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Introduction

In this thesis we study from a variational point of view the conservative second order Hamil-

tonian system
(HS) i+V'(g)=0

where ¢ € RY and V is a C! real function defined on some subset of RYN. In particular we look for
homoclinic orbits, i.e. solutions of (HS) defined on R and doubly asymptotic, with their derivatives,
to some periodic solution of (HS). Actually, we consider the special case in which this periodic orbit
is an equilibrium point p for V (i.e. a point where V'(p) = 0); in this case the conditions for a
solution ¢ of (HS) to be a homoclinic orbit to p reduce to g(+o00) = p and §(£o0) = 0 and obviously
q # p. Although these kind of orbits were first observed by Poincaré [11], it is only recently that
they have been tackled with a variational approach, which seems quite natural for the structure of
the problem. In fact, through this approach, several questions have been successfully investigated,

also for more general hamiltonian systems as
(H) ¢ =JH'(z)

where z € R?V | J = ( (}g ”(I,’;’,) and a Hamiltonian of the following form:

H(z) = %m - Az + R(z)

being A a symmetric constant matrix such that JA is hyperbolic (i.e. sp(JA) N iR = @) and
R(z) = o(|z|*) as = — 0, so that z = 0 is a hyperbolic point for H.

A first existence result of homoclinic solutions of (H) was established by Coti-Zelati, Ekeland
and Séré [4] under the hypotheses R positive, convex and globally superquadratic (i.e. satisfying
R'(z)-z > aR(z) for all z € R?V, with a > 2); in this work the solution is obtained as critical
point of the dual action functional, using the mountain—pass lemma. The lack of compactness due
to the unboundness of the domain is overcome by the concentration-compactness principle of P. L.
Lions. Then Hofer and Wysocki [9] could drop the convexity assumption and found a homoclinic

orbit applying a linking theorem to the action functional

F(z) = /R (%Jm g H(:c)) dt

defined on H'/?(R;R?V). The same result was achieved by Tanaka [17] with the method of
subharmonic orbits, where the homoclinic orbit & is obtained as limit in the Cj._ topology of

T-periodic solutions of (H) as T — co. Each partial solution @7 is a critical point of the functional

Fr(z) = /OT (—12—.]:: . H(z)) dt
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defined on H'/2([0, T]; R*") and is obtained with a linking argument. Here the lack of compactness
is reflected by the fact that F(Z) < limyp_.oo Fr(zr) whereas the equality is not guaranteed. This
method was introduced by Rabinowitz [12] to study the second order system (HS) with V of the

form:

(1) Vig) = —%q-LquW(q)

being L a positive definite symmetric matrix and W globally superquadratic and such that W'(q) =
o(lg]) as ¢ — 0. Recently, Ambrosetti and Bertotti [1] and Rabinowitz and Tanaka [13], with
different tecniques, were able to get the existence of a homoclinic solution for (HS) without the
superquadraticity condition, but assuming that the component of {z : V(z) < 0} U {0} containing
0 is bounded and V'(z) # 0 for any z € V~1(0) \ {0}. In some sense, the analogous thing was done
by Séré [15] for the first order system as (H), supposing that ¥ \ {0} is compact and of restricted
contact type, where ¥ = {z : H(z) = 0} is the zero—energy surface.

Some of the above—mentioned results are also valid if H —for (H)— or V —for (HS)— depend
explicitly on time in a periodic way. This peculiarity gives rise to multeplicity results: in [15],
supposing H 1-periodic in time, Séré shows that if = is a homoclinic orbit of (H), then for any
finite sequence of integers n; < my < ... < ny the function Zle z(- + n;) is a quasi-solution
provided that n;y; —n; is large enough (clearly each addend solves (H) but coincides geometrically
with ). This idea is used in [5] and [6] to give analogous results in different situations. Nevertheless,
it is worth remarking that this multeplicity problem dates back to Poincaré [11], who proved the
existence of infinitely many homoclinic orbits, geometrically distinct, provided that the stable and
unstable manifolds intersect transversally. Moreover, we mention also the work of Melnikoff [10],
who get the same result for the 1-dimensional system ¢+ f/(¢,¢) = 0 with f periodic in time, using
perturbation methods. k

About the multeplicity of homoclinic solutions in the autonomous case, up to now, there is no
literature, apart from a recent paper of Ambrosetti and Coti-Zelati [2] where the authors, with a
variational approach and by means of the Ljusternik—Schnirelmann theory, prove the existence of
two homoclinic orbits of (HS) for V' of the form (}§), with W superquadratic, satisfying a ”pinching”
condition:

alq|® < W(q) < blg|®

provided that b/a < 2°%°,

This thesis presents a multeplicity result concerning a different situation; to be precise, we
consider a conservative potential V' possessing a strict local maximum at 0 and a singularity at a
point e # 0. Hence, inspirated by [13] and [16], we find homoclinic solutions in two different ways;
then we compare them and, under a geometric hypothesis, we can distinguish one from the other.
The potential, near the singularity, is assumed satisfying the Gordon condition; however, since a
homoclinic orbit is characterized as minimum of the lagrangian functional with respect to a suitable
class, we investigate about the possibility to give a weakened condition and find one including the

Keplerian case and generalizing an argument given in [7].
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1. Existence of a generalized homoclinic orbit

In this section we will deal with a potential V' € C' (R \ {e}; R) with a singularity at a point
e € RN and a strict local maximum at a point p € RV \ {e}. Without loss of geneArvality we can
suppose p = 0 and V(0) = 0; so, the origin is an equilibrium for (HS). In addition, we will assume
that the component of {z € R : V(z) < 0}U{0, e} containing 0 is bounded and will do a suitable
hypothesis for V' on 810. '

Definition 1.1. A function ¢ € C(I; R"), where I is an interval of R, is called generalized -
solution of (HS) in I, with energy h, if
(i) ¢~ (e) is a nullset;
(ii) g € C*(I\ ¢~ '(e); RN) satisfies (HS) on I\ ¢7*(e);
(iii) 14(¢)1* + V(q(t)) = A for any t € I\ ¢ (e).
The cardinality of ¢7!(e) defines the number of collisions of ¢. If I = R, ¢ # 0 and ¢(+o0) =

§(£o0) = 0, g is said generalized homoclinic orbit of (HS). Clearly such a solution has energy zero.

We will find a generalized solution of (HS) on R4 = [0,00) as critical point of the usual

I(u) = /Ooo (%W - V(u)) dt

associated to (HS). To be precise, we consider the Hilbert space

E = {u e WA R RY) ¢ / |u|2dt < co}
0

loc

Lagrangian functional

equipped with the norm
full = 10} + [ faa
We define
I'={u€cE : u0)€dN, u(x)=0, u(t) e AVte R}

and look for a solution of (HS) on R, as minimum of I on I'.

Theorem 1.2. If V € CY(RN \ {e}; R) verifies
(V1) V(0)=0 and lim V(z) = —o0;
(V2) there is an open bounded set @ C R containing 0 and e such that V(z) < 0 for any z €
Q\ {0,e} and V'(z) £ 0 for =z € 82\ V1(0),
then (HS) possesses a generalized solution ¢ on Ry, with energy 0, at most one collision and such
that g(0) € 8Q and g(c0) = ¢(o0) = 0. Moreover ¢ € ' and I(g) = inf I(T').

