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0. Introduction.

This thesis is a report on an investigation on the existence of Radon-Nikodym derivatives for
Banach-valued finitely additive measures (f.a.m. shortly) with respect to their total variations.
As is well known, in the classical case of scalar-valued, countably additive measures on o-algebras,
the Radon-Nikodym theorem asserts the equivalence between absolute continuity and the existence
of a density function. This theorem is no longer true in its full generality as soon as we drop even
one of the quoted hypotheses: see for instance examples 2.10 pg.50 and 3.2 pg.61 in [7] and example
6.3.5 pg.176 in [1].

The problem of the failure of Radon-Nikodym theorem in the previous settings has been given
much attention by many authors and has raised several interesting questions.

On one hand, the characterization of Banach spaces having the so-called Radon-Nikodym property,
that is those Banach spaces where all countably additive, absolutely continuous vector measures
are indefinite Bochner integrals, has revealed deep interplay betweeen vector measures, Banach
space structure theory and operator theory; detailed surveys of this topic with further references
can be found in [6] and [7].

On the other hand, in the setting of finitely additive scalar measures, the failure of Radon-Nikodym
theorem is tightly linked to the lack of completeness of L, spaces with respect to f.a.m.’s so that
only approximated Radon-Nikodym theorems may hold. A theorem of this kind was already proved
by Bochner (see [2]) in the late 30’s; roughly speaking, it asserts that, given a bounded f.a.m. v,
the indefinite integrals of simple functions with respect to v are dense in the space of bounded,
v-continuous finitely additive measures. Since that time, several different proofs and improvements
of this result have been given; see for instance [5], [8], [10], [13], [15].

As far as exact Radon-Nikodym theorems are concerned, we quote [14] and [11] where necessary
and sufficient conditions are given in the case of bounded scalar f.a.m.’s and bounded monotone
set functions respectively. Finally, [12] and [4] deal with Banach-valued f.a.m.’s.

In this thesis attention is focused on sufficient conditions on a pair of bounded, finitely additive
measures (g, v) where u is Banach-valued and v is scalar-valued which do ensure the existence of
a density function of p with respect to v. We shall confine ourselves to the case where v is the total
variation |p| of p and the representation of u is accomplished by some weak form of integration.
We begin by setting some notations and hypotheses to be used throughout and by stating the
problem in a precise form.

Let Q2 be a (nonempty) abstract set, let S be a o-algebra of subsets of {2 and let u: S — X be a
finitely additive measure where X is a real Banach space with separable dual space X ™.

We shall denote by |u| and ||u|| the total variation and the semivariation of u respectively, by
N(|pl) the ideal of |p|-null sets of S and by ba(Q,S,IR) the Banach space of all real-valued,
bounded f.a.m.’s on S endowed with the semivariation norm.

We shall assume throughout that

(P1) pis of bounded variation;
(P2) R(p)={p(E):E € S} is weakly closed in X;
(P3) N (|p])is a o-ideal, i.e. it is closed under countable union.

We aim at proving that under suitable conditions p can be represented as a Dunford-type integral,
that is, there exists a weakly |u|-integrable function h: ) — X ** such that the equation
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< p(E),z” >= /E <z*, hw) > djpj(w).

holds for all E € S and z* € X™.
The idea of the proof goes as follows:

1. there exists ¢ € X~ |lz}|| = 1 such that v = | < p,z > | (i.e. the total variation of
< p, T >) is equivalent to p in the sense that [p| < v and v < TR

9. for each z* € X * there exists a v-integrable function fz-:{ — IR such that
< w(B), 2" >= / fedv  E€S, o€ X%
E

3. approximate |u| in ba($,S,IR) by a collection {|pn|}(n > 1) of positive, bounded fa.m.’s
having Radon-Nikodym derivative with respect to v by choosing a countable dense set {z;;}(n>1)
in 8B7 = {z* € X*:||z"|| = 1} and by setting

n € INy;

P =< [y T, >
fan= fz’;

4. set f =sup,y; |fnl; assume that fis v-integrable and

W(E)= [ 1iv Ees

and set
o if f(w)=10
g(w) =14 1/f(w) if0< f(w) < oo ;
0 if flw)=00

then g is |p|-integrable and
v(E) = / gdlul  E€S;
E
5. then, (fz-g) is |u|—integrable for all z* € X~ and
<p(E) e >= / (fe-g)dlpl  E€S,27 € X5
E

6. reconstruct a weakly |u|-integrable function h:Q — X ™" such that

< p(E),z" >= / < z*, h(w) > d|p|(w) EeS,z e X .
E

The validity of the assumptions in (4) is discussed in section 3.
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Remark 0.1. We point out that hypothesis (P3) will be used only in the proof of proposition
3.7. Furthermore, D.Candeloro and A.Martellotti have recently proved in a still unpublished paper
a generalization of this proposition where (P3) is dropped.

