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INTRODUCTION

It is commonly accepted that stars, due to their long mean lifetime, are
systems at hydrostatic equilibrium. Since stars continuosly emit energy (in
form of radiation or particles, with velocity higher than the escape velocity)
this energy must be supplied to the star. The other key ingredients to
describe the stellar evolution are nuclear combustions wich provides energy
and energy transport mechanism. If we limit our attention to stars being
in an evolutive stage which is typical of the sun, the main contribution to
the energy production is due to the so called PP chains

H! + H? — D? +et + v,
PPI—"{HI-{—D?‘ — Hed + v
He® + He? — He*+2H!?
Hed + He* —» Be' +v4

PPII—-—*{Be7+e”‘—+ Li" + v,
Li" + H' - He* + He*

Be" + H' — B® 44
PPIIT —{ B8 — Be'+e 4, (1)
Be’ — 2He*

The relative importance of these different chains depends on the tem-
perature in the core of the star.

Once that mechanisms for energy transport are known, the evolu-
tion equation for the state of the star can be determined . This equation
links toghether the macroscopical variables of the system (luminosity, mass,
temperature, pressure) and the microscopical mechanisms which determine
them (energy transport and nuclear reaction).

Given the state equation and the initial conditions (luminosity, mass,

external temperature) it is possible to determine the complete state of the
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system. In particular it is possible to determine the reaction rates for (I)
and consequently the neutrino fluxes.

The main contribution to the solar neutrino flux is due to the reactions:
H'+H' > D?*+et v, pp neutrinos (I1)

In addition there are the following reactions which are of much less impor-

tance for the energy balance:

Be' +e” — Li’ + v, Be” neutrinos
NB 5B 4et 4o, N3 neutrinos
O - N fet 4o, O'% neutrinos

p+e  +p— D%+, pep neutrinos
B® wBe" +et + v, B? neutrinos (I1I)

In spite of the fact that reactions (III) are essentially negligible from the
point of view of energy production, and the corresponding neutrino fluxes
are much smaller in comparison with those due to reaction (II), Be', pep, B®

neutrinos are much easier to detect due to their higher energies.

At Homestake Davis and collaborators perform an experiment running
since 1968 [1]. This experiment exploits the Cl-Ar radiochemical method
for detection of solar neutrinos proposed by B. Pontecorvo. The methods

is based on the reactions
Ve + CP7T — v, + Ar®7 (IV)

and is sensitive mainly to B® and Be” neutrinos. The expected capture
rate for the experimental apparatus is 7.9 & 2.6 SNU [2], (1 SNU is 10736
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captures per target atom per second; the quoted error is claimed to be
an effective 3o error taking into account both theoretical uncertainity and
uncefta,inity on the measured parameter which enters in the computation).
More recently a competing group with a slightly different Standard Solar
Model (SSM) gives an expectation of 5.8 + 2.7 SNU [3].

The observed capture rate Sp [4] is
Sp =2.33+0.25 SNU (V)

The discrepancy between the thoretical expectation and the experimen-
tal result constitutes the essence of the so called ”Solar Neutrino Problem”.

More recently (since 1986) another experiment has begun a systematic
observation of the solar neutrinos. The Kamiokande II collaboration has
developed a huge water Cherenkov detector which due to possibility to
reconstruct the directions of the scattered positrons (with an accuracy of
thirty degrees) is able to detect neutrinos from the sun above an energy of
7.5 Mev [5], observing the elastic scattering of neutrinos on the electrons.

The Kamiokande II experiment has two main differences with respect
to the Davis one: it is sensible only to B® neut.rinos, due to its threshold,
and it is sensible also to v, v, elastic scattering; this second aspect can
play an important role in scenarios in which v, — v, (¥;) conversion is
postulated.

The Kamiokande II collaboration has confirmed the solar neutrino
deficit observing [6] a fraction Rk of neutrinos with respect to the expected

one from the SSM ( Bahcall computation).

Ry = 0.46 +0.05 + 0.06 (VI)
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Kamiokande IT and Chlorine data not only disagree with the SSM but
seem to be in disagreement between each other, the trend being that the
Kamiokande II rate is larger than the Homestake one.

To have two ( and possibly more ) experiments is very important,
since in principle the comparison between different experiments allows to
eliminate uncertainity on the source which is intrinsical in this type of
experiments.

More recently, a novel feature of the signal has been observed by the
Homestake collaboration. It is claimed that the Homestake data are anti-
correlated with the eleven years solar semicycle [7].

One way to see the correlation is to look for the signal at solar maxima
and minima. Averaging over the two semicycles, during which homestake

detector has taken data, the reported signal is [7]:

S{P) =0.84+0.3 SNU
SP) = 41406 SNU (VII)

where Sﬁf,?n is the signal detected at the maximum (minimum) of solar

activity
The Kamiokande II collaboration claims to observe no such anticorre-

lation within a 30% accuracy [8].

It is very difficult to explain the solar neutrino deficit in terms of solar
physics [9]. Since neutrino physics is the subject of this thesis, in the follow-
ing we shall disregard this possibility and we will concentrate on neutrino
physics, which possibly affects the solar neutrino signal.

We can group the properties of neutrinos, which have been suggested

to solve the Solar Neutrino Problem, in three main classes:
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1) Neutrino masses and mixing

2) Neutrino magnetic moment

3) Neutrino decay

We discuss only 1 and 2.

In the first chapter we discuss the hypothesis that neutrinos are massive
and that the mass eigenstates do not coincide with the flavour eigenstates.
If this is the case neutrino oscillations are expected: after a time ¢ the initial
Ve can be converted into a v, where v, can be both a usual flavour neutrino
or a sterile one. This mechanism can explain the disappearence of a fraction
of the emitted neutrinos.

The quantitative description of neutrino oscillation in the simplest case
(two neutrino oscillations in vauum) depends on three parameters: the vac-
uum mixing angle «, the difference of the squares of the different masses
&m?, and the neutrino energy E. The probability P., of v, — v, conversion
is an oscillating function of energy, however, for solar neutrinos with energy
larger than 1 MeV, if §m? > 10710 eV the energy dependence either disap-
pears, or it is averaged by the energy resolution of the detectors. Energy
independent effects can account only for differences among detectors which
are sensible only to v, and detectors which are sensible both to v, and to
vz. The relevant region of parameters for the solution of the solar neutrino

problem is

< P,, <053 6m?>3x10710 (VIII)

For a mass splitting ém of order 3 x 10710 < ém? < 3 x 1072 the
probability to convert a v, into a v, is energy dependent. This range of ém

can account for differencies among detectors with different thresholds.
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If we take into account that neutrinos inside the sun travel in a dense
medium the previous scenario is modified. In the interior of the sun, neutri-
nos feel an effective potential, due to the coherent interaction of neutrinos
with the stellar matter. Since the matter density varies inside the sun,
the equation for the evolution of the neutrino states becomes an evolution
equation with a potential which is time dependent. If the potential changes
adiabatically during neutrino path from the interior to the surface of the
sun, istantaneous eigenstates tend to remain istantaneous eigenstates and
going out from the sun are converted to vacuum eigenstates. For some
region of parameters a v, can be almost completely converted in a v, state.

Matter induced neutrino oscillations provide an energy dependent effect
since both the adiabatic condition and the matter eigenstates depend on
energy.

The relevant region of parameters is shown in fig. 2.

In the second chapter we discuss the hypothesis that neutrinos have
unusual electromagnetic properties, such as an electric dipole moment or
a magnetic moment. In this case, if the sun has a magnetic field which is
coherent over large regions, some spin flip precession, due to the coherent
interaction of neutrinos with the magnetic field of the sun, can occur. We
observe a magnetic field at the solar surface whose intensity is correlated
with the eleven years solar semicycle. This cycle is correlated to the activity
in the convective zone and this probably implies that the magnetic field
which is observed is confined inside the convective zone. The main interest
in this effect is due to the fact that it can explain the claimed correlation
of the signal with the solar activity.

The idea of spin flip was proposed by Cisneros [12] in connection with

a possible magnetic field inside the inner core; this effect cannot explain the
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time modulation of the signal. Later Okun, Visotsky and Voloshin revisited
this idea and observed that if the spin flip is due to the magnetic field inside
the convective zone some time modulation of the signal is expected. Their
proposal was to consider a magnetic moment term connecting the left and
right handed components of a Dirac neutrino. In this case only magnetic
moment spin flip can occur and it is expected that in the periods of zero
magnetic field the signal is the one predicted by the solar standard model.
This does not seem in agreement with the data which show a deficit of order
one half even at the maxima of solar activity. Additionally this hypothesis
cannot account for a depletion as large as the observed one.

To resort this idea it has been proposed to consider both flavour oscil-
lation and neutrino spin flip acting between two majorana neutrinos (both
active, to avoid conflict with Supernova dinamics and primordial nucleosyn-
thesis bounds on the number of neutrino species). These are the so called
hybrid models.

Quantitative evaluations of the impact of these models on the solar

neutrino signal are still lacunous but there are claims that for
py =107 up B~ 20 kG (VII)

where 1, is the neutrino magnetic moment and B is the magnetic field in
the solar interior, there is the possibility to reproduce the data.

At the end of the chapter we discuss an additional experimental signa-
ture of this class of models. Since we are concerned with majorana neutri-
nos no lepton number is conserved. This implies that some amount of 7,
production is expected. For usual flavour neutrino oscillations this contri-
bution is expected to be suppressed by a factor m2/E? and thus negligible.
In the case of Hybrid models the interplay of flavour oscillation which allows
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Ve — Vg transitions and spin flip precession wich allows v, — T, transitions,
can lead to a significative amouunt of 7, production.