Using the invariance of (HS) under time reflection and considering the function z € C(R; R")
defined by z(t) = ¢(|t|), where g is the solution of (HS) given by theorem 1.2, the next result follows

immediatly.




Corollary 1.3. If V € CY(RN \ {e}; R) verifies (V1) and
(V3) there is an open bounded set )} C RV containing 0 and e such that V(z) < 0 for any z €
Q\ {0,¢e} and V(z) =0 and V'(z) # 0 for z € 99,

then (HS) possesses a generalized homoclinic orbit with at most one collision.

~To prove theorem 1.2, we follow Rabinowitz and Tanaka [13]; the following lemmas give the

corresponding steps of the argument.

Lemma 1.4. Let K C Q\ {0} compact and u € E such that u(t) € Q for allt € Ry and

u(t) € K fort € U(rj, 5j). Then
Jj=1

I(u) > /2B Z lu(r;) — u(s;)]

h = min — .
where 3 min V(z)
Proof. By (V2) and for the compactness of K, B > 0. Moreover, using the Schwarz inequality,

é u(rs) - sl = 77 {/Ooo \ﬁlzdt}%

where 7 = Z?=1(3j — 7;). Then, bearing in mind the hypoteses about u, we find that

n 2 n 85 2
Iw) > - (g ) - ulss) )+ > [ -va T

we obtain

12
where [ = 37, u(r;) — u(s;)]. Therefore I(u) > ir;i(; (5—7—_- + ,37-> =1/28.
g.e.d.

Lemma 1.5. Ifu € E, u(t) € Q2 for all t € Ry and I(u) < oo then there exists tlim u(t) = ¢
and V(£) = 0.

Proof. The set of limit points of u in RN as t — oo is nonempty because u(R,) is bounded.

Let ¢ be an element of this set. If there didn’t exist lim;_.co u(t), then u would cross infinitely

often the corona By.(€) \ B.(§) with 7 > 0 small enough; hence, by lemma 1.4, it should be

I(u) > /287 n for any positive integer n, in contradiction with the hypotesis I(u) < co. So there
exists limy—_o u(t) = u(oo) = & and since [ —V(g)dt < oo, it must be V() =0.

g.e.d.

For any € > 0 sufficiently small call Q. = {z € {: dist(z, ) > €} and
T.={u€cE : u(0)e 09, u(c0) =0, u(t) €Q.VteRy}.
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Lemma 1.6. IfV € C'{RN \ {e};R) verifies (V1) and (V2) then there exisis ¢ € E such
that:
(i) ¢ € Tc and I(g) = inf I(T.);
(ii) q(t) € Q. fort > 0;
(iii) g is a generalized solution of (HS) on R, with energy 0, at most one collision and such that

q(o0) = ¢(o0) = 0.

Proof. (i). Clearly 0 < infI(I';) < oo and given a sequence (un) C T. such that I(u,) —
inf I(T.), it holds that (g,) is bounded in E and so contains a subsequence converging to some
q € E weakly in E and uniformly on the compact sets of R,. Then, by pointwise convergence,
q(0) € 89, ¢(t) € Q. for all t € Ry and, via Fatou lemma, J° =V (q) dt < liminf I =V (un) dt.
On the other hand, using the weak convergence, liminf fooo [, |2 dt > fooo |g|*dt. Therefore I(q) <
liminf I(u,) = inf I(T'); thus, by lemma 1.5, it follows that there exists lim; oo q(t) = g(co) and
g(o0) € V=1(0) N Q. = {0}. Hence q € T and I(g) = minI(T¢).

.(1'1'). By contradiction, if g(t,) € 89, for some t, > 0, then, called Q = gq(- +t,), it would hold that
Q €T, and I(Q) < I(g), while I(q) = minI(T).
(iii). To begin, it can be noticed that, by the part (i), q is an injective function; otherwise, if it

were g(t;) = q(tz) for some t; > t; > 0, we could consider a new function @ defined by

_ q(t) 0<t<t
Q(t)-{q(t+t2“t1) t>t11

and observe that Q € T, and I(Q) < minI(T.). Then, in particular, we deduce that g (e)
is at most a singleton. Now, to show that ¢ is a weak solution of (HS), we take an arbitrary
h € C°((0,+00); RY) and notice that ¢ + sh € T'¢ if |s| is small enough. It’s an ordinary exercise
to see that

tm L (rg 4 oh) - 1@} = [+ b= V(a) -

and, being I{g) = minI(T.), it follows that fooo(q' k- V'(q) - h)dt = 0. So, by the arbitrary of
h, g is weak solution of (HS) on R.. To see that g is classical solution, take a generic interval
[r,5] C (0,00)\ ¢~ (e) and point out that [’(¢- h—V'(q) - k) dt = 0 for any h € Wy*([r,s); RY).

If we consider the Cauchy problem (in z):

i+ V'(g) =0
z(r) = g(r)
z(s) = q(s)

this admits a classical solution =z € C?([r, s]; R") satisfying f:(:c -h —V'(q)-h)dt = 0 for any
h e Wy ([r, sy RY). Then [’(¢— &) - h dt = 0 for any h € W,?([r,s]; R") and this, with the
initial conditions of the previous Cauchy problem, implies ¢ = @ on [r, s]. Hence, by the arbitrariness
of [r, 5], ¢ belongs to C2((0,+00)\ g7 *(e); R™) and satisfies (HS) on (0,+00)\ ¢7'(e) in a classical
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sense. Since V does not depend on ¢, the energy is constant, i.e.
S+ V(a() = ho forte (0,7)
%[Q‘Z +V(q(t)) = heo fort>r
where 7 = max{0,¢ '(e)}. Knowing that ¢ € E and I(g) < co and using the energy equation for

t > T, we obtain Ao, = 0 and ¢(oco0) = 0. If g7'(e) = 7 > 0 take the following function:

_ g(At) 0<t<3
W= {oeirty TEF

with a suitable A > 0. It’s clear that Q € I', and

[ Glar -v@ya= [ Gt - vie) a

s

/D (IQIQ—V(Q dt~x\/ 54l dt—}—)\/ V(q)di

To minimize the last expression we choose A = \/E where P = [ -V (q)dt and K = [ 1|g/*dt.
In this way we find that _fof (31Q1* = V(Q)) dt = 2/KP. Since I(g) = infI(T.), it must be
K + P < 2V/KP, that is K = P. But the conservation of the energy implies that K — P = h,1;
then h, = 0 because 7 > 0.

>

g.e.d.

