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1. Introduction

In the last four years a new class of theories, topological field theories de-
velopped extensively. This current started with the papers by Witten (1988).
Topological field theories have though a longer history. At the end of the sev-
enties, Schwarz expressed the Ray-Singer torsion (a topological invariant) as
the partition function of a quantum field theory. This is a general feature of
these models.

What defines such theories is the existence of a BRST-like operator, Q which
is nilpotent (Q? = 0), such that the energy-momentum tensor is a Q-exact
quantity, T, = {@, A }. It is well-known that in Chern-Simons theories the
action does not depend on the gravitational background. As a consequence,
the energy-momentum tensor of the theory vanishes, there are no physical
excitations like particles and the theory is topological.

From quantum point of view, these models are of two types; quantum theo-
ries, in which the two-loop contribution (and possible higher loop ) is nonzero
( examples are Chern-Simons theories ) and cohomological or semiclas-
sical which are one-loop exact.

In this thesis I consider only cohomological (or Witten) theories, with em-
phasis on the topological sigma models. Observables in such models are Q-

cohomology classes, i.e. operators O; such that

{ani} =0 ] Oi # {Q7Bz}

for certain operators B;. In simple situations, the topological structure of the
target space (the classical cohomology ring) is reflected in the ring of observ-
ables which is a quantum deformation of the former. The correlators of the
BRST invariant observables are expressed as integrals over a finite dimen-
sional instanton moduli space of wedge products of forms. If the non-linear
sigma model is not coupled with (topological) gravitation or topological YM
, we are in the de Rham cohomology; we can use Poincaré duality to ex-
press the correlators as intersection numbers of dual cycles. When we couple
the model with YM theories, the whole ring can be understood in terms
of equivariant cohomology. The fact that the physics reflects the geometri-
cal and topological structure of the target space is a more general feature
of 2-dimensional models; Lerche, Vafa and Warner have shown that under

general circumstances the chiral primary ring of N=2 SCFT is a quantum
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deformation of the classical cohomology ring of the target space. These rings
were studied and classified in a (super) Landau-Ginsburg approach. It was
shown that the superpotential allows a classification that is identical with
that obtained in the catastrophe theory. The chiral ring encodes complete
information of whether the theory is singular, with singular OPE’s. The
presence or the lack of singularities in QFT results from the presence or ab-
sence of singularities in the chiral ring. If the ring is finite, there are no
singularities.

There are three approaches to the N = 2 supersymmetric (also for topo-
logical) sigma model; the first one (the usual) uses an explicit target space
described by inhomogeneous coordinates; the second uses homogeneous co-
ordinates and the momentum map. Finally, there is the Landau-Ginsburg
approach.

There is increased interest in computing deformed rings corresponding to
instanton effects in theories with potential added. Using the moment map
description of the Lagrangian and taking symplectic quotients by means of
the gauge freedom with spurion gauge fields introduced seems to be a very
strong method.

The paper is organised as follows; in Chapter 2 the geometrical and topo-
logical notions are presented, with emphasis on the equivariant cohomology
of compact Ké&hler manifolds. Chapter 3 contains information related to
topological field theories, renormalization, coupling to YM; the effect of a
potential added in topological sigma model is discussed; Chapter 4 contains
an excursion in Landau-Ginsburg models, Gepner construction, the ring of
the CP" model , anomalies in sigma model with potential added. Finally,
chapter 5 contains the conclusions. As modality of communication I addopted

the 'naive’ style (opposed to the ’expert’ style ).
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2. Equivariant Cohomology of
Compact Kahler Manifolds

2.1. Cohomology

i) de Rham cohomology; homology; Poincaré duality
1. Simplicial homology

If M is a manifold which is smooth and connected, a p-chain is a (formal)

sum
ap =) cpHy (2.1)
k

where Hj, are smooth p-dimensional oriented submanifolds of M. An integral

/zcmk - ;ck /HK. (2.2)

For ¢, € R we have a real chain; otherwise we have to do with complex or

over ap is defined as

integer chains and so on. Acting on M, 0 is defined as the operation of taking
the boundary. In this case 8% = 0 because the boundary of a boundary is

empty. Extending the & operation to chains, we have
5CLP = Z CkaHk. (23)
k

cycle is a chain Z, without boundary. If Z, is the set of p-cycles and B, is

the set of boundaries,
B, ={ap | ap = Oapi1} (2.4)
the simplicial homology of M is the quotient [1]
H, = Z,(M;R)/B,(M; R). (2.5)

If G is a field, R, C or Z,, the homology group H,(M,() is a vector space

over G.

Example. For the torus T, = S* x S' we have

H():HQEJR,



(2.6)
H, = R&R.

2. Cohomology. Let ZP be a set of closed p-forms
27 = {uy | du, = 0} (2.7
and BP the set of exact p-forms
By = {vp | vp = dApes, (2.8)

the de Rham cohomology groups are given by the quotient of each Z, by
the corresponding BP? :

HP(M,R) = ZP(M, R)/ B?(M, R). (2.9)

HP(M,R) is the set of closed p-forms where two members are considered to

be equivalent if they differ by an exact form
wp > wp + dAp_1. (2.10)

HO has a special meaning; it is the space of constant functions; hence dim H°
is the number of connected components of the manifold. de Rham has proved

two classical theorems which show that H, and H” are dual to each other.

On H,(M,R) x HP(M, R) we define
m:H,x AP — R (2.11)

as being

(2, wp) = / w,- (2.12)

Ip
Using the Stokes lemma, it is trivial to show that this product does not
depend on the choice of the representatives in each equivalence class. If d is

the exterior derivative

d:Q, — Qo (2.13)

and d* its adjoint (with respect to the inner product of p-forms , (a;,8,) =
[, o, N* By, Bsp being an (n-p) form related to B, by Hodge * operation ),
the Hodge - de Rham ” Laplacian ” is

A=(d+dt) =ddt +dtd. (2.14)
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Each cohomology class contains precisely one harmonic form; this form w
(Aw = 0) represents a cohomology class. The dimension of H? is just the
number of harmonic forms which are linearly independent (this is just the
Betti number, b, ).

3. Poincaré duality
A p-form w is harmonic if and only if dw = d*w = 0.

Theorem. Let M be a compact, smooth manifold. Given a p-cycle a,

there exists an (n-p)-form a, the Poincaré dual of a, C M such that

/a wp = /1‘\’[ Qpp N Wy (2.15)

for any closed p-form w. Given a basis {z'} for H, and a dual basis {w;} for
H? such that

/. wj = &, (2.16)

there is also a basis {\'} for H""P such that
X Awj = 8. 2.17
A wj j ( )

In this case a, = aizi,wp = Viwi,an_p = a;\' and eq. (2.15) follows, both
members being equal to a;v'. Because w is closed, o is defined up to an exact
form. Sometimes it is useful to think that « is a current those support is

concentrated on the cycle a,.
ii) Intersection numbers

Two cycles a and b have transverse intersection if at each point p, the
tangent spaces T,(a) and T,(b) have no vector in common. In this case, the

intersection number of two cycles is [2]
N(a,b) = Zpeans p(a,b) (2.18)

where i, = +1; if {u'...u'} is an oriented basis in Tp(a) and {v'...v7} in T,(b),
then i, = +1 if the set {u'...u’,v'..v7} is an oriented basis for T,(M) and

—1 otherwise.

The intersection number N(a,b) vanishes if either a or b is a boundary;

this concept depends only on the homology classes of a and b. N(a,b) can
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also be expressed in terms of the Poincaré duals a and § of a and b;

N(a,b)= [ anp | (2.19)

M

because @ and 3 are basically distributions concentrated on a and b .

Example. Take on Ty = S x S! two basic cycles a and b;

. =

a a

Tt follows that N(a,b) =1 (=1— 1+ 1 in the second case).

The intersection number is an essential concept in cohomological theories
where the correlators for the BRST-invariant observables (and which are
nonzero due to instanton effects) are equal to integrals over the instanton(s)
moduli space of wedge products of corresponding forms. Using the above
arguments on Poincare duality, these correlators are equal to the intersection

numbers of the dual cycles (on the moduli space).
iii) The Classical cohomology ring
The wedge product of two forms is also closed because
d(ay, A By) = doy, A By + (—1) ey A dfg. (2.20)

We see that the wedge product of a closed and an exact/closed form is exact/
closed.In this way the cohomological equivalence relation is preserved and a
map

HP(M,R) ® HY(M,R) — H"™(M,R)

which defines a ring structure on
H*(M,R) = &,H?(M, R) (2.21)

11



is introduced. In this case
o; A Bj = ¢if” (222
is the product operation in ring {e,3;,7 are cohomology classes).
fv) Dolbeault Cohomology; Cohomology of Kahler manifolds

If M is a complex manifold of (complex) dimension n, in each patch V,
(M = U, V. ) we have the coordinates z; = z; + y; and the conjugafes
z; = z; —1;. In the same time M is a real manifold of real dimension 2n. The
difference lies in the fact that the transition functions are holomorphic. If a
real manifold of dimension 2k contains a subatlas with holomorphic transition
function, then the manifold is complex. The exterior derivative operator

9 4yl

k k
= —+d
d=dz 5k + dy By"

can be decomposed as d = 0 + O where

0 - 0
—dsx 5= dzF .
0 =dz azk,a = dz e
We can define the space of complex exterior forms (79 which has a base
containing p factors dz* and q factors dz*. The action of the operators 0
and 0 is the following
8:0P9 — Qp+1,q,

(2.23)
5 QP — QPatl
d is called the Dolbeault operator. Obviously, 8° = 8% = 0. We say that 0 is
an operator of (1,0) type while the Dolbeault operator is of (0,1) type.

For real manifolds, the Poincaré lemma appies; each closed form is locally
exact. In the same way, on complex manifolds the Dolbeault-Grothendieck
lemma applies; its content is the same (it suffices to replace d with the

Dolbeault operator).