It turns out that Kamiokande II experiment due to the large amount
of almost free proton inside the detector is very sensitive to 7, through the
reaction ¥, + p — n + eT. Looking at Kamiokande II data, we are able
to limit the flux of 7, between 7.5 MeV and 15 MeV to be smaller than a

fraction of order of few per cent of the emitted solar neutrinos.

/ de®y < D5 (X)

where ®3 is the antineutrino flux and ®g5gs is the solar neutrino flux ac-
cording to the SSM.

This turns out to be enough to exclude all the classes of two neutrinos
hybrid models which require large mixing angle.

An additional potential problem for the theoretical implementation of

this class of models is that they require two vastly different mass scales.

In the third chapter we propose an alternative hybrid model which
overcomes both the difficulties we have outlined. We consider all the three
neutrino flavours and we assume that the lepton number L. + L, — L,
is conserved. The particle spectrum of this model consists of one massive
Dirac neutrino and one massive Weyl neutrino. An unquenched spin flip can
occur between the left and right helicity states of the Dirac neutrino while
oscillation can occur between the Dirac neutrino and the Weyl one. The
conservation law we assume overcomes both the problem we have outlined
previously. The model we propose requires only one mass scale and does

not predict 7, production.



Then we study the neutrino evolution problem postulating that the
magnetic field is present only in the convective zone. We study only two
limiting cases.

1) The magnetic field rises sharply at the beginning of the convective
zone.

In this case almost any time modulation can be achieved. The required

values for the input parameters are
i, B = 10/Rg (X1I)

Since the probability is oscillating with the phase ® = [ uB(r) we need
¢ ~1

2)The magnetic field rises adiabatically at the beginning of the convec-
tive zone.

In this case the modulation cannot be larger than a factor two. The
espression for the probability does not depend on the precise size of the
magnetic field.

The required values for the input parameters are
pv 2 4/Ro (XII)

The region of parameters for which we have adiabatic or sudden turning

on is depicted in fig. 6



CHAP 1
NEUTRINO OSCILLATIONS IN VACUUM AND IN MATTER

In the following we consider the possibility that, due to some non stan-
dard physics, neutrinos can get a mass. Generally, in this case, neutrino
flavour eigenstates do not coincide with mass eigenstates. Neutrinos emit-
ted in weak interactions, therefore, are linear superpositions of wave packets
of neutrinos with different masses. We now study the consequences of this
assumption for the time evolution of a flavour neutrino state. This study
is limited only to the possibility that neutrinos are Majorana particles and
the number of massive neutrinos is just equal to the number of the observed

neutrino flavours, namely to three.

§1.1 The Relevant Lagrangian for Neutrinos

For simplicity we limit the discussion to only two neutrinos since the
extension to three neutrinos is straightforward.
In terms of the flavour neutrino fields, the kinetic term of the lagrangian

density for neutrinos is

L =iUe(2)7a0avVe(z) + i7,(2)VaOov.(T)
+ (Moo F (2)Cve(2) + meuT (2)Cvu(2)
+ mpuev] (z)Cre(z) + muuv; (z)Cuy(z) + h.c.) (1.1)

where C is the charge conjugation matrix.
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Due to the relation C = —C7 and to the anticommutation of the spinor
fields we get me, = mye,.

The complex phases of m. and m,, can be reabsorbed redefining the
phases of v, and v, and these phases can be eliminated from the lagrangian
using the freedom of redefining the phases of the electron and muon fields
which are unobservable. So at the end we are left with only one physically
relevant phase[13].

Taking m.. and m,, real and m., = me*®, we define the Majorana

neutrino fields v, vy as:

V1 =cosav, — e

sin aw,,
ve =e*® sin av, + cos av, (1.2)
where
2
tan 20 = — - (1.3)

Mee — Myy

The Lagrangian (1.1) can be rewritten as:

L = iv1(2)Ya0av1 () + iU2(2) V0 0avz ()

mavi (2)Cvy(z) + movy (2)Cry(z) - (1.4)
where
my :%(mee + Myy + \/(mee — myy,)? + 4m? )
ma =5 (e + 1 — /(e —m )+ 42 ) (L5)



§1.2 Propagation of a flavour neutrino state in vacuum

We now study the propagation in the vacuum of an electron neutrino-
produced in some weak process. If this neutrino has been created at the

point xg and time ty = 0, the neutrino wave packet is:

| be(x)) = / dp[a(p) | v1p)eP*7*0) 4 b(p) | wop)ePTX]  (L.6)

where a(p) and b(p) are momentum distribution peacked around the mo-
menta p; and ps respectively and with width Ap; and Ap,. In the rela-
tivistic limit py ~ p2 = po, a(p) = cos aao(p) and b(p) ~ sin aao(p)

After a time ¢ the neutrino propagates in the following way

| Ye(x,t)) = /dp [a(p) l V1p>ei(P(x—-xo)—E1t) + b(p) | V2p>ei(p(x—x0)—E2t)]

(1.7)
where E;(p) = /p? + m?

Therefore at time t the wave packet will be located around a point x;
at a distance d = vt, v denoting the velocity of the neutrino wave packet.
For a relativistic neutrino v = ¢ and so p(xp — x1) = pt.

Now we want to investiga,te the proBability for the emitted neutrino
to be detected at a time ¢ as an electron neutrino located around x;. If
the neutrino wave packets spatially overlap we must add the amplitudes,
otherwise we must add probabilities.

If we assume the two neutrino wave packets overlap, using (1.6) and

(1.7) we get: Aee = (Ye(x1) | Ye(X0,t))

Aee — /dp [COS aao(p)ei(p(xl _'XO)_Elt) + Sin aao(p)ei(p(xl ""XO)"'E2t) (1_8)
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For small Ap/p and m/p we get m?/2p = m2/2p, and E;(p) = p +
m?/2p. In this limit we get from (1.8)

Aee = /dp [cos aag (p)e‘im?t/zp + sin aaO(P)e—imgt/ZP] (1.9)

Exactly in the same way taking for the v, state the ortogonal one to
v, state we get A.,. Taking the square of the probability amplitude we get
the probability P,, to detect the original v, as a v,

Pe(t)=1-— %sin2 2a(1 — cos @)

P, ,(t) = % sin? 2a(1 — cos @)
2 _ .2
me — ™,

$ —
2p

(1.10)

The mechanism we have described is known as neutrino oscillation [11].

As we have already outlined, for relativistic neutrinos time and distance
are equivalent and in the previous equation we can substitute £ with R where
R is the distance between the points xg and x;. After this substitution we
can define an oscillation length Ly = 47 E/(m? — m%) which is the distance
after which the phase ® takes the value 2.

Since it is an interference phenomenon it can occur only if the two
neutrino wave packets overlap spatially. Due to different masses the two
neutrino wave packets experience different velocities and after a time ¢ = t4
will no more overlap and the interference phenomenon will disappear.

The relative velocity v,..; between the two neutrino wave packets is

2 2 2 2
b b ~ p (mZ _ ml) — my my (1.11)

Vpe] = — — — 0 —
T e a p2'2p 2p 2p?
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From (1.11) follows that the mean spatial separation (D(t)) between

the two neutrino wave packets is

(D(t)) = ﬁ#t (1.12)

If the typical spatial spread of the initial packet is §z the two neutrino
no more overlap when (D(t)) > éz which can be translated on a condition

over the time. If we define the decoupling time ¢4 as

bz = (D(tq))

2p?
tg = —=6z 1.13
T mE —m2 (1.13)
If £ > t4 holds, no interference occurs between vy, v, and we can no
more add the amplitudes for v; and vy to be v, or v,. We must add

probabilities. In this case we get

P.=1- %sinz 2a

P, = %sinz 2cr (1.14)

which doesn’t show any time or energy dependence.

§1.3 Relevance of Vacuum Neutrino Oscillation for the Solar

Neutrino Problem

We shall now assume that vacuum neutrino oscillations occur between
the sun and the earth and we shall examine briefly their implication for the

solar neutrino signal which is detected by solar neutrino experiments.
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The signal Sp in the Chlorine experiment is

Sp = TNe /E o dE®(E)o(E)P.e(E) (1.15)
th
where ®(F) is the differential flux of solar neutrinos, o(E) is the absorption
cross section for the reaction v, + CI3" — e~ + Ar37, E,; is the threshold
energy for the detection of the signal, E,, 4 is the end point energy of the
spectrum, T' is the detection time, IV is the number of scatterers and ¢ is
the efficency for the extraction of Ar37 from the detector.
The signal Sk in Kamioka experiment is

se=Tn [ dES(E)e(E)[(0c(B)Poc(E) + 0,(E)Pou(E)]  (1.16)

where o, is the elastic cross section for v e scattering

Now it arise the question of weather we have to take into account energy
dependence of the probability as in (1.10) or we can average the oscillating
term as in (1.14) obtaining an energy independent probability.

