduced structure factors.
For example in the (100) plane (we are using the pseudocubic notation) there are 4 such

points, namely (000),(100),(010) and (110).

Neutron scattering by Yamada and Shirane 7] revealed an interesting anomaly in the
temperature dependence of the integrated intensity, which may yield important informa-
tion about the nafure of the TA-TO mode coupling in S7T'i03. If the phonon system is
well described in the quasiharmonic approximation, the main ternperature’ dependence in
(1.15) will be that of the phonon occupation number n(j¢) and apart from this as well
that of the mode frequencies. Using the measured values of w(j§) one can then predict the
behaviour of g% as a function of temperature. The energy spectra of scattered neutrons
were measured near various reciprocal lattice points and for different phonon polariza-
tions. The results for the ¢ = 0 soft TO mode and TA mode with polarization along [110]
were in good agreement with theoretical predictions confirming the validity of the quasi-
harmonic approximation. However, the integrated intensity of the TA mode observed at
point (4,0.1,0) (polarization along [100] and wavevector ¢ = 0.154) drops for temperatures
less than 50 K to a value which is itself very small and much smaller then predicted by
(1.15). On the other hand the integrated intensity of the soft TO mode observed at the

same point is in the same temperature interval about twice as high as predicted by (1.15).
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No anomaly of this kind was seen around (300) reciprocal lattice point. Similar effects
were observed as well in other similar perovskites like KTaO3 and PbTi0O3 and at the

time of observation no explanation was known for this behaviour. !

A first successful theoretical explanation of these effects was given in [8] and was based
on the assumption of quasiharmonic ¢-dependent coupling between acoustic and optic
modes. We shall devote more space to this in the second chapter. For the moment we
just mention that with decreasing temperature the frequency of the soft TO mode falls
down strongly and as it approaches the TA mode from above the coupling between the
modes becomes more and more important. It is operative for ¢ # 0 only and in the
lowest order proportional to ¢? (this is the consequence of the fact that the crystal has
a center of symmetry). For ¢ = 0 it therefore does not act, which is in agreement with
the observation in [7], where no anomaly was seen for the ¢ = 0 TO mode, and with the
usual temperature dependence of the limiting sound velocity. For finite ¢ it is manifested
both on frequencies and eigenvectors of the acoustic modes. The TA frequency shows a
depression and a substantial amount of ¢ = 0 TO mode is admixed out of phase into the
TA mode eigenvector. This is the mechanism responsible for the lowering of the inelastic
structure factor in the neutron scattering experiment. For case of KTaQOj3 an attempt was
done in [8] to predict quantitatively the temperature dependence of the inelastic structure
factors including this TO-TA coupling. The result was fairly satisfactory, particularly in
the prediction of a completely different behaviour around different reciprocal lattice points.

Of course, the knowledge of polarization vector of the ¢ = 0 soft TO mode is necessary

!Two years earlier, in [16], another anomalous phenomenon related to TA modes in these materials
was found. The frequencies of TA modes for § = ((,0,0)a* in KTaO;3 show a temperature dependence
which is quite strong and of opposite sign (the frequency decreases with decreasing temperature) with
respect to most materials. However, ultrasound measurements at very long wavelengths did not confirm
this observation and revealed rather a weak temperature dependence of the usual sign.
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for such a calculation. This eigenvector was determined in [17] for KTaO3, SrTiO3 and
RbMnF; by refinement of the integrated intensity of inelastic neutron scattering measured
at many reciprocal lattice points, however, only at room temperature. The conclusion for
S7Ti05 was that the TO mode consists predominantly of the so-called Slater mode in
which the ST atoms are at rest and the 7’7 ion vibrates against the Og octahedron with a
small admixture of so-called Last mode in which a rigid T70¢ group vibrates out of phase
with the Sr ions. No substantial distortion of the octahedra is involved in the mode.
Because of the antiferrodistortive transition at 105 K, however, the polarization pattern
of the soft ferroelectric mode below this temperature is certainly somewhat different (the
lattice is now tetragonal) from that in the cubic phase, and to our knowledge it has not
been neither measured nor calculated. Its detailed knowledge would be very useful because
it would allow us to interpret also the new, very recent neutron scattering data [18]. In
this work the dispersion curves of TA modes of 7703 were measured for very low values
of q in the vicinity of (111) reciprocal lattice point and an anomalous loss of the inelastic
structure factor was observed for the [100] branch around T = 40K . In agreement with
[7] no anomaly was observed for [110] branch. This suggests, that the TA-TO coupling is
anisotropic in the g-space, namely maximal for [100] direction and irrelevant for the [110]
direction. We mention this point explicitly now because it will become important in the

next chapter.
1.3 The EPR anomaly.

Before describing the anomaly itself we remember some basic considerations related to
the EPR measurements and to the way in which these are interpreted. To observe an

EPR spectrum, a paramagnetic ion is substituted into a nonmagnetic crystal. Due to
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the presence of the crystal potential, spin levels which in the free ion are (25 4 1) times
degenerate, become split, and the amount of splitting is related to the strength and the
symmetry of the potential. An external magnetic field is then applied which lifts even
the remaining degeneracy and the resulting levels are a function of the field orientation
relative to the crystal axes. The frequencies corresponding to the transitions between the
levels are usually in the microwave region and therefore can be determined by measuring
the microwave absorption. A convenient way of representing the experimental situation
is to introduce an effective spin hamiltonian, which for our case of tetragonal symmetry

reads [11]

o . . , 1
H:gﬁﬂs+%(53+sg+sj - C)+DISZ - =5(S+1)], (1.17)

where a represents the cubic and D the tetragonal splitting, respectively, and ( is parallel
to the tetragonal axis. Because the spin hamiltonian has the point symmetry of the site
on which the host atom is placed, EPR spectroscopy is a useful and very sensitive method

for investigation of structural phase transitions.

Using Fe3* EPR Unoki and Sakudo [19] for the first time clarified the nature of the
105 K phase transition in S7Ti03 and concluded that the order parameter is the rota-
tion angle ¢ of the antiferrodistortive rotation of the corner-sharing oxygen-octahedra.
Its temperature dependence ¢(7') was then determined by Miiller et al. (Fig.1.2) using
EPR as well. In order to explain the observed behaviour Pytte and Feder worked out a
microscopic mean-field theory which reproduced ¢(7') very well in the temperature inter-
val 38K < T < 105K. For T < 38K, an additional reproducible feature was observed
(Fig.1.2) , which looks as if at 7 = 38 K there were an onset of an additional order parame-

ter. At the time of the observation, no explanation at all was known for this phenomenon.



14 § 1. Introduction.

Because the antiferrodistortive system has already undergone a phase transition at 105 K,
one might think that the additional feature is caused by coupling of its order parameter
¢ to another degree of freedom, which has its proper phase transition at 7;. In other
words, ¢(7T) would in this temperature interval act as a secondary order parameter. If
such assumption were true, then two questions would arise:

1) What might be the primary order parameter ? Is it structural, or of another nature ?
2) Are there possibly other secondary order parameters which exhibit an anomalous be-

haviour near T, 7

=

a
&

§ 2.04 et = Py

5 4

[

2 T\\

~ 4 — Theory Feder and Pytte

E 4

Q. 1.5 T T T T T T
0 20 40 60
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Figure 1.2: Antiferrodistortive rotation-angle measurements in Sr7%03 for H || [100] — 32° in a
(001) plane between 4.2 and 50 K at K-band. (After [11].)

Searching for an answer to these questions, a further EPR investigation of 577103 was
performed as described in [11]. We shall briefly resume the results of these measurements,
referring for details to the original paper. Attention was concentrated on the temperature
dependence of the spin hamiltonian parameters themselves and an anomalous behaviour
of these was indeed observed both in the tetragonal and in the < 111 > pressure induced
trigonal phase. First we describe the effect observed in the tetragonal phase. With the
hamiltonian (1.17) and the external magnetic field H parallel to the [112] pseudocubic
direction, five microwave transitions with |AMg| = 1 are observed. For a tetragonal

{001} single domain, the distances between the two outer and the two inner spectral lines
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Phase Parameter
Sa §|D|
Tetragonal -1.0 -0.5
Trigonal -0.9 -0.6
Table 1.1: Approzimate sizes of EPR parameter anomalies in 10 *cm~! = 1.068Gauss

(g = 2.0037). Accuracy ~ 20%. (After [11].)

are, in first order of perturbation theory,

AH' = —5~a+D 1.18
° 4

and AH! a-2D, (1.19)

respectively. On the Fig.1.3 both splittings are plotted as functions of temperature. We
see that at T, ~ 37K, AH!® shows a dip, while AH/** does not show any anomaly. From
the latter fact and from (1.19) we deduce that §a = 26.D holds for the dip, and from (1.18)
it is then possible to calculate the values of §a and §D. These are given in Tab.1.1 and
we point to the fact that both a and D are reduced at T' = T, while promptly recovering
for T < Ty,