Let Z5%(M) denote the space of 0 closed forms of type (p,q). Because

5% = 0 on QP? we have
B(P(m)) C ZFT (M), (2.24)
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The Dolbeault cohomology groups are defined as being
HPN M) = z8(M)/8(QP=D(M)). - (2.25)

On a Kihler manifold the de Rham cohomology and 8 cohomology are equiv-

alent because

O + 010 = 55 + 56 = %(dcff +d+d). (2.26)

2.2. Equivariant Cohomology
i) The pullback of an exterior form

If o, is an exterior p-form on M; and f : M; — M,, the pullback of
a, (f a,)isap-form on M; . For example, if z* € M, , Ay’ € My, y7 =
fi(z') and a = h;(y)dy’, then f a = h;(f(z))d;f dz'. Because d(f’;wp) =
frdw,, f* pulls back closed forms to closed forms and exact forms to exact
forms, relating the cohomology groups H?(M,; R) and HP(Mi; R);

f: H (M, R) — H?(M,, R). (2.27)

ii) Equivariant cohomology; the case of groups with free action on M

An isometry is a transformation f € Diff°(M) such that ¢’ = f(z)
leaves the metric invariant (g’ = g). Consider a manifold on which a finite
group of isometries G acts freely (there are no fixed points). If w, is an
harmonic form on M and g € G, the pullback g*w, is also harmonic. w, is
called G-invariant if g*w, = w, for all ¢ € G. In this case we can define
harmonic forms on M/G as G-invariant harmonic forms. If we denote the

equivariant cohomology groups as being HZ(Al), then
HE(M) = HP(M/G). (2.28)

Because the isometries have fixed points (the zeros of the Killing vectors) we

have to introduce the general case.

iii) Equivariant cohomology; the general case
Let EG be an universal G-bundle and Mg the product
]"IG = Ed Xag M. (2.29)
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A point in Mg is obviously a pair (p,q) , where p € EG,q € M. The meaning
of the above notation is that we can translate the right action of G on EG
into the left action of G in M

(rg,9) = (P, 99) (2.30)

for each g € G. Mg is a bundle over the classifying space BG associated
to the universal bundle, the fiber being M. If 7 defines the projection in the
base space, this fiber bundle is given by

Mg — BG. (2.31)

The equivariant cohomology of the G-space M is defined as the ordinary
cohomology of the space Mg [3] ;

HZ(M) = H(Mg). (2.32)
A more intuitive picture can be given using the Cartan-Borel diagramm

E «—ExM-—M

! L (2.33)
B+— ExgM — M/G

where E=EG and B=BG. Take (p,q) € Mg and denote H, the isotropy
group of the point q (Hq = q). Because the orbit of q (Gq) is generated
by G/H and not by G, the quotient space M/G is in fact the quotient with
respect to G/H and by o~! we do not recover E but rather E/H, where Hj is
the stabilizer of q. If G is a compact group acting smoothly and freely on M,
then H, = 1 for all ¢ € M; as a consequence, }¢ and M/G are equivalent ,

the equivalence relation being given by o;
c:FEGxq— Gge M, (2.34)

o ' (Gq) = EG. (2.35)

iv) Weil’s de Rham model for Equivariant Cohomology
Consider g being the Lie algebra of G and define the tensor product
W(g)=Ag" ® Sg” (2.36)
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where Ag* is the exterior algebra and Sg~ is the symmetric algebra of the
dual g~ of g. This algebra is freely generated as a Z, graded commutative

algebra ,
wpwy = (—1)wqwy. (2.37)

It is considered that generators in A have degree 1 and are denoted by {6*}

while generators in S have degree 2 and are denoted by {uy}. In this case
W(g) = R[f;u] (2.38)

where R[f;u] is by definition the polinomial ring (with real coefficients ) in
9 and u . If we consider 6% as being left-invariant 1-forms on G obeying the

Maurer-Cartan equation
o 1 o B
o> + ECMG 7 =0 (2.39)
then in W(g) we have a differential operator D such that

1
Dg* + —2-0‘57656" +uq =0, (2.40)

1
Duq + 5Cgusf” = 0. (2.41)

The Jacobi identity on C,, (equivalent to d*6* = 0) is translated in D*=0
in W(g) . Example. If G = T ( a torus ) the structure constants vanish

and

DO 4+ u, =0, (2.42)
Dug, = 0. (2.43)

As a consequence, the D-cohomology of W(g) ( denoted Hp(W(g))) is R.
If P is a principal bundle with structure group G and M is the base space,
X € g appear naturally as vertical vector fields; our de Rham complex Q*(P)

is natural to define the action §(X) as an inner product
W(X)A = X' Ay i (2.44)
if A is an nform on P and the action of the Lic derivative £(X)
L(X) =1i(X)d + di(X). (2.45)

Under the projection w : P — M, Q*(M) is identified with the basic elements
of Q*(P) ;
(X)p=0 ; Le=0 VXeg. (2.46)
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In the Weil algebra , the same operations are given by
i(en)d? = 6.7 5 ilea)ug=0 (2.47)

L(es) =1(eq)D + Di(ea) (2.48)

where {e,} is a basis for g dual to {#*}. In analogy to eq.(2.46) we have the
basic subcomplex Bg C W(g); this is the ring of polinomials on g invariant

under the coadjoint action of of g on g™ ;
Bg = Inv,S(g7). (2.49)

For a compact connected Lie group G , the ring S is a polinomial ring in
l=rang(G) generators ( a de Rham model for H*(BG) ). In this way there

is a natural isomorphism

Bg = H*(BG). (2.50)

When G reduces to a torus of rank 1, BG reduces to R[uiu,...u;]. We define
Q:(M) as being the basic complex of Q*(M) ® W(g). I give without proof
(see ref [5] ) the following theorem: Theorem If G is a compact connected

group acting smoothly on M, there is a natural isomorphism
H{Q, (M)} = Hg(M). (2.51)

In other words the equivariant cohomology ring H;(M) is ( modulo this
isomorphism ) just the cohomology ring of Q}(M).

Example. When G is a circle S* , W(g) = R[f, ul;
o€ O (M) ® W(g)
w = Z akulC + Z biu'6 (2.52)
ak,bl - Qx(ﬂ’_[) ‘

If X is the generator of g € R dual to 8 (i(X)8 = 1), a basic ¢ must obey

Z(X)g& = Z(i(X)a,k)uk ~+ Z(b[ + z(X)b,@)ul =0,

k l

(2.53)

L(X)p = ;(E(X)ak)uk +2 L(X)bju! = 0.

16



which is equivalent to

L(X)ax =0,
(2.54)
bk = ~i(X)G,k.

Demnote by Q7% the kernel of £(X) in Q*(M); if w € 0%, then w is invariant
under the action of G = S. Let 0% [u] a polinomial ring generated by an

element (u) over {13 ; we can define a ring homomorphism

Q% [u] — (M) @ W(g) v (2.55)

AMa) =a—1(X)ab
(2.56)
AMu)=u ;

more than (and maybe more important) A induces a ring isomorphism
Q% [u] = Q (M). (2.57)

WAe can introduce a differential operator d, on 2% [u] associated to D on
Q;(M) such that
Ad, = DX,
DXa = D(a — i(X)al) = da — i(X)daf — i(X)au
= Mda + i(X)au) . (2.58)
It follows that
d.a=da+ui(X)a . (2.59)

Because u is closed in 23(M) we have
dya = 0. (2.60)

By setting u=0 in the action of A (at the end ) we obtain finally a natural
mapQy[u] — Q°(M). This model extends naturally to a torus (G = T);

when T has rank 1 one simply chooses a basis u;...u; in its Lie algebra and

define
dea =da+ ) i(Xx)aug. (2.61)
k
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If G is non-abelian , one chooses firstly the maximal torus T in G (corre-
sponding to the Cartan subalgebra ) and then one describes (M) in terms
of the Weil group invariant terms in Q7(M).

v) Evaluation; reduction to the Witten complex

Let X be a Killing vector on M; we define the operator
ds = d + s1(X) (2.62)

with s a real parameter acting on Q*(M). Witten [4] has studied the "Hamil-

tonian’

H, = d,dF +dtd, (2.63)

ans proved that for s # 0 the dimension of the zero eigenspace W, (H,¢y =
0, € W,) is the sum of Betti numbers for the zeros of the Killing fields.
He has shown that W, C Q%,

LX) =0 O (264)
if € W,. Because d? = sL(X), on 3%
d: = 0. (2.65)
We can identify (canonically)
W, ~ H(Q,d,) = Ker d,/Im d,. (2.66)

The relation between the Witten groups W, and equivariant cohomology
groups is the following. If X generates the circle S , the equivariant cohomol-

ogy ring Hz(M) is a module over the polinomial ring Clu] and
H(M) = H(Qx[u], dy) (2.67)

The only difference between the d, cohomology and equivariant one is that
in the first case s is a real parameter (it can be also complex) while in the

second case u is an indeterminate of a polinomial.

vi) The 'Witten’ complex and SQM

If d is the exterior derivative (d : 2, — ,41) then the Witten derivative
dy = d + 51(X) has an action

ds . Qp i Qp+1 ) Qp——l- (268)

18



On the Z, graduation of the de Rham complex A* = AL @ A_ where

A+ = Z @Am
p even
(2.69)
Ao=Y" @A,
p odd
the action of d, becomes
ds: Ap — As. (2.70)

We recognise the action of a fermionic charge ( or a linear combination) on

the Hilbert space of the SQM (H = H, @ H_)
Q:Hy = He. (2.71)
With the identification
Q,B = i'/*d, +i7/d} (2.72)

the Witten "Laplacian’ is equal (up to a numerical factor) to the Hamiltonian

H, = Q% — 21sL(X). Obviously, on Q% we have
H, = Q. (2.73)
If F C M is the space of the zeros of the Killing vector X
F={ze M|X(z)=0} (2.74)

it was shown by Witten that for H, = d,d + dId, acting on invariant forms
which belong to Q; the number of zero eigenvalues is independent on s
if 5 # 0 and also independent on the choice of the X-invariant Riemann
structure (metric) on M. This number is equal to the sum of Betti numbers
for F. Because for s = 0, d, = d, H,—y is just the usual Laplacian, the
number of zero eigenvalues is equal to the sum of Betti numbers for M. The
s-dependent term in H, being a bounded operator the eigenvalues of H, are
smooth functions of s and the number of zero eigenvalues for small s is also
equal to} n_, bp(M). Using this model in the s — co limit ,Witten was able

to prove the fixed-point theorem for the Euler number
X(M) = S(=1)b(M) = S(~1)bi(F). (2.75)
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This result is closely connected to Hopf theorem which relates the Euler

number to fixed points of arbitrary vector fields.
Consider the conjugation operation on d,
d, — e Md,e (2.76)
where e¢*/ is a multiplicative operator which écts on forms. We find
e Md,eM = e, (2.77)

where

s = se®. (2.78)

In this way s can be changed in an arbitrary way (but remaining nonzero).
If we find a cocycle w(dyw = 0) we have a cocycle ' = eMw with respect to

ds(dsw’ = 0). Under conjugation,
df — e Mdtet (2.79)
and the Hamiltonian (or the Laplacian) transforms as
H, — e MH,eM = e H,. (2.80)
It follows that the number of zero eigenstates is independent of s (for s # 0 ).