We define A = m? — m2. There are three points to take into accout

a) the condition for spatial overlapping of the two wave packets. This
problem has been investigated by Nussinov [14] and it turns out that spatial

overlap requires:

A

<10~ 1.17

7 < (1.17)
b) If the oscillation length is not larger than the sun inner core averaging

over the region of production of the neutrinos is equivalent to average over

the oscillating term which gives one half contribution[15]. If

Ey

~ 2 1072 Rg (1.18)



where R is the solar radius, than vacuum oscillation length is larger than
the production zone.

c) If the product Rs.(m? — m2)/4, where R, is much larger than the
typical energy of neutrinos which are detected the contribution of the oscil-
lating term is again averaged to one half, due to the finite energy resolution

of the detectors [15]. If
3x10710 < A <3x10712eV? (1.19)

than the detector energy resolution does not average the oscillating term.
Unless (1.17 + 1.19) are satisfied the oscillating term is unobservable
and no energy dependent effect can arise. Additionally oscillation turns out
to be ineffective for oscillation length which are larger than the sun earth
distance since in this case P, = 1 and P,, = 0.
The region of parameters for which the probabilities are energy depen-

dent has been investigated in [15]. For:
5x 1071 <A<1.1x1071  sin?2a > 0.7 (1.20)

it is possible to reconcile within the experimental errors the two signals.

If the oscillating term can be averaged the probability can be taken out
of the integral. If we assume that neutrino oscillates only in active neutrino
we get (see (1.15) and (1.16))

Rp = IBDPee
RK zﬁK[Pee + (1 - Pee)ﬁu/b—'e]
Eend
5, = / dES(E)o, (E) (1.21)
Ein

where Rp and Rk are the ratios of the detected signals and the central
value of the theoretical expectation, Bp = 1+ 0.33 and B = 14 0.37
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are two factors wich take into account the theoretical uncertainities or the
neutrino fluxes, for Davis and Kamioka experiment respectively.
Taking into account possible oscillations between all the three neutrino.

flavours it must be P,, > 1/3 (if a neutrino is a linear superposition of n

neutrino mass eigenstates, v. = Y ., a;V;, averaging the oscillating terms
in the probabilities we get P, = > 5, | a; |* and for the three neutrino
sistem the minimum value for P, is 1/3). Having in mind this restriction

to reconcile the two signals require

< P, <053 A>3x1071eV)? (1.22)

Lol b=

where we have considered 20 intervals for both experiments and we have

allowed a 3¢ deviation from the central value of the theoretical expectation.

§1.4 Matter neutrino oscillation

The neutrinos we are considering born in the sun and for a time of
about two seconds travel inside the sun which is a relatively dense medium.
Matter density is not enough to provide significant cross section for neutrino
scattering, however we shall see that under certain conditions it can greatly

modify the neutrino wave packet evolution.

§1.4.1 The propagation of a neutrino in a dense medium

The neutrino travelling in the medium is a coherent superposition of
states | v;p) as in (1.6), whereas the medium is a completly incoherent sum

of different fermionic states | fg).



We now want to understand the time evolution of the system.
The amplitude Ay, for a state ¢ at a time ¢y to become a state ¥/ at
a time tg + At is:

to+ At
A¢¢, = (’gbl | Tea:p(z'/ dtL,;nt I ¢>

to

R3

where L;n; is the interacting sector of the lagrangian density.

Since we want to compute the time evolution we need to consider the
small At limit. Essentially we need At much less than the typical mean
free path of neutrinos. On the other hand for (1.23) to be of any use (read
calculable) At must be much larger than the typical collision time in order
we can apply asymptotic states limit in the computation of the S matrix.
In the case under consideration the typical mean free path is much larger
than the sun and we can safely compute (1.23) with the ordinary methods.

Since scattering and absorption effects are negligible Ay, can be rel-
evant only if | ¥/) coherently superimpose to the unscattered state | 1)
giving rise to interference effects. Let’s now discuss the condition for which
this happens.

Since neutrino state is a coherent superposition of two neutrino wave
packets v; and v, we can allow for

a) | v1) —| v2) transition

b) Small momentum changes Ap < §p where 6p is the typical momen-
tum spread of the wave packet

For the medium since it is an incoherent superposition of states we

must require that the initial and final states are equal.
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The condition for the medium implies that only forward scattering

amplitude is relevant, neutrino initial and final momenta must be the same.

§1.4.2 Forward scattering amplitudes

Spinors and field we use to compute (1.23) are described in appendix
A.

The medium is constituted of ordinary matter and we will need to
consider the elastic scattering off electrons, protons and neutrons. We shall

now consider in detail the amplitude A for the process

= e
& w
€ N P \)7‘
v 7
Vip T €q — Vap + €q (1.24)

where with 1/( %) we denote v; neutrinos with left (right) handed po-

larization. From (1.23) and we get:

to+AtL
a / /dx————— sin o cos el e H(Po1—Po2)to
to

X T (@)1 (1 + 75)e(@)e(@)7, (1 + 95w (@) + - .. + . cJalqal,, | 0)
(1.25)

A=(0]al

Vzpa'e

where alp is the creation operator for a particle  with momentum p,
and the factor e~ #Po1=Po2)to takes into account that we are working in the

interaction picture.
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Normalizing properly at a density of one neutrino per unit volume and

N, electron per unit volume we get:

A= G cosasimale v (14 y5)e(q) / R ior—pon)to
V2 440+/Po1Poz # to

x [€T2(P)7u(1 + 75)va(P) + 11 (P)C7u(1 + 75)Cv3 (p)e™"]
G cos asin N, _

€
440+/Po1Po2 Ve
X [Z27u(1 +v5)11€” + v{ C,u(1 +75)Cr3] + O(A%) (1.26)

= —1At

(14 s)e

For the evolution equation we need V = i%A. Averaging over the

electron spin we get:

L A G cos asin alV,
Vl’z - Z"A"‘t‘A -
V'2240+/Po1P0z
X qu[Tayu(l + 7s)vie” + 11 Cyu(l +95)Crze™™]  (1.27)

in the rest frame of the medium (q) = 0 and finally we get:

G N, cos asin «
VI, = ° 2[(po1 + m1)(po2 + m2) —{—pz] cos 6+
2 V2+/(po1 + m1)(po2 + ™2 )Po1Poz {
+ 2ip(po1 + poz + m1 + m2)sin 6} (1.28)

In the same way we get the other contributions

Vi \f*, - -
rd 7 7 /€
\)4, 2
Z + %%
> > > >
e e € Vi
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It follows
G p

Vi = \/—pm —~— (2N, cos®* a — GN,,)

G p
Vi = — = (2N,sin’?a — GN,, 1.30
2,2 \/—P01( ) (1.30)

(a)>

Transition | vf,,) | eq ) —| vigp) | ega))a,re forbidden by angular

momentum conservation and this can be verified explicitly, so we get
VI = VB = Vi = Vif = 0 (1.31)

for transition of right handed polarized states we get in general V* =

__VR*

G
VE = _—— L (2N,cos?a— GN,,
1,1 \/—Pm( )
G p
Vi, = ——— 2N, sin®? o — GN,,
2,2 \/52701 ( )
GN, cos asin o
Vi, =— ° 2[(po1 + m1)(poz + m2) + p?] cos 6+
b2 \/2-\/(1901 + m1)(po2 + m2)po1Po2 {
— 2ip(po1 + poz + m1 + my)siné} (1.32)

§1.4.3 Neutrino evolution equation in matter

If the neutrino state at a time t is
| vBR(t)) = dy7 () | vn) B " 4+ dy () | vy ™) (1.33)

the evolution equation in matter is

i%df’f‘ e (1.34)
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where
HY = El + VlL,l 11',2
Vs E; +Vi,

B +V#, Vi,
R frwernd ? 2 135
7 ( vy B+ VE (135)

The importance of this equation in analizing neutrino oscillation in

matter was pointed out by Wolfenstein[16].
We define
E* = (B1+ By + Vi1 +V5,)/2

e=(E1— Ex+Vi; —V3,5)/2
5% = vLF (1.36)

The Hamiltonian is

Ex 0 + §*
Hi = ( 0 E:‘:) + (56:1:* _Ei> (137)

The diagonal term can be reabsorbed in a redefinition of the amplitude

a; (t) . With

H = (;* _i) (1.38)

we get

2 45(t) = Py dat) (1.30)

If § = §pe?®t using the unitary transfomation

. — COS Oy — sin @, e’
m T : —101
sin a,,e COS Qlyy,

13



tan 2a,, = g (1.40)

we can diagonalize H
Hp = U HUS

Hp = ( Ve + 6 0 ) (1.41)
Y
If V is constant in time following (1.41) the evolution problem is solved.
Solar neutrinos, of interest for the experiment we are discussing, for
masses below 1 MeV are relativistic. Since we are interested to discuss the
effect of matter induced oscillation for solar neutrinos we give the relativistic
limit for the previous equations. We choose, for convenience, to give the

expression in the flavour basis.

H(L'r') _ (cos Zaz% + Ve sin 2ae‘i54—AE— )

sin 2aei5z% — cos ZQfE +V,
& 9 e—i8 A
e = (co§2a4Ei5 AVe stozeA = ) (1.42)
sin2ae® ;5 —cos2agp — V,
where

G

Ve - G\/—z-ne - —=TNy
V2

V=S, (1.43)

V2

The matrix H(, is diagonalized by the transformation

Hp = UnHU),
_ COS Oy, — sin a,, e
Um - : —181
sin a,e COS Oy

14



tan 2, = =32 1.44
e cos Za% + %ne ( )
-X 0
Hp = ( 0 -)—\) (1.45)
— A G A
- — 1+ n)2 i —)2 1.4
A \/(cos 2a4E + ﬁne) + (sin 2a4E) (1.46)

§1.4.4 The M. S. W. effect

Howeverin the sun the density is not constant and in its travel neutrino
experience different densities an so a potential ¥V which is not constant in
time. Neutrinos are relativistic and R = ¢ if R is the distance between the
point in which the neutrino is emitted and the point it reaches at the time

t. Equation (1.39) becomes

i
i 4 =M (R)A (1.47)

Where the R dependece of H(, is completely described by the R de-
pendence of electron and neutron densities N¢(R), N, (R).
Using the diagonalization (1.41)-(1.42) and taking into account that

oy, is a function of R we get

o (5)= (0 o) (B)+(Lse ) (2)

where Bj - Um jkAk-
In general equation (1.48) is not exactly solvable. However two impor-

tant limits are easily under control.