Proof of theorem 1.2. For any € > 0 small enough let ¢. € E be the generalized solution of
(HS) on R, given by lemma 1.6. It can be readly seen that for any u € I' there is v € T', with
I{v) < I(u). Then for any ¢ we have I(g.) < inf I(T') and in particular ||g.|| < constant. Therefore
there exist a sequence €, — 0 and a function ¢ to which (g._ ) converges, weakly in E and uniformly
on the compact subsets of R. Then, arguing as in the proof of lemma 1.6, part (i), we obtain that
q(0) € 89, q(t) € Qfor all t € Ry, I(g) < inf I(T') and, since I(g) < oo, by lemma 1.5, there exists
lim; .o q(t) = &, V(€) = 0 and then £ € 9Q U {0}. If £ € 9Q, (V2) implies V'(£) # 0. Therefore
there exists » > 0 such that 0,e ¢ By.(€) and |V'(z) — V'(£)] < $|V'(€)| for any z € B, (€).
Moreover there is ¢, > 1 such that ¢(¢) € Bz () if t > ¢,. Let T be an arbitrary positive number.
By the uniform convergence on the compact sets, if n is sufficiently large ¢. (t) € B,(£) for all

t € [to,to + T] and so
¢
[ deds| >
t

o

> (=P = [ V(€)= V() ds 2 5t - ) V(6)

¢
/ V'(ge,)ds| >
¢

o

léen(t) - q.sn (to)l >

and consequently

[O”lq’en( t)|2dt > i{ V(€)1 T? - Iésn(to)IT}Q.

o
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Since |ge, (to)|> = =2V ((ge, (to)) < sup{-2V(z):z € B.(£)N 1} = ¢?, we can say that for any
T > 0 there is a positive integer n, in general depending on T', such that
oo 1 1 2
. 2 4 2
dt > =< =V T —cT, .
[Tlieiraz 2 {v@ir - et}
From V'(¢£) # 0 we deduce that the sequence (gc,) is not bounded in F, in contradiction with a
relation found at the beginning. Hence g(co) = 0. It follows that ¢ € I', I(g) = minI(T), ¢ is
injective and ¢~!(e) is at most a singleton. Moreover, possibly for a subsequence, (gc,) converges
to ¢ in G2 (R4 \ ¢ (e); RY) so that g is a classical solution of (HS) on R4 \ ¢7'(e) with energy

zero. In particular ¢(oo0) = 0.
g.e.d.

2. Non collision orbits

We consider again a potential V € C'(RV \ {e}; R) satisfying the hypotheses ( V1) and (V2)
of theorem 1.2; now we are interested in finding conditions for V near the singularity assuring the
existence of non collision solutions. This will be possible in the case of a strong—force potential or

when V is a radial function near the singularity, with a suitable behaviour.

Proposition 2.1. If V € CY(R"™ \ {e}; R) verifies (V1), (V2) and
(SF) there is a neighborhood N, of ¢ in 0 and a function U € CY(N:\{e}; R) such that |U(z)| — oo
asz — e and =V (z) > |U'(z)|? for any ¢ € N, \ {e},
then the solution g of (HS) given by theorem 1.2 is a non collision orbit; therefore q is a classical

solution on R .

Proof. It’s enough to notice that, in general, if u € T' and I(u) < co then u(t) # e for all
t € Ry. In fact, by contradiction, if there were some ¢ > 0 with u(¢) = e then there would exist
to € (0,1) such that u(t,) € ON, and u(s) € N, \ {e} for any s € (t,,t). Therefore

U (u(e))] < 1U(u(s)) — Ulu(to))] + [U(u(to))]
/t U (u(r)) - i(r) dr| + U (u(t))]

{J |U'(u<r>)|2dr}% {/ |a<r>|2dfr}% +IU((t))

<{ f —V(u(r))dr}% { Iﬂ(f)lzdf}% £ U (u(t))]

< V2I(u) + |U(u(t,))] < o0

<
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while |U(u(s))] — oo as s — t_.
g.e.d.

Proposition 2.2. If V e C' (RN \ {e}; R) verifies (V1), (V2) and
(V4) there exist a constant to > 0 and a function ¢ € CL((0,70); R) such that V(z) = ¢(|z —e) for
allz € B,,(e) \ {e} and r¢'(r) — o0 as 7 — 0

then the solution q of (HS) given by theorem 1.2 is a non collision orbit.

Remark 2.3. If (V4) holds, then ¢(r)/logr — oo as T — 04 (but in general the viceversa is
not true).
In the case V(z) = —|log|z — ellﬁ for z € By, (e) \ {e}, the condition (V4) is satisfied if and only
if 8 > 1. Moreover we note that (V4) is verified by potentials with the following behaviour:

1

|z — e|*

V(z) =~ +o(lz—el) for ze€Br(e)\{e}

with a > 0 and ¢ € C1((0,7,); R) such that lim,_o, 7'T%¢'(r) € (—a, +oo]. It is also clear that
this characterization does not exhaust all the cases described by (V4).

Before proving the previous proposition, we recall the definition and the fundamental properties
of the convexified of a real function.
Let I be an interval of R and let f be a function from I into R, bounded from below. We call
convezified of f on I the function f. : I — R defined by:

fo(z)= sup (az+0b) forallz el
(a,b)eA(S)
where A(f) = {(a,b) € R? : az + b < f(z) Vz € I}. It holds that fo < fonland f. = f if and
only if f is convex and lower semicontinuous on L
Moreover, given two applications f,g: I — R bounded from below, if f < g on I, then f. < g. on
I.

In the sequel, we will make use of the following result.

Lemma 2.4. Let f € C((0,a); R) such that z f(z) — co as z — 0. Then f. € C((0,a); R)

and z fu(z) = c0 asz — 0.

Proof. The continuity of f. at an arbitrary point z € (0, a) follows by the convexity of f. and
by the fact that f. is bounded from below; in fact f. < f and f is continuous. In addition, it

holds that for any M > 0 there is some z; € (0, a) for which f(z) > -]‘;I if z € (0,z47). Therefore,

noticing that the function z — % is convex, we obtain that f.(z) > % for any = € (0,zar). Hence
z fu(z) - 0 asz— 0.

g.e.d.




Proof of proposition 2.2. Let ¢ € E be the solution of (HS) given by Theorem 1.2. The
argument will be by contradiction, supposing ¢~'(e) = {r}. For any r € (0,75), t1,2 > 0 are
uniquely determinated by these conditions: &, < T < t2, ¢(t;) € OB, (e)for i = 1,2 and ¢(t) € B,(e)
for t € (£,1;). We point out that, since V is radial on By, (e), as long as q(t) € By, (e), the angular
momentum does not change throughout the motion, and its value is zero, because the orbit goes
through the singularity. Thus ¢ follows a straight line inside B, (e), even if along possibly different

directions, before and after the collision. To be precise:

q(t) =e+p(t)er ifte (t1,7)
q(t) = e+ p(t)ex "if t € (7,12)

where p(t) = |g(t) —e|, e = !—g%——%:Z—l (i = 1,2). The contradiction will be reached constructing a

function @ € T such that I(Q) < I(g).

To begin, we show that the singularity is crossed without change of direction. In fact, if not,
consider the function @ different from ¢ only for t € (t;,1;), where is defined as projection of the
motion g along the segment joining ¢(¢1) to g(t2). Explicitly:

— Q(t) te [0’ tl] U [t27 +OO)
o) = {%(Q(t1)+9(t2))+é'(q(t)—€)é t € (t1,t2)

where é = il (notice that e; # ey since ¢ is injective). It can easily checked that @ € T',

le2—e1]
[Q|2dt leeier [ 14)2dt and [/* —V/(Q)dt < [ =V(q)dt. Then, if e; # —ea, 1(Q) < I(q).
In the case ey = —eg take Q = q+ ge, where ¢, is a fixed vector of R"Y with norm one, orthogonal

to e; and g is a scalar function defined in the following way:

Bhp o te(t,ti+6)
o(t) = 7 te(t+6,t2 —0)
EZ_S_J.# tE(tz-—(s,tz)
0 te [Ovtl]u[t% +°°)
with appropriate p, 8 > 0. Observe that @ € T and |Q(t)—e| < r for t € [t1,12] if p and § are small
enough. Moreover, called h = ge,, it holds that

/: Q% dt = /tt2 lg|2dt + 2-’;—2
/j (V(g)-V(Q))dt = - /: (/01 V'(g+ Ah)-h dA) dt.