Using the Riemann metric, it is useful to introduce the 1-form K dual to
the Killing vector K
K(K)=1. (2.81)

From the definition of the Killing vector

i(K)(dE) = —d(K?). (2.82)

The Hamiltonian becomes
H, = dd™ +d*d + $*K* + s(dK A +i(dK)). (2.83)

The potential energy is V(¢) = s>K?*. For s — oo the zero eigenstates are

concentrated near the zeros of K (the set F)

20



2.3. Isometries of Compact Kahler Manifolds
i) Poisson action and momentum map

Everytimes the action of a group G on a manifold M preserves a simplectic
form (i.e. a 2-form which is closed and non-degenerate ) w on M we can define
a momentum map. The idea is that the non-degeneracy of w to introduce
a duality relation between 1-forms and vector fields on M. For example, to

each vector X we can associate a smooth function fy on M such that
fx =1(X)w. (2.84)

Conversely, to a function f we can associate a vector Xy. In the first case,
(X — fy) we defined a Poisson action (or a comoment map on (M,w). In

general, a Poisson action is a function
gig— F.M (2.85)

where g is the Lie algebra of G and F,M is the Lie algebra of the smooth

functions on M whith respect to the Poisson bracket.

The moment map is the dual of the Poisson action
®: M — g (2.86)

where g* is the algebra dual of g. Example. Consider the action of a circle 5
on M and denote by X the infinitesimal generator (the Killing vector ) of this
action. This can be lifted to a Poisson action fy according to equation (2.84)
. There is an obstruction in finding such an fy; this is just the cohomology
class of i(X)w in H'(M). If the Betti number b, = 0 then fy is unique
up to an element in H°(M) (i.e. a constant ). w being supposed invariant
under S and annihilated by the Lie derivative £(.X') belongs to Q% [u] . There
is a unique way to extend w to an equivariant closed form in Qy[u]. If we
introduce the form

wi=w-— fu (2.87)

where fis a smooth function on M, then
dxw™ = (1(X)w — df )u. (2.88)

It is obvious that w* is an equivariant closed form if and only if fy defines a

Poisson lifting of the action. The above result is generalized in the following
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theorem; Theorem. For any group G , there is a natural one-to-one corre-
spondence between Poisson liftings of a simplectic action and equivariantly

closed extensions w* of the simplectic form w to Q;(M).

The proof can be found in ref . I will sketch only the main steps. If
X — fy is a Poisson lifting of the G-action, in a base {X,} for g this
becomes

Xo — fa-
Consider an element w* in Q.(M) ® W(g)

w =w-—-D Z fa0° (2.89)
where {62} € g* is a dual base to {X,} and define 7, = i(X,) then
jow” = 0, (2.90)

Dw* = dw + D*(D_ f.0%). (2.91)

So, w is a basic closed form in (M) because dw = 0 on M and D*=0in
Q (M) ® Wi(g).

ii) Symplectic quotients and the moment map
Take the basic differential form on the phase-space

W = dej A qu (291)
J

Each function F(q,p) has a differential which can be converted into the vector

field

OF 0 OF 0
2.92
Z Op; an 6‘1} ap] ( )
We have the inner product
dF =< Xp,w > . (2.93)

This equation determines Xy uniquely because w is non-degenerate. X
preserves w. The converse is also true, at least locally. Example. If Fis
the Hamiltonian H , X is the Hamiltonian flow whose integral curves give
the dinamical evolution. Take [5]

n

Z p] + q_7 (2.94)

=1

l\DIi—J
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it corresponds to n uncoupled oscillators. For each pair (g;,p;) there is a flow
Xn; = p;0/0q; — ¢;0/0p; - (2.95)

which generates rotations in the plane (gj,p;) . For j # k ,we have
(X, X, ] = 0. (2.96)

Because these flows commute, we have the action of the torus T;, on the

system. Using complex variables, z; = p; + ig; , the n functions H; define a

map
p:C" — R"
given by
1
(21,22, ceey 2n) — §(|z1[2, ey |20]?)- (2.97)

This is an example of the moment map. The image is the positive quadrant
in R" . Let us restrict to a fixed energy taking H=1. The energy surface is

2n-1

a sphere § ; i
>zt =2. (2.98)
J=1

On this surface the Hamiltonian flow acts,

z; — ewzj. (2.99)
The orbit space (or the quotient space) is just the complex projective space
C P!, When restricted to the energy surface S*"!, the original simplectic
form w becomes degenerate , but the degeneracy is just along the orbits of
the Hamiltonian flow; a non-degenerate flow w; on C P! is induced. This

is the Kahler form on C'P™!. After some computation [5] we find

/CP”_L w1 = (2m)" (2.100)

It follows that

W

L

is the generator of H*(C P""'; Z). If we restrict the Hamiltonian to the sym-
plectic quotient CP™! such that 3° H; = 1 ,then the moment map projects

(2.101)

CP™! into an (n-1)-simplex:

p:CP* ! — (n— 1)simplez{(1,0..0),(0,1,0..0),...,(0,0,..1)}.  (2.102)
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More general, if a torus acts symplectically on M, we have a moment map
p:M— R?

provided that the n Hamiltonians are single-valued. R" in this case should be
viewed as the dual ¢* of the Lie algebra t of the torus T;,. At the end of this
paragraph I should quote the main convexity result (Atiyah [6] ,Guillermin,
Sternberg [7] ): The image of a compact symplectic manifold M acted on by

a torus T}, is a convex polyhedron.
iii) The Frankel theorem, relation with Morse theory

When a l-parameter group acts by isometries on a Riemann manifold M,
the fixed point set F is such that each component F, of F'is a totally geodesic
submanifold of M whose domension has the same parity as the dimension of
M. (This is a theorem due to Kobayashi.) If M is a compact Kéhler manifold,
the isometries are holomorphic transformations and F, are compact Kahler
submanifolds (points are also possible) [8] . The Frankel theorem [9] gives
us the Betti numbers of the manifold M in terms of the Betti numbers of
the fixed foint set F, using the Morse inequalities. Let M be a compact,
connected, Kihler manifold of real dimension n=2k and I a connected one-
parameter group of isometries of M. The following lemma holds; Lemma
1. If b (M) = 0, the fixed set F coincides with the non-degenerate critical
set of a real smooth function ¢ on M. Proof. The group I acting complex
anallitically on M, denote by X the Killing vector of the isommetry I. By
applying eq. ( ) to a Kéhler 2-form w on M (since w is Kéhler dw = 0 and
w is an harmonic form). Harmonic forms being invariant under connected
groups of isommetries (particularly I) we have L(X)w = 0; so di(X)w = 0
or i(X)w is a closed 1-form which is also exact because b;(M) = 0. This

implies the existence of a function ¢ such that
d¢p = i(X)w. | (2.103)

é can be taken as real-valued (only the real structure was used in fact). In

local coordinates we have

X=X0, ; w= wijclmi A de?s (2.104)

S0
i(X)w = w; X da' (2.105)
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On components,
)
dz!
The critical points of ¢(d¢ = 0) are just the fixed-points of I (X=0) because

w is a non-degenerate form (det(w;;) = 0 ). The degeneracy of the critical

= w;; X7 (2.106)

point is determined by the Hessian matrix

0*¢ X!

——— = Wi
OzifzI Y Oz

at the critical point (i.e. where X=0 ). Let p a critical point of ¢; it belongs

H = (2.107)

to a compact Kihler submanifold F(p) of critical points . Take dimF'(p) =
2r,7 > 0 and denote T}, the tangent space to M at p and H,the subspace of
T, tangent to F,. Since I leaves p fixed and operates by isometries, it induces

a one-parameter subgroup I. of rotations in T,. We can write it as
L(t) = €. (2.108)

Define a linear mapR : T, — T, such that in the point p the action is

0Xi_, 0
-y —.
Ozt Oz’
Extending this action (canonically) to a vector field in the neighborhood of
P

Y’i ai —

R(Y) = [Y, X] = limt_,O%(L(t) —1)Y = SY (2.109)
the Hessian matrix becomes
H;; = wyS,. (2.110)
As a linear transformation, the previous equation becomes [9]
H=JS (2.111)

where J is the complex structure tensor (J* = —1). It follows that JS=SJ (X
keeps invariant the complex structure ). We can put J and S simultaneously
in the canonical form, which is equivalent to a choice of (k-r) invariant 2-

planes (at p) such that
Ty=€ ®er®...®err @ hy
is invariant under the action of the 2kx2k matrices J and S
J = diag(V,V,...,V) ; S =diag(©;...04_,0,...,0) (2.112)
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where
0 —1 0 —6;
AV--(l 0 >,@g—<9i 0 ) (2.113)

The Hessian operator (JS) is given by
H = diag(——@l, —617 reey _9k-—r1 —Gk_r, O...O). (2114:)

The number of zeros in H is the dimension of the critical manifold Fp (=21).
This proves the lemma. We recognise ¢ as being the Poisson action of X. As
a corollary, if b;(M) = 0 and ¢ is different from a constant , then the fixed
set is F' not empty and not connected. The proof is based on the fact that
since ¢ is not constant it has unequal extrema. The disjoint sets ¢ = Maz
and ¢ = min contain two components of F. Lemma 2 In Lemma 1 the
condition by(M) = 0 can be replaced by the statement that F'is non-empty.
Proof. Consider the Hodge decomposition

(X )w = HE(X)w) + dé (2.115)

We need to show that H[i(X)w] = 0, H being the harmonic part. Take the
1-form associated to the Killing vector X

x = X;dz' (2.116)
It was proved that H[x] = 0. For any harmonic form h we have
0 = L(X)h =i(X)dh + di(X)h = di(X)h. (2.117)

It follows that ¢(X)h = constant (Bochner theorem ). Because the Killing

vector X has zeros somewhere, i(X)h = 0. In this way

(x, k) = /M x(X)h =0 (2.118)

and H[x] = 0. Using the fact that i(X)w = Cx (S.Kobayashi), H[z(X)w] =
h[Cx] = CH[x] = 0. C is the complex structure operator applied to forms.
The index of a critical manifold F, denoted ), is the number of negative
eigenvalues of the Hessian (it is clear from the form of the Hessian presented
above that this number must be even). With these prerequisites , the Frankel

theorem can be introduced: theorem. If F is non-empty, then

bi(M;K) =Y bis(Fa; K) (2.119)
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for all i and for the field K being Q or Z, ,where p is prime. The proof is
based on the Morse-Bott inequalities

bi(M; K) <Y bis,(Fa; K) - (2.120)
and on a result of Floyd [10]
So(M;K) > > bi(F; K). (2.121)

The above inequalities give directly the theorem. Example 1. Take M =
C P? with the homogenous coordinates (zy,z1,22) and define the action of

the U(1) group as being
(20, 21, 22) — (Zo,eit21, eitzg) (2.122)

The fixed set F is given by the point F; = (1,0,0) and the complex projective
line (2-sphere) Fy = (0, z1,22). We can choose the sign of ¢ such that Fj is
a minimum and F, is the maximum set. In this case A; = 0 and A; = 2, the

theorem being checked.
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3. Topological field theories

3.1. Generalities about topological field theories
i) BRST

Consider a fermionic operator Q which is nilpotent (Q* = 0) such that

the energy-momentum tensor is [11]

