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Introduction

While propagating in a given space (the “target space”), a string-like object describes a
two-dimensional surface, known as its “world-sheet”. This intuitive idea can be formalized
as follows: to the propagation of a string in a given space it is associated a o-model from
the world-sheet to the space under consideration. The “background fields” describing the
geometry of the target space are regarded as functions of the world-sheet coordinates.

For closed strings, the world-sheet is a Riemann surface. It is thus characterized
topologically by a single number, its genus g. The string perturbative expansion (the
expansion in string loops) is an expansion in g: the tree-level corresponds to g=0 (the
Riemann sphere), the one-loop level corresponds to g=1 (the torus), and so on.

At the classsical level (classical from the string point of view) the theory is described
by a o-model defined on a two-dimensional sphere. Such a o-model can represent (or to be
a part of) a classical string vacuum only if it is exactly conformal invariant. Its -functions
must vanish at all orders in perturbation theory. We refer here to the perturbation expan-
sion of the o-model field theory; the parameter of this perturbative expansion is usually
indicated as ¢’ and represents the string tension. The [-functions are expressed in terms of
the background fields. Their expressions involve derivatives of higher order as one consid-
ers higher orders in a'. Setting the F-functions to zero gives therefore a set of differential
equations for the background fields. The solution of these equations determines in turn
the “background”, that is substantially determines the geometry of the target space.

Of course, it would be particularly appealing to have a non-perturbative control of the
conformal nature of the o-model. This happens, for example, when the o-model represents
since the beginning a “classical conformal theory”.

String theory requires moreover that the total central charges (that furnished from
the o-model plus that of the internal theory) sum up to cancel the Virasoro anomaly of
the reparametrization ghosts (and, if present, superghosts).

So far our considerations have been limited to the classical level from the string view-
point. Suppose now that we have found a background such that the corresponding o-
model satisfies all the above requirements. The string loop contributions are described by
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o-models with the same target space, but defined on Riemann surfaces of higher genera.
A fundamental consistency requirement is therefore met. This request is the modular
invariance of the partition function. In particular the partition function must be invariant
under the action of the genus one modular group SL(2,Z).

Hence, when a space is a viable string vacuum, it is in correspondence with a conformal
field theory (CFT), satisfying certain particular requirements. The Lagrangian formulation
of this CFT is just the o-model on the space itself.

It is therefore interesting to search for the “abstract” CFTs corresponding to non-
trivial spaces which are thought to be of possible relevance (as classical string vacua) to
physics. The idea is that of reformulating at the CFT level the geometrical properties of
these spaces; note that at the CFT level it may be no longer necessary to refer to the
Lagrangiam formulation.

That of CFT is an extremely powerful framework. In the case the CF'T is solvable, one
can in principle compute ezactly the correlation functions for the conformal operators of
the theory. Certain operators, called emission vertex operators, are put in correspondence
with the incoming and outgoing particle states of the various fields appearing in the low-
energy effective theory of the string. The correlators of the emission vertices give the
amplitudes for the scattering of the particles on the corresponding background. Having a
solvable CFT, one obtains therefore ezact expressions for these amplitudes (where ezact
means exact up to string loop corrections).

Recently quite a lot of attention has been payed to the “search” of conformal field
theories corresponding to non-trivial manifolds such as stringy Black Holes in unphysical
dimensions (D=2) [1] and some progress has been made also for analogous solutions in
D=4 [2]. Callan, Harvey and Strominger have discussed [3] the very interesting case of
a four-dimensional instanton with torsion and dilaton, which solves the f-functions. The
o-model for this space exhibits an N=4 supersymmetry of world-sheet . This symmetry
should protect the o-model from renormalization, making it good as a classical string
vacuum. Moreover, they have shown that (for a particular value of a constant appearing
in the solution) the corresponding CFT is solvable. The last part of the thesis will focus
on this solution.

Also the main issue treated in this thesis is related with the general programme just

outlined of finding CFT corresponding to non-trivial spaces. It may be summarized as
follows. »
Consider what is hoped to be a “realistic” string model; an heterotic string [4] with gauge
group E} x Eg, compactified on a six-dimensional Calabi-Yau manifold [5]. It is well
known that the effective low-energy theory for the reamining four dimensions is a particular
matter-coupled N=1, D=4 supergravity.

Usually, one considers the vacuum of the effective theory given by the flat Minkowski
space. That is, one considers a string vacuum given by a target space of the form MY x
MBLink - blus heterotic fermions. However, it is possible to consider other solutions of
the effective theory, given by topologically non-trivial spaces M. It is then necerrary to
investigate whether, and under which conditions, a consistent heterotic vacuum including
the target space MSY x My can be constructed. In particular, I will focus on four-
dimensional spaces which constitute a generalizations of gravitational instantons. This
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generalization is allowed by the presence of other universal fields, beside the metric, in
the effective theory, namely the dilaton and the torsion. First of all, it is necessary to
characterize geometrically these spaces. This question is addressed in Chapter 1: they
can be described as appropriate generalizations with torsion of HyperKéhler manifolds,
hereafter named for simplicity Generalized HyperKahler Manifolds (GHK).

It can be shown that such spaces are exactly those for which the supersymmetric (1,1)-
o-model admits actually (4,4) supersymmetry. This extremely strong symmetry protects
it from renormalization; it constitutes thus a superconformal field theory. This matter
is reviewed in Chapter 2. In this chapter a “geometrical” formalism is adopted which is
shown to be well-suited (through the use of a first-order formulation) to the treatment
of the dilatonic effects. The incorporation of the dilaton in the CFT is fundamental, as
will be explicitely shown in the particular case of the Callan, Harvey and Strominger
instanton, to ensure that the central charge of the theory be exactly 6 in both sectors
(we are referring to 4-dimensional manifolds). This is what we expect. Indeed we do not
want to loose the intepretation of the theory as representing the propagation of the string
in the four-dimensional space. The value ¢=6 makes furthermore possible that the N=4
superconformal algebra involved be the “‘standard” one (as opposed to the “extended”
N=4 algebras appeared in the last years in the literature [6]). Recall indeed that the
standard V=4 algebra requires ¢ to be a multiple of six.

Summarizing: the stringy analogues of the gravitational instantons are the Generalized
HyperKahler manifolds; the abstract CFTs corresponding to such manifolds are (6,6)4,4

theories *.

In Chapter 3 some features of (6,6)s 4 theories are recalled. It is particularly empha-
sized the identification of the conformal operators that abstractly represent, at the CFT
level, the Dolbeault cohomology groups (or better, their generalization in presence of tor-
sion). This identification is extremely similar to what happens in Gepner’s identification of
the compactification of Calabi-Yau manifolds with compactification by means of (9,9)2 2
theories [7]. There certain (chiral,chiral) and (chiral,antichiral) operators are recognized
as the “abstract (1,1) and (1,2) forms” of the (9,9)22 theory.

In our case, also the N=4 moduli operators, i.e. those marginal operators that do not
break the N=4 invariance of the theory, are naturally introduced in terms of the “abstract
(1,1) forms” of the (6,6)4,4 theory.

We want now to consider an heterotic string vacuum including an internal theory
representing the six dimensions compactified on a Calabi-Yau manifold and a (6,6)4 4
theory representing propagation on a gravitational instanton with torsion (GHK manifold).
We must show that such a vacuum can be consistently constructed. This is the key point;
the idea results to be very simple, and is described in Chapter 4. Our proposal stays
at a generic level. As already said, we propose the identification of the (6,6)4 4 theories
with the description of string propagation on GHK manifolds in close analogy with the
identification of the use of an internal (9,9); 2 theory with Calabi-Yau compactification.

* From now on we use the notation (¢p,¢R)ny ,np to mean a CFT of central charges cr(cr) in the left (right)

sector, possessing np,ng left (right) supersimmetries.



In particular the analysis of how the original gauge group is broken by the embedding of
the holonomies of the internal and space-time manifolds rensembles very much the usual
compactification and in some sense corresponds to a sort of second “step” in the same
process. Also the analysis of the modular invariance of the partition function rensembles
the one carried in the usual compactification. The modular invariance is ensured since it is
possible to obtain consistently the partition function from a type II one through a h-map
mechanism.

If one knows the string vacuum corresponding to a certain background, then he has
the possibility of computing the scattering amplitudes for the various particles on this
background. In particular, consider asymptotically flat four-dimensional backgrounds, so
that the definition of the scattering matrix elements matches that for flat space. The true
amplitude for a certain process will include the contributions of all such backgrounds, on
the top of the main contributions of the flat space. We can simbolically write

A(l,Z,...,N) = §i§i< Ver(1)VBi(2)..VBe(N) >
k RS

(one of the backgrounds Bk is the flat space, the others are asymptotically flat) where
VB (i) is the emission vertex for the field (1) in the background Bk. The sum EBk rep-
resents the string perturbation theory: a discrete sum over the genera of the Riemann
surfaces spanned by the string , and, at fixed genus, the integration over the moduli space
of the surface. In this continuous sum it is fundamental to utilize the proper measure. We
have moreover indicated with Y 5, the discrete sum over the topologies of the asymptot-
ically flat backgrounds and, at fixed topology, the integration over their moduli spaces.
Of course this expression remains too generic until we specify the measure to be used in
X 5i (which will be essentially of four-dimensional nature); however, this task is left for
further investigations. Here I just wanted to delineate “in priciple” the possible use in
string theory of non-trivial spacetime backgrounds.
It is therefore fundamental to know the moduli space of the background one wants to
treat. In the case of GHK manifolds there is a natural relation between the geometrical
moduli and the deformations introduced by the N=4 moduli operators in the correspondent
(6,6)4,4 theories; this may provide the way to understand also the moduli space from the
geometrical point of view.

Usual gravitational instantons are at most locally asymptotically euclidean (ALE)
[8], but cannot be globally asymptotically euclidean. As a conseguence of the non-trivial
torsion this possibility is instead present for the GHK manifolds. To this purpose we
recall that ten years ago D’Auria and Regge [9] proposed a mechanism, based on the
unsoldering of the SO(4) principal bundle (the one in which the vielbeins and the spin
connection are valued) from the tangent bundle through a torsion effect. This being the
case, asymptotically flat topologically non-trivial configurations became possible. The
price for this was that such configurations arose as solutions of an ad hoc constructed
lagrangian, involving an extra scalar field. It is remarkable that the same configurations
can instead arise naturally as instantonic solutions of the effective N=1, D=4 supergravity
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coming from Calabi-Yau compactification. An example of this is, as we will see, just the
Callan, Harvey and Strominger instanton.

The contribution of asymptotically flat instantonic backgrounds may prove impor-
tant is a renewed version of the Konishi-Magnoli-Panagopoulos mechanism [10]. In this
mechanism, local supersymmetry breaks down dynamically because of the gravitino con-
densation in an instantonic background. However, purely gravitational instantons (such
as the Eguchi-Hanson metric [11], for which the explicit computation was carried) were
considered, and these cannot be globally asymptotically flat. It was then problematic to
justify the consideration of the instantonic contributions in the same sector as flat space.
This drawback is no longer present if asymptotically flat GHK manifolds are considered.

The fundamental point that one needs to treate in the abstract CFT corresponding
to a given background is the construction of the vertex operators for the various fields. In
Chapter 5 this subject is addressed for the GHK manifolds. In this chapter the emission
vertices for the zero modes of the various fields appearing in the effective four-dimensional
field theory are constructed. Their expressions are given in terms of the CFTs of which is
composed the corresponding string vacuum.

First of all, an analysis “a la Kaluza-Klein ” is performed to predict in terms of the topo-
logical numbers of the manifold the number of zero modes for the various kind of fields.
These zero-modes turn out to be organized in representations of the “residual” symme-
try group SU(6). This group is the analogous of the Eg symmetry group arising in the
usual compactification. The construction of the emission vertices corresponding to the
zero-modes is facilitated mainly by two considerations. On one side, flat space itself is a
(6,6)s 4 theory and thus, recasting the flat space expressions in a generic (6,6)4,4 language,
we have almost ready at hand the desired generic expressions. On the other side, one can
rely on the identification of the operators which correspond abstractly to the cohomology
classes (or,better, to their torsionful generalizations), identification already mentioned in
Chapter 3. This identification is known from the attempts to use (6,6)4 4 theories as inter-
nal theories; it is strongly reflected here, as the vertices counting and group arrangement
is shown to coincide perfectly with the geometrical counting and group arrangement of the
zero-modes. From Chapter 6 on the Callan, Harvey and Strominger instanton is exami-
nated in detail, as an illustration of the general set-up previously developed. Thus, from
our point of view, this configuration in retrieved in Chapter 6 as a particular solution of the
equations of motion of the effective N=1, D=4 supergravity [12]; in doing so it is reviewed
and emphasized the role of the New Minimal formulation of the theory, which is known to
be the correct one for the string-derived case. The Callan, Harvey and Strominger solution
presents many appealing features, that may be summarized as follows: it is in general an
asymptotically flat GHK manifold (which implies all the consequences above mentioned,
and developed in the thesis).