Let f be the convexified of ¢’ on (0,7,). Since r¢/(r) — +o0o asr — 04, by lemma 2.4, rf(r) = +o0
and, changing 7, if necessary, we can say that f(r) > 0 for 7 € (0,7,). Being g(t) + Ah(t) € Br(e)
for t € (¢;,¢2) and A € (0,1), it holds that

+Ah—¢€)-h
V(g4 AR)-h=¢(lg+ A — ) &
(g4 M) b= §(Jg-+ Ab = ef) T

gt b —el) _« o fllg = el + A
s > A ——t
PV Rl B PR Y

> Alh|
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and thus

2 B 1 pi2 Flg = el + [AD)
/ (V(g)~ V(Q)) dt < 2/ jp Bl= L g

2
Since |q(t) — e| < ||g||2]t — r|? = C|t — 7|2, then |g(t) — ] < pif |t — 7| < 0, = &+ Therefore

‘ L7y fllg — el + [R]) 1f(2p) [TT7
/tl (V(q)—V(Q))dts—-z—/TW |h V——’——e—lmrdtﬁ 2 o /T |n|2dt.

Taking u so that [t — o, 7+ 0,] C [t1 + &t — 6] we conclude that

3

[ e - v@)i <~ sew)

and finally:
1@) - 1(9) < -1* (-5 + 2w

But we know that 7 f(r) — 400 as » — 04; so, choosing u sufficiently small, we find I(Q) < I(q).
g-e.d.

3. Case ) unbounded, Q # RV

In the previous sections we considered a system (HS) ruled by a potential V' with a strict local
maximum at 0, a singularity at e € R" \ {0} and such that the component of {z € R" : V(z) <
0} U {0, ¢} containing 0 was bounded.

Now we want to eliminate this last hypothesis and, to do this, we will adopt the following strategy:
given an arbitrary R > 0 sufficiently large, the set Qr = QN Bp is open, non—empty, bounded,
contains 0 and V(z) < 0 for z € Qg \ {0,e} (here Br = {z € R" : [z| < R}); thus, with respect
to Qp, the hypotheses (V1) and (V2) of theorem 1.2 are satisfied. Then we find a (generalized)
solution gr of (HS) on R, such that gr(0) € 8Qr, qr(c0) = 0 and qr(t) € Qg for t > 0. Hence,
if gr(0) € 89 for some R, we can reflect gg, by defining y(t) = gr(|t|) for ¢ € R, to obtain a
homoclinic orbit for (HS).

So, the problem is to show that it cannot happen the situation |gr(0)] — oo as » — co. Firstly we
observe that fOOO |gr|?dt < constant. In fact, we know that ¢g € I'r and I(qr) = inf I(I'r) where
Tr = {u€ E:u(0) € 0Qr,u(c0) = 0,u(t) € Qr Vt € Ry }. Given any u € T thereis v € I'g such
that I(v) < I(u). Then I(gg) < inf I(T') < oo for any R > R,. Now, if we suppose |gr(0)| = R for
all R > R,, to obtain a contradiction, we must do some hypothesis about the behaviour of V' at
infinity (on Q) and about V and V' in 0.

It is useful to distinguish the case 90 bounded, i.e. R \  bounded, and 8 unbounded.
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Theorem 3.1. If V € C'(R"V \ {e}; R) satisfies (V1),
(V3’) there is an open connected set {1 C RN containing 0 and possibly e, with RN \ Q bounded, such
that V(z) < 0 for anyz € O\ {0,¢e}, V(z) =0 and V'(z) # 0 for z € 89,
(V5) there are a constant R, > 0 and a function U € C*(RY \ Bp,; R) such that |U(z)| — oo as
|z| — oo and —V(z) > |U'(z)|* for |z| > R,
then (HS) admits a generalized solution ¢ on R, with energy 0, at most one collision and such that
q(0) € 89 and g(o0) = §(00) = 0. Moreover the function = € C(R;RY), defined by z(t) = ¢(|t]),

is a homoclinic generalized orbit for (HS).

Proof. Since qr € T'g, for any R > R, there is tg € Ry such that qr(tr) = |qrloec; if
lqr(tr)| > R, there is sg > tg such that |gr(sr)| = Ro. Then, with the same passages used to

prove proposition 2.1, we obtain
U(gr(tr))| < V2I(gr) + |U(qr(sr))| < V2inf I(T) + [nax U (=)l

By the previous argument, this uniform boundness on |gr|c implies the thesis.
g-e.d.

Remark 3.2. Notice that (V5) is formally the strong—force condition at infinity; actually, in

the case V(z) = ——l-Ell—a— for |z| large, it is verified when o < 2.

Theorem 3.3. If V € CY(RV \ {e}; R) satisfies (V1),
(V3”) there is an open connected set Q C R, containing 0 and possibly e, with 00 unbounded, such
that V(z) < 0 for anyz € Q\ {0,e}, V(z) =0 for z € 092, |V'(z)| > ¢ > 0 for z € 8%
(V6) V and V' are Lipschitzian on A5 = {z € Q: V(z) > -6, |¢| > 6} for some § > 0;
(V7) z,, — 0Q U {0} for any sequence (z,) € ! such that V(z,) — 0;
then (HS) admits a generalized solution ¢ on R, with energy 0, at most one collision and such that
q(0) € 8Q and g(o0) = ¢§(o0) = 0. Moreover the function y € C(R; RY), defined by y(t) = g(|t]),

is a homoclinic generalized orbit for (HS).

Remark 3.4. The hypothesis (V7)is equivalent to require that 321]{13 |V (z)] > 0foranye > 0
T,

€

small enough.

Proof. Suppose |gr(0)| = R for all R > R,; to reach a contradiction, we follow this scheme:
fore € (0,6)and R > R, let A, ={z € Q:V(z)> —¢, |2| > 6} and Aj = {t € Ry : qr(t) € A.};
1)if (t,t +T) € A% then [V'(gr(t))| < (MiT + %) v/2¢ where M, is the Lipschitz constant of ¥
on Ags;
2)Vk > 0Ve € (0,6) 3r > R, s.t. VR > 7 |A%| > k;
let T';, be the length of the largest interval of A%;
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3)Ve € (0,6) 3r > Ry s.t. VR > 7 TR > 1

4) Ve € (0,6) 3z. € A, s.t. [V/(ze)| < (M + 2)v/2¢;

5) inf{|V'(z)|: ¢ € 90} = 0.

So the contradiction is obtained with respect to the hypothesis |[V'(z)| > ¢ > 0 for all z € 6Q. Now

we prove in detail the statements 1) - 5).