Tos = {Q, Aas} (3.1)
In this case there are no phisical excitations which propagates because
<¢wﬂ¢>:/fﬂm<¢wmw>=o (3.2)
because Q| >= 0 for each physical state |1 >.
ii) Twisting

Topological o models in d=2 can be viewed as twisted versions of the N=2
supersymmetric nonlinear o model if the target space is a Kahler manifold
. The N=2 model has two chiral symmetries Uy and Ugr acting on the left-
handed modes (L=V-A) and on the right-handed modes (R=V+A). Because
the Lorentz group in d=2 has only one generator J, there are no quadratic

constraints. There are four supercharges which transform under J@ Uy, @ Ur
as [12]

(_1/2, 170) ©® ('—1/2’ _170) & (1/270’ 1) ® (1/2707 —1)' (33)

We can define a new Lorentz generator as being

1

1
J'=J+ U= 53Uk (3.4)

In the singlet sector (J' = 0) there are two supercharges (), and (g trans-
forming under Uy, x Ug as (0,1)®(1,0). Both are BRST-like and anticommute

Q7 =Qr =1{QL,Qr} =0. (3.5)

Because the representation of the Lorentz group is twisted (J — J') the
fermions which have spins 41/2 with respect to J will have spins 0 and41
with respect to J’.
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In d=4 the rotation group is SO(4) ~ SU(2)r x SU(2)r. The Lagrangian
of the N=2 SYM theory has a global U(2) ~ SU(2); x U(1)y symmetry. The
interesting group in our problem is in this case SU(2)r x SU(2)r x SU(2); x
U(1)y, under which the gauge fields are [13]

(1/2,1/2,0,0)
the spinless bosons are
(0,0,0,2) @ (0,0,0, —2) (3.6)
and the fermions are
(1/2,0,1/2,1) @ (0,1/2,1/2,-1). (3.7)

The exotic action of the rotation group is taken to be SU(2)r x SU(2)}y
where the SU(2)}% is SU(2)r ® SU(2); (the diagonal sum ). Under SU(2)r, ¥
SU(2)z x U(1) the bosons A, ®, A transform as

(1/211/270) @(070,2)@(07():“2) (3'8)
and fermions Yy, X«,8,7 as
(1/2,1/2,1) ® (0,1,-1) & (0,0, -1). (3.9)

The global symmetries of the N=2 SYM model transform as (1/2,0,1/2,1)®
(1/2,0,1/2,—1) under SU(2) x SU(2)rx SBU(2)rxU(1)y . Under SU(2)rx
SU(2)y they will transform as

(1/2,1/2,-1) ® (0,1,1) & (0,0,1). (3.10)
The Lorentz singlet component (0,0,1) is just the BRST-like charge Q.
iii) Observables; the chiral ring

Because Q is a BRST-like symmetry, the observables O must be Q-closed
({Q,0} =0 ) [11] . The braces are notations for the graded commutators;
we can use also square brackets. What is important is to keep in mind that
the BRST variation of some operator is proportional to this bracket. In any
N=2 theory there are two SUSY charges, @+ and @~ which are nilpotent
operators ( (Q*)? = (@~)? = 0 ) such that the Hamiltonian is H = {Q*,Q"}

. The hermitean conjugate of Q% is @~ and conversely. In a topological
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theory, the BRST cohomology of Q7 is identified with the physical Hilbert
space. This means that Q*|]xp >=0, [ >~ |[¢ > +QF|p >. The ambiguity
in defining the states can be fixed by choosing for example @~|¢p >= 0 ;
this is the equivalent of picking harmonic representatives in the standard
cohomology. Using {Q*,Q~} = H we can identify topological states with
the ground states in the SUSY sector. Topological operators denoted 9;
satisfy [Q1,®;] = 0. They are named also chiral fields . These chiral fields
form a ring; to specify the ring we do not have to specify the points at
which we put the fields, because a translation can be expressed as the graded
commutator of two SUSY charges. Taking a basis B = {®;} for the physical

chiral fields, we get a ring
&;3; = 0" +[Q7, 0] (3.11)

which is usually a finite ring. If we can identify a unique vacuum |0 >,
states are identified with operators by ®;|0 >= |¢ >. It is a problem
in identifying states with operators (chiral fields ). How we identify the
vacuum state? Usually there are several such ground states, their number
being equal to the Witten index in the LG case. It seems impossible to pick
a preferred one. Though, if dealing with SCFT there is a canonical choice.
In this case we have two U(1) charges, ( g5 and gr ) which label the vacua;
we look for the unique state with minimum value of g7 r and we identify it
with the vacuum |0 > . In the massive case there is only one U(1) , the
fermion number and ¢ = q;, — gr. The LG ground states have ¢ = 0 , or
qr = qr. Using the spectral flow we can give an alternative definition of
the vacuum. This is possible because the spectral flow connects the NS and
R sectors, inBdependent whether the theory is conformal or massive (only
U(1) is involved ). In this way, an isomorphism between operators in the NS
sector and topological states in the R sector is established. If |1 >= @,|0 >

is a state in R, then
3;|j >= 89,0 >= C;*|k > (3.12)

and C;;* gives the action of the chiral fields on the 'ground’ states |j >. We
can repeat the above construction, with Q% — @~ . In this case &; — @5,

the adjoint, or anti-chiral field; the anti-chiral ring is obtained consequently

(see refs. [34] [35] ).
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iv) The Renormalization problem

There are no physical excitations (as one-particle states, two-particle
states,...) in topological field thories. The only physical state is the vacuum.
A natural question emerges; is the topological nature of this theories
preserved by renormalisation ?. In other words, is the topological na-
ture valid at one-loop in theories of Witten-type ? Omne-loop computations
in topological Yang-Mills (TYM) show in Feynman gauge the presence of
divergences and a non-zero B-function [14] [15] which has the same value as

in N=2 SYM
Blg) = —24°Ca(G)/(4m)* (3.13)

where C3(G) is the quadratic Casimir operator in adjoint representation and

g is the coupling constant. The only new contributions are the x1 loop

_10:(0) 1

Ktk — kgt
M N 3 16n7 €\ ")

and the ¢ loop

N\
2
;:M/\j‘\.( /“\’W\, }_02(G)g _];(kpku__nguu).
\ Yy, Y 3 1672 €
S~

There is asymptotic freedom. Adding the pure YM contributions, there
is no field strength renormalization in the Feynman gauge; only the coupling

constant is supposed to renormalization. ( For a different point of view see

though [16] [17] [18] [19] .)
v) Non-renormalization theorems

Roughly speaking, topological field theories are not renormalized at all.
The reason for this is the lack of UV divergences which results from the
absence of local excitations, or local degrees of freedom. The correlators of

BRST-invariant operators, or topological Green functions, cannot depend on
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the renormalization scale p ( topological invariants ). This is not true in
general for operators which are not BRST-invariant. Let s be the topological
Slavnov (BRST) operator. The effective action of a TFT has in general the
form

Tiop(f) = To + sAT (1) - (3.14)

The above equation gives us information on the untwisted N=2 theories; the
effective action of the dynamical N=2 theory obeys the same equation. As
a consequence, the coupling comstants which appear in I'y are not renormal-
ized. A

The above argument has to be refined because ’twisting’ requires also a field
redefinition; usually this is anomalous and explicitly p dependent. To un-
derstand this, one should note that in topological theories the observables
are adimensional while in the ’untwisted’ case their dimension is  , q
being their U(1) charge (chiral primary fields ). So,

Biop = 1 Buyn (3.15)
such that the two theories are related by a U(1l) transformation with a pa-
rameter g = ——;—log,u : the effective actions are related by

Lip =T — %logy byl . (3.16)

It is clear that the last term is the U(1) anomaly, A. Finally, the effective
action has the form

1
T="Tg+ ilogp, A+ sAT . (3.17)

The above equation expresses the non-renormalization theorem in N=2 theo-
ries; both I’y and A are not renormalized: I'y by topological invariance and A
by the Adler- Bardeen theorem. It is easy to show that, as a consequence, the
superpotential W of the N=2 Landau-Ginsburg in d=2 is not renormalized.
Indeed, if

L= [aoK(x,X) + [ aow(x) + [EW(IX) . (318)
The BRST operator s (s? = 0 ) is
s(...):/dzzdzé(...) (3.19)
and (at classical level ) we can identify

Ty = / P2d20W (3.20)
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AT =W +/d29K . (3.21)

Using the general formula for the effective action, it follows that W is not
renormalized by higher order contributions, because A = 0. ( To understand
more better the connection between the 'untwisted’ and ’twisted’ theories,
one should regularize the dynamical theory, by introducing for example a
cut-off, or by using the Pauli-Villars technique of massive auxiliary fields. In
this case, the twist should give the same topological theory.)

The non-renormalization theorem can be used to show that in N=2 d=4

SYM the one-loop 8 function is exact . In this case the anomaly is

2N
A=id— /F AF (3.22)
and the effective action becomes
r=(-1 4 N, )/F/\F+() (3.23)
=(— - — o L) .
agz T T 9392 0 s

This equation allows us to extract the exact § function which coincides to
the one-loop value. Another important result is the fact that the Kahler class
is renormalized only at one-loop . Let us consider a N=2 supersymmetric o

model on a Kahler target space M. The § function for the metric is

395 _

i R;; + higher loops . (3.24)

This 8 is a (1,1) form on M. This form is also closed because the met-
ric remains Kahler. Which is its cohomology class? The answer is due to
Alvarez-Gaumé and Ginsparg; The exact [ lies in the cohomology class of

the Ricci form and the Kahler class is not renormalized beyond one-loop.
3.2. The de Rham cohomology: Topological ¢-models

i) Action; A and B models

The usual chiral (super)multiplet ® is independent of 0; we express this
as D,® = 0. The N=2 twisted chiral multiplet x is independent of P8

and P_f§, where Py are chiral projectors. This means
1
Dix=5(1+7)Dx=0, (3.25)
_ 1 _
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In the above notations,

Dy = (P:)."Ds . (3.27)

These constraints are consistent only for d = 2 , because {D,,D_} = 0 only
for d < 2 . In theories with only twisted multiplets, D and D cannot be
distinguished. We encounter two kinds of theories: A. Theories of type A,
in which the action is S[®, ®]; B. Theories of type B, in which the action is
S[®, 85 %, %] -

1. TNSM on an almost complex manifold The 2-dim nonlinear sigma
model is a field theory for maps from a Riemann surface X to a target space
M which is usually a compact manifold. To define the topological theory,
the following fields have been introduced (D is the conformal dimension, U

is the global charge )

Field D U Statistics
U 0 0 +

X 0 1 -

Pe 1 -1 -

H} 1 0 +

In addition, both p¥, and H: are self-dual
pho=elTph (3.28)
H. =T H, . (3.29)

The latin indices are indices on the target space while Greek indices are
coordinate indices on the Riemann surface ¥. A connection on ¢*(T) is
obtained by pulling back the connection of T from M to X giving the covariant
derivative of x*