Remark 0.2. The approximation of |¢| in ba(€2, S, IR) by a sequence of positive, bounded f.a.m.’s
having Radon-Nikodym derivative with respect to v described in (3) can be accomplished even if
X" fails to be separable; see remark 1.3. Indeed, the requirement of separability of the dual space
X~ is actually crucial only in the proof of proposition 3.7.

1. Some technical results.

The f.a.m. p is s-bounded by (P1). Hence, there exists 23, € X*, ||z}|| = 1 such that | < p,z7 > |
is a control measure for x (see [3]). This means that v is equivalent to the semivariation ||u|| of u
in the following sense:

a) ||yl is v-continuous;

b) v is ||u||-continuous.
We shall shortly denote (a) and (b) by ||u|| ~ v. Now, we claim that |u| ~ v.
First, it is clear that v is |u|-continuous. Next, to see that the reversed relation holds as well, let
IP(£2) be the set of all finite, S-measurable partitions of {2 and set

pr(E)= Y WENE.)| Ee€s

1<m<n

for each # = {E,,}(1 < m < n) € IP(Q). Each p. is a bounded, v-continuous submeasure
satisfying

0< pe(E) < [l(E)  E€S, meP(Q).

Thus, {u-}(r € IP(Q)) is a uniformly s-bounded set of v-continuous submeasures; by [16],
{pz} (r € IP(Q)) is uniformly v-continuous. Finally, recalling that the net {u.}(r € P(Q))
converges pointwise on S to |u|, we see that |u| is v-continuous. Thus, |y| ~ v.

We now prove that for each z* € X ™ there exists Radon-Nikodym derivative of < u,z* > with
respect to v.

According to [4] or [11], it is enough to show that for each pair o, 8 € IR, the f.a.m.

a< et >+8 < par >=< p,az” + Bz >

admits a Hahn decomposition.

Recalling that p is s-bounded and that the range of p is weakly closed, we derive that im(u)
is weakly compact and hence the range of < p,az™ + Bz} > is a compact subset of JR. Thus,
< p,az” + Pz > attains its maximum on S and this yields a Hahn decomposition of it (see [1]).
For each z* € X*, we shall denote by f;-:Q0 — IR an S-measurable, v-integrable function such
that



< p(E),z" >= / fomdv EcsS.
E

Here and in the sequel, unless otherwise is stated, integration with respect to a f.a.m. is to be

understood as in [9].

Furthermore, for any z* € X~, the total variation | < g,z* > | also admits a Radon-Nikodym
derivative with respect to v given by |f.-|.

Next, we approximate |u| in ba(Q,S,R). Pick a countable, dense subset {z}(n > 1) in the
boundary 0By of the closed unit ball of X* and set for each n € IN,:

Hn =< lf'im; >
fn::f;:-

In addition, let

An = max |gml

1<m<n

- - n(EﬁV+
gn = 1_<r_1rrlg§n|fnl]

where maxima are taken in the lattice structures of ba(Q, S, IR) and real-valued functions respec-
tively. Hence, each A, is a positive, bounded f.a.m. such that

OS)\H(E)S)‘n+1(E)SiP’|(E) EES)nEW+

and {gn}(n > 1) is a nondecreasing sequence of nonnegative, S-measurable and v-integrable
functions.
Then, we have the following:

Lemma 1.1. A, — || asn — oo in ba(Q, S, R).
Proof. It is enough to show that

An(Q) = [ul()

as m — oo.
Let € > 0 be given and choose 7 = {E;} (1 < k < m) € IP(Q) such that

@) < S B + e/2.

1<k<m

For each k = 1,...,m let z, be such that

IW(E] < | < W(Ex), 25, > [ +¢/(2m)  1<k<m

and then set ng(¢) = max;<k<m ng-
Then, for any n > ng(e) we have:

0<[ul(Q) = A(2) < Y < n(Bi)en, > +e—2A(Q) <
1<k<m



< 20 (B e =A@ < DT Aa(Br) =A@ +e=c.