15



am(R) >> AMR) (1.49)

this corresponds to the impulsive limit, the time variation is too fast

and the state doesn’t change.
am(R) << AMR) (1.50)

this corresponds to the adiabatic regime. In the limit in which ay, is
negligibe we get for the evolution of a state | v; :=¢) which at a time ¢ is an

eigenvector of H with eigenvalue A;

| vj1=0(t)) —| vj+) exp —-i/o dsA;(s) (1.51)

where | v; ;) are the istantaneous eigenstates of the hamiltonian #(¢) at the
time £.
| v +) evolves staying an istantaneous eigenstate | v; ;) of the Hamilto-

nian.

§1.4.5 Relevance of neutrino mixing in matter for the solar

neutrino problem

If impulsive condition (1.49) holds the neutrino state is lefted un-
changed and the evolution is the same as in vacuum. Conversely if adi-
abatic condition holds the picture is drastically altered. As we have alredy
stressed, for relativistic neutrinos time and distance are completely equiv-
alent and we can substitute the time ¢ with the position R in the equation

for the evolution of the neutrino.

16



If vj,, are the istantaneous eigenstates in matter, the initial neutrino

state, at the point R; in the interior of the sun, is:
| ve(Rs)) = cos am(R;) | vim) + sin am(R;) | vam) (1.52)
In a point Ry at the surface of the sun, the v, states becomes
Ve(Ry) = cos am(R;) | v1) + sin am (R;) | v2) (1.53)

Proiecting the neutrino states v.(R;) over the v, state in vacuum, we

get the amplitude A., for the emitted v, to emerge outside the sun as v,

—i [TF dsxj(s i [BF doxi(s
Aee = cos am(R;) cos ae fR*’ () + sin am (R;) sin e fRa do25(2)
(1.54)

For the outcoming probability we get
P.. = cos® a, (R;) cos? o + sin? @ (R;) sin? o
Ry
+ 2 sin o, (R;) sin a cos a, (R;) cos acos / dsX;(s) (1.55)
R;
This relation was found by Micaiev and Smirnov [17]. Particularly

simple is the small « limit: cosa = 1 and sina = O(a). In this case we

get, neglecting O(«) terms:
P, = cos® ap, (R;) cos® a (1.56)

where, if A < 0,

A cos Acos2a Gn
G |
V2 ) (1.57)

\/16E2 + \/—Gnec032a 4+ e G2n2
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If A <0 and Acos2a/4E + Gn(R;)/v/2 > 0, cos® am(R;) is a de-
creasing function of energy.

Both the probability (1.56) and the adiabatic condition are energy de-
pendent and so the MSW effect is energy dependent. The adiabatic condi-
tion is better satisfied with decreasing energy, while the probability (1.56),
at least for small mixing angle decreases with energy. According to the
choice of parameters it is possible to account for a larger depletion of both
the higher energy neutrinos and the lower energy one. To make more quan-
titative comparisons with experiments an analitic interpolation between im-
pulsive and adiabatic condition is needed. In particular equation (1.39) can
be solved exactly for N.(R) = No+N; R [18] and for N.(R) = Ny exp(—kR)
[19]. The second omne is a good representation of the solar density profile,
while the first one has to be used as an expansion for N.(R) around the
resonant point. This work has been done by many people (see [20] for ex-
ample). The region of parameters consistent with the experimental data

(however without taking into account theoretical uncertainity) is shown in
figl

Sin® 26

FIG. 1. The confidence level contours at the 68 % (hatched)
90 % (solid line), and 95 % (dashed line) for the ”allowed”
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regions of the MSW solutions wich were obtained from both
the total flux measured by KAM II and Homestake and the

measured recoil electron energy spectrum.

In conclusion matter induced neutrino oscillation have the following

feature:

a) they can provide significant depletion of the neutrino signal with
sin? 2o > 10%

b) Their effect is energy dependent.
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CHAPTER 2
NEUTRINO SPIN PRECESSION IN A COHERENT MAGNETICH
FIELD

Observational data show the existence of a magnetic field at the surface
of the sun. The magnitude of this field is strongly correlated with solar
activity, the twentytwo years solar cycle. This correlation implies that this
field is connected with the solar activity in the convective region of the sun.
Additionally it has been postulated (without any experimental evidence),
that a inner magnetic field can be present inside the most interior region of
the sun, the ”quiet” sun. This inner field, if it exists, cannot be correlated
with solar activity. If we postulate the existence of unconventional neutrino
magnetic properties, such as a neutrino magnetic moment, some coherent
effect of the same kind we have described in the previous chapter can occur
[20]. Additionally if this effect is connected with the field of the convective
region some correlation with the solar activity is expected [20]. This feature
reproduces the claimed correlation of the Chlorine data with solar activity

and motivates the large interest in this effect.

§2.1 Effective Lagrangian Accounting for Neutrino Elettro-

magnetic Properties

Since neutrinos are electrically neutral, the most effective coupling (at

low ¢? where ¢ is the four momentum carried by the photon) of neutrinos to
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photons is of electric and magnetic dipole moment type. We are therefore

induced to look for effective couplings of the type

Lem = LikXjTapXkFap +1di6X;00pV5 X1 Fap (2.1)

i and dji are the magnetic and electric dipole moment respectively,
Xx; and xj are the Majorana field of v; and v neutrinos with x; = C“)'("J-T,
Xk = Ci—kT and Faﬂ = 6(144.'3 —_ BﬁAa.

Due to to Majorana condition we get

X;TaBXk = —XpTapXj
X;TaBYs Xk = —XpTaBY5Xj (2-2)

and so diagonal magnetic and electric dipole moment are forbidden (for
Majorana neutrinos). Usually non diagonal moments are called transitional
moments.

In the following we shall assume that some new interactions give rise

to the effective Lagrangian (2.1) and we consider the possible effects.

§2.2 Neutrino evolution equation in a coherent magnetic field

The interaction of the neutrino with the magnetic field can lead to two
different consequencies

a) neutrinos are scattered by the field B wich is present in the convec-
tive zone.

b) Some coherent effect of the same kind we have described in the
previous chapter can hold.

We shall neglect a since it turns out that it requires unreasonable high

value of © and B and we shall concentrate on b. Exactly in the same
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manner as we got for the coherent weak interaction we get a contribution
to the hamiltonian, due to the interaction of neutrino with the magnetic
field; the coherent requirement leads exactly to the same condition: initial
and final neutrino momentum must be equal.

In presence of a coherent magnetic field the evolution hamiltonian has
non vanishing elements wich connects v{ and vJ states with v3' and v{
states; therefore oscillations involving left handed and right handed com-
ponenents of both neutrino species are allowed.

For a static magnetic field, again using the convention of appendix A

we get the followings forward scattering amplitudes

C
1,2

pB

- 2p+/ (po1 + m1)(Po2 + m2)Po1Po2
X [(po1 + m1 — p)(po2 + m2 + p) (1 + id)+
+ (po1 + m1 + p)(po2 + m2 — p)(p — id)]

K —
v, 2

~
7

1
2p+/ (po1 + m1)(poz + ™m2)Po1Po2

X [(po1 + m1 + p)(poz + M2 + p) (1 + id)
+ (po1 + m1 — p)(poz + m2 — p)(p — id)]

F o _ 18
1,2 =DBe
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3 Vi

> >
1
2p+/(po1 + m1)(Poz2 + ™2)Po1poz
X [(po1 + ma + p)(poz + mz — p)(p + id)

+ (po1 + m1 — p)(po2 + m2 + p)(u — id)]

Y, v,

AN >
r’d T Pl

1
229\/(2901 + m1)(Poz + m2)Po1Po2
X [(po1 + ma + p)(poz + mz + p)(p + id)

+ (po1 + m1 — p)(Po2 + m2 — p)(u — id)] (2.3)

where Be'? = B; + iBj, Bj and By being the components of the
projection B of the field B in the plane transverse to neutrino momentum,
and (p + id) = p+ id. Including also this effect for the time evolution

hamiltonian we get:

Hror=Ho+V+B (2.4)

Where Hj stands for the kinetic term, V and B account for the coherent

interactions of neutrinos with matter and magnetic field respectively.

€1+ Vi1 Vig+ Bf, 0 BT,
V* + Bc* €o -|- Vz 2 -—-BF O
H _ 1,2 1,2 , 1,2
ror 0 ~Brs a+Vi  —(Vig+B53)
Bf,"é 0 ‘“(Vl,z T Blc,z) €2 -+ VzR,z

(2.5)
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§2.3 The parameter region relevant for the solar neutrinos

Just to estimate the order of magnitude of the required p and B we
neglect V and ¢;. For relativistic neutrinos B < Br. With this approsi-

mation the relevant hamiltonian for an incoming v, is

2 (2) = (e Spems “H99) () cn

Where a, and aj are the amplitude for v, and U, content of the neu-
trino beam. From (66) we get for the probability P,z to find a 7, at a

distance R

R
P = sin? | (p + id) / dRBe*” | (2.7)
R;
For P,y to be significative we require
Ry )
| (1 +id) / dRBe |> 1 (2.8)
R;

Where R; is the beginning of the convective zone and Rg is the solar

radius. The length of the convective zone L. is
L.= —Rg (2.9)

From (57) we get
A~ 107 PeV (2.10)

For magnetic field of order 1 up to 100 kG wich seems possible inside

the convective zone of the sun this mean.

fy >2-10712 +2.107up (2.11)
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where pp is the Bohr magneton.