There is a particular value of a constant parameter appearing in the solution for which the
associated conformal theory is solvable and quite simple indeed [3]. Unfortunately in this
case asymptotic flatness is lost (the topology becomes that of S® x R = SU(2) x R, with
torsion). In Chapter 7 the classical conformal field theory is discussed relying on the general
formulzedeveloped in Chapter 2, that allow an easy treatment of the dilatonic contributions,
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and on the formalism for o-models on group-manifolds, in this case SU(2) x R. The
quantum realization of the theory just requires some finite renormalizations. The goal is
to recognize clearly the relevant geometrical structures characterizing the manifold as a
GHK manifold, and the structures of its associated (6,6)y4+ CFT. In particular we can
explicitely single out the “abstract (1,1) and (0,1)” operators. On one side this permits to
construct immediately the emission vertices on this background, just plugging the explicit
expressions for these operators into the general form of the vertices, valid for any (6,6)4 4
theory, of Chapter 5. On the other side, and this is the part on which Chapter 8 focuses,
the knowledge of the form of the N=4 moduli operators permits to explicitely deform the
Lagrangian still mantaining (4,4) supersymmetry, and thus still remaining within a (6,6)4 4
theory. This in turns means that this deformed theory still corresponds geometrically to a
GHK manifold. By examinating the o-model lagrangian we can thus describe explicitely
an entire class of GHK manifolds in dependence of certain parameters (moduli). These
parameters appear as the coeflicients governing the insertion of the possible N=4 moduli
operators in the o-model lagrangian; they turn out to be sixteen. Although explicitely
carried through only for infinitesimal deformations, this represents a new result which
extends the treatment given by Callan, Harvey and Strominger . It would be necessary
to investigate analogously the finite deformations and to understand thus the geometry
of the moduli space of this class of spaces. This is another point which deserves further
future developement.

Finally in the Appendix it is shown in a particular case (the SU(6) adjoint represen-
tation) that the expected SU(6) symmetry of the zero-modes is actually implemented in
a correct way in the expressions of the vertex operators.



Chapter 1

Generalized HyperKahler Spaces and
Gravitational Instantons with Torsion

We introduce here, giving them the name of Generalized HyperKéhler (GHK) manifolds,
a class of spaces often considered in the literature in relation with the superconformal
o-models with extended supersymmetries.

After giving their definition, we show how these spaces, in four dimensions, can be naturally
put in correspondence with the analogue of gravitational instantons in the case in which,
beside the metric, other universal fields are present in the theory, such as the torsion and
the dilaton.

1.1 Generalized HyperKahler Manifolds

With this name we mean a manifold M, such that dimM = 4n, on which two sets of three
- +
tensors, 7% and 77, (z = 1,2,3, a,b are tangent indices) can be defined, wich satisfy

the following properties.
First of all,

e \2 Fr2
(72) =(77)" =-1 (1.1)
i.e. all these tensors are almost complex structures on M.
The Nijenhuis thensor relative to each almost complex structure vanishes:

Nabc(jx,jz) = vmjax[b ijLc] + j;:mV[bjcz;l] =0 (12)

_ - +
(here J* can be 7% or %) so that they are actually complex structures; moreover, also
non-diagonal Nijenhuis conditions [13] are satisfied in each set.
The two sets of complex structures commute:

(g7, gv] =0 (1.3)
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and separately each set gives a representation of the quaternionic algebra
T*TV = =6 4+ V7 J° (1.4)

The metric must be hermitean with respect to all the complex structures, which in tangent
indices means that

ap = ~Tha Le. T =-7g" (1.5)

Define on M the two non-Riemannian connections w;hb = wl + Top.V® where T? =
‘},CVbVC is the torsion two-form * (whose components T, are assumed to be totally
antisymmetric), wf, is the Riemannian spin-connection and V¢ are the Vielbein on M.

Denote as ¥ the covariant derivatives constructed with these two torsionful connections.
The complex structures of one of the two sets are covariantly constant with respect to one
of these connections:

VmnJs =0 (1.6a)
and those of the other set with respect to the other connection:

+

VmJs5 =0 (1.6b)

In Chapter 2 we will see that spaces with the above preperties come naturally into the game
when considering o-models with (4,4) supersymmetry on the world-sheet. In particular,
it is well known since a long time ago [13] that, in the case of zero torsion, the condition
under which a o-model admits (4,4)supersymmetry is that the target space must be Hy-
perKahler . Thus, the name of Generalized HyperKéahler manifolds given to the spaces
satisfying properties (1.1)-(1.6) is justified; setting T' = 0 we recover indeed the usual
notion of a HyperKéhler manifold.

For zero torsion, the two sets of complex structures coincide, and there is thus one set of
complex structures, satisfying the quaternionic algebra, covariantly constant with respect
to the Riemannian connection: this is precisely the definition of an HyperKahler space.
On such a manifold there exist three globally defined two-forms Q* = J5V°V? which
are closed: d2® = 0. The role of these forms is the generalization of that played for a
Kahler space by the Kahler form Q = J,,VeV?.

Choosing a well-adapted basis of vielbein it is possible to show that the holonomy group
Hol(HK ,) of a HyperKéhler space HK,,, with dimension 4m is contained in Sp(2m) [14].
In particular a four-dimensional HyperKéahler space has a holonomy group contained in
SU(2) : the curvature 2-form is selfdual or antiselfdual. Note that this is the requirement
a manifold must satisfy in order to be a gravitational instanton.

Let us see which is the analogue of this consideration when torsion is introduced into the
game.

* Through all the thesis we shall not write explicitely the wedge symbol



1.2 GHK Spaces in Four Dimension:
(Anti)Self-duality of the torsionful Curvatures

We refer now to a four-dimensional GHK space. Eq.(1.5) tells us that the j—z and j+z
complex structures (with tangent indices) are expressed as antisymmetric 4 X 4 matrices.
In 4-dimensions we can construct a basis for 4 x 4 antisymmetric matrices made by the
following two sets of three constant matrices, respectively named J®and J* (z = 1,2,3)%:

Aa_zb == _(5a06b1: — 6pobaz + Ezu,b)

- (1.9)
azb = (5u06b:r —' 5b05a:r: - 6:l:tzb)
that is
P 0 io? A 0 1 A —i0? 0
1 _ . 2 _ . 3 _
j—-<i02 O) ! jﬁ(—l 0 ! '7_( 0 io’2>
71 0 —‘0'1 . 72 0 0'3 . 73 —‘iO'z 0
J = (al 0 ’ J" = ~a® 0 ' J"= 0 —io?
(1.10)
These matrices have the following properties:
. each set J%, J* gives a representation of quaternionic algebra (1.4)
o they are selfdual (resp anti-selfdual):
7T 1 7z 7k 7T
Tap = 3 €abed oy GjrJo= — Tij
1 (1.11)
b = ~3 €avead’y o €inToJl
. all the J* commute with all the J2.
A priori we can expand both the j—z and j+" along the basis given by J=,Je:
-z = g% j’y -+ a® j’y
Y Y (1.12)

+ ~ -
J* = Siyjy +a‘3—y‘7y

For all the coefficients in the expansion (1.12) there are two possibilities: they can be zero

or, in order for the j—“’ and j+"‘ to satisfy the quaternionic algebra, must be such that

5%,8Y, = &% (1.13)
€7V 5%, = P17 s, (1.14)

* We use the convention that €zap vanishes if one of the indices a,b takes the value 0. Otherwise in 3-space

it is the usual Levi-Civita symbol



The same conditions hold for a®, 8% ,,a% ,. Relations (1.13-14) mean that each of these
3 X 3 matrices is orthogonal, namely they belong to the adjoint representation of SO(3).
We can use a vector notation s (s7 ) for the rows of the matrix s%, (s ,); if they are non
zero, these vectors constitute an orthonormal basis in three-dimensional space.

Let us then consider the consequences of the fact that all the j—” must commute with all
+
the 7=. Using the expansion (1.12) this means that

s"Asf =0 ; a® Aal = Vz,y (1.15)

(here the symbol A denotes the usual exterior product of three-dimensional vectors). We
can expand the si in the basis {s%}:

Y _ A UgP
S+—CpS

Suppose now that the s* are different from zero. Then the condition (1.15), upon use of
eq.(1.14), states that
y P Yl —
cps® As? = e"Plclis? =0
implying ¢} = 0, that is s% = 0.
If the a® were non-zero, then an analogous argument would constrain the a¥ to vanish as

+ .
well; then the 7% would just be zero, which cannot be. The only allowed situation is the
following

j:;z: — Szyjy
1.16
j:c — a’iyjy ( )

+
that is, the J% are selfdual while the J* antiselfdual (or viceversa).
Consider the curvature 2-form R relative to the connection w_,. Let R~ be the matrix of
components R_,. It is an antisymmetric matrix and as such it can be expanded as follows:

R- :Azjz+ijz

It must satisfy the integrability condition for the covariant constancy of j’_ z,

(R, J*e ]=0
Inserting the expansions of R~ and j ® this means

Apszy[jp, JY] = ZEpytAps”’yjt =0

The unique solution of this constraint is 4, = 0; this implies that R~ is antiselfdual.
Repeating an analogous argument for the curvature R}, of the connection w:'b we find that
Rt is selfdual.
Summarizing: on a four-dimensional GHK space the curvature two-form R~ = R(wp — T')

is antiselfdual, while R* = R(wg + T') is selfdual.
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This appears to be the natural generalization of the selfduality of the curvature two-form
characterizing gravitational instantons in absence of torsion (recall that, via the cyclic
Bianchi Identity, this selfduality implies that vacuum Einstein equations are satisfied).
We assume therefore that four-dimensional GHK manifolds constitute the generalization
of gravitational instantons to the case of non-vanishing torsion. In Chapter 6 we will
check in a particular case that an instantonic solution of a theory including torsion (the
instanton of Callan, Harvey and Strominger) actually turns out to be of the Generalized

HyperKahler type.
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Chapter 2

(4,4)-extended Sigma-models

with Dilaton and Axion couplings
and GHK Manifolds

Now we briefly review the subject of o-models on a generic target space, taking into
account the dilaton effects. To this purpose we utilize the rheonomy framework [15].
In the first part of this section we consider the bosonic o-model, in the second part we
extend the construction to locally supersymmetric o-models of (1,1) type. Our results
correspond to the generalization, with dilaton coupling, of the construction presented in
[16]. Freezing the two-dimensional gravitinos one obtains the o-model action with global
(1,1) supersymmetry, that can be utilized to discuss the structure of the corresponding
superconformal theory. The local construction, however, is essential to obtain the stress-
energy tensor and the two supercurrents (left and right-moving). In the type II version of
string theory, these supercurrents are coupled to the worldsheet gravitinos. After the A-
map to the heterotic string, only the left-moving current corresponds to a local world-sheet
symmetry. The right-moving supersymmetry ceases to be local and its role is the same
for X-space as it is for the internal compactified space, namely it relates emission vertices
of different particle modes. In the internal space this leads to remarkable consequences,
in particular to the pairing between moduli fields and charged fields and to the special
Kahler geometry of the moduli space. In subsequent sections we will discuss the analogue
consequences for X-space. After having established the formalism for (1,1) o-models we
shall consider the conditions under which the global supersymmetry of the same model is
accidentally extended to larger N. In particular we shall consider the conditions for (4,4)
global supersymmetry. As we are going to see, in d=4 these conditions force the target
space to be a Generalized HyperKéahler Manifold, and this provides the link with instanton
geometry.
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2.1 The bosonic Sigma-model

In correspondence with a solution of the equations of motion derived from the effective
bosonic lagrangian:

Lojf=e2Y(R-4D,®D"® + ...)

that contains the metric G,, (i.e. equivalently the vielbeins V'*), the three form H and
the dilaton &, we write the action for the bosonic o-model utilizing a geometric first order
formalism:

1
— Vo(M%et —M%e™) + M2M%eTe” —28R®) 4 p T +p. T+
1 .
+ — -Habcvvavbvc
4 M
Once rewritten in 2™%order formalism, this action takes the more familiar form
—1 _ _
g1 / dzd [G,,(X)0X"BX" + B, (X)0X"8X"] (2.2)
4 oM

where ds? = G, dX* ® dX” = V® ® V* is the target space line element and the antisym-
metric tensor B, is such that H = 2dB.

Note that when the action is written as in eq.(2.2) it keeps no tracks of the dilaton which
contributes only to the classical stress-energy tensor of the model. This contribution is
obtained in a simple way in 1°*order formulation. In a similar way, when we consider
the supersymmetric extensions of the above model, the contributions of the dilaton to the
supercurrents are also easily retrieved from the 1%*order formulation.

Let us briefly explain the somewhat unusual notations and the meaning of the quantities
appearing in eq.(2.1)[15,16]. In particular e™ and e™ are the vielbein on the world-sheet
OM, whose geometry is described by the structure equations

det —w@et =T+
de” +wPe™ =T" (2.3)
dw® = R2)
w®) 7% R(2) are the two-dimensional spin connection, torsion and curvature respectively.
Classical conformal invariance of the model allows the choice of the “special conformal
gauge”:
et =dz ; e~ =dz ; w® =R® =0 (2.4)

2nd

where z=2z" + 2! and z=2" — z!. This is the choice we have used to obtain the order

form of the action (2.2). More specifically “after variation” we can use eq.(2.4). I%,px
are “1*%order fields”: they can be reexpressed in terms of the usual dynamical fields upon
use of the equations obtained by varying in H‘j:,pi,w@).