)
t+T t+T
Viarl) = 7| [ (7 (an(e) = Vaa(e))ds + [ Vi(an(s)as
t+T : t+T
<z { [ 1V tan®) - ViarNlds + | [ dnla)ds }
1 t+T
<7 {M1 /t lgr(t) — qr(s)lds + |dr(t + T) — éR(t)l}
t+7T 38
<x {M1 [ as [ dstanto) + linte + D)1 + mR(t)z}
< -;; {M,72V3e + 2v2¢ )
since |§r(s)] = /—2V (qr(s)) < v2¢ for s € A%.

2) Let sg € R be the first instant at that gr touches By, i.e. qr(sr) € 0Bs but |gr(t)| > § for
t € [0,sr). Fix an arbitrary € € (0,6). On the one hand it holds:

*1,. 1. .
/ 'Z'IQRIth 2/ §IQRIZdt 2/ -V(qr)dt
0 (0,5r]\AS, 0,5x]\A%

>e|0,sr]\ A%| > e(sr — |AR]).

On the other hand:
SR 2 [e e}
(R - 7 < an(0) - anlon)” < ( [ lqR|dt) <o [ lnlat
0 0

Hence, knowing that [ |¢r|*dt < constant, we obtain
B
%12 AR - 8) - D
with 4 and B positive constants independent on R and ¢. Since A(R~6)’ -2 - w0 as R — o

uniformly with respect to ¢, 2) follows.

3) Suppose 3) false, so that there is ¢, > 0 with the following property: for any r > R, there exists
R > v such that T < 1. Put k= 1,2,...,n,... in 2), finding a sequence (r,) with r, > R, and
such that |A%| > n if R > r,, for any n € N. Now, by the previous assumption with r = ry,7,...

, we have a sequence (R, ), in general depending on ¢, such that IA%J > n and Tf?: < 1 for any

13



n € N. We choose ¢ = %—eo and study the passage of each orbit gr, through the strip A. \ 4.
Since A% °/ is not empty, there exists 7,, = inf AE°/ let s, = sup{t >, : s € AE"/2 Vs € (Tn,t )}
and t, = mf{t > 8, 1t # AR }. We point out that qr, (sn) € Acp, qr, (tn) € Ae, and qg, (1) €
A\ Ae pp for t € (8n,tn), ie. V(qr, (sn)) = =% , V(gr, (tn)) = —€o and 3 < —V(¢r,(t)) < &
for any t € (sp,tn). Therefore:

b tn
(1) /1@fﬂ=/ 9V (qr.)dt > eoltn — sn)-

n

For V is Lipschitzian on 4., (with constant M,), we deduce that:

5 = V(ar,(s)) = V(ar, (ta)) <

(2) tn
< Molan, (tn) = ar. (sn)| < Mo [ lin, d < Mo/ 2e(tn = 51).

(1) and (2) give

bn . 1 [€o\3
/ \Gr, |2dt > M(—) = ¢, > 0.
Sn

Since TE" <1, t, — 58, < 1 and the previous argument must be repeated at least n times,
because [AE°/2| > n. Then [ |dr,|*dt > con for any n € N, in contradiction with the boundness
fo |gr, |?dt < constant.

4) The statement 3) implies that for any ¢ € (0,6) there are R, > R, and tg, € Ry such that
(tr.,tr, + 1) € A%, . Then, apply 1), call z. = gr, (tr.) and, after having noticed that z. € A,
4) readly follows. '

5) For any ¢ € (0,6) we determinate z. € { according to the statement 4). Since z. € A.,
V(ze) — 0 as € — 0 and so, by (V7) and being 4. C Q\ Bs , z. — 0Q. Let §. = dist(z.,09).
Since §. > 0, there is y. € 8Q such that |z, — y.| < 26.. For V' is Lipschitzian on As, it holds that
[V'(ye)| < My|ye — ze| + |V'(zc)|. Hence, passing to the limit ¢ — 0, we find inf,coq [V'(y)| = 0.
g.e.d.

Remark 3.5. It can be possible to prove theorem 3.3 in a similar way, taking the sets 5. = Q\ Q.
instead of 4.. With this choice, we obtain the thesis, on the one hand relaxing the hypothesis (V6)
in

(V6’) V' is Lipschitzian on Ss for some § > 0,
on the other hand, adding the condition that sup,caq |V'(z)| < co.
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4. Existence of a second homaoclinic orbit

We come back to the problem of section 1 (finding a homoclinic orbit for (HS)) and give a new
proof of corollary 1.3, using a minimax method; actually, besides the hypotheses (V1) and (V3), we
assume the strong—force condition for the potential V near the singularity (in fact we will obtain a

classical solution) and a condition of quasi—concavity of V near the strict local maximum.

Theorem 4.1. IfV € CY(RV\ {e};R), with e € RV \ {0}, verifies (V1), (V3), (SF) and, for
N > 2, o -
(V8) there is some § > 0 such that V(z)+ 3V'(z) -z < 0 for any ¢ € Bs and V € C1!(Bs; R),

then (HS) admits a homoclinic orbit.

The proof consists of three main steps: firstly, we set up an approximating Dirichlet problem
on [0,7] using a potential V7 obtained cutting V out of Q to a level 7~!; with a minimax method
we get a solution gr describing a sort of loop with initial and final point at 0, around the singularity.
In the second part we give some uniform estimates for the approximating solutions that allow to

pass to the limit 7' — oo (last step) and, after some remarks, find the homoclinic orbit.
I - APPROXIMATING PROBLEM

Lemma 4.2. IfV € CHRY \{e}; R) satisfies (V1) and (V3) then, fized X > 0, for any T > 0
there is a function Vr € CY(R™ \ {e}; R) with the following properties:
(i) Vr(z) =V (z) forz € Q\ {e};
(ii) Vr(z) = % forz & QF;
(iii) Vr(z) < 4 forw € QF\ Q;
(iv) |Vi(z)| < ¢i foranyz € Q,
where QF is a bounded, open neighbourhood of Q such that dist(Q}, ) —0asT — co,and c; >0

s a constant independent on ¢ and T.

Proof. To begin, we prove that given & > 0 there is a function f. € C*°(R";R) such that
0< f <1, f(z) =0forz € O, fo(z) = 1if dist(z,Q) > ¢ and |fi(z)| < 2 for any z € RV
with Ay constant with respect to ¢ and 7 but depending on the dimension N. In fact, pick
@ € C*(RM;R) such that 0 < ¢ < 1, p(z) = 0 if [z]x < L and p(z) = 1if |z|s > 1; for any
z € RV let p.(z) = ¢ (%) and

£

g:(z) = [] pelz )

yele
where

Yo={y= (v} . ,u") e RV 1yl ..., y" € eZ, distoo(y,Q) < L}
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One can readly see that g.(z) = 0 for ¢ € Q, g.(z) = 1 if distoo(z,2) > 3¢ and clearly 0 < g. <1
and g. € C®°(RY;R). In addition, taken z € Q° with diste(z, Q) < 3¢ the derivative of g. at z

involves at most 2V terms corresponding to some points yy,...,yo~ € Y, so that
9 2 19 A
ga w (T —Yj V
z ) < ==
| 9e( )Z%m— 53m1< £ )' €

Since |z|oo < V' Nlz|, taking f. = g, with n = ﬁs we obtain the desired function. Now, by the
continuity of V', for any 7' > 0 we can find 7 > 0 such that

ifzcQf\Q

N>

(3) V(z)| <

being QF = {z € RV : dist(z, Q) < e7}. Finally, define for any z € R" \ {e}:

Vi(e) = (L for (5V(2) + 3 for(2):

The properties of f. and (3) imply the thesis. Moreover dist(2%,Q) =er — 0 as T — co.
q.e.d.