1<k<m 1<k<m

Thus, A, — |p| as n — oo in ba(2,S,R). g.e.d.

Lemma 1.2. A, (F) = -fE gndv EeS nelv,.

Proof. Let n € IV, be fixed. By the optimality of A, we get

An(E) < / gndv Ees.
E
Conversely, let

B ={w € Qigp(w) = |fi(w)[}
By = {w € Qigp(w) = |fa(w)|} \ By

E,={we Qg () =|fa()|}\{E1U...UE, 1}
so that {E,,} (1 < m < n) € P(Q). Then,

o< foe= S [ iiar-

1<m<n Y ENEm

= Z lem|(ENER) < Z A(ENEny) = Au(E)

1<m<n 1<m<n

for each E € S and this shows that A, is the indefinite integral of g,, for each n € IV... g.e.d.

Remark 1.3. In remark 0.2 we pointed out that the construction of the approximating sequence
{An}(n > 1) can be accomplished even if the dual space X~ is not assumed to be separable. Let

us see how this can be done.
Let 7(0B7) be the filter of all finite subsets of 7(0B;) and for each I € F(8B}) set

Ar = > .
I g}g§l<u,m > |

Hence, {A;}(I € F(0B;) is a net of positive, bounded f.a.m.’s converging to || in ba(Q,S, R).
Now, choose an increasing sequence I,, € F(0B;), n > 1 such that

#I(9) = T < A, () < [(@)

and set A, = A7, for all n. It is plain that {A,} converges in ba(Q, S, IR) to a f.a.m. which does
not exceed |u|. To see that the limit of the A,’s is actually |u|, suppose there exists E € S such
that lim,_,co An(E) < |u|(E); then, the strict reversed inequality holds for the complementary set
Q\ E and this yields a contradiction. Thus, A, — |u| as n — oo in ba(Q2, S, R).

Finally, it is easy to construct the density functions of the A,,’s with respect to v as in the case X*
is separable.



2.  Representation of |u| as an indefinite integral with respect to v.

So far, we have approximated |u| in ba(Q, S, IR) by an increasing sequence {A,} (n > 1) of bounded
f.a.m.’s each of which is an indefinite integral with respect to v. Hence, it is natural to inquire if

f = sup |fu| = sup gn
n>1 n>1
is a Radon-Nikodym derivative of |u| with respect to v.
That this is the case, provided a Radon-Nikodym of |u| with respect to v does exist, is proved
by the following lemma which, roughly speaking, asserts that the density functions of the A,’s
with respect to v can always be arranged in such a way that their supremum is actually a density
function of |u| with respect to v.

Lemma 2.1. Suppose that |u| has a Radon-Nikodym derivative with respect to v; then, there exist
S-measurable, v-integrable functions g’, g,: @ — [0,00] n € IN; such that:

1) {g}}(n > 1) is nondecreasing and g’ = sup, s, g’;

2) M(E)= [pghdv  E€S,nc Ny -

3) |ul(E)= [,pg'dv EcS.

Proof. By assumption, there exists a nonnegative, S-measurable and v-integrable function f’
such that

|,u}(E):/Ef’du Ees.

Let g/, = gn A f',n € INy. Then, {g,}(n > 1) is a nondecreasing sequence of nonnegative,
S-measurable and v-integrable functions.
Fix n € IN; and let F* € § i = 1,2 be a partition of ) such that

{gé(w) = gn(w) weFT
gn(w) = fl(w) we F;

since g/, < g,, we get for each E € S

02/(9§1—~9rl)dv=/ (gé—gn)dw/ (95, — gn)dv =
E EnFp

ENFy
= [ (g g)dy = (BN F) - An(BOFD) 2 0
ENFy
that is, g/, is also a Radon-Nikodym derivative of ), with respect to v.

Next, set g’ = sup,, g, so that g’ < f/, g’ is nonnegative, S-measurable and v-integrable. Then,
we have

W) = [ fav> [ gav> [gav=a.(8) Eesnen,
E E E

and this completes the proof. g.e.d.