Dax' = 8uX' + 0uu' T’ (3.30)

The fermionic transformation laws can be chosen as being

§x' =0,6u’ =iex (3.31)

6p, = e(H,, + -Q-Eaa(Dlejx" ) —devix ok (3.32)

Because §,6.% must be zero for any field, the transformation laws of H is

. € . .
SH™ = -ZXkXI(Rkllt n Rklqupz']qt)Pat‘{"‘
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1€ . -
Eeaﬂ(Dlej)Xka“
€ ; 3 ot e g

Z(kakJ's)(xlDlJts)pat—zeI‘ijJH k. - (3.33)

A Q-invariant action could be

S = —i{Q,V} (3.34)

for any V. As a consequence

505 =1€[Q, S] = €[@*, V] = 0. (3.35)
More than, we ask for a conformal invariant action which conserves U; V
should be

V= /dza(p;aau* — LERL). (3:36)

We find a Lagrangian
1. o .
L= / Po{—H Has + H*00u — ipf (Dox'+
1 : . 1 .
ieaﬁXkaJljaﬁu]) - gP?PathXlez't—

1 4
EP?Pat(XkaJls)(XlDzJ“)}- (3.37)

The conserved supercurrent obtained from 65 =1 [ 0,eJ is
a ol g 1 (LN k. j
J% = gi; H¥x + 57705 Dedijx X - (3.38)

2. A special case. If M is a Kahler manifold , (DyJ'; = 0), TNSM appear
naturally as twisted versions of N=2 SNSM . If vector fields of type (1,0) or
(0,1) are V! and W, the metric g;7, the action becomes

2 J L J
S = 2/d"cr{g[j(9+u[5_uj - ‘iPiD—XJgIJ_

T - 1 7 5 :
—§P#JD+X1913 - EXIXIP+JP—JRITJJ‘}- (3.39)

There is an N=2 fermionic symmetry

(3.40)
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pl = 2e8su’ — ieglgﬁsgxsxspf

§p! = 2e8-u’ — ieg" BsgspxpX . (3.41)
€ and € are anticommuting constants; there are two fermionic chargés @ and
Qr

Q7 =Qr=1{Qr,Qr} =0. (3.42)
We can also consistently set pZ = XJ_ = 0; the action becomes
S = 2/d2cr{g1j5+u[5_uf — %pf_DJFXIg”-} (3.43)

and has a single fermionic symmetry

(3.44)
cﬁpz = 2e0_u!
§pl = —ieg" Bsgrsx’p} -
What is obtained is a twisted version of the conventional (0,2) model.

ii) Observables

The non-trivial observables are cohomology classes of Q i.e. operators
O which are Q-closed ({Q,O} = 0) modulo operators which are Q-exact
(O = {Q, F}). Consider an n-form

A= A, i du't. du™ (3.45)
on M. To A , we associate an operator
O = AipigeinX' X (3.46)
Under symmetry ,its variation is equal to
800 = €0 Ai iy i’ x X2 X (3.47)
Using the definition §0 = —ie{Q, O} it follows that
{@,04} = —0q,, (3.48)
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dA being the exterior derivative of A. One sees that 0% is BRST-invariant
if and only if A is closed. If A is exact A = dB then OY is Q-exact. In
this way, the Q-cohomology is equivalent to the de Rham cohomology on the
target manifold M. Taking A1, A,...A; closed forms of degrees m;...m; on M
and choosing the points Py, P, ..., P; € I, the correlator

Z(A1..45) =< OD(P)...00(P;) > (3.49)

is a topological invariant (it is unchanged under continuous changes in metric

on ¥ and M ). Indeed, because

Z = / DEIW[le?, (3.50)

§Z = — < W[B]6S >=10 (3.51)

because §S = {Q,6V} for some §V . It is supposed that the measure D¢ is

invariant under such changes .

As a consequence, Z(A;...A;) does not depend on the points P; Consid-

ering (9(? ) an operator-valued zero-form on 3, we have
dof) =i{Q,0\} (3.52)

where
(9_(41) = inAil_"inclu'.lXi?...xi" (3.53)

is an operator-valued one-form on X. This happens because

G
oY) = 8,4

5ga A i inOU
Dy . ~
Aiiyoin X" X :
+n 112 n .DO'Q X Y (3 54)
The difference OEP)(Pl) - (9_(4())(}:’2) is
o (p) - 09(R) = (@, [ O} (3.55)

where ) is an arbitrary path from P; to P, . A new BRST-invariant observ-

able can be introduced
Wa()) = / oL, (3.56)
A
A is a 1-dimensional homology cycle. We can repeat the process:

0} =i{Q,0} (3.57)
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An elementary computation gives for the last operator

0@ _ _‘n(n — 1)A

M 5 i dut A dutx Lt (3.58)

A new integral invariant is obtained:

Wa(Z) = /v o, (3.59)

In this vay , to each homology class on X we can associate a BRST-invariant

global observable .
iii) Non-Renormalization theorem

In the case of the Witten action the metric on the target space ( Kahler

) is renormalized [18]

1 1
(9r)ij = gij + E;Rijz (3.60)
It follows that )

where R;; is the Ricci tensor . The value of the S-function is the same as
in ordinary sigma-model , the complex structure is not renormalized , all
the renormalization of the Kahler form is due to the renormalization of the
metric. At the end of this chapter it will be shown that this renormalization of
the Kihler form w plays an essential role in showing the non-renormalization

of the Killing vectors in context of equivariant cohomology.
3.3. Topological Sigma Models coupled to Topological YM

This models were discussed in ref. [12] . The fermionic transformation
laws for the u,y, p multiplet must be modified such that the commutator of
two fermionic transformations 8,6, — é.6, is not zero, but a gauge transfor-

mation. The new transformation laws are
T2 )
du’ = 1ex’ ,

5x' = eV} (3.62)
where V, are Killing vectors (@ = 1,...,dimG) and ¢ belongs to the N=2
vector supermultiplet. The transformation law of p is unchanged, but the
transformation of H becomes

€

§H:. =' old + 1e®°(D; V. )pl — i3

B VE(DeJ*)eanr™ . (3.63)
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From these transformation rules, we see that the action of the BRST -charge
Q is different (@ — @~). The action in this sector becomes

S, =@V} (364)

where )
V= / Lo} Do’ — o7 HL) - (3.65)
D, is the pullback covariant derivative. The problem is to couple this 'matter’

lagrangian to topological YM in four dimensions [13] . The observables in

the ’matter’ sector are obtained starting from
0 i Lin
O = Ay Xt ox™ (3.66)

Due to the modified transformation rule, O‘(f) is not a BRST invariant oper-
ator. We have
5(9‘(5) = end v Ay i XXX (3.67)

We have to add corrections in order to obtain a BRST-invariant operator. If

1, is the operator of contraction with V, defined as
(1a(B))igiy..in = 2V, Bijiy i (3.68)
equation (3.60) can be written as
500 = €3°0; (A) . (3.69)

Let £, be the Lie derivative with respect to the vector field V, . The action

on a form F is given by
Lo(F) = (di + id)F . (3.70)
If F is closed and V, invariant, then 7q(F) is also closed
di(F)=10 . (3.71)
For F=A, diy(A) = 0; it is possible that
1.(4) = dA, (3.72)
where A, is an (n-2)-form. We can define a new operator
OO = Ay i x™ = B (Aa)ivigin X X" (3.73)
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The BRST variation of (;)(40) is
5@(:) = —-(TL - 2)@{a@bvl;il(Aa)illé---izn—zxiz"'Xin_z- . (374)

The progress consists in the fact that the variation is of order (n-3) in x.
Continuing the process, after a finite number of steps a BRST-invariant op-
erator is obtained. The whole process can be described using the Weil’s
model. Let Q*(M) be the de Rham complex of M and 5*(®“) a polinomial
algebra on ®° ; consider Q5 (M) = Q*(M) ® 5*(2°) and denote by W~ the
G-invariant subcomoplex of Q% (M) . W~ is the set of elements in Q5 (M)
which are annihilated by

0

. cqb
ch."‘ﬁa’l'fab@ 5%

(3.75)
where f are the constant structures of G. Because ®*L, = $°L,, we have
L, W™ =0. (3.76)

Define D = d + ®%,; then D? = ®°L, and obviously D* = 0 on W~. Any

element F of degree n on W™ has an expansion
F=Fr4 @ Fr?+ 30 F " + . (3.77)
where F* is a k-form. The operator

OF = 0 + 8°00) + 2" F°OLL + ... (3.78)

has the property that
§O%) = OB . (3.79)

If DF = 0 then the operator is BRST-invariant; if /' = DA for A € W~ the
operator is BRST-exact. In this way, it corresponds to the D-cohomology.
This is just the G-equivariant cohomology of M [3] .

3.4. Sigma Models with Potential
i) Generalities

Starting with the bosonic model in which n scalar fields ¢; are inhomoge-

nous coordinates on a target space M and the action is given by
=3 / B2g;;0,4' 0" (3.80)
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where g;; is the metric on the target space, it is possible to construct a

supersymmetric N=1 extension by introducing the superfield
. . - . 1- . :
®'(z,0) = ¢'(z) + 0y’ (z) + 59917"(3:) (3.81)

where 0, is a Grassman coordinate of superspace. Defining the supercovari-

ant derivative and -« matrices

0
— gk
Do = 5= = i(7"6)aBn, (3.82)
7’ =0y, = 0,75 = 0y = PTA° (3.83)
the superspace action is

17, o

S = Z—,/d"@dzmgij(@)D@'D@J (3.84)
/]

and is invariant under supersymmetry transformation

6P = £,Q, P (3.85)
where P
Qo = ETR +1(4#0,0)a- (3.86)
After integrating over § and eliminating the auxiliary fields I, the component
action is .
S=3 / &2(gi;0u0'0ud’ + igij "1 Dyth’+
1 i k7il
6Rz_7kl¢ '(,[J "lb ’llb )7 (387)
where
DMbj = a;ﬂpj + Fil(augf’)k?bl' (3'88)

On components, the supersymmetry transformation is
§¢' = &', (3.89)

St = —iy0,¢'e — T @piyh, (3.90)
It was shown [20] [21] that the above model admits a second supersymmetry

if and only if the target space M is a K&hler manifold. If M is Kahler, the

second supersymmetry is [20]
§¢' = eJ' o, (3.91)
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§(J 7)) = —iy"Bud'e — T JI T map'y™, (3.92)
J is the complex structure. The metric g,; is the second (mixed) derivative
of the Kahler potential K(z,Z)

52 _
9ub = azaang(z, zZ). (3.93)

A potential in the N=1 sigma model can be introduced as follows. Add in

the action a general term
Y = —(mV($) + mWs(§F Y + mWSii( o)) (3.94)
and modify the supersymmetry transformation of ' as follows
51 = 8(old) — mH($)e ~ mG(d)yse (3.95)

where H! and G* are vector fields and V(@) is a scalar on M. W;; is a sym-
metric tensor and T/VS is antisymmetric . By imposing the invariance of the
new action under the modified SUSY transformation we obtain the following

constraints [20]

W, = D;D;W, H; = DW, (3.96)
Wg- = D,'Gj, D,'Gj -+ DjGi = 0. (3.97)

It follows that G* is a Killing vector of M. The scalar potential is obtained

in the same way [20]
V(¢) = g7 (D;WD,;W + GiG,). (3.98)
The function W(¢) is the superpotential.