Investigation under applied < 111 > uniaxial stress revealed a similar effect, perhaps
even more pronounced. The EPR spin hamiltonian in this case is also characterized by
two splitting parameters, a and Dj,;4, which are both reduced in absolute value (Tab.1.1)
at Ty, like in the tetragonal phase (Fig.1.3). Moreover, the pressure dependence of T
was determined. It is plotted on Fig.1.4, on which the Potts phase boundary between
pseudotetragonal and trigonal phase is also shown. We see that as far as the sample
remains in the pseudotetragonal phase, the temperature T} is hardly pressure dependent
at all. On the other hand, it is strongly pressure dependent in the trigonal phase, 7,

decreasing with increasing pressure. It is important to mention that the anomaly occurs
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Figure 1.3: Left:Outer and inner Fe3+ fine-structure magnetic-field splittings with H || [112]
measured at a [111] stress of 1.97kg/mm? in the SrTiO3 tetragonal phase between 30 and 50 K
due to the {001} domains. The middle splitting H'¢ is due to {100} and {011} domains, which
is not further discussed, but clearly shows the anomaly as well. Right: Outer M = +5/2 « +£3/2
and inner M = £3/2 ++ £1/2 fine-structure magnetic resonance field differences with H || [112] at
a [111] stress of 31.4kg/mm? in the trigonal phase. (After [11].) '

at about the same temperature on both sides of the tetragonal-trigonal phase boundary.

In both above mentioned cases, apart from the shift of the outer spectral lines, neither
their number nor linewidth change at T,. This is a striking feature of the data because
it assures that the spatial symmetry of the lattice does not change at T,. A change of
the point symmetry of the T'i site would be signaled by an additional splitting of the
lines, while an onset of a static incommensurate modulation would be accompanied by a
characteristic line broadening due to the loss of translational symmetry in the direction

of the modulation. Because it is known that EPR is the most sensitive local method to
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Figure 1.4: Phase diagram of [111] uniaxially py;) stressed SrTiOj3 as a function of temperature,

showing the three-dimensional Potts line between the lower tetragonal and upper trigonal phases,
and the dotted line T}, in both phases. (After [11].)

detect structural phase transitions in solids, both possibilities seem to be ruled out. One
is thus led to pose a natural question: what does the dip at 7, reflect 7 In [11], this point
is discussed considering various possibilities. To ensure that the effect in question is really
an intrinsic property of the 77703 lattice, a possible local mode dynamics of the Fe3+
impurity has to be excluded first. EPR measurements of the Fe3* ion in M g0, in which
the oxygen environment of the probe ion is the same (octahedral) as in 7703, did not
reveal any analogous phenomenon. Moreover, the sharpness of the dip clearly points to
the collective nature of the effect. Because the concentration of F'e3* ions in the sample
was very low, it is highly improbable that these would be substantially involved in the

effect, which therefore has to be attributed to the host latiice itself. As all the splittings



18 § 1. Introduction.

ay Die and Dyy;q become smaller in absolute value at 7, the effect mimics a full cubic

widening of the lattice.

The shape of the dip suggests that this might indeed be a manifestation of enhanced
fluctuations at a phase transition. A suitable candidate for the fluctuating quantity which
is sensed by the EPR parameters of the impurity ion could be the local strain. This idea is
further supported by the observation that the additional feature below 38 K on the ¢(T')
curve corresponds to the relative increase of ¢ by about 5%, which is close to about 7%
observed by Uwe and Sakudo [6] at the onset of stress induced ferroelectricity. On the
other hand, T, is very close to the extrapolated Curie-Weiss temperature of 37 K, where
S7Ti03 would become ferroelectric, were it not for quantum effects. We are thus led to an
idea of a phase transition in which possibly the lattice strains and the ferroelectric mode
are involved at the same time, even if we are not yet able to specify the actual primary

order parameter.

Several other arguments can now be presented in favour of such idea. Bednorz and
Miiller [20] observed, that it is possible to induce an XY-type ferroelectricity in §7T:03 by
doping it with C'a. The onset of ferroelectricity is observed at concentration z¢, = 0.0018
and with increasing zc, the Curie temperature first progressively increased and then
saturated at Tg ~ 35K. Maglione et al. [25] measured the frequency dependence of the
dielectric constant in S77Ti03 at low temperatures and fitted this with a Debye expression.

Approaching from below the temperature of ~ 40K, the relaxation time goes to zero.

How is it possible to combine all the above facts into a consistent and meaningful
picture ? We already mentioned in the last section that with decreasing temperature the

coupling between the lattice strains and the ferroelectric mode becomes more and more
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important. As was first pointed out by Axe [8], such TA-TO coupling can lead to a
depression of the TA dispersion curve, and being sufficiently strong, even to a formation
of a minimum on this for ky # 0 (Fig.1.5). We shall investigate such situation in detail in
the next chapter. If the TA curve were really depressed to zero, then an incommensurate
phase would onset, which, as we mentioned above, does not seem to be the case. If the
curve, however, does not go to zero, then one is reminded of the rotonic minimum on the
curve of elementary excitations of liquid * He, in which a phase transition into a superfluid
coherent quantum state occurs. In analogy to this, we suggest that in our case a phase
transition into a quantum melted incommensurate phase may occur, and we may expect

such state to have some peculiar coherence properties.

TO

TA

phonon frequency

wavevector k

Figure 1.5: Dispersion curves of TA and TO phonons in presence of their mutual coupling. The

minimum at kg on the TA curve is visible.

The rest of the thesis is devoted to investigation of this idea, which was qualitatively
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put forward in [11]. First we describe, in the second chapter, the properties of the corre-
sponding classical incommensurate phase. In the third chapter we then speculate about
the way in which such phase may be affected and destroyed by quantum fluctuations, and
we try to figure out some of its properties. In the fourth, final chapter, we discuss the

available results and draw some tentative conclusions.



2 Classical mechanics: possibility
of a modulated (incommensurate)
phase.

In this chapter we consider the onset of an incommensurate phase at 7}, as a kind of classical
precursor phenomenon of the observed effect. In the present context, the possible rele-
vance of an incommensurate ferroelectric state was suggested to the authors of [11] by H.
Thomas. It is known that certain materials exhibiting structural phase transitions, rather
than transforming at some temperature T directly from the high temperature commen-
surate phase to the low temperature commensurate phase, undergo instead two successive
transitions. With decreasing temperature they first, at a certain temperature 77, undergo
a second order phase transition into the incommensurate (INC) phase, characterized by
the onset of a spatially modulated order parameter. The specific feature distinguishing this
phase transition from others is that at least one component of the modulation wavevector
¢ is an irrational multiple of the corresponding basic reciprocal lattice vector. The mod-
ulated phase is therefore, strictly speaking, not crystalline, because it does not anymore
possess a translational symmetry in the direction of modulation. By further decreasing
the temperature, the amplitude of the modulation progressively increases and the modula-

tion wavevector ¢ changes slightly, but continuously. This temperature dependence of the
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modulation wavevector is a characteristic feature of a genuine INC phase. In certain cases
the modulation pattern with decreasing temperature exhibits a pronounced structuration
into domains. Inside each domain, the structure of the phase is close to commensurate.
The domains are separated by domain walls, sometimes called ”spatial solitons”, "phase
solitons”, or ”discommensurations”, in which the modulation abruptly changes its phase.
Domains and sharp domain walls, it should be stressed, are quite common, but by no
means a universal feature of the INC phase. Sometimes the modulation is totally contin-
uous, without detectable domain walls. Reaching a lower temperature 77, < Ty, the INC
systems usually undergo another (INC-C) phase transition, which may be of first or of
second order. The phase stable for T' < T7, is a low symmetry commensurate phase, which
is characterized by a spatial modulation with a wavevector ¢, whose components are sim-
ple rational multiples of the basic reciprocal lattice vectors of the high-temperature phase.
They also are, unlike in the INC phase, temperature independent. This phase transition
is usually called the ”lock-in” transition, since it causes all the elementary periods of the
system to "lock-in” on certain multiples of the reciprocal lattice vectors. In certain cases,
the lock-in transition may be absent - the system then remains in the INC phase down
to T' = 0. We shall not be concerned with lock-in transition anyfurther, and focus on the

properties of a hypothetical INC phase in SrTi03.