Let’s now go back to f. Since f is the pointwise limit of {g,,} (n > 1), we see that f is S-measurable
and nonnegative so that its monotone integral is well-defined:

(M)—/ fdv = / v(En{weQ: fw)>t})dt Eed.
E 0
In addition, as soon as the monotone integral is finite, f is also v-integrable according to [9] and

these two integrals coincide. Furthermore, since f dominates all g,’s and A,, — |p| as n — oo it is
easy to see that

W) < on-[ jav EBes.
£
We can now prove that the problem of representing |u| as an indefinite integral with respect to v
reduces to a problem of integrability and convergence in measure.
Indeed, an application of lemma 1 and Vitali’s convergence theorem shows that the following are
equivalent:
1) there exists a Radon-Nikodym derivative of |p| with respect to v;

2) fis v-integrable and g, — f as n — co in v-measure.

Furthermore, {gn}(n > 1) is a Cauchy sequence in v-measure as the following lemma shows:

Lemma 2.2. {g,}(n > 1) is a Cauchy sequence in v-measure.

Proof. Suppose not. Then, there exist n > 0, § > 0 and an increasing sequence of integers
{nm}(m > 1) such that

{ En = {w € Q:gnm.H (w) ~ 9nn, (w) 2 17} me N
+-

v(En) > 6

Note that {E,,;}(m >1) C S and
M (B = (B = [ (ms (@) = g (@) d 2 98 me V..
This yields a contradiction since {A,} (n > 1) converges in ba(f2, S, R). q.e.d.
Unfortunately, no completeness result for convergence in measure is available in the context of
finite additivity.
That’s all we can say in the general case. However, there are cases where everything goes well.
Here there is one of them.
Let p satisfy (P1), (P2) and in addition assume there exist {z}} (n > 1) C 8B; such that
(P4)  pn =< p,z;, >> 0 and Hnt1 2 pn, 1 € INy;
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(P5) pn — |u| as n — oo in ba(Q, S, R).

Note that in this case the separabiiity of X* is not required. Then, A, = pn, gn = |fn] = fn for
each n € IV, and we can assume that {f,}(n > 1) is increasing with respect to n. Moreover, we
can choose

-1
zp= (1D 27l > 27"ep,

m>1 n>1

v=< U, TR >= Z Fn
= R >= —.
’ 2By 2w

Then, we have the following:

Proposition 2.3. There exists a Radon-Nikodym derivative of |p| with respect to v.

Proof. According to [11], it is enough to show that |u| — rv attains its maximum on & for each
r > 0. Fix » > 0 and set

sup (|u| —rv) (E) = sup sup (|p| — rv) (E) = a < oo,
EcS E€S n>1

Ap ={w € Q: fo(w)>r} nelVy

so that {A4,}(n > 1) C S is an increasing sequence of sets such that

sup (pn — 7v) (B) = (pn —7v) (4n)  m € INy.
Bes

Since {ftm — v} (n > 1) is a uniformly s-bounded sequence of f.a.m.’s, then (un, — 7v) (4,) — a,,
as n — oo uniformly with respect to m € IV,.

Furthermore, the s-boundnedness of 1 implies that {u(A4,)} (n > 1) converges in the norm topology
and hence weakly in X; by (P2), there exists 4 € S such that p(4,) — p(A4) as n — .

Thus,

G = 1 (o — 70) (4s) = lim < p(Ay), 25, — 125 >=

=< B(A), 5, — 72k >= (m — ) (A)
uniformly with respect to m € INV,..
This, together with
(bm —7v) (An) = (Jul = 7v) (4n)  m — o0, nelVy
shows that the net {(g, — rv) (An)}(m njen2 converges so that the limits can be interchanged:
’ +
a = sup sup (ptm — rv)(E) = lm (pm — rv)(Am) = lim (g, —rv)(4,) =
Eesm>1 m—oe (m,n)

= lim 1im (g~ 7)(4n) = lim (e — 0)(4) = (] - 0)(A)

m—0oe n—oC

and so we are done. g.e.d.




Now, lemma 2.1 shows that by a proper choice of the f,,’s we have

|p|(E):/Efdy Ees

where f = sup,,» fa.
Finally, let’s provide an example of a measure satisfying (P4) and (P5). Let m:S — [0,1] be a
finitely additive probability and let {E,}(n > 1) C S be a countable partition of Q so that the

series
> w(ENE,) E€S
n>1 -

unconditionally converges for all £ € S. Then pu: S — [;(IV,) defined by u(E) = (7(E N E,)), >,
for all £ € S turns out to be a f.a.m. whose total variation is easily seen to be B

ul(B)=> =(EnE,) EE€S.