For N=2 models on Kahler manifolds we have to introduce isometries

generated by holomorphic Killing vectors as follows;
§2° = V*(2),82% = V*(z) (3.99)

where
D.Vs + D5V, = 0. (3.100)

Because the Killing vectors are holomorphic, we can introduce a real scalar
function U(z, 2) ,such that
V, = i0,U, (3.101)
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Va = —i0:U (3.102)

or , in real coordinates

Vi = J%;6;U. ©(3.103)

U is called the Killing potential. The Lie derivative of the Kahler potential
1s
LvK =V®3,K + V8K = f(z) + f(2). (3.104)

In this case, the general expression of the Killing potential is
1 _ -
U(Z,E) = ii[V"‘aaK - f - VaaaK + f] (3105)

Example. In the case of C P" in Fubini-Study coordinates , the Kihler po-

tential is
K(z,z) = In(1 + 2%2%), (3.106)
the holomorphic isometry group is SU(n + 1) and the Killing vector is
Ve = %P2 4 b2 4 (BP2P)2° (3.107)
where C is a hermitean matrix and b is a complex vector which contain
together 2n? + n real parameters of SU(n + 1). The Killing potential is

z20B8 4 by — bz

U(z,z) = — 1T (3.108)
In general, the superpotential can be written in the form
W(z,2) = U(z,2) + h(z) + k(). (3.109)

ii) Renormalization

If we consider the restriction of the N=2 model to the case of U=0 ,
G=0 we have a purely holomorphic superpotential, there is a superfield for-
mulation of this model , the non-renormalization theorems of the d=4 N=1
model apply also in this case ; there are no radiative corrections to the N=2
superpotential. One should mention that if the holomorphic Killing vector
contribute to the potential with the term U there is only an N=1 superfield
formulation and a counterterm at one-loop level proportional to " D;8;U .
For general Kdhler manifolds this counterterm is not the potential of an holo-

morphic Killing vector ; so the N=2 model is broken to N=1.( There is also
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an exception; if the target space is CP", this counterterm is proportional to
U .) The above argument due to Alvarez-Gaumé and Freedman would spoil
the topological invariance at quantum level; though it is not true. Firstly,
breaking N=2 to N=1 would destroy the U(1) symmetry associated to the
Fermi number. This is a vector symmetry; hardly one could believe that
radiative corrections could destroy it! This idea has a strong basis; even

though using standard N=1 supergraph methods one has at one-loop

au 1

where A = d§ + 6d is the Laplacian, the above equation is consistent with
N=2 supersymmetry because of the magical identities in Kahler geometry.
In this way, the renormalized theory is N=2 invariant.

To prove this one has to use the relation between the Killing vector X, the
Kihler form w and the Killing potential U

i(X)w = dU (3.111)

and to apply the Lichnerowicz theorem: Let R be the Ricci form on a compact
Kéhler manifold M, w the Kahler form and X a holomorphic Killing vector.
Then,

i(X)R = dS8i(X)] - (3.112)

If X has a Killing potential U , it results
1
(X)R = d[§5U] . (3.113)

We have to use the fact that the potential U , being a soft perturbation, does
not modify the renormalization of the metric. In this case, the renormalized

Kahler form (at one-loop) is

w(p) = w+ log(p/A)R (3.114)
and we have
dU(p) & i(X)w(p) = dU + log(p/A)i(X)R (3.115)
= d[U + log(n/M)AU] . (3.116)
It follows that )
U(p) = U + 5log(p/A)AU | (3.117)
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as in the one-loop computation. This formula shows that the Killing vector
X is not renormalized at all; the renormalization of the Kéhler form is that
compensates the change in the Killing potential.

We can understand this result in the following way; when Killing vectors
X are introduced, the algebra has central charge, which is conserved. This
central charge, being conserved is not renormalized; as a consequence, we
should not expect a renormalization of the Killing vector X which expresses

the action of the central charge.

The topological version obtained by twisting the N=2 SNSM was given in
ref. [33] . The Witten action is modified by the introduction of the potential

terms
V= />: VI GV = Xxix DiV; — %g“ﬁpipéDiVj)- (3.118)
We can write the first two terms in V as
v = {0, /Z JaEA2GS Vi) (3.119)

In the above expressions, V' is a Killing vector, as G in [20] . The BRST
algebra has to be also modified . I give only the modifications;

{Q7Xi} = ivia
, ' . 1 . .
[Q,H.] =" old + DyV'pk — 5eﬁ/kngJlej. (3.120)

Since the N=2 supersymmetric algebra has central charges, the BRST charge
Q is not nilpotent ;

Q%] = V", (3.121)
[Q%x'] = 8,V'x’, (3.122)
Q% 0] = 0;V'p), (3.123)
Q% Hi] = 0,V Hy. (3.124)

It follows that @Q? acts as a local rotation. An example. If the target space

is CP' , the only non-trivial observable is
X =wix'x’ — @ (3.125)
where w is the volume form on the target space
CP'=35"
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and @ is the Killing potential (suitably normalized)

b = 57;(|z|2/(1+|z[2)—1/z) . © (3.126)
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4. The Quantum Ring

4.1. Landau-Ginsburg Models

The N=2 SCFTs correspond to infrared fixeéd point of the renormaliza-
tion group (RG) flows of the N=2 super Landau-Ginsburg [22] . The main
property of the fixed point under the (RG) flow is the universality; if we per-
turb the action by adding operators with conformal dimension bigger than 2,
the fixed point of the flow rests unchanged. (Such operators are called irrele-
vant.) There are only a finite number of operators which have the dimension
smaller or equal two. These are named relevant operators: they can change
the fixed point. Example. The N=0 minimal models were studied in ref.

[23] . The LG action for the pth element of the A series with central charge

c=1-6/p(p+1) (4.1)
S = [ @06 +gV(9) (4.2)

where
V(g) = "0 (4.3)

The relevant operators are 1, 9, ..., $*P~2), whyle ¢?~3 is irrelevant because it

corresponds to a shift in ¢. Higher powers of ¢ are also irrelevant operators.

Example 2. The action of the N=2 models can be written as

/ P2d 0K (¢, 8:) + ( / P2 0W(8:) + c.c.). (4.4)

Thanks to the non-renormalization theorem for the superpotential W{(¢;),
which is an holomorphic function (the F term) , the analysis is simplified.
It was shown that the D-term contains only irrelevants operators. It follows
that the superpotential W (#;) dictates the fixed-point of the RG-group flows.
The non-renormalization theorem tells us that W is an invariant of the RG-
flow. This implies that for each W we have a conformal theory. ( The D-term
changes in a complicated way under renormalization.) When the metric is
rescaled

g — N (4.5)

the F term changes as

/dzzd29 s ,\/dzzd?e).
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We have to rescale the fields to absorb this ;
&i — X (4.6)
The numbers w; have to be chesen such that |
AW (@i) = W(A“ ;). (4.7)

The above scaling of fields makes the F term form-invariant. Functions which
satisfy eq.(4.7) are named quasi-homogenous with weights w;. The left-right

scaling dimension of ¢; is thus {w;/2,w;/2). We can assume that
W(d; = 0) = 8;Wj, = 0. (4.8)

Also, we must impose 8;0;Wjp =0 ; otherwise massive modes are introduced.
In the infrared limit these massive modes are frozen out [22] . A non-trivial
theory must have a completely degenerate critical point at ¢ = 0. Such a
critical point is called singular. If we add to W a quadratic term in new
ﬁelvds, the IR point of the RG-flow is unchanged. Two superpotentials yield
the same conformal theory if and only if they are related to one another by
field redefinitions. To classify N=2 LG superconformal models, we have to
classify quasi-homogenous holomorphic functions in n variables modulo an
equivalence relation (two such potentials are equivalent if under a holomor-
phic change of coordinates they become identical). In plus, two holomorphic
functions in m and n variables should be considered equivalent if adding a
quadratic form in (k-m) variables to the first and a quadratic form in (k-n)
variables to the second one they become equivalent. This type of relation
is known as stable equivalence. The classification of the stable equivalence
classes is the object of the singularity (or catastrophe ) theory [27] . After
we proceed to the scaling (4.5) , the change in the partition function At the
fixed point of the RG flow is given by [24]

Z — ea:p[(c/487r)ln)\/R]Z = \/%Z7. (4.9)

The same computation must be given in the limit A — co of the LG models.
For each chiral superfield we get ¢=3 . After we redefine the fields

¢ = ATV (4.10)
the partition function changes as
Z — AL:(/2mw) 7, (4.11)
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Tt follows that the central charge can be computed as
c=6Y (1/2 —w). (4.12)

Denote by C[¢;] the ring R of all the power series in ¢; and by J the ideal of
R generated by the derivatives , i.e. 0;W. J is the space of power series in

#; that have at least one of the partial derivative as a factor. The quotient

_r_Clg]
C=T= W

(4.13)

is exactly the algebra of chiral operators of the theory (modulo descendents).
The reasons are similar to that presented in ref. [26] . The dimension of Q
is finite if the critical point is isolated (usually it is denoted by p ). If we
perturb the superpotential, usually the critical point splits in p independent
critical points [22] . p is named the multiplicity of the singularity and is
equal to the Witten index . Example. If W(z,y) = 23 4 33, a basis of Q
is 1,z,y,zy,y%, zy* . The index is p = 6.

An important concept is that of modality. This is the mumber of complex
parameters one can deform a singularity by (or the superpotential) without
changing the dimension of the ring Q and which cannot be absorbed in
a coordinate transformation. Examples. W = z* has modality zero
because if we add z™ or we change the index (m < k) , or we remove it
with an holomorphic transformation of coordinate(m > k). On the other
hand, W = «* + y* has modality one (m = 1) because adding the monomial
az’y? with a? # 4 the index is not changed while the modification cannot be

removed.

The classification of the zero-modality (m = 0) superpotentials was given
in ref. [22] . They correspond to the A-D-E simply-laced algebras and are in
one-to-one correspondence with the minimal N=2 models with ¢ =3 — 6/N,
where N is the Coxeter number of the corresponding group. I give below this

classification.

Algebra Superpotential Central charge ¢

A it 3—6/(k+1)
Dy k1 4+ zy? 3—6/2(k— 1)
Es z3 4+ y? 3—6/12

E; 3 + zy? 3—6/18

Eg z3 + 9° 3—6/30
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For Ay and D; the condition & > 1 has to be imposed.