For T > 0 let Ex = Wy([0,T]; RY) be the Hilbert space with the usual norm |[uf|} =
foT || dt; comsider its open subset Ay = {u € Ep : u(t) # e Vt € [0,T]} and the functional
It : A7 — R given by Ir(u) = fOT (314)? = Vr(u))dt for u € Ar.

It can be shown in a standard way that I € C'(Ar;R) and ¢ € A7 is a critical point of I if and

only if is classical solution of the following Dirichlet problem:
{ §+Vr(9)=0 in(0,T)
q(0) = ¢(T) =0

We approach to the problem of the existence of critical points for I7 in a different way according
to N=2or N > 2.

(Pr)

Case N = 2

Let I = {u € Ar :ind(u) = 1} where ind(u) denotes the number of winding of u around the
point e in some direction. To be precise ind(u) = fv f_—“'g with R? identified to C, z € C and v a

closed curve in C parametrized by u. Clearly I'7 is not empty, so that we can consider inf I(I'7).

Lemma 4.3. For any T > 0 there ezists g7 € I's such that I7(qr) = inf I7(I';). Moreover

gr s a critical point of It.

Proof. Let (u,) C 'y be a sequence such that I7(u,) — inf I7(I';) as n — oco. Then for any
n € N it holds that % H“n”T = Ir(upn) + fo Vr(u,)dt < C + X with C independent on n. Hence,
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possibly for a subsequence, (u,) converges to some ¢ € Er weakly in Er and uniformly on [0, 7).
The strong—force condition implies that ¢ € Ar; otherwise, if ¢(¢) = e for some ¢ € [0, T}, then for
any n € N there is ¢, € [0,¢) such that u,(t,) € ON. and u,(s) € N, for s € (tn,t); hence, arguing

as in proposition 2.1, we obtain for any n € N
U (un(t))] < V2Ir(un) + U (un(tn))] < €' + max [U(z)] < oo

while |U(un(t))] — oo as n — co. In addition ind(g) = lim ind(u,) = 1, so that ¢ € I'7. As in the
proof of lemma 1.6, it can be shown that I7(¢) < inf I7(I';) and so, for ¢ € T'7, Ir(gq) = minIr(T'7).
To verify the second statement it suffices to notice that if u € T}, ¢ € Co((0,T); RY) and s € R
then u + sy € I'; for |s| small enough. Therefore, since ¢ € 'z and I7(g) = minI7(I'}), for any
@ € Co((0,T); RY) it holds that

i T2la 4 59) = Ir(0) _ 0Iz(a) _
§—+0 § B(P

that is I%(q) = 0.

Case N > 2

Let Tt = {y € C(DN-%A7) : 7(z) = 0 Vz € 8DV=?} where DV=? = {z € RV-2 |z <
1}. Given v € Tz, the function (z,t) — F(z,t) = T}Ei—;ﬁi—;—_’—z—l is well defined on DV~2 x [0,T].
Being y(z)(t) = 0 for (z,t) € 8(DV~? x [0,T]), we can consider as domain of ¥ the quotient
DN=2 % [0,T]/8(DN~% x [0,T]) = §V~! so that ¥ is a continuous function from SN-linto §N-!
(we use the notation SV = {z € RM*! : |z| = 1}). In this way the set I'z = {y € T'r : deg(7) # 0}
is well defined and non—empty (see lemma 1.2 of [3]) and the number

T)= inf I
) = 2, . 10

is meaningful. Notice that, adopting the agreement D% = {0} for N = 2, then I'} corresponds to
that one defined in the case N = 2 and ¢(T) = inf I7(T7).

Lemma 4.4. I1 satisfies the Palais—Smale condition.

Proof. Let (u,) € Ar be a Palais—Smale sequence. With the same argument of the previous
proof, we obtain that, possibly passing to a subsequence, u, converges to some g € A7 weakly in
Eq and uniformly on [0,T] and, by the strong—force condition, ¢ € A7. Now, using the fact that
I%(u,) — 0, in a standard way one can verify that u, — ¢ strongly in Er.

g.e.d.

Lemma 4.5. For anyT > 0 ¢(T) > 0 and ¢(T) is a critical level for Ir.
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Proof. First, we show that ¢(T) > 0. In fact, taken a generic v € I'}, since deg(y) # 0
there exists (2o,%,) € DV=% x [0,T] such that |y(z,)(to)| > 26 where § > 0 can be chosen so that
Bys C Q. Call u = y(z,). For u(0) = 0, there are t;,%; € (0,t,) such that ¢y < ty, u(t;) € dBs,
u(ty) € 8Bys and u(t) € Bys\Bs for t € (t1,12). Let A ={t € [0,T] : u(t) € Q} and B = [0, 7]\ 4.
Then, called ms = inf{~V(z) : ¢ € Bys \ Bs} it holds that

Ip(u) > %/:|u¢2dt+/A—V(u)dw/;;VT(u)dt

1 42
>.__
=2t — 1

-{—mg(tz —t,l)— A>V2msd — A= p.

Fixing A € (0,+/2ms6), we deduce that max,epv-2 I7(y(z)) > p > 0 and so, by the arbitrariness
of v, ¢(T) > p > 0 follows for any 7' > 0.
To prove the second statement we use a standard deformation lemma according to that, since Ip
satisfies the Palais—Smale condition, if ¢ is not a critical value of I, then for any & > 0 there are an
¢ € (0,€) and a deformation n of A in E7 that sends the sublevel I T into the sublevel 177, lowers
the values of the functional I and acts identically out of I5t¥\I5™ (here I$ = {u € At : I7(u) < a}
). By contradiction suppose that ¢(T') is not a critical level of I7. By the first part, we can apply the
previous result choosing ¢ = ¢(T) and £ = 1¢(T') and find a deformation n of A7 and an ¢ € (0,¢)
with the above-mentioned properties. Given an arbitrary 7 € I';; we show that noy € I';.. Clearly
nov € C(DVN~%; Er) and for any ¢ € DV=2 Ir((no7)(z)) < Ir(y(z)) < oo so that, by (SF),
no+y(z) € Ap. Since 0 g IS5\ IS¢, if ¢ € 0DV =2 then no~y(z) = n(0) = 0. Hence noy € I'r.
Moreover the invariance of the degree under homotopy implies that deg(r0v)=deg(¥) # 0 and
so pov € ['s. Now take 7, € I'; such that maxzepn-2 IT(7,(2)) < ¢+ ¢ and call v1 = 17 07,.
Then v, € I'; and being n(I5¢) C I57%, we get max,epv-2 I7(71(z)) < ¢ — ¢ in contrast with the
definition of c.

g.e.d.

II - UNIFORM ESTIMATES

For any T > 0 let g7 € A be the solution of (Pr), founded as minimum point of It on T'7

for N = 2, or as minimax point of Iz with respect to I'; in the case NV > 2.
Lemma 4.6. There is §, > 0 such that |q7|e > 0, for each T > 0.