Now, for each k € INy, let z; € I.o(IN;) be the sequence of unit /o, (IV;)-norm whose first k
entries are 1’s followed by a tail of 0’s and set px(E) =< p(E),z; > E € S. It is easy to check
that

/.Lk(E)I’)T(EﬂFk) EES,kEW+

where F, = Ulghngha k€ W+.
Then, it is clear that {u;}(k > 1) satisfies (P4) while (P5) follows from

0% sup k() = [E(B) = (lp] = m)(@) = D w(Ba) =0 k= oo
€ n>k+1

and the summability of {7(E,)}n>1.

3. Reconstruction of p as a Dunford-type integral.

Let f, fn and g, be fixed as in section 2. We now assume that f is v-integrable and that g, — f

as n — o0 in v-measure so that || is the indefinite integral of f with respect to v.

Set g: @ — [0, 0], g(w) = 1/f(w) with the usual conventions 1/0 = co, 1/co = 0. We claim that
a) ¢ is |p|-integrable;

b) g is a Radon-Nikodym derivative of v with respect to |u|.

First, we prove (b) assuming that (a) holds.



Lemma 3.1. Let A be an algebra of subsets of Q and let m; € ba(Q, A, IR), i = 1,2 be positive
measures such that:

1) ™ ~ Ty

2) there exists a 7 -integrable function p: Q — [0, c0] such that

WQ(E)Z/pdﬂ'l FE e S.
E

Then, for each my-integrable function ¢q: Q) — IR, (gp) is m-integrable and
/ gdmy = / (gp)dmy Eed.
E E .

Proof. Choose a m;-integrable function ¢ and a determining sequence {g, }(n > 1) for g consisting
of 7y-simple functions.

i) Let ¢, > 0 be given. By (1), there exists §(¢) > 0 such that £ C Q, 75(E) < 6(¢) implies
77 (EF) < € where 7} denotes the submeasure associated to m; by

Wi(E) = Ee;.fllch(F)

for 7 = 1,2. Furthermore, there exists ng(e,7) > 1 such that n > ny(e,7) implies

™ ({w € Q:gn(w) — q(w)| > n}) < 6(e);
hence,

T ({w € Qt|gn(w) — g(w)| > n}) <€

for all n > ny(€,n) and this shows that ¢, — ¢ as n — oo in 7;-measure.

ii) Let s = 3}, <, SmXE, be an arbitrary simple function such that {sm}i<m<n C R\ {0}
and the sets {Ep}i<m<n C A are pairwise disjoint; s is 7;- and my-integrable . Then, (sp) is
w-integrable and

/ sdmy = Z Sm7r2(Em) = Z Sm (/ XEdeﬂ'l) =
Q Q

1<m<n 1<m<n

:/ Z SmXE,, pdﬂ.l :/(sp)dﬂ-l'
Q Q

1<m<n
Thus, the conclusions of the lemma hold for all my-simple functions.
The m)-integrability of p together with (i) shows that (gnp) — (gp) as n — oo in 7,-measure.

Furthermore, each (g,p) is m;-integrable since each ¢, is bounded on .
Since |g, — gm| is a my-simple function, we have

/ Ian_ anpld"rl = / an - lepd'}rl = / IQn - QmId"W
Q Q Q
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for each m,n € IV, and this shows that the net {[, [g.p — gmp|dmi }((m,n) € IN}) converges.
Thus, (gp) is m;-integrable and

/qd’ﬂ'y = lim (/ qnd7r2> = lim (/ (qnp)dm) = /(qp)dﬂ'l.
Q T+ 0O Q n—oo Q Q

This completes the proof. q.e.d.

Proposition 3.2. Let g be |u|-integrable; then, v(E) = [ gdlu| E€S.

Proof. Set w(E)=v(E)~- [pgdlu] E€S;7e bra(Q,S,]R). Lemma 3.1 yields

/E gl = /E (¢f)iv  EesS

and hence

w(E) = (B) = [ (af)dy = (B) = v (B\[{u € % f(w) = 0} U {w € 0 f(u) = o0}])
for all E € S (here, the convention 0 - co = 0 has been used). Since
f v-integrable = v ({w € Q: f(w) = 0}) =0
1 (fw € Q: F(w) = 0}) = 0 = v ({w € 0 f(w) = 0}) = 0

we get ™ = 0. g.e.d.
So far, we are left to prove (a). We begin with some lemmas.