Example. In the case of the Eg algebra, eq. (4.12) gives for the central

charge
1 1 1 1 14
=6(= —=)+6(=—=)=—.
c=6G -3 18G5 =3
The ring Q is generated by 1,z,v, zy,v? zy?,v3, zy® and is isomorphic with
1

the chiral operator algebra. The superfieds x and y have dimensions ¢ and

(4.14)

116 respectively. We see also that the Eg model is the tensor product

In the same way,

One should mention that the 0-modal functions presented above do not ex-
haust the the class of N=2 SCLG without physical moduli . There are higher
modal potentials without physical moduli because in the infrared fixed point
the superpotential must be quasi-homogenous; it is possible that the defor-

mation does not satisfy this, though being an irrelevant operator.

A complete classification is known for low modality (m < 2 ) [27] . For
m = 1 there are three classes; parabolic, hyperbolic and exceptional. Exam-
ple. The members of the parabolic class are denoted Ps, Xy and Jyp. These

singularities have ¢ = 3 and are given by

Po: 243+ +tazyz, a®+27T+#0),
Xo: z'4y? +az?y?, a#4
Jw: @+ +az?y?, 40 +27#0 .

These are quasi-homogeneous functions and for a=0 correspond to com-

pactifiations on SU(3)/Z3,S5U(2) x SU(2)/Z, and SU(3)/Zs [22] .

What is interesting in this classification is the connection with Dynkin-
like diagrams. They describe the topology of the vacuum near the conformal
fixed point. The nodes of the Dynkin diagram correspond to the minima
of the bosonic potential (|JAW|?) and lines correspond to solitons tunelling

between these vacua.
4.2. Topological Landau-Ginsburg models
These models were introduced in ref. [28] . The coincidence observed by
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Witten between the chiral primary ring [25] of the N=2 SCFTs and BRST-
invariant operator algebra of the topological sigma models is also true with
respect to topological Landau-Ginsburg models [28] . The reason for this is
that the observables of the topological LG theories have the same represen-
tation in bosonic fields as chiral primary fields in N=2 SCFTs. The clas-
sification in the simplest cases is the A-D-E, as in the previous paragraph.

Consider a potential

W =[g/(n+ 1)]U™. (4.17)

An interesting problem discussed in ref. is the change in the topological
LG model when interaction terms U,U?,...,U"™! are added to W. To each
interaction term, there is a coupling constant gi,gz-... Example. For n=3

we can choose the perturbed superpotential as being

1., 1
W = g(ZU4 + §a2U2 + oy U). (4.18)
If a; = a, = 0 the theory is of A3 type. If a; are non-zero, but satisfy the
equation
I oo 1
(o) + (o) =0 (4.19)

then the theory is of A, type. The reason for this is the following; U = 0 is
not a critical point of the potential. The critical point of Wis U = a where

2a° = aq, —3a® = ay. (4.20)

Making the transformation U' = U —a the critical point will correspond to
U’ = 0. As function of U’ the potential W becomes

1 3 .
W = g(aU” + ZU”‘ + Za4). (4.21)

One sees that W is diffeomorphic to U” in a small neighborhood of the critical
point. I give below the phase diagram of this model in the coupling-constant

space.
o(zA\




It corresponds to the bifurcation sets of the catastrophe theory [27] .
4.3. The Gepner Construction

All kinds of compactified strings with N=1 space-time supersymmetry
have two-dimensional N=2 superconformal invariance. Gepner [29] showed
that tensor products of minimal (also discrete and unitary ) N=2 super-
conformal models have the same massless spectrum and discrete symmetries
as strings compactified on Calabi-Yau manifolds. A large class of Calabi-
Yau manifolds were represented in terms of renormalization group fixed
points of Landau-Ginsburg models [30] . Example. The LG superpotential
W(®) = ®°*? corresponds to the A-series of the modular invariant N=2

minimal model with central charge

3P
= ——, 4.22
‘=713 (4.22)
For a tensor product of minimal models (P;, P,,..., P,) we have a superpo-
tential

W(®;...8,) = e0+2 4 gP+2, (4.23)

The simplest Calabi-Yau manifold, Y,.; defined in C P* by
22424420 =0 (4.24)

corresponds to the tensor product (3,3,3,3,3) of five level-three minimal
models. The relaton between CY manifolds and LG may be understood in

terms of path integrals. Starting with
/ [d8,]...[d®s)e /T o@ +otod) (4.25)

where the D-term is neglected ( in fact it is an irrelevant operator ), we can
“change the variables

&= ‘I’?a &= <I>l-/<I>1; (4-26)

the path integral becomes
/[dél]”_[d&]eifd?zdﬂea(1+f§;+.‘.+£§)_ (4.27)
After the ¢ integration is performed, we obtain a delta-function constraint

S(L+E5 + ...+ &) (4.28)
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which is the equation of Yy; in inhomogenous coordinates.

Example 2; Weighted Projective Spaces W’C’Pulx___wn If we take the
potential '

W=0+..+3% (4.29)
and change the variables
f=al,  ¢=alj/al (4:30)
the path integral becomes
[1d61)..des) e O e, (4.31)

The jacobian J is proportional to @{ where

j=1—10+ ll(i(l/l,—)). (4.32)

1=2

The jacobian does not depend on fields if j =0 , or
5 1

> L= 1. (4.33)

i=1

When this condition is satisfied, the integral over £ becomes trivial, giving
(142 4+ ... +€5). (4.34)
This correspond to an effective target space which is the CY manifold
Szi=0 (4.35)
1=1

which coincides with WC Py, 4, where d is the least common multiple of

l;...ls. The central charge of this model is

c= Z 3(L; — 2)/1;. (4.36)

Using eq.(4.33), we see that ¢ = 9, which is the condition for the vanishing
of the first Chern class.

4.4. Anomalies in the N=2 Supersymmetric C P*~' Model

In N=2 superspace formulation, [31] the lagrangian has the form

L= 2‘: B;e”"®; + (n/2f)V. (4.37)

=1
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®; are chiral superfields and V is a vector superfield without kinetic term.
We recognise in the above equation the moment map presented at pages
18-20. In this case the chiral fields ®; parametrize C" in the same way as
z; = p; + 1g; in the Hamiltonian model presented by Atiyah and Bott. The

super-covariant derivatives are

0 1. ~ 0 1
Dy = 59“]: + 591,5— , Dp= 3—5—1;— + §9L5— )
0 1= - 0 1
= — + —8, Dp=-—+-0 .
Dpg 50n 2935+ , Ur 50, + 5 rO+ (4.38)

where 8y = 0; & 10, . The chiral superfields have the following expressions
®=e¥(Z+09r+ Orpr + 000RG) (4.39)
P = eu(Z-{—’IZRGL—i—lZLeR—{—GRGLG') . (440)
The operator u is defined as

1 - _
U= '2‘(9L9La— -+ 93935+) . (441)

G and G are auxiliary fields. The vector superfield in the Wess-Zumino gauge

is given by
V =08, B_ + i0r0pBy + 0.0 + 0r01¢ + 000X L
+0r0.8. xR + 0L0rORXL + OROLOLX R+ (4.42)

0r0.6.0rD (4.43)

where D is an auxiliary field and By = By + 1B, is the vector component of
the vector superfield. The algebraic equation of motion gives for the vector

superfield

v}

fq?l@,»). (4.44)

n

V = In(

If we define the gauge-invariant chiral superfields as being
S = D DRV, S = DD,V (4.45)
the anomalous term in the effective action becomes [31]

Tlan = (n/4r) / &zf / 46,48, S(log(S/u) — 1) + / d6,d8;5(log(5/p) — 1)}
(4.46)
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We can check that the above anomaly written in terms of component fields
coincides with the conformal, superconformal and chiral anomaly. p is an
adimensional parameter introduced in the renormalization of the functional

determinants. Using the definition of the chiral superfield S we have

510:0 =¢= l09(1 + é’@)wneL =~ 1/JLKZR 3 (4-47)

After the Lorentz twist this field becomes proportional to 7 ; after a
change in notation (¢ — x ) we recognise the topological observable X.

The logaritm is a multi-valued function in complex variable ; we have to
choose the physical branch . This is determined by the condition that the

quantum phase exp(il') is single-valued. The minimum of the anomalous

term is
S=p , or S"=p (4.48)

where 8 is identified to p". We see that the second form coincides with the
quantum deformation of the classical cohomology ring of the C P"~1 manifold.
It is interesting that, for the value given in eq. (4.49), the anomalous term

in the effective action vanishes.

4.5. The Topological CP" Model

It was shown in the first chapter that for Kéhler manifolds the Dolbeault
cohomology coincides with the de Rham cohomology. The simplest Kahler
manifold which is compact (and suitable as target space) is the projective
space CP™. In this case the whole cohomology ring is generated by the 0-
form 1 and the 2-form w which is the Kahler form. The classical cohomology
ring is

R={l,w,u, .. ,w"} (4.50)
and obviously

Wwtt=0 . (4.51)

The wedge product is taken. In the topological sigma model, we have to

introduce the operator
X =wijx'x’ - (4.52)

It is BRST-exact, because w is closed. The quantum ring of BRST- invariant

local observables is
Ro ={1,X,X*,X°,..., X"} (4.53)
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and is isomorphic with the geometrical ring. The only difference is that
X™*! 5£ 0. To understand more better how things develop I will present the
case n=1 [32] . For simplicity I consider fields defined on a genus-zero surface,
i. e. a 2-sphere. The target space is C P! = S?. The classical solutions of
instanton number ¢ are
iz — b
w(z) = a—T—(z—:;%

=1

(4.54)

where b; and c; are all different such that the fraction is irreducible. The
only non-zero Betti numbers for the sphere are by and b, , and are equal to
one. Consequently there are only two homology classes; the point and the

sphere. Consider the universal instanton ¢ as a function
® :5xM— CP (4.55)

where M 1is the g-instanton moduli space, parametrised by a,b; and ¢;. De-

note by L; homology cycles of M ; these are obtained by imposing
o (zi) x L; € H; (4.56)

where H; are homology cycles of CP'. For H; = C P! we have L; = M; if

H; are points, denoted w;, L; can be extracted from the equation
w(z)=w; . (4.57)
Now, we are ready to compute the correlator
< X(z1)...X(2n) > . (4.58)

The g-instanton moduli space has obviously the complex dimension 2q + 1.