. The upper value for u, is at the border of the present terrestrial limit
[21]. Astrophisycal bounds are more stringent u, < 3 x 10~*2up [22] even
if some caution is needed. In any case, even being very optimistic about y,
and B values, from the experimental limit we get u, B < 107 14eV.

In general diagonal terms tend to suppress the spin flip precession
[23] unless some resonance occur. Even if some adiabatic resonance occurs
condition (2.12) still hold (up to factors of order unity).

Taking into account that in the convective zone

Vig+ Voo

T2 < 5.5.107%eV (2.13)

We found that for getting appreciable effects €; —e; cannot exceed 10~14
eV. This means that even if we postulate that v, has a small admixture of a
neutrino state with a large mass there is no chance to observe non relativistic
entries in (2.5).

Neglecting term of order Z2» we get, in the flavour basis

E,
Acos2a + V; Ae sin 2 0 Be®®
e | Ae¥sin2a  —Acos2a+ Vs —Be?? 0
roT = 0 —Be~% Acos2a—V; Ae ¥sin2a
Be~ 0 Ae® sin 2a —Acos2a — Vs
(2.14)

Where o has been defined in (1.2)
Be' = (u +id)Be
V1= —(2N. - N,)

Vo = ——N, (2.15)



6 and 6 are CP violating phases. We now show that they are indeed
irrelevant. Since we measure neutrino flavour content of the beam if a, is
the amplitude for the = neutrino content of the beam (z = e, pu,€,r) to
follow the evolution of a, or of A, = e*®=a, is completely equivalent.

This arbitrairness in the choice of phases is enough to remove the phases

¢ and 6 from (2.15). Indeed with the choice

Ag = aze® (2.16)
we get the equation
.0 (65— 1) /
igrAi = Hiromy; ke ™" Ax = Hizor); p Ak (2.17)

and H7%op is real.

§2.4 The Hybrid models

In the original proposal of Okun, Voloshin and Visotky [20] it was
assumed that v; and v, were the four component of a Dirac neutrino. In
this case both A and the vacuum mixing angle are zero and the evolution
hamiltonian in the v,, U, basis (v, U, evolution is decoupled from v,, 7,

evolution) reduces to

H = ( i (u+id)Beiﬁ>
(n — id)Be™% Vs
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where V; take into account the coherent weak interaction.

However, at least if we take the more conservative assumption that
the magnetic field is present only in the convective zone, (2.18) cannot
account for any depletion at the minima of solar activity. Since a significant
depletion is observed also at the minima of solar activity, it was natural to
introduce models in wich both neutrino mixing and spin precession were
operative. This models wich are defined by the evolution hamiltonian (2.5)

are called Hybrid models [24].
We now study equation (2.6). T'wo situation can arise
1) some resonance can occur inside the convective zone
2) No resonance is crossed in neutrino travel.

In the following we shall show that 2 requires large mixing angle. This
requirement leads to a large ¥, production and conflict with experimental

data.

If we assume that adiabatic resonances indeed occur this implies

2

2 _
5.1071%eV < T%E <5-10"%eV (2.19)

The diagonal element H . of Hfp are depicted in the following fig.
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FIG. 2. The diagonal elements Ha::z: of the hamiltonian (2.14)

as functions of electrons density.

We observe that in their travel neutrinos crosses two resonances, the

first when H,, = Hy 3 wich implies
G m? — m2
—~ (N,—N,)=—*~_"2 2.20
if the crossing is adiabatic we have v, — 7, conversion.
The second crossing is for H.. = H,, wich implies
2 _ .02
¢ N, =112 o520 (2.21)

V2 4F
Again if adiabaticity holds we have v, — v, conversion.
However it turns out that in the convective zone NV, is quite small
(N, ~ 1/6N,) and the two resonance are very near, this implies that even

when adiabaticity is a good approssimation equation (2.6) requires numer-

ical investigation.
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To have some idea of the behaviour of the system we give some quali-
tative argument to follow neutrino evolution. Due to the resonance (2.20),
(2.21) we e}fp ect a sizable amount of v, and 7,,. In addition a small fraction
of U, is expected since it is not forbidden by any conservation law. It can

be due to the following process

spin flip__ oscillation__
e > Vy > Ve

oscillation spin flip__
Ve — VUV, — Dg (2.22)

since in both process one step is not resonant the 7, fraction is expected
indeed small if the mixing angle is small.

Some numerical investigation of (2.6) has been carried out [25] and it
seems that this idea can reproduce experimental data accounting also for
the observed difference between the two experiments. However due both
to the incompletness of this investigation and to our ignorance of magnetic
field shape and size we still lack a quantitative knowledge of the allowed
region for the paramenters (u,, B, o, Am?) and of the 7, flux.

In particular a better understanding of the following problems is needed:J§

a) The region of m and « wich can reproduce the data.

b) The dependence of the solution on the magnetic field shape.

c¢) The relevance of the inner magnetic field

d) The stability of the behaviour of the system for small changement
of the input parameters (expecially B(R)).

§2.5 Additional experimental signaturee of the hybrid models

In the frame of the class of hybrid models we have described up to

now some production of 7, is expected. Free proton rich detectors like
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kamiokande are very sensitive to U, and it is a meaningful effort to inves-
tigate what bounds the kamioka data put on the 7, productions and how

significative are for the hybrid models [26].

§2.5.1 Bounds on the solar 7, flux from kamiokande back-

ground data

As is well known, the specific signature of 7, in materials containing

hydrogen is through the reaction
Ue+p—et +n (2.22)

wich produces isotropically distributed monoenergetic positrons (E,+ =
E, —ém, ém = m, —my). For energies above a few MeV, the cross section
is

(B, — 6m)

_ —42
o(By) =92 x 107 ¥t

]? cm? (2.23)

The Kamioka water detector, wich is semsible to the v, — e interac-
tion with a much smaller cross section, is clearly also capable of detecting
reaction (2.23) provided there is an appreciable flux of solar 7,.

For the moment, we assume that the energy distribution of 7, is the
same as that of v, apart for an overall factor P(U,) denoting the probability
of the v, — 7, transition. We also assume that the v, spectrum, d®/dF,,
is that given by the standard solar model [3].

The average number of positron with energy larger than a threshold

FEy wich are produced in the detector is

M
N(E.+ > Eo) = P(5.)ATN, ag, $255M)

o(E,)  (2.24)
Eg+6m dEV
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where T' is the measurement time (T' = 1040 days), N, is the number of
free protons contained in the fiducial mass of the Kamioka detector (680
tons of water) and A, an overall factor accounting for the SSM unceratinity,
ranges in the interval 0.7 + 1.3.

This number is shown in table 1 (last column) for several values of Fj,
by taking A = 1 and P(v.) = 1. ( In the same table, the number of v, — e,

ve —e, Vv, —e and v, — e interactions are also shown for comparison.
e » Y @

Ey [MeV] N(E..>Ey)
Ve—€ Vet v,—€ e V=D
5.30 2.08x10° 3.59x 10° 3.16%10° 2.45%10? 6.65%10°
6.30 1.42%10% 2.13x10° 2.13%x10? 1.63x10° 5.68 % 10%
7.30 9.05x 10* 1.20x 10? 1.34x 10? 1.01x 10° 1.48%10°
8.30 5.29%10° 6.32x 10" 7.77% 10! 5.83x 10! 3.17x10°
9.30 2.76x10? 3.03x 10 4.02x 10" 3.00:< 10! 1.93x10*
1.03%x 10! 1.23% 102 1.26x 10" 1.78x 10! 1.32x 10 9.40% 103
113x 10! 4.34% 10" 4.25 6.25 4.62 3.13x10%
1.23x 10! 1.06% 10" 1.00 1.52 112 5.13%10°
1.33% 10} 1.37 1.27% 10! 1.96x 10! 1.44% 107! 2.24x 10!
TABLE 1.

Average number of interactions taking place within Kamiokande II fiducial volume during
T=1040 d. with energy of ei in excess of EO by assuming for each neutrino species the same
differential flux d@/dEy as given by the SSM for /¢ and by taking sin2 20W = 0.23.

If we take Ey = 9.3 MeV, the detection efficency for e~ exceed 90
% [27]. We assume the efficency for e to be the same, thus the average

number of detected positrons is
N B, > Ey) > AP(7.) x 1.7 x 10* (2.25)

These events, being isotropically distributed, conribute to the flat back-
ground detected by Kamioka in the angular distribution. On the other hand,
the total background for 1040 days at Eq = 9.3 MeV is about 1160 counts,
see fig. 3 of ref. [19]. This provides a bound on Nye(E.+ > Ep) and thus
on AP(7,):

A(P(@.)) < 7.7% (at99%CL) (2.26)
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where the average refers to the data taking period January 1987 - April

1990.