Lemma 3.3. Let A be an algebra of subsets of Q, let v € ba(Q2, A, IR) be a positive measure and
let p,pn: 0 — (0,00), n € IN, be functions such that

1) pn — p asn — oo in T-measure; '

2) for all € > 0 there exzists M(¢) € (1,00) such that

L ({weﬂ:0<p(w)§%}U{weﬂ:bfgp(w)<oo}) < e

Then, setting g(w) = 1/p(w), gn(w) = 1/pp(w), w € Q, n € IN; we get g, — g as n — o0 in
T-measure.

Proof. Let ¢, 7 > 0 be given and pick 1 < M(e) < co such that

™ ({wEQ:O<p(w) < %} U{we Q: M < p(w) < oo}) < €/2.

Since t € [547,2M] — + € [;%7,2M] is uniformly continuous, there exists a positive §(e,7) such
that [s™! —t~'| < nfor all s,t € [557,2M], |s — t| < &(¢,n). Assume that 0 < §(e,7) < e

Next, choose ng(€,n) > 1 such that n > ng implies

11



" ({w € Q: [p(w) = pa(w)] 2 8(e;m)}) < €/2.

Then, for all n > ny we get

7 ({w € Qilg(w) = gn(w)| > n}) <

<" ({we 2:0 < p(w) < % or M < p(w) < oo and ’;T(_lw—) —Pn%w)I > 77}) +
s <{‘” € QAL <plw) < M, .ﬁ T @] p(w) = pa(w)] < 5}) +

1
p(w) pn(w)
<e/2+0+¢/2

>y () - 7)) 2 6} ) <

. 1
+ <{w € Q-ﬁ < plw) < M,

and this completes the proof. g.e.d.

Lemma 3.4. For all € > 0 there ezists M(¢) € (0,00) such thai:
1) ul ({w€9:0 < f(w) < 37}) <e/2;
2) |pl({we:M< f(w)}) <e/2.

€

Proof. Let € > 0 be given and choose M, (€) > max {1, M}; then,

1
Q:0 w M. - v
1 ({“’ € WO )< g, }) /{uea:osf(w)ﬁml'f} e

1 1 1
< EV ({w €N:0< flw) < E}) < J\—/I;y(ﬂ) < €/2.

Furthermore, the v-continuity of |u| yields a §(¢) > 0 such that E € S, v(E) < §(¢) implies
|k|(E) < €/2 and the v-integrability of f provides an M,(e) > 1 such that

v({we QM < f(w)}) < é(e).
Thus,

el ({w € Q: M, < f(w)}) < €/2.
Setting M (e) = max{M;, M} we are done. g.e.d.

Proposition 3.5. g s totally |p|-measurable.

Proof. The sets {f = 0}, {f = oo} are both |u|- and v-null sets. Thus, we may assume that
0 < f(w) < oo for all w € Q and the same holds true for g as well.

Now, let {s,}(n € IN;) be a sequence of v-simple functions such that s, — f as n — oo in v-
measure; it is plain that the s,’s are |u|-simple functions and that s, — f as n — oo in |p|-measure
as well.
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By lemma 3.4, the sets on wich f is small are small so we may assume that s, > 0 for all
n > 1. Finally, t, = 1/s, is a |u|-simple function and an appeal to lemma 3.3 yields the total
|4|-measurability of g. g.e.d.

Proposition 3.6. g is |p|-integrable.

Proof. The functions fV 1, g An, n € IN; are v-integrable and |u|-integrable respectively.

n

Moreover, (f V £)(g An) =1 on Q for all n.

Then, set E, = {w € 0:0 < f(w) < 1} and g), = g(1 — xg,) for n > 1 so that each g}, is totally
|4|-measurable by proposition 3.5 and |u|-integrable since it is bounded. It is plain that g/, — g as
n — o0 in |p|-measure since |p|(E,) — 0 as n — oo.