Varying in II : 1=V

Varying in w® @ py = 720.9% = 726,9VE (2.5)

Varyinginpr: Ty =T_=0
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In the present formalism, the general recipe to obtain the components of the stress-energy
tensor is to vary the action with respect to the world-sheet vielbein, defining

68 = -1 /ﬁ bet + T _be” (2.6)
27

and to consider the expansion 7. = T, re™ + 7T, _e~ (and the analogous one for 7_). The
conformal invariance of the model implies that 7. _ = 7_, = 0 and one defines the usual
holomorphic and antiholomorphic part of the stress-energy tensor to be

T(z)=Tpy 5 T(5)=T_ (2.7)

For the model described by the action (4,1) varying, for example, in et, we obtain:

-1 1 afra a e _—
55':—2—;;(—5) /(V H+——H+H*e )5€++P+d5€+

Substituting eqs.(2.5), we obtain:

1

2
Actually, in order to discuss superstring theory, we rather need the supersymmetric

version of the just described o-model . Strictly speaking, heterotic string theory would

require a (1,0) supersymmetrization; however, in view of the h-map, we can go one step

beyond and consider the case of (1,1) local supersymmetry. We recall now some essential

features of the geometrical formulation of (1,1) supersymmetric o-model [16] and we include
dilaton contributions.

T(z) = Toq = —=V2VE — 50 (2.8)

2.2 The (1,1) locally supersymmetric Sigma-model

One realizes a classical superconformal invariant theory in terms of fields living on a
super-world-sheet with two fermionic coordinates § and § besides the two bosonic ones z
and Z. The cotangent basis on the super world-sheet(the “supervielbein”) is given by the
already introduced 1-forms et, e~ and two bidimensional gravitinos ¢, x.

The structure equations (2.3) are enlarged by the appearence of two fermionic torsion
2-forms:

T® =d¢ — %w(z)g

o 1
T° =dy+ Ew(z)x

(2.20)

The “curvatures” TF,T~,T°,T°, R®® must satisfy the Bianchi identities obtained by
exterior differentiation of eqs.(2.3) and (2.20). This imposes a certain form for their
parametrization, whose most relevant part is:

(2.21)



The superconformal invariance of this construction allows for the choice of a “special
superconformal gauge” where

todagl . e —dzt Lidd
e dz + 2«9d9 ; e zZ+ 5 (2.22)

¢ =db ; x = db

This is the choice we always use in 2"¢order formalism (see discussion after eq.(2.4)).

We describe superstring propagation on an arbitrary target manifold M, get by means of
an embedding function X*(z,z,8,d) mapping the super world-sheet into Marger- There-
" fore we consider the quantities defining the geometry of Marget, such as its vielbeins and
spin-connection, as superfield on the super world-sheet, and thus they can be expanded on
the cotangent basis of this latter. In particular we set

Ve =Viet + Vi + A+t (2-23)

Also the torsion and curvature 2-forms of M, et can be expanded in the various “sectors”
on the super world-sheet. For example, the torsion, defined by:

dVe + w?Vh = 7% = T eyPye (2.24a)

yields

+ - a a abeyrbyre
: -V_V Ve -2T%°°V)VE =0
©° F RV +r- (2.24b)

...................

(relations that we are always free to use because they are just the “pull-back” of the original
definitions).

The key point are the Bianchi identities of Myyrge; Which become differential equations
for V¢ as a super-worldsheet function; that is, they determine the egs. of motion for
Ve, Ve, A%, u® [16]. The B.I for the torsion of Miarger is VI'® = V2Ve = R*VY or,
explicitly

V2Ve = RV} (2.25.a)
V2Ve = R*V? (2.25.5)
VZA® = R\ (2.25.¢)
Viu® = R* (2.25.d)

Each of these equations can be analized in its various sectors. In particular the A? field
equation, setting V,A% = 0, constraint compatible with the Bianchi identity:

—%V_)\“ = —R* APpcpd (2.26a)
is retrieved in the xx sector of eq.(2.25.c) and the p* field equation

%(m,ﬂ + 2Tt uPVE) = — R ubAcad (2.26b)
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is retrieved in the (¢ sector of eq.(2.25d). Bianchi identities for the curvature R*® do not
give any new information.

Next one tries to write down an action defined on super world-sheet from which
both the definitions (2.24) and the field equations follow as variational equations. To this
purpose one starts writing down the most general geometrical action defined on the super
world-sheet which respects invariance under Weyl rescalings and two-dimensional Lorentz
transformations, with undetermined coeflicients; these latter are fixed by comparing the
variational equations with parametrizations (2.24) and field equations.

It turns out that the projections of the variational equations in éA® and du® are sufficient
to fix all the coeflicients. The super world-sheet action takes then the form

1

T dr

S / (Ve =A% — px)(T%eT —T%e™) + TEM% eV e™ +2iA* v A%t +
aM
ot 4 - ayra ayra a. . a 4 aybye o+
+ 2ep"VpteT + AV —p"Vix — A% Cx+§zTabcA A’ACet—
(2.27)
___L% a, b c. - aybh, c d_+ _-—
3zTabc/L poptxe” +4Rapea A" N ppueTe” +

1
—28R® 4 p Tt 4+ p_T™ + p.T° + p.T° + y / H
M

The variation in §X*, restricted to the sectors ((, xx, where it really corresponds to a
supersymmetry variation, fixes
Tove = —3Hgbe (2.28)

justifying our assumption that Ty, is completely antisymmetric in its indices.

The action (2.26) is a geometrical one on the super world-sheet, and is therefore invariant
against super-world-sheet diffeomorphisms. Its expression is however uniquely determined
by its “bosomnic” section ¢ = x = 0, due to the fact that the components of the curvatures
along the “fermionic” directions are expressed by egs.(2.24) in terms of those along the
“bosonic” (or “inner”) ones. This property is called “rheonomy”. One can forget, if he
wants to, about the super world-sheet and then the would-be diffeomorphisms in fermionic
directions appear as supersymmetry transformations. For ( = x = 0 the action reduces to

1 -
§=— / Ve(diet —I%e™) + MiM%ete™ + 20Xy A%t +
4 Jomm

4+ 2?:’“0. 6#‘0.6—— +4Rab6d>‘a.)‘b#c“de+e-—+ (229)
1
~20R® 4 p, Tt +p_T™ + —/ H
4 J m
The above action possesses a global (1,1) supersymmetry that is the remainder of the local
one present when the gravitino fields are switched on. In the next section we recall how, for
suitable target manifolds, this global (1,1) SUSY extends to a global (4,4) supersymmetry.

From the complete form (2.26) of the action, one can derive the super-stress-energy
tensor (i.e. the stress-energy tensor and the supercurrent) extending eq.(2.6) to

-1
§S = —2—;/T+6e++7_5e_+7'.5§+7:,5x (2.30)
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Superconformal invariance requires
1 - 1 (2.31)

The surviving four independent components define the classical holomorphic and antiholo-
morphic parts of stress-energy tensor and supercurrent:

T(z) =Ty T(z) =T

. = ain (2.32)
G(z) =2v2e™ Ty, G(2) =2v2e T T,

+ -
In the action (2.26) or (2.28) two different covariant derivatives appear, V and V, con-
structed with the two spin-connections w¥, defined as

- R 7C
Wy = wap — TapeV

_ (2.33)
w:_b = w}}b + TopcVE = wa—b + 274 V"

where w, is the Riemannian connection, i.e. is such that dV* +wiV? = 0. The connection

appearing in eq.(2.23) (the one for which the torsion is T'*) is wep = w,;,. These connections
play an important role in the sequel.

2.3 Complex Structures and extended SUSY

We review the conditions for the existence of additional global supersymmetries in
the (1,1)-locally supersymmetric o-model [13]. To discuss the additional supersymmetries,
we formally introduce new fermionic directions of the super world-sheet, adding to the
cotangent basis new “gravitinos” (* and x” so that the parametrization (2.21) is extended
to

T* = 2(C¢ +¢7¢)
; (2.34)

T——-2

(xx + x"x%)

while the embedding of the extended super world-sheet in Marget 18 described by expand-
ing the target-space vielbeins as follows:

- +
Vo= Viet + Vo + A+ 75X +px + J5EX7 (2.35)

(Note that the new terms do not introduce any new dynamical quantities).
Consistency with the torsion definition and implementation of the Bianchi Identities leads

. + . .
to constraints on the tensors TE and therefore to a characterization of M get-
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The torsion definition (2.24a): vV = Tu.V'VE can now be expanded in many sectors.
Using the sectors *

¢¢: %Vf; F VAT 4+ Ty AAC = 0
€7 Vu(TZA) + VI 4 2T, AP TEN = 0 (2.36)
3¢V s VIS £ VTN + VITEN) + 2T T2 TIAN = 0
by looking at terms containing V¢, one finds:

forz =y
T Ty = —bar  le.  (T*)=-1 (2.37a)

forz #y
{jz,jy}arzo (237b)

It follows that the J* form a representation of the Clifford algebra. From the remaining
terms in these equations, after some manipulations, one gets :
for z = y, the condition that the usual Nijenhuis tensor relative to each J* should vanish:

Nosn(T*,T) = VT2 Ty + TEn V5T 5y = 0 (2.38)

and for z # y analogous non-diagonal Nijenhuis conditions [13].

From sectors xx, xx%,x*x? the same relations for J* are retrieved:

(7P =-1 ; {J=, Jv}=0
. (2.39)
Nape( 7%, J¥) =0

Starting from the sector
+ +
¢Cx? V(T2 u") + VUTEN) + 2T TENT Jiu’ =0

and substituting the relations that follows from the other sectors ¢x*,x¢ ¢x by considering
the terms that contain V,u® we come to the conclusion that the two set of tensors should
commute:

(7%, Jv] =0 (2.40)

Now we can also consider the various sectors of the torsion Bianchi identities. In particular
from eq.(2.25.c) in the sector (%(%:

1
SVLuT VEVI = — R TETEAA
looking at the terms involving V{ and using the field equation (2.26a) one ends with

VT2, = (2.41)

* From now on we drop in all calculations the superscript — for jz Y ete.
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while the other terms impose the condition:
R=J""RT*

R = R V<V being the curvature two-form. This coincides with the integrability
condition for eq.(2.41), namely

(R, T*] =0 (2.42)
if
which is just the hermiticity condition expressed in tangent indices.

Considering the sector x*x° of eq.(2.26.d) and analizing terms proportional to V¥ one sees
that the torsion terms are such that the analogue of eq.(2.41) is given by:

Vg5 =0 (2.44)

At the same time in order for the other terms to reproduce the integrability condition
+ 1

(where R ,p is the curvature 2-form of the connection w:_b) the hermiticity condition

J= =-g- (2.46)

must be verified.

Summarizing: The condition to have (N, N) supersymmetries is the ezistence of two
sets of N —1 complez structures on the target space (whose Nijenhuis tensors vanish), each
set realizing a representation of the C’liﬁord algebra, and the two sets commuting with each
other. One of the two sets, namely j‘” must be covariantly constant with respect to the

connection w™, while the other one, j” is covariantly constant with respect to w™. The
target space metric should be hermitean with respect to all complez structures.

2.4 (4,4) SUSY and Generalized HyperKéhler Manifolds

Consider the case of exactly 3-+3 additional supersymmetries. It is easy to see that if

J*' and J? are two complex structures satisfying the above requirements then J S=gt7g?

is another one. Due to the Clifford algebra requirement the set J° closes a quaternionic
algebra:

J*TY = =6V 4 "2 J~ (2.47)

The same holds true for j+ z,
This requirement, together with the ones in general necessary for (IV, N') supersymmetries
reproduces clearly just what in Chapter 1 we declared to be the characterizing features
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of the Generalized HyperKahler Manifolds. These manifolds were identified, on the other
side, with the instantonic geometries in presence of torsion and dilaton. Thus o-models on
gravitational instantons with torsion possess (4,4) supersymmetry on the world-sheet.

2.5 The classical Supercurrents

Suppose that a (1,1) o-model on a manifold Mage; admits an extended (4,4) super-

symmetry. We want now to obtain the classical form of the supercurrents generating these
(4,4) supersymmetries, including explicitely the dilatonic contributions.
If the 343 additional supersymmetries are regarded just as global ones, the action on
the bosonic world-sheet, namely eq.(2.29) is not modified at all: we just find that it is
invariant against additional transformations. The novelty is that we can now search for
the complete form of the action on the extended super world-sheet, i.e. the analogue of
eq.(2.27) including terms proportional to (* and x°. One should repeat the same steps
needed to fix the form (2.27) taking into account all the possible new terms. Since from our
point of view the only relevance of such an expression would be its use in the derivation of
the classical supercurrents, we will confine ourselves to the terms involved in this derivation.
Let us note that the “dilatonic” terms will be enlarged to

SR 4 p Tt 4 p_T™ +p.T" + p2Ts + poTopETS (2.48)

where (in perfect analogy with eq.(2.20)) T, T? are the fermionic torsion two-forms relative
to the new super world-sheet gravitinos:

1
TP =d¢® — -;-w@)gm D TC =dx® + §w(2)x’” (2.49)

Variations in the 1**order fields p’s sets all the torsions to zero. This allows the choice of
an “enlarged” special superconformal gauge (the extension of eq.(2.22)).
Variation in the two-dimensional spin-connection w(?) yields

p+ = —20,9V} ; p.=20,8V"
o= —48,8)° ; po=48,8pu° (2.50)
+
pe=—40,2(J"N)* ; pi=48.8(g%p)"

The fermionic torsion terms in (2.51) will contribute to the variation of the action in
the new gravitinos, as it is seen from expression (2.52). After variation we make use of
eqs.(2.53).