Like other tramsitions, the phase transition to INC phase can be described on the
phenomenological level within the frame of extended Landau theory [1]. The necessary
extension consists essentially in accounting for the expansion of the free energy density as
a function not only of the components of the order parameter, but also of their spatial

derivatives. The global free energy therefore becomes a functional of spatially dependent
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componeﬁts of the order parameter and the equilibrium configuration for given values of
temperature and external parameters is found as a solution of a variational problem.
The continuum Landau theory allows a natural classification of the possible forms of the
free-energy functional for an INC transition. A dividing criterion is the presence of the so-
called Lifshitz invariant. The incommensurate phases arising from free energy functionals
containing the Lifshitz invariant are referred to as type I INC phases and those arising
from functionals without this invariant as type II INC phases [2]. The properties of those
two kinds of INC phases are markedly different. In type I INC phases the lock-in transition
is either continuous, or only slightly discontinous, and approaching the temperature 77,
they exhibit the structuration of the modulated phase into the ”soliton lattice”. On the
other hand, the modulation of the type II INC phases remains practically sinusoidal down
to the temperature 77, and the lock-in transition is always of the first order. It is the type
IT INC phase scheme which we are going to consider in what follows, in the context of

STTiOg.
2.1 The free energy of the model.

There have been several constructions of the Landau expansion of the free energy of
S7T103 related both to the antiferrodistortive phase transition at 105 K [4] and to the
incipient ferroelectricity [5]. The most complete of such treatments, that of Uwe and
Sakudo [6], expanded the Helmholtz free energy density f as a function of polarization
components P;, octahedron rotation angles ; and homogeneous lattice strains e;;. Their
expression for the high temperature T > 105K cubic phase reads

1 9 T 2 1 T 2 2
(P, diseis) = fo + 57023’ +D*(Y P} + EDTLZP{PJ
: : oy
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1 x 1 T 2
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1
+3 Scimeizen — 2 (gijkieii PuPr + bijriei; Pk ® + thy PP 8 %), (2.1)
7kl ikl

where the coefficients g;;i account for the electrostrictive coupling between the compo-
nents of polarization and lattice strain and the last term corresponds to the 4-th order
coupling between the components of the two distinct order parameters. This expression
will serve us as a starting point for our considerations.

As we already mentioned in the Introduction, the ferroelectric behaviour of §rTi03
is XY like. What this means is that once the antiferrodistortive order parameter has set
in, < ¢3 ># 0 for T < 105K, then the possibility to force ferroelectricity along the same
direction (i.e. < P3 ># 0) is suppressed. In our model we shall therefore restrict ourselves
to polarization vectors lying in the (001) plane, i.e. only P; and P, will be allowed to
be non-zero. Because the anomaly we want to explain occurs at temperatures T, < 37K,
which is quite far from the 105 K antiferrodistortive transition, we do not expect the
antiferrodistortive mode to be primarily involved. It has been noted in [11], however,
that some involvement could arise, since precisely near ~ 35K the antiferrodistortive and
the ferroelectric soft mode frequencies at ¢ = 0 cross. As a first approximation we shall
therefore not include the octahedron rotations ®; among the variables on which the free
energy depends. We may assume that the free energy has already been minimized with
respect to ®; and all the remaining parameters have then been properly renormalized.
Clearly, further refinements will be needed when considering small changes of < ¢3 >
induced by the INC phase.

We must now choose the directions along which our continuum variables (or fields) will

be spatially dependent. Actually, at the moment, nothing is known about the dispersion
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curves of the phonons in tetragonal SrTi03 for wavevectors off the zy ﬁlane. Neutron
scattering measurements of Stirling [24] were pefformed at the lowest temperature of 90
K at which §rTi0j is still almost cubic. From the phonon dispersion curves [7] of TA
and soft TO phonons with wavevectors in the zy plane it can be seen that the direction
of lowest frequency is along [100]. Soft phonons with such wavevectors are therefore most
likely to condense, and this agrees with the anisotropic character of the TA-TO coupling
mentioned in section 1.2. It is however clear that we cannot a priori exclude the possibility
of a modulation also along the tetragonal c-axis. In any case we believe that a possible
unstable wavevector should be of the form & = (kz,0, k) rather than k= (kg kg, k).
For the sake of simplicity we shall develop the model for modulation directions restricted
to the xy-plane, since all the relevant physics can be demonstrated within this frame. In
the end of this chapter we then briefly mention the case of modulation also along the c-
axis. All the variables involved are therefore Py, Py, €11, €22 a.na e12, and depend on spatial

coordinates z; and z,.

Now having left only polarization components and lattice strains in the free energy
expansion we obtain a model in which the softening of a phonon branch leading finally
to an onset of INC phase results from the mutual interaction of a polar optical and a
non-polar acoustical mode. As we already mentioned in the section 1.3, this idea was first
expressed in 1970 by Axe et al [8]. They spoke about a ”"phase with sinusoidally modulated
spontaneous displacements”, which is just the INC phase. The idea was then subsequently
formalized by Aslanyan and Levanyuk [9], [10], who considered it as a mechanism of
formation of an INC structure in quartz, a type II case, where the free energy does not

contain the Lifshitz invariant, because the order parameter has only one component.
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To obtain the model for an INC phase we must now supply the free energy with terms
containing the spatial gradients of the fields. First of all, in spite of the fact, that we have
two components of polarization, the free energy cannot contain the Lifshitz invariant,
because that is incompatible with the presence of the center of symmetry. We therefore
introduce a coupling between the lattice strains and the components of polarization of the

form

0P
Z hijkleijga y (2.2)
17kl

which is a generalization of the form adopted in [9]. Apart from the coupling, we must add

terms providing the dispersion of bare optical phonons, at least near § = 0. We therefore

introduce a squared gradient term of the form

OP; 0P,
S;ikl —— . 2.3)
z]zk:l 8z, Bz (

In order to have an INC phase this term must become, after renormalization due to the
coupling, negative for some direction in the (001) plane in the k-space. To stabilize the
dispersion we must therefore introduce another term quadratic in P and of higher order
than 2 in k. Due to the presence of the center of symmetry this must be of 4-th order in

k and for simplicity we can take it isotropic like
r(V2P)2. (2.4)

The form of the 4-th rank tensors hjji and s;ji is dictated by the point group of the
symmetry of the crystal. The point group of the tetragonal phase of S7Ti03is D, and it
can easily be seen that it admits 3 invariants in the term (2.2) and 4 invariants in the term
(2.3). It is important to take all these terms into consideration because they will give rise

to the angular dependence of the stiffness in k-space and therefore determine the possible
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directions of INC modulation. We can now recast the total free energy of the system in

the form
F o= F0+/f(Pz-(7"),eij(f’))d3f' (2.5)
1 2, p2y, L 4 4y, b 2 p2
f = ‘2‘a(P1 i P2)+151(P1 +P2)+5ﬁ2P1P2 +
1
+ 5011(6% +€%2)+ cize11e02 + 2cepet, —

— gi(en P + eaP?) — gia(e11 PF + €22 P}) — geser2Pr P2 +

6P1 8P2 8P1 8P2>

+  hilen +e22) (%: + E) + ho(err — e22) (3_:c1 ~ Bz,

1! apg) (9_@)2 (8132)2
+  hgerr <8m2+321 +51[ B2, + 5o +

P2 8P\ ? aP, OP. P, OP.
+ 52{(61>+( 2)}+s4 12224 12°2

%—2_ 8_$; 6251 81?2 %5 3:1:2 (9(1,'1

+ r(VIP)?, (2.6)

where some of the tensor components have been grouped together. As usually we assume
all the coefficients to be temperature independent except for a. However, since we are
in .the region in which the temperature dependence of this coefficient is determined by
quantum effects, we shall not try to specify it more explicitly and just state, that for
SrTi03 under zero stress, a > 0 for all T > 0.

To proceed further it is convenient to deal with the spatial Fourier transforms of the

fields. We therefore introduce them with the relations

P;(7) Z P exp(ik.7) (2.7)
k

ui(7)

Z u exp(ik.7) (2.8)
E

ei;(7) = e+ % Z(kiqu + kju“;) exp(il_;.vﬂ") , i,i=1,2 (2.9)
E#0
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where we expressed the lattice strains e;;(7) through the acoustic displacements %(7) and

separated the contribution of homogeneous strains ¢;;. Substituting these relations into

(2.6) we obtain

F

i

2.2

Fp+V Z Iz (2.10)
E
1 2 2
Qawz,;l +IPZ) +
1 Y (PP Pign Pipm + PPy Py Py ) 6(E+ B + B +5") +
IC k/lklll
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1 1
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hl(k1u1E + kZu?E) (kl.Ple + kQP;k») + hz(klul k2u2k) (klpl*lg - kgP ) -+
h
g(klu ot koup) (keP+ ki Pyo) + s (KPP + k2P, %) +

sa(K3IP g° + KTIPyeI) + (54 + s )kiko PPy + k(P + [PR]) . (2.11)

Loss of stability of the high-temperature phase.