Now, we claim that the indefinite integrals of the g/’s with respect to |u| are p-equicontinuous.
To see this, let

T (E) = /E(f\/‘T;)d”:_/;EnEn(fV;l‘)dV‘l"/E\En(fV;)dv_

- %y(EﬂEn)Hﬂl(E\En)

forall E € §, n > 1. Since m, ~ v and g A n is v-integrable for all n, an appeal to proposition 3.2
yields

v(E)= L(g/\n)dvrn =

1
= [ rmdu s [ (gamds=
E\E, n JENE,

1
=/ g'ndlﬂl+—nV(EﬂEn)2/g$dIul
E n E

for all E € S, n > 1. Thus, the indefinite integrals of the g.’s with respect to |u| are v-
equicontinuous and hence p-equicontinuous as well. The |u|-integrability of g follows by Vitali’s
convergence theorem. g.e.d.

We have thus proved (a) and (b). Now, recalling that

< p(EB),z* >= / fo~dv EeS
E

for all z* € X~ and applying lemma 3.1 we easily get:

<uEB)e >= [ (frgdul  EeS, o e X"
E

Finally, we can reconstruct a weakly |u|-integrable function which weakly represents u as an inte-
gral. The proof given here is taken from [4].

Proposition 3.7. Let X~ be separable, let p satisfy (P1), (P3) and assume that for each z~ € X*
there exists an S-measurable and |u|-integrable function hy-: Q) — IR such that
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< u(E),z” >= / = d| ] Ees.
E

Then, there exists a weakly |p|-integrable function h: Q@ — X** such that

< p(E),z” >= / <z, h(w) > d|p|(w) EeS, ¢z e X"
E

Proof. Recall that X~ is separable by assumption and pick a countable total set {e;}(n € IV, )
in X* consisting of linearly independent vectors of unit norm. For each n > 1, set &, = he-. We
may assume that |h,(w)] < 1forallw e Q and n > 1.

Indeed, let A}, = |hp| A 1 for n > 1; for each n there exists an S-measurable partition {QF, QF} of
Q2 such that hl, = |h,| on QF and A!, < |h,| on QF. Since Al < |h,| on Q, we get for any E € S:

0> /E (B, ~ )]l = /E (B~ Ihadlal + /E o (B ol =

L
= /E . (b = |hnl)dlpl = [LI(ENQ3) = | < pey > (BN QZ) > [ul(EN Q) - [lull(EnQy) > o.
TN

Now, let F* be the linear space spanned by {e>}(n > 1) over the field of rational numbers; F~ is
a countable and dense subset of X*. Then, define hy: 2 x F* — IR by

ho: (w,2%) EQAXF™ = ho(w, ") = > amhm(w) € R
1<m<n
where 2% = 7, ., @me;, and note that
1) the mapping w € Q — ho(w,z*) € IR is |p|-integrable for each z* € F*;
2) <u(E),z*>= [ ho(w,z*)d|u|(w) E€S, z*€ F¥
3) the mapping 2* € F* — hyo(w,z*) € IR is linear over the field of rationals for all w € 0.

These relations and (P3) show that

|p] — supessweglho(wam*)l < [|m*}|

holds for any fixed z* € F~. Hence, as F™ is countable and (P3) holds, there exists N € A(|ul|)
such that

sup |Ag(w, 27)|(1 - xw(w)) < flz7]]
we

holds for all z* € F~.

Then, redefine Ay equal to 0 on N x F* so that (1), (2) and (3) still hold and note that now
ho(w,:) : * € F* — ho(w,z*)IR turns out to be a continuous linear functional on F~ of norm
at most 1 for each w € Q. Hence, by the denseness of F*, for each w € Q there exists a unique
norm-preserving linear extension of hy(w,-) , say h(w) € X**. The mapping w € Q — h(w) e X~
is the one we looked for. q.e.d.
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Remark 3.8. If X is ¢p(IVy), hypothesis (P3) can be dropped.
Indeed, let e}, € [;(IV;) be the sequence whose entries are all 0’s but the n-th which is 1 and let

F* and hy be defined as in proposition 3.7. For any fixed w € (, let ¢,: F* — IR be defined by
o, = Z amen, € F7 = p 2™ = Z amhm(w) € R;
1<m<n 1<m<n
as |hm(w)] <1 for all m > 1, it is plain that ,, is continuous and linear on F* over the field of
rationals with norm at most 1 for all w € Q so that

sup |ho(w,z”)| = sup [p 27| < [lz7||
we weN

holds for all z* € F*. Then, the remaining part of the proof goes as in proposition 3.7.
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