More detailed information can be obtained by looking at the energy
distribution of the Kamiokande events, see fig.3 (vertical bars) from ref
[28], corresponding to the period June 1988 - April 1989. The number
of positrons wich are produced inside the detector in the energy interval

FE.+ =+ E.+ + AFE in time At is given by

d®y
dF,

ANt = NpU(EV)

AEAT = (2.27)

where E.+ = E, — ém and d®3/dFE, is the flux of T wich we want to de-
termine. Again by assuming a detection efficency better than 90% and re-
quiring that the number of detected positrons does not exceed the observed

signal, we get the upper bound for d®;;/dE, shown in fig. 3 (diamonds).
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The background spectrum in the Kamiokande II experiment for the period June 1988 - April
1989 [28], in units of counts ALV per day per energy interval of 0.4 MeV (vertical bar, right
scale) as a function of the electron or positron energy Ee:l: (top scale). The corresponding
upper bound on the U, flux (diamonds, left scale), differentiated with respect to neutrino
energy Eu (bottom scale), fixed at E,, = Eei + ém. For comparison, the differential flux
of Ve predicted by the SSM is also shown (squares).

We derive that the total flux of 7, in the energy region of interest to

us is severely bound,
Pz (E, > 10.6MeV) < 6.1 x 10*em ™25~  at99%CL (2.28)

in comparison with the U, flux predicted by the SSM in the same region
S(SSM)(F, > 10.6MeV) = 4 x 6 x 10%em~2s~1.
We remark that the bound in eq. (2.28) does not depend on assump-

tions about the spectrum of the antineutrinos. A more stringent bound can
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be derived if one assumes, as above, the spectrum to be the same as for v,

One finds in this way

A(P(7.)) < 6% (at99%CL) (2.29)

§2.5.2 Hybrid models with large mixing angles and solar 7,

flux

With the aim of appreciating how severe are the bounds we presented,
we discuss as a concrete example a simple hybrid model, were we assume:

a) validity of the SSM

b) a squared neutrino mass difference §m? = 10~%eV?, so that the
oscillation length A = 47 E,/ém? is much larger than the solar radius and
much smaller than the sun earth distance (E, ~ 10MeV)

c) a v, — U, transition magnetic moment, (v, | 4 | 7,), and a trans-
verse magnetic field B in the convective zone of the Sun such that, when
the solar activity is high, the magnetic interaction energy Ej = uB is
the dominant term of the neutrino evolution hamiltonian in the convective

zone:
dm?2
B,

En > En > Gn, (2.30)

where n. is the electron density and G is the Fermi constant.
Independently of E, for each v, produced in the core of the sun the
probabilities of emerging from the surface of the sun as v, and 7, are

respectively

Ps(ve) = cos® B, Ps(v,) = sin? B (2.31)
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where 8 = p [ drB(r) and the integral is between the beginning and the
end of the convective zone. It is natural to take B to be proportional to

the square root of the susnspot number Ny, [29], so that
B=fVN,, (2.32)

In the trip from the sun to the earth a flavour transition can occur with
an average probability sin? §, wich can be written in terms of the vacuum
mixing angle « as

1.
sin? § = 5 sin?(2a) (2.33)
In conclusion, the arrival probabilities of the different neutrino species

can be written as

P(v.) = cos® 6 cos?(fVN,,)
P(7.) =sin? 0 sin?(fVN,,)
P(v,) =sin® 6 cos?(FVV,,)
P(7,) = cos® §sin®(fVN,,) (2.34)

We can now get information on th two parameters § and f by analysing
the experimental data of the kamioka experiment.

For high electron energy threshold (Ej close to the kinematical bound)
the cross section of v, —e, U, —e and 7, — e are about 1/9 of the v, —e cross
section (within 20%), see for example table 1. In the kamioka experiment,
the ratio Rx of the electron signal in the direction opposite to the sun to

the expectation of the SSM can be written as

Ric = A{P(ve) + 3[1 ~ P)]} = A[Z cos” 6 cos(v/N o) + %} (2.35)
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For simplicity, and without affecting the results in any significant way,

we make a two parameter fit of these data by assuming

(2.36)

NeX =)

Ry = g—C’ cos?(fV/Nss) +

where C = A cos® 6

The avialble data on Rx correspond to five time intervals in the period
1987 - 1990, see fig. 2 of ref. [19]. Fig. 4 shows in the plane (C, f) the

results of the best fit (diamond) and the 99% CL contour (dashed curve).

The Chlorine experiment can be analyzed in the same way. The ratio

of the oserved number of Ar37 atoms to the expectation of the SSM is

Rei = Ccos?(fVN,,) (2.37)

By analaysing the Chlorine data for the period 1970 - 1990 ( and by
treating the quoted errors as if they were up - down symmetrical ) we find
as best fit value the point denoted by the cross in fig. 4 and at the 99% CL
the area inside the dot - dashed curve. The shaded area denotes the area

in the (C, f) plane consistent with both experiments.
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In the plane (C = A cos a, f) we show the best fit for Kamiokande II electron signal RK
in the period 1987 - 1990 (diamond) and the allowed region (inside the dashed curve), the best
fit of the Ar37 signal Rp in the period 1970 - 1990 (cross) and the allowed region (inside the

dot-dashed curve), and we show the region wich is consistent with the above costraint within

the shaded curve. All curves correspond to 99 % confidence level

By using eq. (2.34), the upper bound on the fraction of 7, given in eq

(2.29) can be written as

(A — C) <Sin2 (f\/_]\?”))ss._gg < 6% (238)

In fig. 5 this constraint corresponds to the region below the full curve,

for A = 0.7. Also shown, for the same value of A, is the constraint araising
from eq. (2.33), cos?8 > 0.5 or C > 0.35.
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No region of parameter space is left wich is consistent both with the
signal in the Chlorine experiment and in the Kamioka experiment as well as
with the indirect information on the 7, .ﬂux. Choosing a value of A grater
than 0.7 would worsen the situation.

The discussion of the simple model given above shows that, when build-
ing a consistent hybrid model, one has to avoid overproduction of 7.. This
can be accomplished, perhaps, by exploiting resonant phenomena induced
by matter effects, for a suitable choice of parameters of the model [30]. Al-
ternatively, a complete suppression of U, can be achieved in a class oc hybrid
models where a suitable combination of lepton numbers (e.g. Lo+ L, —L;)

is conserved. We will come back to this last possibility in the next chapter.
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Other mechanism of 7, production occur in a class of models where a
heavy neutrino decay into a lighter one and in a pseudoscalar vy — T; + M.
The most characteristic feature of all neutrino decay scenarios (including
the matter induced decay) is that the 7, takes a smaller fraction of the initial
neutrino energy, tipically 1/3. The data we have discussed (corresponding
to a threshold energy of 9.3 MeV) are clearly poor for giving information
on the decay process. On the other hand, interesting information could be

obtained with a significantly lower detection threshold.

39



CHAPTER 3

NEUTRINO OSCILLATION AND MAGNETIC MOMENT TRAN-&
SITION IN A MODEL WITH A CONSERVED LEPTON NUM-
BER

As we have already stressed the hybrid models proposed up to now,
in our opinion, present two unpleasent feature: they require two vastly
different mass scales [31] and they lead to the production of U, wich are
severely restricted by data. A natural way of avoiding both these problems
[32] consists in considering all the three standard neutrino flavours ve, v,

and v, and assuming a suitable nonstandard lepton number to be conserved:
Li=L.,+L,FL- (3.1)

This conservation law implies just one mass scale, the mass spectrum
consisting of one massive Dirac neutrino and one massless Weyl neutrino
[33]. An unquenched magnetic transition can take place between the two
helicity states of the Dirac neutrino and, on the other hand, the fact that the
mass eigenstates are linear superpositions of the different neutrino flavours
gives rise to a flavour oscillation. In other words by considering all the three
neutrino flavours one can have flavour oscillations even in the presence of a

Dirac neutrino state in the spectrum.

§3.1 The model

For definitness, we take L as a conserved quantum number. The most

general mass term wich is consistent with this constraint is

Lo = —mTC, (Vey, cOs & + vy sin @) + h.c. (3.2)

40



This lagrangian describes one Dirac neutrino with mass m
Ymp = Ver, COSQ + Uy sing, Ymg = vl (3.3)
and a massless Weyl neutrino
Vo = —Ver SIna + v, COS & (3.4)

For a sizeable values of the mixing angle «, experiment at nuclear
reactors yield [34] m < 0.1 eV. Since significant magnetic moments call for

high masses, we will explore the region near this upper bound
ma 1072 -~ 107! eV (3.5)

In this range of masses the existing data from accelerator experiments
on v, — v, (U, — ¥,) do not impose any constraint on «.
The most general magnetic moment effective lagrangian, consistent

with the conservation of L, , has the form

1 .
L, = _—é'/*LVERo-/\(]SF/\d)(VGL cos B+ v, sinB) + h.c. (3.6)

The Hamiltonian H wich determines the evolution of the v, state in the

e |v(r)) = H(r) | v(r)) (3.7)

where 7 = ct, is immediately obtained from egs. (3.2) and (3.6), including
the coherent neutrino weak interaction with matter [16]. We observe that
due to the conserved lepton number the hamiltonian decouples into two

sub-hamiltonians each couplings only three states. In the mass eigenstates

basis (| ), | ¥mz), | ¥mn)) one has
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GeneV2sin? o — SELn —GpneV?2 cos asin o pBsin(8 — a)\

V2
H(r) = —Grn.v/2cosasina %”Ez + Gpnev/2cos? a — %/% pB cos(B8 — a)
uBsin(f — «a) uB cos(B — «) o+ G\F/g“ J

(3.8)
where n, and n,, are the electron and neutron densities respsctively, G is
the Fermi constant and B = B(r) is the transverse component of the solar
magnetic field.