The supercurrents are obtained by obvious extensions of eqs.(2.30) and following ones. Let

55’:%/T+5e++T_5e—+7—.5f+7;5x+7.z‘5<$+T025Xz (2.51)

Then superconformal invariance imposes on the 1-forms 77 and 7.* the analogue of con-
ditions (2.31), namely:

1 1
Zo=ZTE . TE = _-TF
-+ e 2 o 1 —0 2 o—

20



All the other components are zero.
Definition (2.32) is enlarged to include also the supercurrents G*:

G(z) = 22 T TF, 5 G7(3) = —2v/2e” T, (2.52)

From the action (2.27) we can extract GY(z) = G(z) and G°(3) = G(%). For example, to
get G « T., we vary in 8¢ and we look for the terms proportional to e™; the relevant
terms are :

1 4
65 —+——/ 54 —ACTI% et — ATV Rt 4 —iTabc/\“/\bAc} 4 6(pT) + ... =
4:71" M 3

-1 2 1
— 8¢ {A“er* — ZiT e A ANt — — 0 peeT + }
aM 3 2

:271'

where we have integrated by parts the last term after use of the definition (2.20). Using
eq.(2.50) we get

Tie = —;-T.+ = —12—>\“Vj - %TabcA“AbA” +84(8,87) (2.56)

so we finally obtain the expression for G' = —24/2¢7*17,,. In a similar way one obtains
G(z).

To derive the other supercurrents we must analize the possible new terms that contribute
to the relevant variations, and fix their coefficients by comparing the variational equations
with the projections of the equation defining the target torsion (2.24a).

For example to get G®(z) through the computation of 7.5 the relevant terms in the ex-
tended super world-sheet action are (compare with eq.(2.27)):

S = (Vo =A% = (T7N)%¢" — )(T%et — ) +2iA°VA%et L+ AV (+
SM

| 4 .
F(TNVOC ot ST X NN+ miTane( TN AT 4 (2.54)

+pT° +piT, + ...

A priori, besides the term of the form T(J M)A\, we could add to eq. (2.54) also two other
kind of terms, namely T(JA)WJA)A and T(J AT A)NTA). The reason why it suffices
to add only the first term is the vanishing of the Nijenhuis tensor. Indeed the diagonal

. . + .
Nijenhuis tensor constructed from J* or 7%, (see eq.(2.38)), upon use of the covariant

constancy condition 6,,“7;% =0, or % m i”’b = ( can be rewritten as follows:
Nﬂbc(‘yﬂj) - 3Trm[ajrbn7mc] - Ta,bc (255)

(the antisymmetrization in abc is understood). By use of the Nijenhuis condition Nyp. =0
it is easy to show that

T(TA)(T XA oc TAA
T(TA(TATA) o< T(TA)AA
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Hence there is only one coeflicient to fix in (2.54), namely n;. To obtain its value, we
consider the equation that follows from varying the action (2.54) in 6A®. Focusing on its
¢*e™ sector and comparing with the (*¢* sector of the torsion definition (see eq.(2.36)),
we obtain

ny — 4:'1,

Varying now (2.54) in 6(* and searching for 7.7, in analogy with the procedure utilized
for GY, we get

1 1
TF = {-é(jz,\)“niﬁ + (TN Ve = 2iTune(T7A) N AT + Bplet + }

T = {(T"N)VE = 20T 05 (T"A)* AN+ 28(8,8(T 1))}
Thus G*(z) = 2¢/2e7'7 77, is determined.

In a similar way one can calculate é”(i).

Summarizing: when a (1,1) supersymmetric o-model described by the action (2.27)
admits a global (4,4) supersymmetry, its classical supercurrents have the following ezpres-
sion in terms of the 3+3 complez structures of Mta_rget :

G'(z) = V2eiF {Aav;l — giTabc,\“AbAc + 28 [aaquﬂ]}

(2.56a)
G®(2) = V2e7IF {(TN)* V) — 2iTape(T7A)*A°N° + 20 [0, 8(T " 2)*]}
G'(2) = V2% {ﬂ“V;‘ T e b + 20 [aa@u“]}
3 (2.560)

éz(z) =V2e * {(jz F‘)avza - ZiTabC(jz F‘)a:“'b/"‘c +20 [aﬂ@(jm #)“}}
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Chapter 3

Some remarks on ¢=6, N=4 Theories

We choose our conventions and notations to be that of [15,sec VI], so that the N=4
standard superconformal algebra looks as follows:

1 n 2T (w) 4 0T (w)

TET0) = 56 —ap * Gl * mw) T
T(2)G% (w) = -g—(zgi(z))z + ?zg_(g 1+ reg
T(2)G" (w) = ;fi(z))z f_(g +reg
T(:)A'(w) = A_(’fu)) + f{(‘:}% 4 reg.
Al(2)G(w) = %gb—((;l_%)x- + reg.
Al (2)G" (w) = —_2—1@((—;”-)_—(2—)): +reg.
Ai(2) A (w) = = & AW | ey, (3.1)

:ﬁ(z—w)z * (z —w)

where T'(z) is the stress-energy tensor , G%(2),G"(2), a=1,2 denote the supercurrents
organized in two doublets of the SU(2) generated by the currents 4¥(z).
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In a (4,4)-theory there is a realization of these operators both in the left and in the right
sector. The fields of»the theory are organized in representations of SU(2)y ® SU(2)r. We

denote by @[’}’z] - a primary conformal field with left and right dimensions h,% and
isospins J,J, and with third components m, m.
Consider for example the left sector. The SU(2);can be bosonized in terms of a single free
boson 7(z): .
4= or : AE = FiVer 3.2
7 (3.2)

The spectral flow of the V = 2 theories is extended to a “multiplet of spectral flows”:

@[h] — eim, 2T(§(h—m2) (33)

J

where $(2=m%) i5 singlet of SU(2) of conformal weight h — m?2.
For example a doublet of SU(2) ,¥ [iﬁ], made of an N = 2 chiral and an antichiral field of
weight 1/2, (note that the charge respect to the U(1) of the N = 2 contained in the N=4
is twice the third component of the isospin) in the NS sector is related by the spectral flow
(3.3) to an SU(2) singlet in the R sector:

172157 L= [1/4
o[V 15 ”
We use the convention of giving the same name to fields related by spectral flow, dist-
inghuishing them when necessary by their weight and isospin.

As explained in [15], the N=4 analogues of the (c,c) and (c,a) fields of weight (3,2),
which play the role of “abstract” (1,1)- and (2,1)-forms in the (9,9)2 » theory, is given by
those primary fields of the (6,6), 4 CFT that are of the form

\1:,1[ } (3.5)

and correspond to the lowest components in a short representation of the N=4 algebra.
In (3.5) the index A runs on k! values. Focusing on the left sector a short representation
is made of the following set of fields

‘I'Eg] ), @mu) ’ H[(ﬂ (2)

?

Wi Rl
[STCN VTP

’

satisfying the OPEs

G (2)¥(w) = P + reg.

?a(z)lllb(w) = 5—11—)—1;[—(—::—) + reg.

G (2)®(w) =G (2)II(w) =0 (3.6)
b

—ga(z)@(w) = 2¢%b9 <‘—f—;(-wg)> + reg.

G*(2)(w) = —26%°9 (?—b—(—w—)) + reg.

zZ —w
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The fields ® and II have dimension 1 and, being the last components of an N=4 repre-
sentation (see the last two of the OPEs (3.6)), when added (in suitable combinations of
the left and right sectors) to the Lagrangian they don’t break its N=4 invariance. We call
them the “N=4 moduli”.

As already hinted, the fields \I’A[

described by the (6,6)4 4 -theory.

[N

’:%] represent the abstract (1,1)-forms on the manifold
13

As a first example of (6,6)s 4 theory let’s briefly consider that associated with flat
space. The N=4 algebra (as an illustration we consider the left moving sector) is realized
by the stress-energy tensor

T(z) = ——;—BX“BX“ + Ot (3.7a)

by the supercurrents

G°(2) = V2proX*H

6=(z) = v2 (°9)" ax (3.7b)

and by the SU(2) currents
i Lo i g co0i L ijk gk
Al(z) = —:‘z—'gb T ¥ =1y P" + 5€ PI~) (3.7¢)

Note that eq. (3.7b) is just the general formula (2.56a) applied to this particular case.
Indeed, since the torsion is zero, the two sets of complex structures of Chapter 2 coincide,
and the requirements of coveriant costancy reduces to that of constancy; we can thus chose
them to bg, for example, the J7, of eq. (1.9).

Explicitely, we have:

G' = V2 {¢*8X* — ¢*8X* +9?0X° — 10X’}
G? = V2 {$°0X* +¢'0X% — 48X° — 920X}
GS — \/5{-—1/)28)(1 +¢1(9X2 +’¢108X3 —’1/138X0}

In the left sector we can find two short representations , given by

/2] _ (40 +ip® w5 1Y~ _axr _saxt -] — —ax0 —iax®
1/2) ([ wr—it \ o 1] a0 T Lt et
hk [1/2} - <_(¢0 —i¢3)> ; @ [O} =06X" —i0X* ;I lo} = —-0X?% 146X

Two analogous ones exist in the right sector. Multiplying them in all possible ways we
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1/2,1/2

obtain four abstract (1,1)-forms \I’A[ ] For instance we can set:

1/2,1/2
44 ] 4] 4] /-
|0 (22) = Ua| (| (2) W) (3)
L2 2] L2 ] L2
4, 4] 4] 1]
Ta| 270 (5,2) = ¥a| ]| (2) U2 (] (2)
S k- i (3.9)
Ty |70 (2,2) = Tal 7| (2) ¥a|;]| (3)
Lz 2] L2 24
(1, 1] 1] [4]
w[" e = wlf @]t @
L2 2 L2 L2
This number of N = 4-moduli agrees with the Hodge diamond of flat space *
1
2 2
1 4 1 (3.10)
2 2
1

According to (3.10) we have also two holomorphic 1-forms and two antiholomorphic ones.
1

At the level of CFT they are represented by operators of the form ¥ 4 [é'g] and ¥%, [3’3],
2> ]

respectively. The index A(A*) runs on 2=h*" ( %! ) values. The explicit expression of
the two (0,1)-forms can be taken to be

oo - ffom o
] - fom o

The two (1,0)-forms have an analogous expression with the role of the left and right-moving
sectors interchanged.

Another interesting point is the identification of the spin fields with the spectral flows
of the identity operator and of the lowest component of the short representations (3.8). This
is a very important point because the spin fields appear in the fermion emission vertices.
If we are able to recast these vertices in an abstract (6,6)y 4+ language the extension from
flat space to an instanton background is guaranteed. The gravitino emission vertex, for
instance, that includes the proper gravitino and dilatino vertices, in flat space has the
following expression [15, sec VIJ:

o ) = e29°7(2) 5 () oik- X (2,3) 3/8 0
Vi (k,z,2) = e Sa (2)0X(2)e ! (—3/2 0 (3.12a)

* We refer by this to the Hodge diamond of the flat space compactified to a torus.
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Vi, (b2, 2) = e3#7() §5 ()X (2)e* X1 (g/s 0) (3.125)
/2 0
the two formulae referring to the two possible chiralities. The last operator in the above
formuleeis a spectral flow of the identity in the internal theory. In order to convert these
expressions to an abstract N=4 notation we need the interpretation of the operators S (2)
8X(z) €* (=3 and §%(z) 8X(3) eFV¥l=3),
To this effect we note that 8 X" (z,%) is expressed by linear combinations of the operators
1L [(1)], I, [(1)], ®, [3] and &, [3], the right-sector counterparts of those appearing in (3.8).
It remains to consider the spin fields. The four free fermions can be bosonized in terms of
two free bosons as . ; Lo
y — 192

Pt =£cT e . (3.13)

Y2 Lt = tcF T
where the signs and the cocycle factor(c* = eq:”pl) are arranged to reproduce the anticom-
mutation properties of the fermions. The SU(2) currents of eq.(3.7c) can be reexpressed
via eq.(3.13). In particular

AT = 4F eFivzFinn
However, we can rephrase all the algebra in terms of the vertex operators eTivt, etive
eliminating the need of preserving anticommutation relations (these operators anticommute
with themselves and commute with each other). Then the SU(2) currents are simply given

by .
4 = 2(dp2 = Bp1)

(3.14)
Ai — eii¥’2 e:FiLPl
Comparison with the standard bosonized form (3.2) is immediate. We get:
1
7= —=(p2 —
\/’2'(992 ‘Pl)
so that the spectral flow of eq.(3.3) is rewritten as
h m im (o2 — 2 (b ?
|| =€ 1) (h—m") (3.15)

The fields ¥y, ¥, of eq.(3.9), as doublets with respect to the currents (3.14) are given by

elv2 e w1
¥y = (eim) ; ¥y = (e—isaz) (3.16)

We can single out the spectral flow and find their Ramond partners:

1/2 glv2 e'%(lp'r‘lm) i (oator) 1/4
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1/2 e—iL,’JL e%(&%-‘?l) _.f( +e0) 1/4
Y2 [1/2} N (e‘iwl) N (6*%(¢2~¢1) €T = spectral flow - Uy 0
Therefore we see that these R fields are just the two spin fields of positive chirality. Indeed,
once the fermions have been bosonized as in eq.(3.13), the spin fields, corresponding to

the weights of the SO(4) spinor (s) and antispinor (3) representations, are expressed as

follows ' |
+-chirality (step): S'=e2¥2tz%1

(3.17)

— chirality (5rep) : gl

Sé — e 3¥2t3¢1

Finally note that the spin fields of negative chirality form a doublet under the SU(2)r and
are related through spectral flow to the identity operator:

SN [1/4] [ edloren \ 0
(52> {1/2} - (e'%(sﬂz—m) = spectral flow -1 0 (3.18)

Comparing these results with equations (3.12) we see that, in flat space, the 8 gravitino
zero-modes of positive chirality are given by the left spectral flow of the abstract (1,1)-
forms (3.9), while the 8 zero-modes of negative chirality are given by the left spectral flow
of the (0,1)-forms (3.11). In both cases, the right-moving part of the operator is SUSY-
transformed to the last multiplet-components. This is in perfect agreement with formula
giving the number of gravitino zero-modes in terms of the Hodge numbers of the manifold,
reported in Chapter 5, eq.(5.17), and with the Hodge diamond of the flat space (3.10). In
the case of the K3-manifold only the positive chirality zero-modes are present, since the
analogues of the (0,1)-forms (3.11) do not exist (A% = 0).
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Chapter 4

Heterotic Vacua including
Gravitational Instantons

As explained in the Introduction, we want to investigate the possibility of constructing
consistent heterotic string vacua where the usual ¢ = (6,4) conformal field-theory (CFT)
that represents four dimensional flat space is replaced by some new ¢ = (6,6) theory
describing string propagation on a non-trivial four-dimensional geometry. In particular we
focus on the (6, 6)4 . theories corresponding to gravitational instantons with torsion (GHK
manifolds).