Using the ghost number (U) anomaly, we have the selection rule
AU = dimM (4.59)

and the correlator (4.58) is non-zero only if N = 2¢ + 1. ( X has U=2.) On
the other hand, the same correlator is the intersecton number of dual cycles L
in M. There are 2g+1 cycles L; those intersection we have to consider. This
intersection number is just the number of distinct instanton configurations
which contribute. Each cycle L; is given by eq.(4.57). Their intersection is a
system of 2q + 1 equations

w(z;;a,b,¢) = w; (4.60)
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with = 1,...,2¢+1 ,in 2¢+ 1 unknowns a, b;, ¢;. There is only one solution

[32] . Up to f-vacuum factors, the correlator is one. The final result is
< XWHs = gk
< X* > = 0. (4.61)
B is the §-vacuum contribution , given by
B=e (4.62)
where 8, is positive [13] . Only one type of instantons (g > 0 ) contribute.

In the C P! model the quantum ring has only two generators, 1 and X.

The multiplicative operation in ring gives
1-1=1,

1. X=X-1=X ,
X - X=X =al+bX (4.63)
where a and b are constants which follow from

0=<X’>=b<X>=0b ,

B=<X’>=<X?*.X>=a<X>=a . (4.64)

Finally,
X*=p (4.65)
that looks like a quantum deformation of the classical cohomology relation
W=wAw=10 (4.66)
where w is the volume form of CP*.

4.6. The CP' x CP' Model

If R, = {1,w,} and R, = {1,w.} are the cohomology rings of the first,
respectively the second piece of the product target space, it follows that the
cohomology ring of CP* x C P! is

R2 = {l,wl,wg,wlwg} . (4:67)
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w; are volume forms on the component i (i=1,2) of the target space and the
proof is based on the fact that the exterior product of two harmonic forms,
each defined on the component i is an harmonic form on the product space.
Using the representation of the metric tensor on the product space, as direct
sum, it follows that the action is the sum S = $; + Sz . The model is the
tensor product of two CP! models. Consider the quantum rings on each
component as being

Ry ={1,X} ,
R,y ={L,Y} , (4.68)
the quantum ring of the product theory is

Rix2g = Rig ® Raq (4.69)
or
Rixoq = {1, X,Y, XY} . (4.70)
Using the decomposition of the action, there is clustering;
< XVYM>=<c XV ><¥M > . (4.71)
Because
X2 = 131 9 }rz = ﬂg (4:72)

the only non-trivial correlator is
< X'yt >= 676] (4.73)

where p,q > 0. The only quantum deformations are given by eq.(4.72) and

as a consequence
X*Y? =36, . (4.74)

I considered that the §-vacua can be in principle different in these sectors.
4.7. The Quantum Ring in the CP""! case with potentiél added

In section 4.4. the N=2 supersymmetric C P"~! model was presented
in the form of chiral (anti-chiral) superfields ®; (®;) coupled to a vector
superfield V which has no kinetic term. This is a formulation which uses
homogeneous coordinates & supposed to the constraint ®® = 1. This con-
straint defines a sphere S2"~! | but the gauge degree of freedom allows us to

identify the target space with the symplectic quotient

§ml/st ~CPM (4.75)
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The above picture is extremely useful when a potential is added, as in the
work by Labastida and Llatas. All we have to do is to introduce a new gauge
superfield , U, coupled to ®; with the strength «; such that the modified

Lagrangian becomes
I'=Y 8, ")y, 4 (n/2f)V' . (4.76)
=1

( We recognise the moment map, as in the case without potential.) U is called
spurion gauge field . When we solve the equation of motion for o; = «, we
obtain V/ = V — aU where V is the vector superfield in the case without
potential. U is a vector superfield which contains the Killing vector V* and
the Killing potential & as components. What we have to do is to compute
the effective action, following the same steps as in the paper by d’ Adda, di
Vecchia and Liischer. At classical level, there are conformal, super-conformal
and chiral symmetries, which at quantum level are broken by anomalies. The
general expression for the contribution of one chiral superfield @; to the

effective Lagrangian in the case of C P! is

S
Leff jd S[log(ﬁl/n

where S = D, DpV; after the Lorentz twist to the topological case, S becomes

)— 1] + h.c. (4.77)

the topological observable. When the spurion gauge field U is introduced,

we have to change

S — S —aX , (4.78)
with
X = DDpU . (4.79)

The § = 0 component of X (or the 6rf; component of U ) is the Killing
potential ®. The minimum condition applied to the (new) effective action

gives

n

(S —aX)=8 . (4.80)

=1
This gives the quantum ring in the case of CP"' with potential added.
Taking the symplectic quotient is equivalent with identifying modulo a gauge

transformation.

4.8. Sigma Models on Grassmannians
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Complex Grassman manifolds are quotient spaces

Ge(p,q) = U(n)/U(p)xU(q) = SU(n)/S(U(p)xU(q)), (p+g=m) , p<q .
(4.95)

while real Grassman manifolds are defined as being
Gr(p,q) = S0(n)/50(p) x 50(q) - (4.96)

In the classical model [36] the bosonic field is a n x p matrix field Z = Z(z)
such that

Z¥Z =1,, or Z8Z! =68 . (4.97)

The Lagrangian is given by
L=g"Tr(D,Z"D,Z) = g**D,Z¢D,Z} (4.98)
where the covariant derivative is defined as
D, 7 =0,Z2—-ZA, . (4.99)

There is no kinetic term for the 'gauge’ field A, ; in fact, using the equation

of motion, we obtain
A, =Z78,Z , or A% =Z70,7} . (4.100)

The above model has the following properties:

i) Global U(n) invariance;
Z — goZ , or Z} =(gu)i; 25 - (4.101)

where gy is a unitary » X n matrix.

i) Local U(p) invariance;
Z — Zh , orZ¢ = k"2 . (4.102)

In this case h(z) is a unitary p X p matrix . iil) There is a conserved Noether

current, j, = ZD,Z* — D, ZZ*
9" 0ugn =0 . (4.103)
The current obeys the identity
8,70 — Ouiu + 2[jusds] =0 . (4.104)
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iv) There is an infinite set of non-local (classically conserved) charges; for

example, the first of them is given by
QW(t) = /dyldyzg(yl — y2)[Jo(t, 1), Jo(t, 2]~

/dyjl(t,y) - (4.105)

v) The model can be extended to include fermions in a minimal (M) or in
a supersymmetric (S) way (see ref. [36] for details). The analogy with the
CPn case may be very useful. In this case the Q(!) symmetry survives at
quantum level; this is useful in computing a factorised S-matrix (see ref. [37]
).

Excepting the Lorentz indices, fermions ¥¢ have an index ’i’ in the fundamen-

tal representation of U(n) plus an index ’a’in the fundamental representation

of U(p).

The classical cohomology ring of the complex Grassman manifold (which
is interesting here) was studied in the mathematical literature [38] . The
cohomology ring is generated by X, ..., X,, where X, is a (z,r)-form (X, = 1

by definition ). One define

p p

xX@(t) =3 Xt = [I(1 + pit) , (4.106)
=0 =1
Y1) = (XP (=)' = Y v . (4.107)

The ideal of Grassmannian cohomology is given by
Y =0 for i=q+1,..,9+p . (4.108)
For each vector p = 3°%_, n;e; such that
p
n(p)=3Y ni<q,n =012,..
=1
thereis a ( r(u),r(n)) form @, in the Grassmannian cohomology such that
p
r(p) =D in; . (4.109)
=1
In terms of X, this is given by
3P) = det <; jen(u)Xari-i (4.110)
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where a; is such that a; < a;y; with n; of a; equal to [ for each [ = 1,...,p.

There are
(p+q)

plg!
forms ®, which are the cohomology elements of the Grassmanian G(p,q)-

The Poincaré polinomial is given by

1 _ t{)q-l»z

c(tt . 4.11
Following Gepner [39] , we define
W (t) = —log(X P (— }: W(”)t‘ (4.112)

such that
oW )(t)

0X;
where 1 = 1,...,p. We see that the Grassmannian ideal is generated by the

= Y@ ()(—2t)* (4.113)

derivatives of W(+q+1(Xi), where

p pta+l

W (X, L 4.114
P+q+1(") 1P+q+1 ) ( )

p; being defined in eq.(4.106). We can use this expression as superpotential.
The central charge of this model is

Pq
c=3——— 4.115

When instanton effects are taken into account, we know (to be more precise,
this is a conjecture introduced by C. Vafa [40] ) the deformation which must
be introduced in W (see K. Intriligator [41] );

W(X) = Wy + (-1)6X, . (4.116)

As in the C P" model, X, being the unique (1,1) form is just the Kéahler form
(in the same time, the volume form is clearly Xf). (For p=1 (one variable)
the form of the perturbed potential was obtained by Dijkgraaf, Verlinde and
Verlinde [42] .) The chiral primary fields are unchanged under (4.116). The
ideal dW = 0 gives the deformed cohomology relation X,Y; = .

Example. In the case of U(5)/U(2) x U(3) the perturbed potential is
W(X) = X%/6 — X; X2+ (3/2)X7 X; -
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(1/3)X3 +BX: . (4.117)

The deformed ring relation is given by

XP—4XPX, +3X, X2 =0 . (4.118)
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5. Conclusions

We have seen that the N=2 supersymmetric (also the topological ) sigma
models can be described physically in three (at least) equivalent ways. While
in the pure (uncoupled to a potential) case it is useful to study the explicit
multi-instanton solutions as dome by Witten in ref.[32], to understand the
geometry and the topology of the moduli space M and finally to compute
topological correlators as intersection numbers, when we couple to potentials
we change the cohomology ( the de Rham cohomology is replaced to the
equivariant one). We cannot describe symply these correlators as intersec-
tion numbers. Using the moment map and symplectic quotients is a strong
method of computing the defermed ring in this case.

In topological sigma models on CP", we have classically conformal, super-
conformal and chiral invariances. At quantum level, these are spoiled by
anomalies. The origin of these anomalies is the fact that products of field
operators in the same point are not well-defined and we have to regularize. It
happens that this regularization destroys the symetries. As example , what
happens here is just the Konishi anomaly. By computing the effective po-
tential, the minimum condition gives us the deformed ring.

In the Landau-Ginsburg approach, it was shown that the deformation is on
the direction of the Kihler form. A classification of the LG potentials (not
complete yet) was given. Using deformed LG potentials we can describe
instanton effects in string theory, for example. We can (at least in princi-
ple) compute deformed chiral rings. There is a problem here. In the case
of (closed) strings, the configuration space is not the target space M , but
the loop space LM. What is important is the cohomology of LM. When
the Hilbert space is constructed, it is possible (and it happens in fact) that
two (or many) manifolds M, and M, which differ in geometry and topology
may give the same vacuum; S(M;) = S(M>). In this way (even a little bit
against the classical intuition) we can associate two (or many) manifolds to
a ground state. We have in fact two rings; the cohomology rings of M, and
M,. It was shown in ref.[25] that bu_pq(M1) = bp4(M2). (Both M, and M,
have the same complex dimension, d.)

In some cases (see the example given by K. Intriligator ) there are some
symmetries of the fusion rules induced by the spectral flow which give the

integrability of the deformed model.
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