In the convective zone (r > Rp = 0.7Rg, where Rg = 7 x 10° km is

the solar radius) we assume n,, = 1/6n. and the density profile to be given

by [3]

=) (3.9)

Ne & no exp(

with Ly = 0.1Rg, and n.(Rp) ~ 0.16 Nacm™3, N4 being the Avogadro
number.

Concerning the magnetic field, we will assume that it is confined within
the convective zone. In the absence of detailed information on the shape of

the field, we use the following parametrization:

-r+ Kp

B(r) =68(r — Rg)Bo{1l — exp| I, 1}

(3.10)
The starting point Rp is taken at the beginning of the convective zone.
The raising length L (some fraction of the convective zone) and the plateau
value By are kept as free parameters. By varies during the solar cycle, from
By =~ 0 at the solar minima up to a value B™%® in correspondence of the
maxima of the solar activity.
Note that according to (3.10), in the very outer region of the sun the

field does not fall (as fast) as the coherent weak interaction. In fact we
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expect the magnetic field to decrease with some power of the distance,
whereas the density profile is exponentially decaying.

It is useful to introduce a magnetic energy term,
(r) = uB(r) cos(B — ) (3.11)

and a magnetic energy plateau €y wich is obtained from (3.11) for B = B,.
For the values of interest to us (u ~ 107%up, Bf**® ~ 1 T ) one has
€5"** ~ 20/ R for cos(8 — a) = 1.

§3.3 Flavour oscillations and spin flip in the absence of coher-

ent weak interaction

As a first stage of the discussion, we neglect in eq. (3.8) the coherent
weak interactions. For the values of interest to us, one has m?/2E > uB
and consequently the | 1) state is decoupled from the others.

One also has (m?/2E)Rg > 1 and so the oscillating terms of argument
(m?/2E)Rg can be replaced by their average values. In these hypothesis,
the arrival probability P(v,) of the originally v, state are

4

P,, =sin* o + cos* @ cos? @

P, :% sin? 2a(1 + cos® ®)
2

P, =cos? asin® &

® =pcos(f — a) / drB(r) (3.12)

The main phenomenologiacal features of the model are immediate from

the equations given above:
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a) Let us assume that the spectrum of neutrinos produced in the core
of the sun dF'/dE, is correctly given by the standard model, apart from a
factor A accounting for the SSM uncertainities:
dF dFSSM

F =A==, A=07+13 (3.13)

In this case, the ratio of the signal in the Chlorine experiment to the ex-

pectation of the SSM is simply
Re = AP, (3.14)

The signal deficit at solar minima (® = 0) calls for a large value of the
vacuum mixing angle. Indeed from egs. (VII) and (3.12) at the 1o level,

one gets
2(1 — -0—;%1-) < sin® 2 < 2(1 — 9-‘3—5-) (3.15)
In the case A =1 this yields
0.78 < sin?2a < 1 (3.16)

Note that the same result hold for ® = 0 also in the case that coherent
weak interactions are included. In other words, the signal deficit at solar
minima always implies a large vacuum mixing angle.

b) A significant depletion of the signal in correspondence of the solar
maxima can be achieved only for ®,,,4, close to w/2. In fact, smaller values
of @42 yield a too small time dependence, whereas for larger values the
signal oscillates with a frequency larger than that of the solar cycle. As
remarked in [35] this condition requires a fine tuning of the parameters (u

and B) wich are involved.
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c) Even for the best case, ®,,4; = 7/2, a significant depletion of the
signal at the solar maxima calls for large vacuum mixing angle. From (VII)

one has
<RD>ma.:c
(RD>mzn

By using eq (3.12) with ®,,,, = 7/2 and ®,,,;, = 0 we get, at the 1o

=0.19+0.07 (3.17)

level

sin? 2a = 0.79 4 0.20 (3.18)

d) In the Kamioka experiment, in addition to v,, both v, and 7, can

scatter off electrons. For the Kamioka experiment one has
Ry = A[Pee + W, (Ein)Pey + Wi Pl (3.19)

where the factors W, (E}p) depend on the threshold energy and on neutrino
flavour ( for E;, = 9.3 MeV W, = 1/7 and W, = 1/9. For the present
model one obviously have (Rg) > (Rp), in agreement with the trend of the
experimental data. Also, the time modulation comes out to be weacker in
Kamioka. As an example, by assuming ®,,,, = 7/2 and ®,,,;, = 0 at solar
maxima and minima respectively, for o as in (3.18) and threshold energy

Eyin = 9.3 MeV we get a modulation (Rg)maz/{RK)min = .34 £ .06

§3.4 Inclusion of coherent weak interaction

The neutrino evolution corresponding to the full hamiltonian given in
eqs (3.8) has to be studied numerically. In this section we shall investigate
two opposite limiting cases, wich can be discusses analitically and yield a

qualitative understanding of the complete solution.
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For the values of masses we are considering (see (3.5)) both Gn, and
Gn, are (almost) negligible in comparison with the energy splitting, m?/2FE.
The same holds true for the uB term for the values of interest to us. In
these circumstances, the massless neutrino component | vg) is pratically
decoupled from the others.

The problem thus simplifies to the study of a two state system, | ¥,.)
and | ¥mz). For this system the relevant part of the hamiltonian (i. e.

apart from terms proportional to the identity) is
_ (Ar) e
h(r) = ( er) —Afr) (3.20)
where

A(r) = G(ncos? o — ny,)
/2

Note that, since the magnetic moment couples the left and the right

(3.21)

components of the same Dirac neutrino, there are no mass terms inhibiting
the spin flip transition.

We recall that we assume a large mixing angle cos?a = 1/2 and in
the convective region we use eq. (3.9). We note that, as a consequence of
the large vacuum mixing angle, A(7) never vanishes in the convective zomne.
A non zero value of A(r) clearly inhibites spin flip transitions [14], with

respect to the case without coherent weak interactions.

The term €(r) is defined by means of egs. (3.10) and (3.11)

-7+ Rp

1) (3.22)

e(r) = 0(r — Rp)eo{l — exp|

We shall investigate the solution of the problems in terms of the field

raising distance Lp and the interactio energy plateau €y wich, we recall,
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varies during the solar cycle from ¢y ~ 0 at solar minima up to a maximum

value €J**®

at solar maxima.

Qualitatively, for the solution of the problem, one can distinguish three
different regions:

a) in the inner part of the sun (say r < R;) weak coherent effects
dominate (A(r) > €(r)) and the solution is immediate. For a state wich is

’ 1/’mL,R) at » = 0 one has

T <Ri: |Ymer) —| Ym r) exp(Ei /’" dsA(s)) (3.23)

b) In the outer part (say » > R;) the magnetic moment interactions
dominates (A(r) < €(r)). Also in this case the analitical solution is imme-

diate. For a state wich can be described as | ¥ z) at 7 = Ry on has

7> Ryt | Ym) = Ymr)cos&(r) — i | Ymyz) sin &(r)
l me> - '"i ] me> sinﬁ(’r)-i— l ¢mR> cos E(T)

£(r) = /’“ dsep(s) (3.24)
R

c) In the intermediate region R; < 7 < Ry, A and € are comparable.
The behaviour of the solution in this intermediate region ( and consequently
of the entire problem) depends crucially on the shape of the magnetic field.
One can envisage two limiting situations, corresponding respectively to an
adiabatic or a sudden transition between regions a and b. We investigate
the region of validity of the two approximations in the plane (¢y, Lg) and

then we discuss the appropriate solution for both cases.
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§3.4.1 The adiabatic and the sudden region

The transition between the two regions can be taken as adiabatic or
sudden depending on the value of the function

g(r) = 2' (ZZA:AE;)AB /'2 (3.25)

For g < 1 (g > 1) the adiabatic (sudden) limit is realized. One has
= A(r*). the

to verify such condition close to the point r = r* where €(r*) =

curves shown in fig. 6 correspond, for cos? @ &= 1/2, to g(r*) =1, i. e. they

denote the transition between the two regimes.

0.10 | T
0.08—
0.06—
-
£
& I
\ - . .
= diab
K 0‘043‘ adiabatic sudden ]
0.02— —
0.00 1 1 1 1 i L i ! 1 1 1 1 1 1 1 1 1 1 1 1 l i 1 1 I
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o * Ry

FIG. 6 In the plane (€g, LB) we show the borders of the adiabatic and the sudden regimes,
defined as § = 1, see eq. (3.25). €p is the plateau value of the magnetic interaction energy

and L p is its raising length. R@ is the solar radius.

The main features of figz. 6 can be understood from the following

considerations. Note that g is the sum of two positive functions, g = g1 +g2,
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where
. eA’ _ €A
0= —sararpr %20 = ~5a5 A

(3.26)

At 7 = 7%, g1 = [4v2Lpe(r*)]™! and one has g; > 1 for ¢ <
(4v/2Lpr)~1. This explains the region of small fields where the sudden
limit is achieved.

For intermediate values of the field, (4v/2Ly)"! < € < A(rp) =
10/Rg, g1 is smaller than unity. Also, the magnetic interaction € approaches
its plateau value ¢y before 7* and g;(7*) tend to zero. Consequently the
adiabatic condition can be satisfied. For even larger fields (g > A(rp) =
10/Rg) r* is reached while the magnetic interaction energy e is raising and

the adiabatic condition is fulfilled only for sufficently large values of Lp.