In this section we shall investigate the stability of the homogeneous commensurate phase

with respect to the formation of an INC modulated phase. For this purpose we need to

consider only the quasiharmonic part of the free energy as a function of P Pypyu, o Yo
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This reads
' 1 1
fp = §a(|P1,;|2 +|P,?) + §Cll(k%lulglz + kS |uyzl?) +
1 «

+ Clgkllﬁg’ulk‘u;,‘; + §C66(k%|uzlg|2 + kglulglz + 2k1kgu”;uzg) +

+ 73 [klk?(u:zEP;E +u g Pop) + k%u'ZEPQ*E + kgulEP;E} +

+ sl(k%]Pu}'lz + kgle;P) + SQ“’%IPU}“? + k%‘PQElz) +

+  sgkikoP o Pro+ k([P + [Pyl?) s (2.12)

1k~ 2k

where we denoted y; = hy + ho, ¥2 = hy — ho, 73 = h3/2, s3 = 84 + $5.

It is convenient now to pass to longitudinal and transverse coordinates of P, P, uj, us.

We introduce these through relations

and similarly for

ur = upcos(¥) 4 u,psin(d)

up = —upsin(?) +uypcos(d)

k> ik

(2.13)

P, P.. The angle ¥ is the angle between the wavevector k and the

x-axis. If the system were isotropic in the plane, then these coordinates would be just the

eigenvectors of bare acoustical and optical phonons. Substituting to (2.12) we get

fp =

a+ rk*)([P”;]Q + 1P +
2 1 2
(e1 — cocos 49|,z + 5(62 + cocos dd)|u | +
- 1 ! *
7 + Y0 cos dd)u p P + 1(7 — Yo cosdd)u P +
1, 2
(s + s cos 419)|P”;|2 + Z(s — s cos49)|P g +
1
s

. x 1 * * y 2
sin 49 (cou”;u”; - Z70(uu€Puz + U«LEPF) 3 OP[I;PH;)] k*,

(2.14)
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where we introduced the following new coefficients

o = _?1;(2066—C11+C12) ’ 50251—52—%53 y Yo=71—7Y2— 273,
€1 =¢C11 —Co , 3=351+32+%53 y Y=371+72+ 273, (2.15)
cg = 3(e11 — c12) — co s =s1+382-353 Y =11-72+27 -

Now for modes with sufficiently low frequency, like the soft optical modes close to
the phase transition and acoustical modes with small wavevector, it is the free energy F
that plays the role of potential energy in the corresponding dynamical problem. The long
wavelength lattice vibrations are represented by the small oscillations of the displacements
and polarizations around their equilibrium values. Since the homogeneous lattice strains
cannot follow the much faster optical vibrations, the latter go on practically at constant
values of ¢;; corresponding to equilibrium state and for the case of zero stress these are
zero. Therefore we do not keep in our quasiharmonic free energy f;; terms quadratic in
P, P,; which originate from the electrostrictive coupling. Introducing the appropriate

“mass densities” m, and mp (mp contains the effective ionic charge per unit volume and

does not have the dimensjon of mass), and adding the kinetic energy term

T = [ B, u) . (2.16)
(F) = gmu 3G + gme S BA(P) (2.17)

to (2.12) we obtain the effective quasiharmonic hamiltonian (we set the volume V = 1)
ers _ 1 o1 . ,
g = gmad g gme ) PrPr+ ) fr (2.18)
ik ik E

The equations of motion for the spatial Fourier components of P and @ then yield

of.
2, . — k i
MW U, p B (2.19)
ik
df-
mpszjE = ko i=10t, (2.20)

(9P]’,‘E
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which is a 4 X 4 matrix problem forv the eigenfrequencies w .

To be rigorous at this point we notice that the above formulation of the dynamical
problem does not take into account the coupling of the polarization to the macroscopic
electric field resulting from the longitudinal part of the optical displacement and therefore
does not lead to the splitting between TO and LO phonon frequencies at ¢ = 0. Phe-
nomenologically, we could introduce a splitting just replacing by hand the stiffness a in
(2.14) by another stiffness oy corresponding to P,z According to [5] at T' ~ 40K the lowest
LO phonon frequency is an order of magnitude higher than that of the soft TO phonon
and therefore a; would be about two orders of magnitude higher than a. This means that
the longitudinal component P is effectively decoupled from the problem. Therefore we
shall use the free energy in the above form and from now on set simply P =0

Now the stability of the homogeneous commensurate phase will be lost if the frequency
of one of the branches becomes equal to 0 for a wavevector ¢ # 0. This is most likely to
happen for the TA branch which is pushed down due to its interaction with the soft TO
branch. Let us therefore investigate in more detail the TA dispersion curve resulting from
(2.20), for the moment e.g. for wavevectors along [100] direction, i.e. ¢ = 0. Since for
this high symmetry direction the longitudinal component u; is decoupled (2.14), we have
only a 2 X 2 matrix problem to solve:

(co + co)k? — myw? (7" = 7o)k
=0 (2.21)
1y = v0)k? o+ (s = s0)k? + 2rkt — mpw?
This eigenvalue equation for sufficiently strong coupling (represented in this case by ~' -Y0)
will give rise to dispersion curves for the transverse branches shown in the Fig.1.5. With

decreasing temperature (we remember that the only temperature dependent quantity is
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a(T) which is proportional to the square of the bare TO phonon frequency Q%,(T) ) both
the optical and the acoustical branches soften and the loss of stability occurs when the
minimum on the TA branch first touches the w = 0 axis. At this point the following 2

conditions must be simultaneously satisfied

LUTA(IC()) = 0
dwr 4(k)
— 0. 2.22
dk e, (2:22)
In our case they read

1 (v =10)%] 2 "
—(s — - ki 4+ 2rk; = 0 2.23
a(Tr) + s — S0 — M kg + 67'k3 =0. (2.24)

8(62 + CO)

Solving them we obtain the temperature T; and wavevector kp of the instability. We
shall give the solution later on when we approach the problem slightly more generally. At
the moment we just want to point out two facts. First, as we can see from (2.24), the
coefficient of the term quadratic in kg in this equation must be negative, if the equation
is to have a real solution for a(7T") > 0. This gives a quantitative meaning to the words
?sufficiently strong coupling” used above. Second, from the same equation we see that
irrespective of the sign of ¥ — 7y the coupling always tends to destabilize the system.
Now we shall investigate a more general situation not restricting ourselves to wavevec-
tors along any particular direction. Searching for temperature and wavevector at which
the frequency of some branch first time goes to zero is according to (2.20) equivalent to

solving the set of equations

of;

Bu © 0 (2.25)
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3 fi';

=0 . (2.26)

In other words, it is equivalent to minimizing the free energy with respect to all variables
and searching for the point, where this minimum for the first time corresponds to their
non-zero values.

Substituting for the elastic constants ¢y, ¢12, c44 their experimental values for S77703
(taken from [6] and converted to SI units these are ¢;; = 3.36x 10!, ¢12 = 1.07x 101, cyy =
1.27 x 101 Jm~3) we obtain ¢y = 0.06 x 101!, ¢; = 3.42 x 10! , ¢; = 1.20 x 10! Jm=3,
Because ¢y < ci,co, we can clearly neglect the term which is off diagonal in acoustic
displacements in (2.14) (because the elastic properties in the plane are only very slightly

anisotropic) and write

af; 1
E _ 12 2. o _
. = kicyu,p — Zk Yosindd P, =0
lk
of; 1 '
E _ 2 20 _
Fur. = kcoup+ Zk (Y —7Yocos4d)P,p =0 . (2.27)
Substituting for u,z,u,; from these equations to (2.14) we get the free energy f;; as a

function of P, only

fi

1.
5o [Pl (2.28)

'
o
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: 1 1 :
o+ (%(s — sgcos4v) — —1?(—:;73 sin” 49 — Ié—c;h — 7y cos 419)2) k% + rk!

The instability occurs when the expression denoted as o’ becomes equal to zero. There-

fore we search for its minimum as a function of both ¥ and k. We obtain

sin 49 [su - i'yg cos 49 — —7—0(7’ — 7Yy cos 419)} =0. (2.29)
461 462

We see that we have a symmetry-determined extreme if sin 49 = 0 or an occasional extreme

if the expression in the square brackets is equal to zero. We shall consider only symmetry
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determined extremes which occur for ¥ = 0 or ¥ = w/4 and equivalent directions. The

conditions for these extremes to be minima are

1 5 (Y =)
g — —~2 T T 70/ 2.30
S0 dcy Yo 4c, > ( )
when ¥ = 0 and
I 5, 7 +7)
N2 T T T0) 2.31
so+ 2,0 10, < (2.31)

when ¥ = 7 /4.
Now we investigate the behaviour with respect to £ for both above cases. For ¥ = 0

we get

fi=[pat (36 -9 - g — ) Bk 1B (232)

for the free energy. In order to have a minimum as a function of &, the coefficient of k2 in

this equation must be negative. This implies
(7 = 70)? > 8ea(s’ — 0) (2:33)

as the necessary condition for the onset of an INC phase. Provided it is satisfied the

minimum of (2.32) occurs for a wavevector ky which is determined by

1 1 1
J— . VLY Sl PP

An INC phase with the modulation wavevector ky sets on at a temperature 77 obeying

the condition

a(T)) = 5 g (0 = = 36 =) (2.35)

For ¥ = 7/4 the equations (2.33),(2.34) and (2.35) are replaced respectively by

(Y +70)% > 8eals' + s0) (2.36)
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1 1 1
i . ! 2 _ = 1
kO - o ]:3262 (7 + 70) 4(5 + 50):| (237)
and
IR Y
oT1) = o [32—02( +70)" = (s + sU)} : (2.38)

2.3 The INC phase and its properties.

The analysis we have performed so far gives us a picture of a high temperature commen-
surate phase losing its stability at a certain temperature 77 in favour of an INC phase,
which is spatially modulated with the wavevector ky. Due to the tetragonal symmetry in
both above analyzed cases ¥ = 0 and ¥ = 7/4 we may have either one modulation direc-
tion corresponding to freezing of 2 vectors of the star of ky or 2 mutually perpendicular
modulation directions in case when all 4 vectors of the star of kj get frozen. In order to
determine which of these possibilities is actually realized it is necessary to go beyond the
quasiharmonic part of the free energy, by taking into account the higher order terms of
(2.11).