The first part of our discussion is somehow heuristic: we use, as a guideline, the
analogy of the scheme we propose with the procedure utilized to compactify string-theory
on 6-dimensional manifolds of SU(3) holonomy [5]. As it is well-known [7], from the
abstract point of view, this operation is represented as the replacement of the ¢ = (9, 6)
theory, corresponding to six flat dimensions, by a (9,9)2 2 conformal theory.

Let us briefly review the process of this compactification, in order to proceed in analogy
with it also for the space-time part. ,
The “initial” situation is that required by critical heterotic string theory [4] in d=10,
namely the vacuum is a CFT of central charges (15,26) that can be realized as

(15,26) = (15,10) & (0, 16) (4.1)

The (15,10) theory is generated by 10 left-moving @ 10 right-moving world-sheet bosons,
together with 10 left-moving fermions: it represents the heterotic o-model on flat 10-
dimensional space. The (0,16) theory is that generated by 32 right-moving fermions de-
scribing the gauge group Gyq44. degrees of freedom, namely those of the Kaé-Moody alge-
bra Gyauge. The choice of Ggauge is determined by the enforcement of modular invariance
and we consider the version of the theory where Gyquge = E§ X Eg. We consider the 10-
dimensional space to be split in a 6-dimensional internal submanifold and a 4-dimensional
space-time manifold. At the level of conformal field-theories this means:

(15,26) = (6,4) @ (9,6) @ (0, 16)
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The main point of the h-map construction [7] is the possibility of considering heterotic
string vacua where the above situation is modified as follows:

(15,26) = (6,4) @ (9,9) & (0,13) (4.2)

This is commonly expressed by saying that six of the heterotic fermions have been “eaten
up” by the internal theory (which becomes left-right symmetric); the remaining thirteen
generate the current algebra of Ef x SO(10).

From the Kaluza-Klein viewpoint, one is considering a 10-dimensional manifold with the
following structure:

Myy = Mg x Miat (4.3)

The “eating” of six heterotic fermions is due to the 10-dimensional axion Bianchi identity
dH = 0 which (at 1°*order) requires

0=TrFANF — TI'R((;) A R(G) (4.4)

and is solved by embedding the spin connection into the gauge connection. In this way the
gauge group is broken to the normalizer of the internal manifold holonomy group Hol(Ms).
In the particular case of manifolds with SU(3) holonomy (Calabi-Yau manifolds), the
residual gauge group is Eg ® Ej, as it follows from the maximal subgroup embedding:

Es x SU(3) — Es (4.5)

Thus Kaluza-Klein analysis shows that the massless fields on M3t are organized in Eg
representations. From the abstract point of view, the case of SU(3) holonomy corresponds
to the particular case of the decomposition (4.2) in which the internal theory has (2,2)-
supersymmetries:

(15726) = (6a4) D (9a9)2,2 ® (07 13)

One can show [7] that the U(1) current appearing in the N = 2 algebra and the SO(10)
currents of the heterotic fermions combine, together with suitable spin fields, to yield the
current algebra of Fg, in due agreement with the maximal subgroup embedding:

S0(10) x U(1) —> Ej (4.6)

Hence the emission vertices of the 4-dim fields are organized in Eg-representations as it is
required by Kaluza-Klein analysis.

The question of consistency of these compactified theories and, in particular, the question
of their (1-loop) modular invariance is better addressed by looking at their construction
from a different viewpoint. Consider a modular-invariant type II superstring vacuum: for
what concernes central charges we have:

(15,15) = (6,6) @ (9,9) (4.7)

the (6,6)-theory corresponding to flat 4-dim space and the (9,9)-theory describing some
non-trivial “internal” manifold. One shows that the “h-mapped” heterotic vacuum, ob-
tained by replacing, in the partition function of (4.7), the subpartition function of the two
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right-moving transverse fermions with that of 2424 fermions (generating a Eg x SO(2+8) =
E§ x SO(10) current algebra) is also modular invariant.

When the internal theory has N = 2 supersymmetry, the fundamental implication of
modular invariance is the projection onto odd-integer charge states with respect to the
diagonal U(1) group obtained by summing the U(1) of the N = 2 algebra with the SO(2)
generated by the transverse space-time fermions. This is just the rephrasing in the present
context of the GSO projection [7,15].

Let’s now consider an extension of the above described mechanism. We start from the
conformal field-theory describing the heterotic string compactified on a Calabi-Yau mani-
fold,

(15,26) = (6,4) ® (9,9)2,2 ® (0,13)

and we let the four-dimensional theory eat four of the heterotic fermions, so that
(15,26) = (6,6) @ (9,9)2,2 ® (0,11) (4.8)

The remaining heterotic fermions generate a current algebra Ef x SO(6).
From the geometrical o-model point of view, what we have done is to consider a target
space of the form

Mlu :Ms X M~L

where Mg is still a manifold of SU(3) holonomy but M, is no longer flat space. Condition
(4.4) extends to
0=TrFAF — TI‘R(G) A R(S) - TI‘R(é) A R(.}_)

which can be solved by embbeding also the holonomy group Hol(M., ) into the gauge group.
In particular consider the case where Hol(My) C SU(2): this happens for gravitational
instantons, whose curvature is either self-dual or antiself-dual. In this situation the gauge
group is broken to SU(6), as it follows from the maximal subgroup embedding:

SU(6) x SU(3) x SU(2) —> Fs (4.9)

From the abstract viewpoint, this is reproduced if the ¢ = (6,6) theory possesses a (4,4)
supersymmetry:

(15,26) = (6,6)1,4 © (9,9)2,2 ® (0,11) (4.10)

Indeed the U(1) current of the N = 2 algebra associated with Mg, the SU(2) currents of
the N = 4 algebra associated with M, and the SO(6) currents of the heterotic fermions
combine together with suitable spin fields to yield the SU(6)-current algebra, according to
the maximal embedding

U(1) x SU(2) x SO(6) —> SU(6) (4.11)

Thus, on this background, the emission vertices for particle-modes (both massive and mass-
less) are organized in SU(6)-representations, as it is requested by Kaluza-Klein analysis.
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4.1 The issue of Modular Invariance

As we already recalled, in the case of compactifications on Calabi-Yau manifolds, that
is by means of a (9,9); theory, one starts from a type II modular invariant partition
function, corresponding to a CFT:

(15,15) = (6,6) & (9,9)

The (6, 6) part, corresponding to 4-dimensional flat space, contains the world-sheet bosons

X*#,X# and the fermions ¥*,¢* and the complete partition function has the structure:

Ziw =Y 20 z(X", X*) B <B§*))* B (B§“2))* (4.12)
where

i) Z(X*,X") is the usual partition function for the four free bosons,

i) Bgi) are the SO(4)-characters in which we can organize the partition function for the
four free fermions 1*, # ( the index 1 taking the values 0,v, 5,5 , for the scalar, vector
and spinor conjugacy class, respectively),

ii1) BE~2) are the partition functions for the superghosts,

iv) Zi(ygi’g) 1s the partition function for the internal theory which couples to reps (i,7) of
the space-time S0O(4) and of the superghosts.

The reason why we have denoted as BE—Z) the superghost partition function becomes
clear from the following considerations. If the superghosts have boundary conditions m ,

(=01 B L [1]) their partition function can be computed to be [17]:

a

b

ZSﬂH(ﬂz):e[”(T) -t (4.13)

5 (tl2) — Z[3](r]2)

which is exactly the reciprocal of the partition function for two free fermions with spin-
structure [Z] *

Since the superghosts are forced by world-sheet supersymmetry to have the same spin-
structure as the space-time fermions, dealing with the theory described by eq.(4.12) one
can use the cancellation of the superghost partition function with the partition function

for two fermions. Instead of (4.12) one can simply write

B = 3 257 7000, 205 (557) (411

* This reciprocity holds only at genus g=1. For higher genera it is amended by a phase factor that amounts
to a correct assignment of spin statistics [17]. In all known constructions if one fixes 1-loop modular invariance
plus spin statistics, higher loop modular invariance is also ensured. We assume that this will go through also in

our construction.
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that is, one considers only the transverse fermions.

The h-map construction of the associated heterotic theory is based on an isomorphism
between the SO(2n)-characters and those of SO(2n + 24) or E{ x SO(2n +8). It works as
follows. The action of the modular transformations S and T on the characters of SO(2n)
in the basis labeled by 0,v,s, 5 is given by

B(.Zn) _?_) T(Zn)B(Zn)
12 s 112 ]2 ) (4'15)
BZ( n) N Sl(] n,)B§ n
where o
TG = diag(1,1,e" ¥, e ¥ )e "2
1 1 1 1
gem_ |1 1 -1 -l (4.16)
11 -1 €T el
1 -1 —€T e

The isomorphism is realized by

T(2n) — ]\/[T(Zn+24:) M

4.17
S(Zn) — JVI5(2n+2-L) M ( )

where the idempotent matrix M is given by:

0 1
1 0

0

0

-1 0
0 -1

M =

It interchanges the scalar and the vector characters, besides flipping the sign of the spinor
and antispinor characters. The characters of Ej x SO(2m) transform as those of SO(2m +
16), so that the isomorphism permits also to reach these groups.

Due to (4.17), if one replaces the two right-moving transverse ¥# fermions with 26 heterotic
fermions that generate the gauge group E} x SO(10), by taking proper account of the
matrix M, the resulting theory has a modular invariant partition function.

In eq.(4.12) we made no explicite use of the cancellation between superghosts and
longitudinal fermions for the following reason. We wanted to enphasize the possibility of
constructing, out of the Z°4 m and by means of combinations analogous to those used
for the free fermions, new characters labeled by an index ¢ = 0,v,s,5, whose modular
transformations are very similar to those in eq.(4.16).

Indeed, in analogy with the characters of 2n fermions let the superghost characters be:

B(_.z) — 1 + 1 , Bg_z) - 1 . 1
vzl 2] 2] 2]
(4.18)
IR SR S [ S
z,] - 2[}] zl,)  z[]]



Eq.(4.18) is obtained from the definition of the BEZ"') characters [7,15] by the replacement
Zh — 1/z [¢]. Using the modular transformations of the Z [4](7), already utilized
to obtain eq.(4.16) , we find :

BT L, T.‘f2>B(.—2>
g (4.19)
B( 2) S( —2) B_E 2)

where . e
T(=2) = diag(1,1,e™ "1, e "7 )€1z

1 1 1 1

g _ |11 -1 -1 (4.20)
Tl -1 einm —e~ itz
1 -1 —e”ifz  eTit

Formally, these matrices are obtained from those in eq.(4.16) by setting 2n = —2, which
explains the chosen notation. Moreover it is manifest that we can use the A-map isomor-
phism to substitute the characters of the superghosts with those of 22 heterotic fermions
with gauge group Ey x SO(-2+ 8) = E} x SO(6).

Consider now a modular invariant type II vacuum in which the ¢ = (6,6) part repre-
sents a four-dimensional space with non trivial geometry. The partition function of such a
theory is

Fror = ZZ(Q ) {80 g(=2) (35‘2)) (4.21a)

Zi(,i’s) being the partition function for the (6,6) theory which couples to the characters
(7,7) of the superghosts.