Proof. If N = 2 it suffice to notice that |gr|s > |e| for any T > 0 because ind(gr) = 1. In the
case N > 2 we use the hypothesis (V8) in the following way: let Az be the total energy of gp; it
holds that Ay = —;—lQT(ON2 > 0. Now, if Ay = 0, then g7 would be solution of the Cauchy problem:

{§+V:F(Q) =0 in(0,7T)
q(0) = ¢(0) =0
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and, by the uniqueness of the solution, for Vo =V is C1! in a neighborhood of 0, it follows that
gr(t) = 0 for any t € [0,T], in contrast with the fact that ¢(T') > 0. So, hr >0 for any T > 0 and

consequently:

1d?
5 gz lar(OF = —2Vr(ar (1)) = Vlar (1)) - gr(t) + 2hr > =2V (qr(t)) — Vr(ar(?)) - ar(t).

By (V8) g‘;qu(t)lz > 0 if gp(t) € Bs, (we can always suppose Bs, # e and Bs, C {1 so that
Vp = V on Bs,). Let t3 € [0,T] such that |gr(¢5)] = |ar|eo. Being Lzlgr(t7)[? < 0, we deduce

that gr(t}) € Bs,, i-e. |qT]cc > b0
g-e.d.

Lemma 4.7. Chosen T, > 0, for each T > T, ||gr||7 < constant.

Proof. Firstly we notice that %H‘ZTW < It(gr) + A for any T > 0. Then we have to show that
¢(T) < constant independent on 7. For e € § and ) is open, fixed T, > 0, there is v € '}, such
that y(DV-2 x [0,T,]) C Q. Let T > T,. For any z € DV-? define yr(z) = v(2)x,1,), Where
Xp.1,)(t) = 1if t € [0,T,] and 0 otherwise. We point out that 77 € I's and Iz (yp(z)) = Iz, (v(z))
forallz € DV=2%, s0 that ¢(T) < Dmax Iz, (7(z)) for any T > T,. Notice also that T, is arbitrary.

g.e.d.

Lemma 4.8. There is p > 0 such that |qr(t) — €| > p for each t € [0,T] and T > 0.

Proof. Suppose the lemma is false. Then there are two sequences (T) and (t,), with 0 <
t, < T,, such that qr, (t,) — e as n — co; moreover for any n € N there is s, € (0,t,) such that
qr, (8n) € ON, and g, (t) € N, for t € (8n,1,). The usual inequality, obtained with (SF),

Ular, (t))] < V2L, (gr,) + [U{er, (s2) < € + max [U(2)] < 0

gives the contradiction.

III - LIMIT PROCESS
By lemma (4.6), for any T > 0 there is 77 € (0,T) such that [g7(77)| = 6, and lgr(t)| < 6, if
t € (0,77). Now, define

_Jar(t+ Tr) fort € [-17,T — 77)
yr = 0 for t € R\ [-7p,T — 7]

All the functions y7 belong to the Hilbert space £ = {u € WhAHR;RN) : J5 lafrdt < oo}

loc

endowed with the norm ||u||? = |u(0)|? + f°_ |i|?dt; moreover, by lemma (4.7), |lyzr|| < constant
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for any T > T,. Then there are a sequence T, — co and a function y € E to that (yr, ) converges,
weakly in E and uniformly on the compact subsets of R. Clearly y #.0 because |y(0)| = §,. Other

properties of this function y are listed in the following lemma.

Lemma 4.8.
(i) y € C'(R; RY) and, possibly for a subsequence, y7, — y in CL.(R;RY);
(i) y(t) € @\ B,(e) for anyt € R;
(i) 1g(0)P + V(y(t) = 0 for any t € R;
(iv) y € C*(R\ T; RY);
(v) §(t) +V'(y(t)) = 0 for any t € R\ T,
where T = {t € R : y(t) € 00}.

Proof. (i). Fix T, > 0 and let C; = sup{|[Vr(z)| : T > T,, = € Q% \ B,(e)} and C; =
sup{|Vi(z)| : T > T, & € QF \ By(e)}. Clearly Cy, C, < oo and, by lemmas 4.5 and 4.8 (or 4.3
and 4.8 for the case N = 2), we deduce that for any n € N:

197, loo + |§T. loo < Cs

with C5 positive constant independent on n. So, by Ascoli-Arzela theorem, passing to a subse-
quence, if necessary, g7, — 2 in Cloc(R; RY); but g7, — § weakly in L*(R; RN), so that y1, — ¥
in CL (R; RY).

(ii) and (iii). By lemma 4.8, y(t) ¢ B,(e) for all t € R. Then, notice that hy, — oo as n — oo,
because 0 < hy, Tn < I, (g7, ) + 2 fOT" Vr (g7, )dt < Cy + 2X < co. Therefore, passing to the limit
n — oo in the energy equation for y7, , we get
HiOF + V@) =0 £ y(5)en
i(t) =0 it y(t) ¢ 0

and this implies y(¢) € Q for any ¢t € R, so that the energy equation is satisfied on R.

(iv) and (v). Pick a compact interval [t1,t;] in an arbitrary component of R\ 7. For any t € [t1,t2]
y(t) € O and then, for n sufficiently large yr, (t) € Q, so that V. (yr,(t)) = V' (yr, (t)) — V'(y(t)).
By the dominated convergence theorem and by the result (i) we deduce that

|2

[ v = i [ Vi @)= [ i 0= i) - i),

n—oe t tl

Hence, for the continuity of —V' oy on [t;,?,] we can say that § admits derivative and solves (HS)

on [ty,t;]. By the arbitrariness of [t1,1;], the proof is complete.
g.e.d.

Conclusion of the proof of theorem {.1. By the result (iii) of previous lemma, since y € E,
I(y) = ffooo(%ly|2—V(y))dt < 0. Then, by lemma 1.5, there exist . ]iin y(t) = €4 and €1 € OU{0}.
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Consequently, using the energy equation, y(£oo) = 0. Notice that in lemma 4.6 we can always
choose §, sufficiently small so that Bs, C ; hence |y(t)| < §, for any ¢ < 0 and this implies £_ = 0.
Now, if 7 # 0, called ¢, = inf 7, the function ¢ — Y (t) = y(t, — |t — t,]) is a homoclinic orbit for
(HS). Instead, if 7 = 0, then necessarily £, = 0; in fact, if it were {; € 90 with 7 = (), arguing as
in the proof of theorem 1.2, we get for any § > 0 a T = T(S) > 0 such that

[m lyr|*dt > % (EIV'(EMISQ - 65>2

oo

with ¢ > 0. For § is arbitrary and |V'({4+) > 0, by (V3), we found a contradiction with the

boundness ||yr|| <constant.
g.e.d.

Remark 4.10. The strategy adopted to prove theorem 4.1 can be applied every time that the
approximating solutions are obtained making a minimax like inf 4, sup 4 I, provided that A7 € Ar
for some A € Ar,, being Ar = {uxjo,1,] :« € A}. In particular this holds using the mountain-pass

lemma to solve the approximating problem (Pr). In this sense, theorem 4.1 generalizes [1].
In the next result we eliminate the hypothesis (SF') and find a generalized homoclinic orbit.

Theorem 4.11. IfV € C'(RV \ {e}; R), with e € RN \ {0}, verifies (V1), (V3) and (V8),
for N > 2, then (HS) admits a generalized homoclinic orbit.