Since the free energy (2.6) is a functional of the polarization and displacement fields,
the INC pattern corresponding to equilibrium is found as a solution of Euler-Lagrange
equations resulting from (2.6). We do not have any particular boundary conditions im-
posed on the fields and therefore the appropriate solution is the one corresponding to the
absolute minimum of the functional. This means that we should find the general solu-
tion of Euler-Lagrange equations containing integration constants and then perform an
additional minimization with respect to all of these. Such approach would not be an easy
one because we would have to solve a system of nonlinear partial differential equations.

Instead of this we adopt the following procedure. We shall assume that the equilibrium
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solution is a periodically modulated phase with the wavevector ¢ which is for the moment
unknown. Then it is convenient to make use of the free energy expressed as a function of
the Fourier components of the fields (2.11) because the only non-zero components would
be those corresponding to the harmonics of the basic wavevector g. Minimizing with re-
spect to those we obtain a system of nonlinear algebraic equations which is numerically
easy to solve by iteration procedure. This will be described in detail later and for the
moment we just establish the equilibrium conditions.

For this purpose it is useful to return to the original cartesian components of the
vectors in terms of which the free energy (2.11) is expressed. The equilibrium condition

for P1 i reads

OF

3P (a — 2g11€11 — 2912622 + 281kF + 252k3 + 27'k4)P1,; +
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| / , L
- 59662 Z (k1u2i5/ + kQUIEI)PQE" §(k Bk ) —0, (2'39)
BE

and differentiating with respect to P;‘E we obtain an analogous equation. We see that
it is impossible to fulfill this system with the basic harmonic only, because the bilinear
terms originating from the electrostrictive coupling and 3"¢ order terms originating from

the quartic terms in the free energy generate respectively the 2"¢ and the 3"¢ harmonic.



2.3. The INC phase and its properties. 37

Equilibrium conditions for the acoustic displacements are

OF

5o = (i +ho)ky+ k2) +(h1—hy+ = hg)klkzP +
1k

+  (cunki + Ceekg)ul,; + (c12 + ces)krkou,p +

~ ignky Y Pp P 6(E—k — k') —igiske Y Py Py 6(k—k — k) -
EEII EEII
- —geslkz Z hd 5 - E”) =0 (240)
k/k‘//

and an analogous equation for the derivative with respect to u;].v..
The free energy depends also on the homogeneous strains €1, €20 and €12. Determining

the equilibrium conditions with respect to those and solving for the strain components we

obtain
€11 : GZI k’2+bZ|
€20 = aZI k|2+bZ! il
€12 = cZPlsz*k , (2.41)
where we denoted a= C_ug?——cézgu , b= W , €= oo . (2.42)
€11~ €12 €11 — C12 4cse

Before turning to the numerical solution of system (2.39), (2.40),(2.41), we investi-
gate the part of the free energy which is projected out from (2.11) by the single plane
wave ansatz, which consists in including in the solution just the basic harmonic with the
wavevector gy found in the last section.

First we analyze the case when the loss of stability occurs for ¥ = 0, i.e. for direction
[100]. If only a single modulation direction k = (go, 0) is present, the only non-zero Fourier
components of the polarization will be the transverse components P, +F which without loss

of generality can be considered as real. We notice that the 3"¢ order electrostrictive terms
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in (2.11) give zero contributioﬂ, because they consist of products of an odd number of
basic harmonics. This implies that the equilibrium values of the acoustic displacements
are equal to those found in the last section comsidering just the quasiharmonic part of
the free energy. The value of this for the equilibrium acoustic displacements is therefore
given by (2.28). To obtain the total free energy we must add to that the contribution of
the terms of 4" order in polarization components and also the elastic and electrostrictive
terms containing just the homogeneous strains. For those we substitute the equilibrium
values(2.41). Writing P, - = p and substituting to (2.41) and (2.11) we recast the total

free energy as a function of p (we set the volume V' = 1)

/ 3 .
F = Fy+ap*+ (5,61 + d> pt (2.43)

where d = 2¢i1(a® + b%) + 4dci2ab — 4g11a — 4g12b .

The equilibrium value of p is given by

=4 — 2.44
Pea = V36, + 2d (2.44)
and the total equilibrium free energy is
F.,=F o 2.45
w0 = Fo = g3 (2.45)
If we assume that two mutually perpendicular modulation directions k= (go, 0),
ky = (0,qy) are present in the system, we can proceed along the same lines in order

to calculate the corresponding equilibrium free energy and compare it with (2.45). The
non-zero Fourier components of polarization are now the 4 transverse components P, | F

P,

o +F, which can again be taken to be real. Writing Pl,iEg =P, ; =pwe obtain

F = Fy+2ap°+ (381 +26+d)p" , (2.46)

where d = 4(cyy +ci2)(a+0)* —8(g11 + g12)(a+b) .
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The equilibrium polarization and free energy are then, respectively,

[
—Q

o = A 2.47
Peq 36, + 26, + d (247)

;
a 2

Foq = Fy—m oo
7 ©T 38, + 268, +d

(2.48)

Actually we do not know the coefficients of the gradient terms in the free energy ex-
pansion (2.6). However, equations (2.45) and (2.48) allow us to decide within the single
plane wave ansatz which of the two possible modulation patterns yields the lower free en-
ergy knowing only 4" order terms coefficients 3, 3, elastic constants and electrostrictive
couplings. The latter are known from [6] to be (converted to SI units) g;; = 1.33 x 101V |
g1z = 3.24x10% , g4y = 2.43 x 10%ImC~2? . The clamped values of a(T'), 1, B2 (which are
the appropriate ones for our free energy expansion) can be found in [5] and for 7' = 40K
they read (in SI units) @ = 15.5 x 108JmC~2% | 8; = B, = 0.9 x 101°Jm*C~* . Accord-
ing to (2.45) and (2.48) the condition to be satisfied in order that the two simultaneous

modulation directions pattern be the one with lower energy is

30, — 28, > 4WL = 912)" (2.49)

€11 — €12

For the above values of parameters we obtain 9 x 10° for the left hand side and 1.75 x
10° for the right hand side, which means that the condition is well satisfied. We can
therefore conclude that if the loss of stability really occurs along the [100] direction, then
the single plane wave ansatz predicts the INC phase to be simultaneously modulated in 2
mutually perpendicular directions. Later we shall see that this conclusion is not changed
by numerical analysis.

Proceeding along the same lines we investigate the case when the stability is lost for

¥ = 7/4, L.e. along [110] and equivalent directions. We just quote the result for this case.
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The condition equivalent to (2.49) is

2
108, — 66, > 295 | (2.50)

C66

which for SrTi05 yields 1.8 x 101° > 4.65 x 107 and obviously is well satisfied. The phase

with lower free energy is again modulated in two directions.
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Figure 2.1: The pattern of the polarization in the INC phase with two perpendicular modulation
directions.

It is interesting to see this two modulation directions pattern, which we plotted for
case ¥ = 0 (Fig.2.1). It is reminiscent of the so-called fluz phases and consists of regions
of positive and negative ”vorticity” alternating along the [110] and equivalent directions.
Because the vector field is a superposition of frozen transverse optical phonons, its diver-
gence is zero which implies zero polarization charge density. The transition into the INC

phase is also accompanied by onset of non-zero values of the lattice strains. Because the
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longitudinal component of the acoustic displacement is decoupled and equal to zero, the
pattern of this field is the same as that of polarization, as follows from (2.27), possibly
differing in sign (determined by the sign of 7' — ;). From the equations (2.41) we see that
the homogeneous strain has no shear component €12 = 0, while the normal components
€11, €22 are non-zero and positive. This means that the crystal expands which was to be
expected on the basis of the Le Chatelier principle and the fact that the crystal becomes
ferroelectric under applied external stress. On the other hand, due to transversality of
the frozen phonons involved, the normal components of the non-homogeneous strain (2.9)
are zero within the single plane wave ansatz, while the shear component is non-zero and
is plotted on Fig.2.2. We see that the shear strain oscillates in space and its magnitude

reaches maxima in the points of zero vorticity of the polarization field.