Although the SO(4) characters have disappeared from the game, we can still perform the
h-map construction of an associated modular invariant heterotic theory. The result is just
of the form (4.8). If, in addition we choose a space-time with SU(2) holonomy, the result
is of the form (4.10). After h-map the partition function (4.21a) becomes

Ty = Z Z(9 Q)Z(G s)B( 2) (Bi(ngSO(s))). (4_215)
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Chapter 5

The construction
of the Vertex Operators

In this Chapter we proceed in the analysis of the heterotic theory (4.21b) by examinating
the subject of the corresponding vertex operators; in particular we construct explicitely
those for zero-modes emission. The importance of such a step has already been stressed
in the Introduction.

In the case where M, is flat space, the emission vertex for any particle-field has the
general form:

Vo (ky 2, 2) = ®c(z,2) V55 U(2,2) A%(2,2)

€

where ®.(z,%) e ~(2) ¥(z,%) and A°(z, Z) are conformal fields respectively belonging
to the theories (6,4), (9,9)(z,) and (0,13). The last two factors determine the internal
quantum numbers (-, ) of the particle one considers. The first factor, instead, determines
its space-time character, namely its spin, its polarization ¢, and its momentum k. The
compound ®.(z,%) e V(2 is the conformal field-theory corresponding of a pure-state
wave-function ¢ (X) satisfying the wave equation:

Atg (X)) = m? 9y (X) (5.1)

where A is the relevant wave-operator (Dirac, Rarita-Schwinger, Einstein, Yang-Mills,...)
and m? = k? is the squared mass. The reason why polarization and momentum are
utilized to label this part of the vertex operator is that they are good quantum numbers
in flat space. Indeed on a flat background a complete set of solutions of (5.1) can always
be expressed in terms of plane waves. Massless-particles have k? = 0 and are the zero-
modes of the wave operator A . When we deal with some non trivial space-time geometry,
the eigenfunctions of the operators A are no longer plane-waves and their spectrum is
labeled by a new set of quantum numbers replacing the momentum k and the polarization
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€. Correspondingly the compound ®.(z,z) eli k- X(2:2)] i5 replaced by suitable operators

©;(2,Z) of the (6,6)s 4 theory. A finite number of these operators correspond to the zero
modes of A and can be used to calculate the scattering of massless particles in the non-
trivial background under consideration.

Another important remarque concerns the moduli: the non-trivial space-time one
considers usually admits continuous deformations that preserve both its topology and its
holonomy. The parameters of these deformations are named moduli and, from the CFT
viewpoint, they correspond to suitable marginal operators one can add to the 2-dimensional
lagrangian preserving its (4,4)-supersymmetry. Exactly as in Calabi-Yau compactifica-
tions, the spectrum of zero modes for the various operators A depends on the number of
these deformations: furthermore the corresponding vertex must be thought as a function
of the moduli.

In the construction of the relevant vertices we proceed in analogy with what one does
for the internal dimensions. We relate the counting and the group-theoretical indexing of
the possible conformal operators that possess the correct dimensions and charges to the
counting of zero-modes for the fields appearing in the low-energy effective supergravity,
when this latter is expanded around the particular background, abstractly described by
the CFT under investigation. The procedure is like a Kaluza-Klein compactification to
zero dimensions.

On the other hand, in order to gain a more intuitive comprehension of the role of the

operators appearing in the (6,6)s 4 theory, it is instructive to compare the vertices with
those of flat space. To this purpose it is useful to recall that flat four-dimensional space
possesses an N=4 world-sheet supersymmetry (see Chapter 3). Hence we can recast the
operators appearing in the vertices in a form suitable of generalization to any (6,6)4 4.
In what follows we will proceed in a general way. However, to give a concrete example of
how the counting goes, we will also specify the formulzeto the K3 manifold, the unique non-
trivial Calabi-Yau manifold in four dimensions. Under some respects, K3 may appear as a
good candidate to insert in our scheme for treating non-trivial four-dimensional geometries.
Compactification on K3-surfaces has been extensively studied in the past [18] and it is
known to be represented by a (6,6)s4 theory, which in some points of moduli space is
solvable, being given by a tensor product of N = 2 minimal models. The knowledge of K3
cohomology, described by the Hodge diamond

1 20 1 (5.2)

makes the counting of the zero-modes explicit yielding non-trivial results that can be
compared with the CFT counting of vertices.

On the contrary, for physical reasons, K3 is not the most appealing possibility. It
is a gravitational instanton, but it is compact. As already stressed, our goal is to extend
the same techniques to four-dimensional instantons of the effective lagrangian that are
asymptotically flat (this last feature seems to be realizable only with torsion [9]).
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5.1 Geometrical analysis of the zero-modes

In order to analyse the vertex-operators for the zero-modes we need the field content
of the effective four-dimensional theory, which is a matter-coupled D=4,N =1 supergravity
arising from compactification on the internal Calabi-Yau manifold. This field content is
described in Chapter 6.

We begin with the Eg charged fields given by the gauge multiplet (gauge bosons and
gauginos, transforming in the 78 representation ), by A%! WZ multiplets transforming in
the 27 and h'? transforming in the 27-representation (these Hodge numbers being those
of the compactified CY space). We consider the zero-modes of these fields in the classical
background provided by a non-trivial four-dimensional manifold (and we consider K3 as an
illustration). We refer in the following to the Hodge diamond of the manifold in question,
with the following caveats: the manifold can also be non-compact (and actually this is the
case we are interested in), and in this case we refer to the diamond of its compactified
version, which gives the correct local counting, i.e. the dimensionality of the space of zero-
modes, these latters being no longer normalizable; if the manifold has torsion, we refer to
the analogous diamond for the relevant fiber bundle whose connections are the wg £ T and
not simply the Riemannian one wp as in the zero-torsion case.

As already enphasized, we embed the space-time spin connection into the gauge connection,
breaking the gauge group as follows:

Es — SU(6) x SU(2) (5.3)

To investigate the zero-modes we must take into account the branching of the representa-
tions of Eg under (5.3).

The adjoint representation is decomposed as
78 = (35,1) +(1,3) + (20,2) (5.4)

Consider the gaugino field. Its index in the adjoint of Es is split accordingly to eq.(5.4);
it also has a spinorial index on the manifold. Thus the possible cases are :

o A1 A being an index in the adjoint (35) of SU(6), « being the spinorial index. The
zero-modes are in correspondence with the Dolbeaut cohomology H"?. Since the chirality
is determined by (—1)?, there are 2 zero modes with (-) chirality and A% with (+) chirality.
For K3, looking at the Hodge diamond (5.2) we see that there are just two zero-modes
both with the same chirality (-).

o A X in the adjoint of the SU(2) holonomy group of the manifold. The zero-modes
should be related to the cohomology groups H%?(EndT") of Endomorphism-(of the tangent
bundle)-valued antiholomorphic forms. For example, by the explicit realization of K3 as
an algebraic surface one can evaluate the dimension of this cohomology group, case by
case.

o A2% a belongs to the 20 of Fg; = in the 2 of SU(2) is the same as a contravariant holo-
morphic index which can be lowered by means of the holomorphic (2,0) form. Because of
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the spinorial index, the zero-modes correspond to (1, ¢) harmonic forms. We can therefore
have just A''* zero-modes (20 for K3) with chirality (+).

Consider then the gauge bosons. According to the decomposition (5.4) we have:

. Ai’ {4 can be a holomorphic or antiholomorphic index. There can thus be 2h"1 zero-
modes. In the K3 case since, due to the vanishing of A" and k"', the holomorphic SU(6)
bundle is trivial, there is no zero-mode of this kind.

. A;;Y Zero-modes are related to the Dolbeaut cohomology H'(EndT).

« A%" Again, = behaves as a holomorphic index that can be lowered by the holomorphic
(2,0) form or by the metric according to the necessity to obtain again an antisymmetric
form. Then the zero-modes can be set in corrispondence with (1,1) forms, for both the
type of p. We have thus 2 h''! zero-modes of this kind (40 for K3).

The 27 of FEg is decomposed as
27 = (15,1) + (6,2) (5.5a)

Consider the fermion field belonging to any of the WZ multiplets that transform in the 27
representation (these are the charged fields paired to the complex structure deformations
of the Calabi-Yau manifold). The decomposition (5.5a) gives rise to the following cases:

« Xi' A belonging to the 15 of SU(6), a the spinorial index. Zero-modes correspond to
the Dolbeaut cohomology H"? so there are 2 zero-modes with chirality (-) and A”? with
chirality (+); just the 2 with chirality (-) are present on K3.

o X&% aisin the 6 of SU(6); = in the 2 of SU(2) is like an (anti- Jholomorphic index; once
lowered by the (2,0) (or the (0,2))form the zero-modes are put into correspondence with
HY (or H%! so that there are A''' = 20 modes (H''! has to be counted only once)with
chirality (+) and 2A"! with chirality (-). This means 20 of chirality (+) on K3.

The possibilities for the scalars of these 27 families are:
« 4 for which there is just A%? = 1 zero mode.

« »»® Lowering the index, the correspondence is with H°! and so h''! zero-modes exist

(none for K3).

The 27 of Es decomposes as

7=(15,1)+(6,2) (2.26b)

For the 27-spinors we have, analogously to the 27-ones, two zero-modes with (-) chirality
and h’! with (+) chirality in the 15 and h1? with (+) chirality and 2h%?* of (-) chirality
in the 6; for the 27-scalars, one mode in the 15 and A’ in the 6.

Consider now the fields of the gravitational multiplet
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To look for the zero-modes of the graviton field, i.e. of the metric, means to look for the
solutions of the Lichnerowitz equation; for example on K3 these are well known to be
58. This number is of course determined by the cohomology of K3, and to this purpose a
discussion is necessary, about the separated counting of the metric and torsion zero-modes.
It goes as follows (we refer to K'3 but really the formuleare valid under the only assumption
that A"2=0). From the K3 Hodge diamond (5.2) we know that A*" = 1 and A™' = 20.
Let €;; be the (2,0)-holomorphic form and let g;;« be the fiducial Ricci flat Kahler metric
(1,7 = 1,2) that, for each Kahler class, is guaranteed to exist by the Calabi-Yau condition

c1(K3) = 0. Furthermore let Ui(ﬁ) be a basis for the (1,1)-forms (e = 0,1.....,19). A
variation of the reference metric which keeps it Ricci-flat is given by:

5gij
Guv — Guv + 89 5 bgu = { bgij (5.6)
5gi*j*

where 6g;;, 6gij+ and bg;«j« are harmonic tensors of the type specified by their indeces.
Hence we can immediately write:

591’]’* = Cq Uz(]o;) (57)

where ¢, are 20 real coeflicients. They parametrize the deformations of the Kahler class.
On the other hand, using the holomorphic 2-form, any harmonic tensor with two antiholo-
morphic indeces %;«j« can be written as the following linear combination:

1
ix gx = d* Q* * 5‘8
e = e o Ve )

where raising and lowering of the indeces is performed by means of the fiducial metric
and where d¥, are constant complex coefficients. Since h*® = 1 it follows that, of the 20
independent linear combinations appearing in (5.8), only one leads to an antisymmetric
t;j»; all the other combinations produce a symmetric tensor t;+j«. Hence we can choose a
basis of the (1,1)-harmonic forms such that:

Q,’*j* Qz* Uk] (5.9(1)

HQH2

1

HQHz Qz* Uk] == Si*j* = fk g (a = 1, ..... ,19) (5-9b)

J*i*

The 19 symmetric tensors S% j« provide a basis for the expansion of the antiholomorphic
part of the metric deformation

Sgisje = du S&je (5.10)

The holomorphic part just is the complex conjugate and it is expanded along the complex
conjugate basis St bgij = d 5. The 19 complex coefficients d, parametrize the
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complex structure deformations of the K3 manifold. Summarizing the 58 zero-modes of
the metric emerge from the following counting:

# metric zero — modes = hAV' + 2 (AM - 1) (5.11)

This formula is just a consequence of A?"Y = 1 and it has a meaning also for non-compact
manifolds, like the instanton we consider later in this thesis, as a counting of local de-
formations. For global deformations one has still to check if they can be reabsorbed by
diffeomorphisms.

In string-theory, the metric is not the only background field. We have also the antisym-
metric axion B,,, whose curl H),, is identified with the torsion T),,, as we are going
to see while discussing the o-model formulation (see section 4). The zero-modes of the
fleld B, are counted in a similar way to the case of the metric. From the linearized field
equation around the reference background, one concludes that § B;;, 6 Bi« j» and 6B;;~ must
be harmonic tensors. Because of the different symmetry of the indices, this time we have:

5Bij = AQij (5.12a)

§Bije = ba UL (5.120)

where A is a complex parameter and b, are real parameters. Hence we have 22 axion
zero-modes that emerge from the following counting:

# axion zero — modes = hM' + 2 (5.13)

Altogether there are 3h'! — 2 @ A''? + 2 = 4h"! zero modes of the field g,, + iB,,. In
the next subsection we see that this counting agrees with the counting of N=4 preserving
marginal operators in a (6,6),4 4+-theory.