Proof. For any ¢ > 0 small enough, let V. € C1(RN \ {e}; R) satisfying (V1), (V3), (SF) and,
for N > 2, (V8) and such that V.(z) = V(z) if [z —e| > e and V. < V on RV \ {e}. Let (gr.c)r
be the family of the approximating solutions corresponding to the problem for V., ruled by the

equation
(HS), §+V.(g)=0.

Coming back to lemmas 4.6 and 4.7, it is easy to recognize that for any ¢ € (0,¢,) and T > T, it
holds that

|QT,5|oo Z '50 3 HQT,EHT S C
with 8, and C positive constants independent on ¢ and 7. We define yr . by shifting ¢7 . so that
lyr,..(0)] = &, and |yr(t)| < 6, for t < 0. Finally let y. the homoclinic orbit of (HS). achieved as

limit of the approximating solutions yr . as 7' — co. For any ¢ € (0,¢,) we get that
o
lya(O)l = b, , / |g5|2dt <.
hate o}

Hence there are a sequence ¢, | 0 and a function y € wh? (R; RV) such that ffc l7]dt < C' and

loc =)

Ye, — y uniformly on the compact subsets of R. Then |y(0)] = 6,, y(t) € Q for all t € R and
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J2 =V(y)dt < oo; in fact [ -V (yjdt < liminf [*°_—V(ye,)dt = liminf [ £|j,[*dt < C".
Therefore y~!(e) is a nullset and I(y) < co. By lemma 1.5 there exist lim; .40 y(f) = £+ and
£+ € 0Q0U{0}. To see that £ = 0 we argue indirectly, supposing, for instance, that £, € 9€2. Then
we repeat the same argument used to prove theorem 1.2 and get a contadiction. So £, = £_ = 0.
Now, keeping into account that for any ¢ € (0,&,) y. solves (HS). and its energy is zero, for any

compact K contained in an arbitrary component of R \ y~'(e) we get:
Y., — y in C*(K;RY)
§(t) + ¥'(y(t)) =0 forany t € K
—;—|y(t)[2 £V(y(t)) = 0 for any ¢ € K.

Since K is arbitrary, y is a generalized solution of (HS) on R, with energy zero. Moreover y # 0,
y(+o0) = 0 and, by the energy equation, g(+oo) = 0.
q.e.d.

Finally we give a multeplicity result; first, we introduce the following notations: for any é > 0
let Vs ={z € Q : V(z) < —6} and let ¥ and V! be the components of 2\ Vs containing 0 and 69
respectively and call rs =dist(V?,V{). Then set T={z € Q : |z — ¢| = |e|} and v = sup [V (z)|.
€D

Theorem 4.12. Let V € CH(RY{ {e}; R), with e € RV \ {0}, satisfying (V1), (V3), (SF)
and, for N > 2, (V8). If there is some § > 0 such that

(%) 2rle|v2v < r5V/6

then (HS) admits two geometrically distinct homoclinic orbits.

Proof. Fix T, > 0 and let 7, € '}, such that Yo(DV=2 x[0,T,]) = £. Then, for any ¢ € DV 2
define y7(z) = 7o(2)x(0,1,], Where xjo1,)(t) = L if t € [0,T,] and 0 otherwise Cleaﬂy 7’[ eIy,
yr(DN7? x [0,T]) = £ and Ir(y7r(z}) = K(z) + Pr(z) where K(z) = 3 fo ‘ dt and
Pr(z) = fo ~Vr(7o(z))dt. Since Pr(z) < T,v for any z € DV72, it follows that for T > T,

T) < K
(T} Tov + max K(z).

We can always suppose that for any z € DV~2 4,(z) describes a circular orbit passing for the
2—

. e . . 2‘/1’2 2
origin, with radius p, < |e| and angular speed w, = 5= so that max K(z)= 2rlel”
o :L‘GD‘ o

. Hence,

with an appropriate choice of T, we obtain:
e(T) < 27le|lv2v

and, consequently

flgr||% < 4r|e[v2v + 2X
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where g7 is the approximating solution solving (Pr). Therefore the homoclinic orbit y of (HS),

found as weak limit of ¢ as t — oo, satisfies the following inequality:
I(y) < 4rle|v2v + 2.

Now, if z € W,"?(R; R") denotes the homoclinic orbit of (HS) given by corollary 1.3, for z(0) € 89

loc

and z has energy zero, we get that

(2T§)2
| Zs|

I(m):/ |£]2dt > [ |&|*dt >

— D0 ET‘S
where 75 = {t € R : z(t) € V5}. On the other hand:
I(z) = / ~V(z)dt > / =V (z)dt > §|Ts]
—00 Ts
and so

I(z) > 2rsV/6.

Then, by (*), fixing A € (0,756 — 27|e|+/20), it follows that I(y) < I(z) and y(t) ¢ 69 for any
t € R. Otherwise, using the notation of section 1, called . = z|r, and y; = y|[, o) for a suitable
to € R, it should be y; € I and I(zy) = infI(T), while I(yy+) < I(zy). Hence y forms a loop
inside ).

q.e.d.

5. Case Q0 = RYV

The case of a negative potential V' with an absolute maximum at 0 and a singularity at
e € RV \ {0}, where V is assumed strong—forcelike, was studied by Tanaka in [16]; there, the
author put the following hypothesis about the behaviour of V at infinity:

limsupV(z) < 0.

|z]|—oc
We can improve this assumption allowing V' to go to 0 at infinity in a suitable manner.

Theorem 5.1. If V € C1(RV \ {e}; R), with e € RN \ {0}, is strictly negative apart from 0
and verifies (V1), (V3), (SF) and, for N > 2, (V8), then (HS) admits a homoclinic orbit.

Proof. We follow the same argument used to prove theorem 4.1, with the obvious modification

that, for V' is non positive, the approximating problems are ruled by the same potential V. Then,
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all the passages hold again and the only new thing to prove is a boundness for the approximating
solutions gy with respect to the sup norm. Arguing indirectly, if it were lg7, |0c — o0 for some
sequence (T,), then, by (V8), with the same passages of proposition 2.1, we would infer that for
any n € IN:

|U(gz, (t))] < V2Ir, (g7.) + |U(ar, (sn))]

where t,, is the time that achieves |q7, (tn)] = |¢7, | and s, € (0,t,) is such that [g7, (sn)| = Ro
while |gr, ()] > R, if t € (sn,tn). But I7(gr) is bounded independently on T' and the same holds
for |U(gr, (sn))]; therefore |U(gr, (tn))| < constant in contrast with the fact that [¢r, (tn)| — co and
so |U(qr, (tn))| = oo. Now, since |g7|c and ||gr||7 are bounded by constants independent on T', the
weak limit of the approximating solutions, possibly shifted, is a non-zero function y € C*(R;RM)

satisfying (HS), with energy zero and such that y(+oo0) = g(£o0) = 0.
g.e.d.

As in section 4, we can state an analogous theorem without the strong-force condition, to find

a generalized homoclinic orbit.

Theorem 5.2. If V € C' (R \ {e}; R), with e € RY \ {0}, is sirictly negative apart from 0
and verifies (V1), (V3), and, for N > 2, (V8), then (HS) admits a generalized homoclinic orbit.
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