Ny N

N TN

Figure 2.2: The contour plot of the shear strain component €.
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Now we turn to the numerical analysis of the INC phase. We have to fulfill simultane-
ously the equilibrium conditions (2.39) and (2.40) for all the Fourier components involved

T

and (2.41) for the homogeneous strains. All the wavevectors k k' k", k" in the system are
of the form

k= (ig,7q), i,j integer, (2.51)
where ¢ determines the fundamental period of the solution. This is unknown and therefore

we must minimize the free energy with respect to it, too. The ¢-dependent part of the

total free energy can be written as

Fy = ug+vg +uwg', (2.52)
U = -—gq1t Z zulkPlk B +]u2k 2krP,ﬁu)5(E+k —{—];;H) —
EE'E"
— ngi Z (ZulkPQk,P =+ ]u2kP1k’ 1E”) 6(k + k/ + k”) -
EEIEII
i . . b bad i
~ Zesy > (Guyp + ju,g)Pp Py 8(k+ & + k), (2.53)
EE'E’ ‘

1 . .o
vo= Z[ECM(ZZIU]E{?—[—]“|u2£|2)—|—

1 . . .. -
+ cratfupus + 5 ces(d P luygl® + 7% P+ 245w ) ~

+ ha(dugp + gugp) (PP + 5P) + ha(iuyp — juyg) (1P — 7 P5) +

h3

+ ?(zu2§+]u1;§) (]P;E+2P;E)+51( ] k|2+] I-Paki ) +
+ 522 Pgl* + P IPy) + (s + 53)ii PPy (2.54)
w o= ry (F+i(Pg*+PLD), (2.55)

and minimizing it with respect to ¢ we have

8F(q)

3a = u+ 20qe, + 4wq§’q =0. (2.56)

9=geq
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This is the condition for the equilibrium modulation wavevector ge,, which closes our

system.

It is convenient to use the iteration method for the numerical solution of the system.
Putting the linear terms in (2.39) and (2.40) to the left side we can for each & solve a
system of 4 linear equations for P, U.p and express each of these variables as a function
of the nonlinear terms. We then iterate until we obtain a self-consistent solution for all
the Fourier components and homogeneous strains. After this we solve the equation (2.56)
for the new wavevector g and all the procedure is repeated until we reach self-consistency

in g. As the starting approximation we can use the results of the single plane wave ansatz.

We performed such numerical analysis on a rescaled free energy, using all the exper-
imentally known parameters, choosing suitable values for the coefficients s; and r and
taking for the coupling coefficient k3 (we put h, he = 0) the minimal possible value which
leads to the loss of stability at temperature T ~ 40K. The amplitudes of the higher
harmonics of the self-consistent solution were of the order of magnitude of few percent of
that of the basic harmonic and the free energy was reduced by about the s.ame amount
with respect to its value calculated within the single plane wave ansatz. This is a direct
consequence of the presence of the term proportional to k* in the free energy, as Michel-
son has first shown in [21]. The general conclusion is that in case when the free energy
does not contain the Lifshitz invariant and contains rather a term of 4'* order in k, the
amplitudes of the higher harmonics in the equilibrium solution are small and therefore
the INC phase remains practically sinusoidally modulated down to the temperature of the
lock-in transition. The single plane wave ansatz is thus a very good description of this

kind of INC phases and our conclusion concerning the number of modulation directions
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in SrT7i04 remains valid.

Now we briefly mention the case when the unstable wavevector is off the xy-plane,
and is of the form ky = (kg,0, k). The corresponding star then consists of 8 vectors and
analogically to what we found in the 2D case, we may assume that all of these would get
frozen. The polarization field will then be a superposition of 8 transverse plane waves and
will contain 4 arbitrary phases, with respect to which the free energy projected out by the

single plane wave ansatz is invariant. The components of the polarization are

P, = P[ei(k1x+ksz+¢1) + ei(km——ksz+¢2) + C.C.] =4Pcosk; z cos kszl

-Pa; — P[ei(k1y+k32+¢3) + ei(kly-k32+¢4) + C.C-} f— 4P cOS klyl COS(k3Z’ + (Z)) y (2'57)

where in the last expressions we have eliminated 3 of the 4 arbitrary phases by shift of the
origin of the coordinates. It is interesting to mention that there still remains one degree
of freedom ¢, corresponding to a phason-like mode, which however does not represent just
a rigid shift of the INC modulation, but rather a change of the structure of this.

For ¢ = 0 we obtain a structure which in every (001) plane is the ”flux phase” described
above, with the amplitude modulated along the z-axis by cos k3z factor. Moreover, the
sign of vorticity now alternates along the z-axis, too, with a period A, = 27 /k;, which in
general may be different from the period along the z and y direction. Anticipating now
the considerations of the next chapter, we attribute a special importance to the points of
maximal vorticity, and notice that the pattern can be considered as a 3D lattice, similar
to that of NaCl (but not necessarily cubic), consisting of such points with alternating
vorticity.

For completeness we now analyze the behaviour of the static dielectric susceptibility
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Xij in the 2D model. This is defined as

., O'F
i T 9PodP;|,

(2.58)
and we have obviously x;; = a~! §;; for T > T;. We are interested in its behaviour in the
INC phase near the transition temperature and we shall investigate this within the single
plane wave ansatz. For simplicity we do not take into account the electrostrictive terms

and analyze the case with 2 modulation directions along [100] and [010]. The free energy

of the INC phase is then given by

1 5 1., 2
F = F0+§a(P120+P2"O)+—2_a (2P1“,]_c'2+2P22,E1)+

1 2 2 2 2

+ Z'Bl [S(Pl,EzPl,—Eg) H12P00 P g P g, +6(Py g Py g )"+ 12P20P2,EIP2,—1¥1] +
1 2 2

+ §ﬁ2(2P10P2’131 sz_];‘l -} 2P20P1,1;2P1,—132 + 4P1,EQP1,—-I;2P2,ELP2,—EI) (2.59)

and we clearly see that due to the presence of the 4‘* order terms the stiffness with respect
to the homogeneous polarization components P;y becomes renormalized. After minimizing

with respect to PU;2 Pl.,—Eg’ Pz,];1 P, _ and some algebra we obtain

ki

1 » 361 + B2
F=Fy+ (za—a22LTF2
“+<2°‘ 36, + 282

) PR+ B, (2.60)
from which we see that the susceptibility passes continuously through the transition tem-
perature, because a'(TI) = 0. Immediately below T it however starts to decrease with
decreasing T' and therefore it must have a peak at T; when its slope has a downward jump

(Fig.2.3). Instead of a divergence we thus have only a peak on the curve x(7'), because

the INC phase is not ferroelectric.
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susceptibllity

-Cv

Figure 2.3: The temperature dependence of the static homogeneous susceptibility in our model.
At T there is a peak, but not a divergence.



3 Quantum mechanics: a new
quantum paraelectric state.

The theory we developed in the last chapter is classical and refers to an INC distorted
phase, which, based on entirely classical reasoning, Sr7:03; might want to take at low
temperatures. On the other hand, in the introduction we discussed features of EPR
data (lack of inhomogeneous broadening), which are definitely against such possibility.
A simple narrow EPR line might be compatible with dynamically fluctuating domains,
but certainly not with a static INC state as in Fig.2.1. How is it possible to justify the
dynamical picture, and what properties it might be expected to have ?

. In this chapter we shall try to figure possible answers to these questions. First we
propose to describe the state of the system in terms of a wave function, and then we show
a simplified model within which such wave function can be treated. Basically, our aim will
be to determine the presence of off-diagonal long range order, and we shall do this using

the formalism of classical liquids in a way similar to that used in [32].

3.1 Description of the 7' = 0 state in terms of a wave func-
tion.

It is known that in case when a Lifshitz invariant present in the free energy gives rise to

an INC phase [22], the phase degree of freedom of the (in this case necessarily) doubly

47
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degenerate order parameter is governed by the sin-Gordon equation. Adding to the free
energy a corresponding kinetic energy term one obtains an effective hamiltonian which
can be quantized introducing non-commuting operators for the phase and its conjugate
momentum. For a 1D case there are exact results due to Haldane [23] revealing that for
whatever small quantum zero fluctuations - i.e. for any finite mass, the ground state is
liquid-like, while classically we obtain a static soliton lattice. Such a liquid-like phase can
be considered as an incommensurate phase which is already at zero temperature quantum
melted by zero fluctuations, and suggests, that something similar may be actually going
on in our case.