The gravitino zero-modes are the zero-modes of the Rarita-Schwinger operator. Uti-
lizing the standard trick of writing spinors as differential forms we can relate the number
of these modes to the dimensions of the cohomology groups. Let

{I‘i,I‘j}:O N {I‘i*,I‘j*}::O

{T:, T} =2 gijr - (5.14)

be the Clifford algebra written in a well-adapted basis. A spin % field 1, can be written
as follows:

¢i — ( w;1 + w,-j*l"j* + Wij I‘j*k* )[ C >
pis = (wind + wispa T + Wi TTF ) ¢ > (5.15)
where the spinor | { > satisfies the condition:
T |¢>=T"|¢>=0 (5.16)

The field 9, is a zero mode if the coefficients w__ in (5.15) are harmonic tensors. Hence
from w; and wi» we get A'Y and k"' zero-modes respectively. From w;j« and wij« we
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obtain A'' 4+ Al! zero-modes. Finally 2 h1'? zero-modes arise from wjjspx and wix jr .
In view of the symmetries of the Hodge diamond the total number of zero-modes for the
gravitino field is given by the formula

# gravitino zero — modes = 2 A + 4 BMY (5.17)

In the case of K3 the above number is 40.

Finally, for the Fg neutral WZ multiplets, the fermion has two zero-modes of the same
chirality (in correspondence with H"?), while the scalar has just the (trivial) zero-mode
corresponding to H"Y.

5.2 Construction of zero-modes Emission Vertices

For each field appearing in the effective four-dimensional theory it is possible to write
the expressions of the vertices for the emission of its particle zero-modes on a certain four-
dimensional background in terms of the conformal operators of the (6, 6)4 4 that abstractly
corresponds to that background, and of the operators of the internal and heterotic fermions
theories of course. We give a counting of the vertices for each Fg-charged or neutral field
of a certain kind: for example we describe and count the various vertices arising from a set
of fermions transforming in the 27 of Es; it is to be recalled however that actually we have
in the game h*' (we mean here the number of (2,1) forms of the internal manifold) such
27’s. Similarly in all other cases. The counting of the vertices reproduces completely the
counting “a la Kaluza-Klein ” of the zero-modes for the various fields on the corresponding
background, topologically described by an Hodge diamond identical to the abstract Hodge
diamond of the (6,6)4 4, that has just been described.

In some cases the flat-4 dim-space expression is recalled to make easily understood its
generalization to any (6,6)s 4. We express the vertices in the so-called canonical picture.

e Gravitational multiplet:
Graviton

In the flat space, the graviton vertex is given by
ei¢sg(z)¢u(z) —XV(Z)eik'X(z’E)l <8 8) (Z,f

where, following the notations of ref [15] ¢, is the field bosonizing the superghost system
in the left sector, and O <Z Z) denotes an operator of the internal (9,9); 2 theory of

dimensions k, h and charges q,§ with respect to the U(1) contained in the N=2 algebras
of left and right sectors.

Note that left and right dimension of the operators are such that e must have weight
zero, i.e. k? = 0 and the vertex is really massless: indeed A(e?®s() + A(y#) =1 +1 =1
in the left sector and A(HX*) = 1 in the right one. As recalled briefly in Chapter 3 the left
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and right charges Q, Q with respect to the total U(1) must be respectively odd and even
integers. This is the case for the above expression as g(1*) = 1 (this is the value assigned
to the vector representation of the space-time SO(4)), and no operator is charged in the
right sector.

The graviton vertex in the generic case is given by

5. (5 1/2 11", /0 0
ipag(2)
° @*4[1/2 0} 1(0 0>

ipag () 1/2 1 ’ 0 0
; H-“{1/2 o] *lo o

4h'! zero modes
The counting is explained as ® 4,14 are the fields obtained by the action of the right
moving supercurrents (see the OPEs ...) on the abstract (1,1)-forms ¥4 [iﬁ,iﬁ} A =
1,...,h0% A factor of 2 comes from the SU(2) doublet in the left sector.

Gravitino

The flat space vertices for the gravitino massless mode emission of the two chiralities,
already reported in Chapter 3, look like

a N LI A (= ik-X(2,2) 3/8 0
Vi(k,z,2) = e S (2)0X(2)e 1(__3/2 0

z 3 ¢°(z & Av/iz\ kX (z,2 3/8 0
Viu (B 2,2) = e2?710S (z)aMz)e“(v)l(gfz o)

Note that again left and right dimensions are correct: A(e!/2%:7) + A(Saa) +3/8 =
3/8+1/4+3/8 =1 and A(BX*) = 1. For the left charge, note that to the spinor
representation of SO(4) is assigned th value 1/2, and -1/2 to the antispinor, so that the
total charge is for the two chiralities 1/2—3/2 = —1 or —1/2+43/2 = 1, both odd integers.
The abstract (6,6)s4 correspondent of the spin fields of the two chiralities having been
investigated in Chapter 3, it is almost immediate to write the generic form of the gravitino

vertices as follows:
it {164 1} 1( 3/8 0>

0 ~3/2 0
e, 1 44 1)

2h'1 zero modes of (4) chirality
fonmae | 1/4 1], (3/8 0
€ ‘I’A*[1/2 o| 372 o

e (. |1/41° 1/4 1 3/8 0
bsg(2) *

e 1{1/2 a1 1) 0}1<3/2 0)
42




4h'? zero modes of (-) chirality

Here ®*%. and II*. are the operators obtained acting with the right-moving supercurrents
on the abstract (0,1) operators ¥*. to obtain in the right sector the ® or the II upper
component of the short representation, in the same way as ® 4 and Il 4 are related to the

abstract (1,1) forms ¥ 4.

Indeed for the positive chirality the 4-dim part of the flat space expression can be recast
in the form \Il[lé*](z)ﬂ(or ®)(2) i.e. there is the product of short reps. in both sectors,
giving rise to the appropriate abstract-(1,1) operator; for the negative chirality, we have
instead 1 E;;](z)ﬂ(or ®)(z), corresponding to abstract (0,1) operators.

let us also note that for having correct total U(1) charges, the spacetime charge must be
assigned consistently with what is done for the flat space case, and thus it is not (for these
and for all the fermionic vertices that will follow) directly the charge respect to the U(1)
of the N=2 contained in the N=4; this would be indeed 0 for the spin fields of negative
chirality (singlets of SU(2)) and 1 mod?2 for the positive chirality ones. The practical rule

is to subtract 1/2 when dealing with the analogues of the flat space spin fields.

e Neutral WZ multiplets
SU(6)-singlet scalars

In the flat space the vertex espression is

€Z¢3g(z)elk‘\-(z’2)nl (1{2 é)

The internal fields ; are all the possible primary fields with the specified weights and
charges. :
The general analogue is simply

igsy(2) g 00 . 1/2 1
e 1[0 O]Q‘(l 0

One zero mode.
where 1 is the identity times maybe the dimension zero operator that plays the same role
as e*X(23) ip the flat space case, and whose presence depends on the uncompactified
geometry represented by the abstract (6,6)4 4.
SU(6)-singlet fermions

From spectral flow in the left sector of the previous “scalar” flat space and generic vertices
one gets the “fermionic” expression, both in flat space and in the general case. From now
on we limit ourselves to write the generic expressions, as the practical “rules”, following
from the principle discussed in the previous chapters, for the generalization of flat vertices
have been sufficiently illustrated.

seang [1/4 0], (3/8 1
¢ 1[1/2 o Y12 o
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ig (2 1/4 0 3/8 1
ez‘Paa(a)\I;A[(/) 0:, Qi<1;2 0)

2 zero modes of (-) chirality and A*Y of (+) chirality.

o s Gauge bosons:

We turn now our attention to the Eg charged fields, starting with the Eg gauge bosons.
The vertices are grouped in SU(6) representations as follows in the Kaluza-Klein analysis
from the breaking Es — SU(6) x SU(2) due to the embedding of the spin connection of
the 4-dim manifold, of SU(2) holonomy, into the gauge connection. Their structure shows
directly how these SU(6) reps are reconstructed using the operators carrying SO(6), SU(2)
or U(1) charges, as it follows from their branchings under SO(6) x SU(2) x U(1); these

branchings are indicated in the form

repsu(s) = (TePso(s) » T€PsU(2) 5 4)

(we omit the U(1) charge § when it is equal to zero). For what concernes the adjoint (35)
representation in appendix ... the reconstruction in terms of SO(6), SU(2),U(1)-charged
operators is shown to be really correct from the group point of view.

Vertices in the 35 of SU(6), “SU(6)-gauge bosons”

35 = (1571) +(1a1) +(173)+(4727§: 3/2)+(Z,2,§: _3/2)

'_;'(;53 (z) 1/2 0 ¢ 0 0 ~d/—
er ‘I’A[1/20 1y o)77()
i (s 1/2 0]°./0 0\-,_
ez¢sy( )\I;A[]-?z OJ 1(0 0)](2)

RIHON [1/2 0} 1 <0 O)Ai(g)

1/2 0 0 0
o2 a5 (3 1)
seon [ VA (0 o) me

2hYY zero modes.

j are the currents in the adjoint (15) of SO(6), A the currents of the SU(2) of the right

N=4 algebra, j is the internal U(1) current. X, and X4 are the SO(6) spin fields of the
two chiralities.

SU(6)-singlet scalars

o [1/2 17, (0 0
E”Q’[1 o] *lo o
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The Q; are all the “space-time” fields with the indicated weights and isospins, so they are
more than the ¥ (see sec.2) and their number should correspond to #End(Tr3)
“Scalar” vertices in the 20 of SU(8)

20 = (672)+(4717§:3/2)‘*‘(‘4“71)‘?: _3/2)

e [12 125 (0 0)ancy

g¢w(ﬂq14[1/2 1/4}a]'(0 3/8) 5.(2)

1/2 0 0 3/2
ity W; 1é4r1(g f?{;SZ)id(z)

2h(1:1) zero modes.

The heterotic fermions 8p(%) transform in the fundamental of SO(6).
e g Gauginos:

These vertices are related to the vertices for the gauge bosons much in the same way
as the gravitino ones are related to the graviton; all the remarks done at that point apply
here as well as to all fermionic vertices. From now on we will only more list the group
decompositions and the vertices for the various fields.

Vertices in the 35, “SU(6) gauginos”

elz'q:’ag(z)i [1/4 O:I

3/8 0 -4
1/2 0 3/2 0)-7 (2)

3/8 0)=.
92 0)%@

(3
(-

hbes(2)] [1/4 0] ]_< 3/8 8>44%2)
(5

idag()g | 1/4 0
extevl [1/2 o| !

1/2 0 ~3/2

3/8 3/8) 5 u(2)

1/2 1/2

et®o (1 [1/4 1/4} T\ 32 3/2

R IC AL

Two zero modes of (-) chirality.

om0 3] (35 8) 7%
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................................

................................

SU(6) singlets fermions)
ipag(a)g, | L/4 1|, (3/8 0
e Q[ o o]*\32 o

The numbers of these vertices is again related to #End(Tks3).
Fermions in the 20 of SU(6)

ity [ V2] (M8 DY g

eitan(y F/‘l 1/4} 1 (3/8 3/8> 5 (7)

0 0 3/2 3/2
fong 174 1/4].(3/8 3/8 \ =
¢ ()‘I'-*[ é é }1<3§2 —3/2>E°‘('z)

h'! zero modes, all of (+) chirality.

e27-charged Scalars:
Scalars in the 15 of SU(6)

0 0 1

o (M) 5

piteo(2)] {0 0} wt <1{2 1/2) 7r(3)

ibg(2)f |0 1/4
e 1[0 1/2

ideg(n3 |0 0] g+ (1/2 1
° 1{0 0}‘“(1 =)

one zero mode.

The operators ‘Il;:, which are of (chiral,chiral) type, are lowest components of a short
representation and correspond to the abstract (1,2)-forms of the internal 6-dimansional

Calabi-Yau manifold.
Scalars in the 6 of SU(6)



0o 1/2]° 1/2 1/2
0 1/2 @j( 1 1)

ot <1{2 f{%) Sa(Z)

ld’ig( )‘II.A*

0 1/4

ei‘bsy(z)llfi‘* 00

Y1 zero modes.

e27-charged fermions

Fermions in the 15

oot [ 1] ot (205, )
amon [ ] e (2 ) e

eito(2] [1/4 0

1/2 0 Q‘I’:<-31/?2 —12)

Two zero modes of (-) chirality.

e%‘l”sg(z)\I;A‘:l(/;l 8} Gg 1/2)
e
1

oo, [ 8] i (U

)

i1 o (38 3

h'Y zero modes of (+) chirality.

Fermions in the 6

o |14 1/2]7 gu (38 1/2
¢ ‘I’A[o 2] ¥elie 1

sond [0 (3 )50

h'! zero modes of (+) chirality.

g [1/4 17217 e (378 1/2
¢ Ve [1/2 2] Yl 1
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ed b, H;;L 164}” wt <j’>1/;32 f{%) Sal(2)

2h%1 zero modes of (-) chirality.

027-charged Scalars:
Scalars in the 15 of SU(6)

— - 1 -
15=(6,1,§=-1)+ (4,2, = —2—)-}—(1,1,q:2)

piteg(2)7 {0 0} w: (1/2 1/2> 75 (2)

0 0 1 -1
ipnya |0 1741 - (1/2 3/8\ s
¢ 1[0 12| Bl qy2) B0

bz [0 0] (1/2 1
© 1{0 o}q’k<1 2
one zero mode.

The operators ¥, which are of (chiral,antichiral) type, are lowest components of short
representations, both is left and right sector, and correspond to the abstract (1,1)-forms
of the internal 6-dimensional Calabi-Yau manifold.