§3.4.2 The adiabatic and the sudden solution

If the transition between regions a and bis adiabatic, the (istantaneous)
eigenstates of region a go into the corresponding ones of the region b. After

traversing the sun the probabilities of the different neutrino flavours are

P,, =sin* a + 5 cos* a

3
P,, ==sin®2
u =g sin” 2a
P =cos® g (3.27)
where oscillating terms of argument (m?/2E)Rg > 1 have been averaged.

If the transition is sudden, when crossing the intermediate region (R; < r <

Ry) the | Y. ) states do not change. Beyond Ry, coherent interactions are
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irrelevant and the time evolution is the same as discussed in the previous
section. '
The arrival probabilities are thus given again by egs. (3.12). where the

phase ® is now given by

P = pcos(fB — a)/ dsB(s) (3.28)

R,

This means that the magnetic field contributes to the phase only in

the region where it overwhelms the coherent weak interaction.

§3.4.3 Discussion

On these grounds we can discuss the arrival probabilities P,; during
the different phases of the solar cycle.

For any Lp, at the solar minimum (ey = 0) one is in the sudden limit.
The solution is given by eqgs (3.12) with = 0. As discussed in section
(3.3) a significant depletion of the neutrino signal can be obtained for large
mixing angles, as given in eq. (3.16).

As the field raises, different regimes (adiabatic, sudden, or intermedi-
ate) can be reached depending on the value of €]*** and L.

From the phenomenological point of view, the most important features
of the adiabatic regime are:

a) The results do not depend on the precise value of p and BJ***. Thus
a significant modulation of the signal, anticorrelated with the solar cycle,
can be obtained without a fine tuning of the magnetic field and magnetic
moment, provided that €]*** and Lp.

b) Note that the lowest values of €**® wich satisfy the adiababtic

condition (and thus provide a significant time modulation) are of order
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€0**® =~ 5/Rg, (the inverse of the convective zone dimension). Wichever
mechanism one is invoking, one cannot do better, in the sense that for a
significant spin flip probability the phase ® = ¢y.D where D is the depth of
the convective zone, has to exceed unity.

c) On the other hand, the minimum value of P, is 1/3, wich is at the
border of the region allwed by the Chlorine data. Also, the signal modula-
tion in the Chlorine experiment (R¢)maz/{(Rc)min cannot be smaller than
one half, wich looks in disagreement with (VII).

In the case that sudden regime is reached, the same phenomenological
consideration as for the "vacuum” case hold. In addition, we note that only
the region of high fields (g > 10/Rg) is relevant for getting a significant
phase ®. In comparison with the adiabatic limit, the sudden case requires
€5'?? appreiably larger in order to achieve a significant time modulation.
On the other hand, the amplitude of the modulation can be much larger,
as previously remarked.

In summary, the inclusion of matter effects does not alter drastically
the picture. Omne can choose the avaliable parameters so as to reproduce
the main feature of experimental results. Furthermore, if adiabaticity holds,
one has a natural suppression of the signal at the solar maxima, wich does
not require a fine tuning of the neutrino magnetic moment and the solar
magnetic field.

So far we restricted the magnetic field to the convective zone. On the
other hand, the existence of a primordial field in the core of the sun, B;,
is not excluded. Of course Bj;, is decoupled from the eleven years solar
semicycle. Before closing this section we note a peculiarity wich occurs for
Bi, # 0. For cos? 8 < 1/2, A(r) reverses its sign in the core of the sun.
If the resonance is crossed adiabatically all | 9,,;) transform into | ¥mn).

In the convective zone, if the field is high enough, the | ¥,,z) transform
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back into | %.,.). Thus a positive correlation with the magnetic field would

occur.

§3.4.4 Conclusions

We have developed a phenomenological model with both neutrino flavourfj
oscillations and spin flip transitions, characterized by a lepton number con-
servation law Ly = L.+ L, F L,. This implies a massless Weyl neutrino
and one massive Dirac neutrino. The main consequences of this class of
models are:

i) There is a large mixing angle between v, and v, or v, depending on
the choice of the conserved lepton number (L4 or L_).

i1) The mass difference Am coincides with the mass of the Dirac neu-
trino. As such it cannot be too small, in order to allow for a sizable magnetic
moment. A value of order 107! <+ 1072 eV is consistent with bounds from
reactor experiments. We note that v, - v, oscillation with a large mixing an-
gle and similar Am may be indicated by the recently reported atmospheric
neutrino flux anomaly [36].

i11) We have seen that the model can account for both the experimental
data of the Chlorine and kamiokande II experiment, for a large mixing angle.
The difference between the results of the two experiment can be understood
on the basis that in the former only v, are active, whereas in the latter all
the neutrino states contribute to the signal. Our discussion was qualitative
in that only two limiting cases (the adiabatic and the sudden solution) have
been explored.

iv) Obviously the model predict no U, signal from the sun. This is

supported by the stringent upper bound on solar 7, flux from the results
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of the Kamioka experiment. v) The suppression of the neutrino signal with
the SSM prediction comes outto be independent of the neutrino energy.
Thus we expect the Gallium experiment to give the same modulation as

the Chlorine experiment.
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APPENDIX A
SPINORS

A generic Dirac field 9 is
Y= /dme_ipmu(a)(p)aéa) + Py (p)bgj‘) (A1)

where a;a) is the creation operator for a particle and ng) for an antiparticle

with polarization «, u and v are Dirac quadrispinors.
Creation and annihilation operators are normalized in the following

mamnmner

{aéa)(P)a a;f)(ﬁ) (q)} :(271-)35@65(}) - q)
{657 (p), b7 (@)} =(27)*6apb(p — Q) (42)

Dirac quadrispinor are normalized in the following manner

w1 (p)u(B)(p) =bap2m
7 (p)o'®) (p) =8ap2m (43)

If we impose the Majorana condition %y = 'gbf/_, we get

— P —ipe (o) (@) | gipeo=T(a),H(a)
U /d2p0(27r)3e u'*ay® + eP*Ch aj, (A4)

where C' = vg7y2 and

(@) (L) e e



Dealing with neutrinos it is convenient to use spinors in the helicity

basis.
Given
_k
T %
1 + 2
+ X1+ X2
k)= A6
#0) = e 1) (46)
for the Dirac spinor in the helicity basis we get
1 (ko +m £ k)p* )
=+ 0
u™ (k) = AT
) Z(ko—;—m)((ko—{—m:i:k)qﬁ (47)

55



Aknowledgments

I am deeply indebted to prof. R. Barbieri who introduced me in the
subject of my research and helped me in developing the present thesis.

I wish to aknowledge prof. S. T. Petcov for continuos assistence and
suggestions about the thesis.

I am also indebted to prof. G. Fiorentini for many useful discussions

and continuos collaboration.
Finally I wish to thank A. Koubek for reading my thesis and U. Aglietti

for tecnical support.

o6



[1] R. Davis et al. Phys. Rev. Lett. 20, 1205 (1968)
[2] B. Pontecotvo, Chalk River Laboratory Report No PD-205
[3] J. N. Bahcall, R. K. Ulrich Rev. of Mod. Phys 60, 297 (1988);
J. N. Bahcall et al. Rev. of Mod. Phys. 54, 767 (1982)
[4] Turk-Chieze Astrophys. J. 335, 415 (1988)
[5] R. Davis in: proceedings Int. Conf. neutrino '90 (Geneva June 1990),
to appear.
[6] K. S. Hirata et al. Phys Rev D 38, 448 (1988)
[7] M. Mori ”Recent results form kamiokande-II”, proceedings of the third
international workshop on ”Neutrino Telescopes”, 61 (1991), ed. M. B.
Ceolin.
[8] R. Davis "the Solar Homestake Experiments and the Variation in the
Solar Neutrino Flux”, proceedings of the second international workshop on
”Neutrino Telescopes”, 1 (1990), ed. M. B. Ceolin.
[9] K. S. Hirata et al. Phys. Rev. Lett. 65, 1297 (1990)
[10] J. N. Bahcall, Rev. of Mod. Phys 50, 881
[11] B. Pontecorvo, JETP (Sov. Fiz.) 33, 549 (1957);
B. Pontecorvo, JETP (Sov. Fiz.) 34, 247 (1958)
[12] A. Cisneros, Astrophys. Space Sci. 10, 2634 (1979)
[13] S. M. Bilenky, Nucl. Phys. B 247, 61 (1984);
B. Kayser, Phys. Rev. D30, 1023
[13] S. Nussinov, Phys. Lett. B63, 201 (1976)
[14] R. Barbieri et al., Phys. Lett. B90, 249 (1980);
V. Barger et al., Phys. Rev. Lett. 65, 3084 (1990);
A. Acker et al. Phys Rev. D 43, R1754 (1991)
[15] L. Wolfenstein, Phys. Rev. D 17, 2639 (1978)
[16] S. P. Mikheyev and A. Yu Smirnov, Yad. Fiz. 42, 1441 (1985);
S. P. Mikheyev and A. Yu Smirnov, Nuovo Cimento C 9, 17 (1986)

57



H. Georgi and L. Randall Phys. Lett. B244, 196 (1990)
[32] Z. G. Berezhiani, G. Fiorentini, M. Moretti ans S. T. Petcov, Phys.
Lett. B264, 381 (1991)
[33] V. Zacek et al., Phys. Rev. D34, 2621 (1986);

G. S. Vidyakin et al., Sov. Phys. JETP 66, 243 (1987)
[34] R. Barbieri and G. Fiorentini, in: Proc. Second Intern. Workshop on
Neutrino telescopes, ed. M. Baldo Ceolin (Venice, 1990)
[35] K. S. Hirata et al., Phys. Lett. B205, 416 (1988);

D. Casper, in: Proc. Third Intern. Workshop on Neutrino telescopes,
ed. M. Baldo Ceolin (Venice, 1991)

59