The effective hamiltonian for our model (2.6) is
eff _ 1 .2 1 52 32
Hff_/liamugui(f')-l-—émpgpi(;) d’r+ F (3.1)

and represents a classical 4 field. The quantum analogue of this is a quantum &4 field
theory. Instead of attempting the field theoretical approach we shall try to treat the
problem in a simplified and more intuitive way, building a simple model. First, restricting
ourselves to zero temperature, we may try to assign to the ground state of our system a

variational wave function. We propose this to be of the form

T o e—7FIP(M,a()] , (3.2)

where v plays a role of a variational parameter. The physical meaning of ¥ is the usual
one and $2[P(), @(7)] determines the relative probability of different field configurations.
Because this function is formally a functional of the fields P (7), @(7), it is dependent on an
infinite number of some generalized coordinates and therefore still practically intractable.

If we were now able to identify which field configurations are the most ”"important” ones,
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and introduce for these some suitable coordinates, it would be possible to simplify (3.2)
to a more familiar form. We shall do so in the next section. Now we only point out, that
having a wave function for the system, it is in principle possible to calculate the average
value of any measurable quantity, provided we know the corresponding operator. This
can always be expressed as a function of the coordinates 77; and momenta pr; of the
atoms of the crystal, which in turn can be expressed in terms of the amplitudes of the
eigenvectors of the lattice dynamical problem. We remind at this point that the meaning
of the variables P (7), @(7) is that of being the amplitudes of the corresponding TO and TA
zone-center mode eigenvectors. Therefore the wave function (3.2) can actually be used to
determine the zero-temperature average values of the quantities of experimental interest,

and particularly of those measured in EPR experiments, like < §¢ >, < a > and < D >.

3.2 A simplified model for the wave function: the two com-
ponent quantum plasma.

Now we try to pick the ”important” configurations in the wave function (3.2), and for this
purpose we make use of the knowledge of the classical solut.ion for the ground state. In the
last chapter we found that both in the 2D and the 3D case this corresponds to a periodic
lattice of X'Y-like vortices, with the sign of the vorticity alternating in all relevant spatial
directions. Assuming that the "important” configurations of the quantized field are in a
sense similar to those appearing in the classical picture, and led by the analogy with the
above mentioned 1D sin-Gordon problem, we propose that the objects which retain their
identity in the quantum picture are the voriices. These would play the role of sin-Gordon
solitons in our case, and instead of forming a rigid spatial lattice might be delocalized,

giving rise to a liquid-like state preserving the translational symmetry. In such a way, we
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can treat the vortices as "particles”, however, unlike the solitons, which are all identical
in nature, there are 2 kinds of vortices, with positive and negative vorticity. Because in
the classical picture both kinds alternate periodically, it is tentative to think about the
vorticity as being a kind of ”charge”, due to which the vortices interact with each other
in such a way, that the overall charge neutrality is always preserved. To determine the
corresponding interaction law, it is, however, necessary to know the effective dimensionality
of the problem. As we mentioned in the last chapter, it is not possible to determine this
on the basis of available experimental material, and for concreteness in the following we
shall assume this to be 3, mainly for aesthetical reasons. The charges in an effectively
3D system should then interact via a Coulomb potential. Because unlike vortices would
annihilate each other, if they could approach close, we may think that this is prevented
by some short range and strongly repulsive hard-core-like interaction. Since there is no
reason to distinguish the vortices of like charge, in the quantum picture they have to be
treated as bosons. The number of these, or their density, is determined by the modulation
wavevector E, and should therefore be considered as a conserved quantity.

Having adopted this picture we can replace the wave function (3.2) of the field by
a Jastrow wave function for Bose particles, if we consider the coordinates of these to
coincide with the points of maximal vorticity of the field. Such wave function should have
a property of describing, depending on the value of the variational parameter 7, both
a Hqﬁd-ﬁke state in the quantum limit and a crystalline state in the classical limit. A
general form of wave function, which possesses the above property, is

G(F) e TN, Ty Ty) =

o .J
A H e~ Y+ (I =75) H e e+ (|7 =75

1<i<j<N 1<i<j<N 1<i <N
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where 7; and F; are respectively the coordinates of (+) aﬁd (—)-particles, and A is the
normalization constant. This wave function is non-negative and symmetric with respect
to the exchange of like particles, and therefore can represent a ground state of a Bose
system. Concerning the explicit form of the functions u,(r) and uy_(r), which express
the 2-particle correlations, we assume that these have a hard core and a tail, the explicit
form of which we shall not try to specify further. Moreover we shall assume that the value

of v is such that (3.3) describes a liquid-like state with unbroken translational symmetry.

3.3 Off-diagonal long range order: single particle and pair
condensates in the two component plasma.

Having now such an idealized model wave function, we may ask whether this has some
peculiar properties, e.g. a kind of off-diagonal long range order, reflecting a Bose conden-
sation of some objects. In this context, a following argument can be presented, justifying
to some extent a search for such properties in our system. A quantum paraelectric ma-
terial would have become ferroelectric at some finite temperature, were it not for the
quantum zero-point fluctuations, which can be considered as "melting” the incipient long
range ferroelectric order. This mechanism is very similar to the one, which is operative
in liquid *He and is responsible for the lack of crystalline long range order in this under
normal pressure. In both systems it is possible to induce a genuine diagonal long range
order applying an external pressure — *He crystalizes, when the pressure is increased,
and SrTi03 becomes ferroelectric under uniaxial stress [6]. We expect therefore, that a
quantum paraelectric system at low temperatures might develop a kind of off-diagonal
long range order, in the similar way as *He does. Actually, the similarity of the phase

diagrams of both systems is remarkable, and in the Fig.3.1 we hatched the region of the
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expected existence of ODLRO in SrT703.
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Figure 3.1: The real phase diagram of *He and a speculative one of SrTi0O3. The region of
expected existence of ODLRO in SrT203 is hatched.

To our knowledge, the problem of a two component quantum plasma has not been so
far considered in the literature. We shall first determine the presence of a single-particle

condensate of each kind of particles. This is defined for (+)-particles as

nf = lim <G,Ni, N_|¥\ (A, (7)|G,N,N_>, (3.4)

[F— =00
and analogously for (—)-particles, where |G, N, N_ > is the ground state of the system
containing N particles of each kind. In [32], Chester and Reatto showed how the density
ny of Bose condensate can be determined in a one component quantum liquid described
by the same kind of Jastrow wave function (3.3). They demonstrated that the problem
maps to a classical problem of two impurity particles in a liquid, where the impurities are
distinct due to the fact, that they do not interact with each other, while interact with the

particles of the liquid via 1/2 of the true interparticle potential. Actually, their result is
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readily applicable to our case, and reads

K
lim, g g++imp(7')

nf = , (3.5)

for (+)-particles, and analogously for (—)-particles. In the last expression, gi4imp(7) is
the radial distribution function for very diluted impurities. The wave function therefore
contains two single-particle condensates, consisting of vortices and antivortices, respec-
tively.

We can proceed to search for more complicated correlations now. Since the interaction
between the particles of opposite charge is attractive, led by the analogy with supercon-
ductivity one may expect a presence of some kind of "Cooper pairs”, or "molecules”,
consisting of a vortex-antivortex pair. For this purpose we shall investigate the average

value

B(17—71) = < QN NJFL(@E ()G, (N - 1), (N=1)-> . (3.6)

First we notice, that for |#— #'| — co this must factorize as

LAEL() > - <87 >< 81(7) > = y/nf /o, (3.7)

}E{)

<

which is an obvious manifestation of the presence of single-particle condensates. Now we
explicitly calculate the function ¢(]7 — 771[), which, as is known, can be considered as a

"pair wave function”. Substituting (3.3) into (3.6) we obtain

$(|7— 7)) = NA/d3f’1 B P P
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[ ereelimd ] o2+ (17 —=75)) 11 e~ 2ru=(I7i=751) (3 8)

1<i<j<N 1 1<i<j<N -1 1<i,j<N—1
and we see that after appropriate normalization this expression becomes a radial distri-
bution function for 2 impurity particles of unlike sign, which interact with the particles of

the liquid and with each other via 1/2 of the true interparticle potential. We can therefore

write

$(I7 = 7[) = Cgs—imp(I7 = 7']) (3.9)

where the constant C is yet unknown. To determine this we can use the property (3.7)

and the fact, that for |7 — 7| — co we have g4 _imp(|7— 7 |) — 1. We obtain

n
C=+/niny =n = ——— 3.10
0T T T g bime(0) (8:10)
where we assumed n} = n; and used (3.5). The total density nf)‘z’fcm of condensed pairs is

then given by

e = [ 1807 = s [ #7017 (3.11)

++zmp

The last result is conveniently rewritten as

<

it = gy [ (g7 = 1] + iV (3.12)

T +imp(0
and as such can be given the following interpretation. The second term is simply the
density of ”pairs”, consisting of particles which are separately and individually condensed.
Therefore it does not provide any new information about the correlations in the system

(we remind that in case of fermions this term is absent). The first term, on the other

hand, is always nonnegative, because

/(9—1)2d3r":/ 2/ng +/ddr—/(g 1) dF>0,  (3.13)
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where we made use of the fact that g(r) is normalized. Moreover this term has a property
of being zero in case of noninteracting particles (g4+_;mp(|7]) = 1), and we can therefore
consider it to represent the real density of condensed pairs arising due to the attractive
interaction. To confirm this point of view, however, it is necessary to show, that this
quantity is really of order n (n is the total density of particles), and this can be readily
seen in the following way. The integrand g3 _,  (|7]) — 1 goes to 0 for |7] — co and the
main contribution to the integral comes from the region where it is significant. The volume
of this region is of the order of % =n~!, and the integral can be estimated as

z_ao(ro)—1
—g+‘;mp( 0) , (3.14)
g++imp(0)

Nopair ~
where 7( is some radius at which the integrand acquires its average value over the region.
We can therefore conclude a presence of a finite fraction of condensed vortex-antivortex
pairs in the wave function.

Having analyzed the properties of an idealized wave function, we conclude that the
model which represents our system contains three condensates. Two of these are single-
particle and one is a pair condensate, being a vague analogy to 'the condensate of Cooper

pairs in a superconductor, or (closer) of excitons in an excitonic insulator. In the next

chapter we shall try to discuss which might be the consequences of this fact.



4 Discussion and outlook.

4.1 Summary.

We briefly summarize what has been done in the preceding chapters. First, we have
discussed the available evidence for unusual phenomena in Sr7T¢03 near 38 K. Second,
starting from a Landau expansion of the free energy and adding to this the appropriate
gradient terms we have analyzed in detail the properties of the classical INC phase which
would hypothetically set up in §7T103 if the TA mode frequency continued to decrease to
zero. Since the coeflicients of the gradient terms are quantitatively not known, we had to
investigate several alternative possibilities. Nonetheless, some arguments are -presented,
indicating that the most likely case could be the pattern in which the polarization P and
the acoustic displacement @, both lying in the (001) plane, are jointly modulated in two
mutually perpendicular [100] directions. This polarization pattern can be visualized as a
3D stacking of planes, each containing a "flux phase” consisting of a regular array of XY-
like vortices with alternating positive and negative vorticity. We are not able to decide,
whether this pattern is further modulated along the tetragonal z-axis, and if so, with what
periodicity. As to the detailed nature of the in-plane modulation, numerical minimization

of the free energy shows, in accordance with the general concept expressed in [21], that
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the system is well described by a simple sinusoidal modulation. It does not like to create
higher spatial harmonics of the modulation, and therefore does not show a tendency to a

structuration into ”solitons”, or domain walls.

Third, after this classical analysis, we have qualitatively discussed the impact of quan-
tum mechanics on the INC state, and in particular its destruction (melting) by quantum
fluctuations. In order to make progress in this context, we have abandoned the continuous
field theory in terms of the true fields P and @ in favour of a further simplified model in
terms of two kinds of "particles”. The particles are a mimic of the vortices in P and 7, and
form a regular NaCl-type lattice in the classical INC phase. The quantum paraelectric
state is within this model, what is left after quantum melting of this lattice — very much
like liquid *He is what is left after melting the solid He lattice. Incidentally, therefore,
the model requires studying the properties of a two-component quantum plasma which
does not seem to have been studied before. Fourth, we study ODLR.O in this model state
represented by a Jastrow variational wave function, and find that both single particle and
pair condensates are present in this. The presence of symmetry breaking and of order
parameters implies a phase transition, if this state has to be arrived at by cooling. It

seems at least possible, that the anomaly at T, might signal precisely this transition.

This is as far as this project has arrived at this moment. We do not know precisely yet
how to relate this model back to true measured, or measurable properties of the quantum
paraelectric state under study. However, we give below a tentative discussion of possible

lines of development in that direction.
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4.2 TFuture work in connection with existing experimental
material.

A relevant theory of the phase transition at 7}, must, of course, explain first of all the
behaviour of the quantities such as < §¢ >, §a and §D. As mentioned in the section 3.1.,
the wave function (3.2) allows, at least in principle, a calculation of these quantities for
T = 0. This calculation is not done, and is not an easy one. What can we expect it will
yield ?

An increase of ¢, i.e. a positive < §¢ > is very likely, as was pointed out already in
[11]. We can extract from the stress induced ferroelectric state [6] an approximate < §¢ >
of +7% at the onset of uniform ferroelectricity. An average increase in < §¢ > of the
order of a few percent — as observed — is therefore very likely for the modulated state, no

matter whether it is crystalline (INC phase), or melted.

The dip observed for the crystal-field parameters a and D at the phase transition itself,
is more difficult. This requires a finite temperature theory, and at the moment we do not
have one. Qualitatively, we can still expect that large strain fluctuations must accompany
the onset of our state. It is not implausible that their effect on a and D could be similar to
that of large anharmonic thermal fluctuations, whose effect would be precisely to depress

a and D,

An extra interesting piece of information is provided by the measurement of the
< 111 > stress dependence of the temperature of the anomaly T,. This remains entirely to
be understood, and particularly the fact, that the stress dependence of T} in the trigonal
phase is much more pronounced with respect to that in the pseudotetragonal phase. We

notice, that the anomaly of A H,,; is much sharper in the trigonal phase, which is consistent
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with the assumption of a quantum effect, since in this phase the transition occurs at a
lower temperature.

Another remarkable phenomenon is the effect of C'a doping investigated in [20]. From
the present point of view, the existence of a critical Ca concentration, where a true fer-
roelectric state sets in for the first time, can be interpreted in terms of a pinning of the
phase fluctuating dynamic INC state. The crystal becomes ferroelectric when it contains
at least one pinning center per domain. Because the typical domain size is proportional
to ko—l, where ky is the INC modulation wavevector, the value z¢, = 0.0018 of the crit-
ical concentration allows us to estimate k;' ~ 8a (a is the lattice constant). This is
in good agreement with recent neutron data [18], showing that the TA-TO coupling is
strongest at the reduced wavevector ¢ = |¢]a/27r ~ 0.035, not far from a predicted value

of kga/27 ~ 0.02.
4.3 Some predictions, and speculations.

In this final section we shall try to predict further experiments which might contribute to
better understanding of the investigated phenomenon. At a phase transition one usually
expects anomalous behaviour of various thermodynamic quantities. Since we are, how-
ever, in the temperature region where quantum effects are assumed to be important, the
behaviour may be very different from the classical case. It is known that for a classi-
cal commensurate-incommensurate phase transition the Landau theory predicts a jump
of specific heat like for any ordinary second-order transition. On the other hand, from
the renormalization group study [33],[34], [35] of the quantum-mechanical displacive limit
it is known that there is no anomaly of specific heat at the quantum-ferroelectric phase

transition. We therefore expect the anomaly, if present, to be rather weak.
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The homogeneous and static dielectric susceptibility of STTi03, as measured in [12],
does not show any anomaly at T,. For a classical INC phase, as in chapter 2, this should
have a peak at the transition. In that case, in fact, a divergence is expected for the
non-homogeneous susceptibility x(ko) corresponding to the unstable wavevector ky. For
a transition into our quantum state, we may expect x(ky) to have a peak, or a larger
maximum. This maximum would reflect the coupled TO-TA mode softening leading to

stabilization of a roton-like dip in w.4(ko), as suggested in [11].

Finally we mention possible more exotic consequernces of the existence of a kind of
off-diagonal long-range vortex order discussed in the last chapter. The existence of a
condensate of atoms in liquid *He and of that of Cooper pairs in superconductors and
3He is known to manifest itself in superfluid transport of the objects, which condense.
Superfluidity of vortex pairs will only arise, if their total number is a conserved quantity,
a question, which is not yet clear. Secondly, even if present, our type of ”superfluidity”
would not involve a true mass transport, since atoms do not flow. However, one could
still imagine would-be experiments, where the existence of ODLRO should in principle
be detectable. Imagine, for example, introducing a space and time-dependent strain in
the system. Because of the coupling, which is explicit in (2.6), classical INC state as in
Chapter 2 would be in turn modulated: the preferred domain shapes and their density
would fall in step with the deformation. For the solid INC phase this amount of distortion
of the domain structure would represent a compromise between the external forcing and
the intrinsically rigid response of the solid INC structure. In the superfluid phase, the
local domain density is non-conserved, which means that it can ezactly adjust to the local

strain — provided the time dependence is slow enough to give rise to velocities which are
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below the critical velocity. A very recent Brillouin scattering experiment [18] has in a
way already tried this, but failed to show any sharp features at T,. However, the critical
velocity is by necessity smaller, probably much smaller than the sound velocity, which

means a possible ”condensate” could not "follow” the sound wave in this experiment.
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