Scalars in the 6 of SU(6)

- - .1
6=1(1,2,g= -1)+(4,1,4= '2")

ehbua() g, {0 1/2} or (3/8 1/2)

0 1/2 1/2 -1
ot [0 4 oz (39 28509

Y1 zero modes

027-charged fermions:

Fermions in the 15

chenoi [0 M e (30, 12 eta)

oot [V 191" g (08 )5
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fp(nq [1/4 0] - ( 3/8 1
e 1[1/2 o] Tel 12 2

Two zero modes of (-) chirality.

o [0 o (U3 10 e

om0 ] v (7 1)

ig. (s 1/4 0)._/3/8 1
eZ@s!]()\I}A[é O]lpk <1§2 2)

h' zero modes of (+) chirality.

Fermions in the 6

oo, [0 30w (3 )

e2%:003) g [1(/)4 1(/)4} iy (i’g i’g) Sal(Z)

h*:! zero modes of (+) chirality.

e e e (2 )

N RS E ALY

et bes () g,

2h%?! zero modes of (-) chirality.
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Chapter 6

An asymptotically flat instantonic
solution of the stringy New Minimal
N=1, D=4 Supergravity

We will now show how the instantonic solution proposed by Callan, Harvey and Stro-

minger in [3] arises as a solution of the equations of motion of the effective four-dimensional
theory (as it should to fit the general scheme outlined in Chapter 4).
The low-energy effective lagrangian of heterotic superstring theory is a supergravity la-
grangian. If the superstring is compactified on a 6-dimensional Calabi-Yau manifold, then
this effective lagrangian corresponds to that of an N=1, D=4 supergravity [12] which,
when restricted to the bosonic fields, has the following well known general form:

- " 1
Lo = V=g | R~ gr Vaal Ve - 1 Refap(2)Fp, L e
~1I fag(z) F& FB gpvpo (6.1)
8 m aﬂ(") wv Yoo €

In (6.1), besides the gravitational field, described by the metric 9uv, one has the gauge
fields A7 belonging to the Lie algebra of a suitable gauge group Ggauge and a set of
complex scalar fields z! corresponding to the bosonic content of the Wess-Zumino scalar
multiplets. The kinetic term of these scalars has a o-model form in terms of a Kahler
metric grj« = 0107+ G(2,%) . The real Kahler function G(z,%), besides determining the
kinetic term, determines also the scalar potential term, via the celebrated formula [12,19]:

V(z,2) = 4(g”* 0;G 07 G — 3) ¥ — g% [Refas]™t P> PP (6.2)

To be precise G(2, %) is not exactly the Kahler potential of the metric g7 s«, rather it is the
norm squared

G(z,2) = K(2,2) + W () = In||W()|? (6.3)
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of a holomorphic section W(z) in a line bundle £, whose first Chern class is the Kahler
class w = igry+dzf A dz7” of that metric :

w = 89||W]|? (6.4)

The holomorphic section W(z) is named the superpotential and the hermitean metric
K (z,%) of this line bundle is the proper Kéhler potential. In addition, if the gauge group
has a linear action §z7 = (T,)% 27 on the scalar fields, then the contribution to the scalar
potential (6.2) proportional to the gauge coupling constant g* is given in terms of Killing

vectors prepotentials of the form
P = — i 8iG(Ta); 27 (6.5)

When the action of the gauge group is non linear, then the expression of P* is more
complicated, but we shall not be interested in this case. Finally, the gauge coupling
function f,g(z) is some holomorphic function with adjoint ® adjoint indices of the gauge
group. In the case of Calabi-Yau compactifications [5] of the heterotic string the gauge
group is Fg ® Egl and the scalar multiplets (all neutral under Esl) are of six different types
[20,21]:

S = dilaton — axion field

M = (2,1) — moduli (a =1,...... 21

I M = (1,1) — moduli (i = 1,......, A1)

C* = 27 — charged fields (a = 1,......,A*?)

C* = 97 — charged fields (i = 1, ......, A1)

Y* = non — moduli singlets (v =1, ...... ,H#HEnd(T))

(6.6)

in correspondence with the cohomological properties of the internal space, dictated by
its Hodge numbers A*!, %! and by the number of deformations of its tangent bundle
#End(T). Of particular relevance are the moduli-fields, that describe the deformations
of the compactified manifold, and their special Kahler geometry. Indeed, to lowest order
in the charged fields and non-moduli singlets, the general forms of the complete Kahler
potential and complete superpotential are respectively given by:

K = —log(S+35) + K(MM) + Gue(M,M)C"C"
and . )
W o= 3 Wae(M)C* chee + 3 Wije(M)C CTCF 4 i, (6.8)

where K (M, M) is the Kahler potential of the moduli-space and Wapc(M), Wijx(M) are
the Yukawa couplings. These quantities are related by the peculiar identities of special
geometry.

Notwithstanding the importance of these fields, in the present thesis, we are rather in-
terested in the first term of eq.(6.7), namely in the universal S-field that includes both the
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dilaton and the axion. The structure of (6.7) implies that this field spans an SU(1,1)/U(1)

coset manifold and that the total scalar manifold is the direct product of this coset with

some other Kahler manifold K'. That this is the case follows from very general consid-

erations we shall now review. Furthermore it is just the presence of § that allows for

the existence of instantonic solutions that are asymptotically flat and not only locally

asymptotically flat. To this effect we recall that according to a very interesting mechanism
discovered by Konishi et al [10], gravitational instantons might induce a non-perturbative
breakdown of supersymmetry via their contribution to the functional integral. An explicit

calculation was in fact performed in [10], utilizing the Eguchi-Hanson metric [11]. The

problem is that, for a correct implementation of this mechanism, the instanton should be

asymptotically flat. This is not the case of the Eguchi-Hanson metric, for which asymptotic

flatness is local and not global. The problem of finding asymptotically flat gravitational

instantons was considered several years ago by D’Auria and Regge [9]. They realized that

in order to reconcile the self-duality of the curvature with asymptotic flatness one needs

an “unsoldering” of the principal Lorentz-bundle from the tangent bundle. This can be
achieved by writing gravity in first order formalism and coupling it to a pseudoscalar field,

whose derivative becomes the dual of the 3-index torsion. Indeed D’Auria and Regge pro-

posed a certain configuration that realizes the desired instanton and that is a solution of an

ad hoc constructed lagrangian. As we are going to see, their configuration is just equivalent

to the dilaton-axion instanton discovered by Rey [22] to be an exact solution of the string
derived Supergravity lagrangian (6.1) with Kahler potential (6.7). What D’Auria and
Regge missed in their action and had to simulate with an ad hoc interaction term was just

the dilaton. Indeed their pseudo-scalar was nothing else but the axion. In a certain limit

the dilaton-axion instanton corresponds to an exactly solvable (4,4) superconformal theory

that has been discovered by Callan [3]. In later sections of this thesis we use this examples

and its associated (4,4)-theory to illustrate our ideas on the generalized h-map, studying

also the corresponding moduli deformations. In the present section we discuss the deriva-

tion of this instanton in the context of the effective low-energy lagrangian, enphasizing the

role of the New Minimal formulation of Supergravity.

The key point here is the observation that, indipendently from the compactification
scheme the effective supergravity lagrangian should contain the coupling of a linear mul-
tiplet (¢,x,Bu.) that arises directly via dimensional reduction from the dilaton and B,
field of the ten dimensional effective theory. In four dimension, this multiplet can be trans-
formed into an ordinary WZ multiplet by a “duality transformation” relating the B,,, field
strength to an axion field:

1e
V. A= - _HYPT ~2¢ rvpo 6.9
3 o4 [g|e ( )

As we just recalled in matter-coupled 4-dim supergravity the complex bosonic matter fields
are interpreted as the coordinates 27 of a Kahler manifold X. For a generic theory, and if
we derive the action from the Old Minimal off-shell formulation of supergravity [23], the
manifold K is arbitrary: we recall that the Old minimal formulation is characterized by
the presence of a scalar auxiliary field appearing in the SUSY-transformation rule of the
gravitino. On the other hand if we adopt the New Minimal formulation [24], characterized
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by the absence of this scalar auxiliary field, then K cannot be arbitrary: it is constrained
by conditions that imply the existence of a coordinate frame where the the Kahler function
has the following form

G = alog(z + z) + G(z, ") (6.10)
the indices being split as follows {zf} = {z,2'} and G(z,7"") being an arbitrary Kahler
function for the remaining scalar fields z°, once the special field z has been subtracted.
The parameter o is any real constant. In other words the existence of a New Minimal
Formulation requires a factorization (at least a local one) of the scalar manifold into:

SU(1,1) ,
T @k (6.11)

}Cscalar =
These results were derived in [25]. In the same paper, it was also shown that the conditions
for the existence of a New Minimal formulation are the same conditions that guarantee the
possibility of duality-rotating one of the WZ-multiplets to a linear multiplet (é,x,Buv),
via equation (6.9).

In view of these very general results, it follows that a superstring derived supergravity,
since it includes a linear multiplet, has necessarily a Kahler function of the form (6.10),
and admits a New Minimal formulation. The second statement is further supported by the
results of [26], showing that in heterotic string theory one cannot construct an emission
vertex for the scalar auxiliary field.

Having clarified this crucial point we proceed to discuss the derivation of the dilaton-
axion instanton in supergravities characterized by a scalar manifold of type (6.11). Using
the New-Minimal Lagrangian we retrieve as an exact solution the Callan et al configuration
[3], that is also of the same form as the one considered by D’Auria and Regge in [9].
Performing the generalized Weyl-transformation that maps the New into the Old Minimal
theory, the Callan instanton flows into the Rey instanton, characterized by an exactly flat
metric and a singular dilaton and axion.

Let us then go back to eq.(6.7) and concentrate on the Kahler function G(S,5) =
—log(S + §). When we consider the theory in Minkowski spacetime the fields of the
dilaton multiplet

S=Ff+1ig
S=f-ig
(f representing the original dilaton, g the axionic field) span the factorized SU(1,1)/U(1)
part of the scalar manifold, according to eq.(6.11). It turns out, however, that, while
performing the Wick rotation to reach the Euclidean region, (due to the e symbol appearing

in the duality transformation eq.(6.9)), it is also necessary to perform a Wick rotation on
the scalar manifold. Eq.(6.12) becomes

S=f+g
S=f-g

From now on we will consider the FEuclidean case, since we search for an instantonic
solution. However, for convenience, we continue to use the same “complex” notation as

(6.12)

(6.13)

before the rotation.

53



Restricting our attention to the bosonic sector of the theory, in the New Minimal
formulation, according to the results of [25], the curvature two-forms

Rab — dwa.b _ wacwcb

R* = DV*®
R® =dA

(A being the Kahler connection on the scalar manifold ) are parametrized as follows:

Rab — Rab CchVd

R® = F,,v°v?

: (6.14)
R* = rye™ e, V,Vy (D, t" = 0)
dzf = zIve

the parameter k; being a free constant. The fields in this formulation are obtained from
those in the Old Minimal one through a Weyl transformation,

Vi, =e??va, - zlnew = g=¢/2 70l (6.15a)

new ol

(for the bosonic fields).

In order for the transformation to be succesful, it is required that

¢ = log 8:G (6.158)

where G(z,7) is given by equation (6.10). The auxiliary fields are then expressed as
2% = I'm(6r¢ Z1) : (6.16a)
A = Im dG — (28, + 1)Im(0r¢ ZT) | (6.16b)

K1 is a constant appearing in the New Minimal parametrization of the fermionic curvatures
for whose expression we refer to [25]. One sees that having the dilatonic WZ multiplet in

the game, we are precisely in the situation of eq.(6.10) with @ = —1,z = §. Hence in the
case of the superstring effective lagrangian we obtain the identification
1 1
=log ——= =log — 6.17
b =log gz =log = (6.17)

The first order formulation of the bosonic New Minimal lagrangian is given by

L :e-¢{RﬂbVCV’deabcd + 4Rt RyVVE 4 (819 Z1 4 81-¢ ZI YR,V Vyeobed 1
N (g grs — 016 0r-9) [ 21427 1 2] 41| ViV Vaevedy
- [ams 8r¢ Z1dz" + 81-¢ 8y Z7 dzf"] Vy V. Vyeobed 4 (6.18)
+ [_%(gg”* — 816 8- 8)2127 + %(anb d1¢ 2127
+01-¢ 059 ZF 27°7) + %mé tyt" — M} V“vacvdeabcd}
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where the scalar potential takes the new form M=—282(3+a— g” 8:G 9 G) Gz 4+ 2)7,

to be compared with eq.(6.2)
Recalling that in 2"¢ order formalism

1
RV Ve peq = §R\/|g[d4m

where R is the curvature scalar, and comparing the lagrangian in eq.(6.18) with the effec-
tive action used by Callan et al. [3],

1 B
= 5‘/«/]g[d*a:e2I (R+...)

we have the correspondence
¢ =—-29 (6.19)

We can consistently search for a particular solution in which only'the dilaton and the axion

field are relevant, setting the other fields 2* to constant values ¢’ such that

SM(cY=0 ; M(c)=0 (6.20)
We furthermore impose the radial ansatz
a _ _—A(r)_a 2 _ a
Ve =ce .e (r z,z”) (6.21)
§=238(r) ie. f=f(r),g=g(r)
Recalling that
11

gss = (S+5v)2 4f2

and using as flat vierbeins the following ones

—( €% /4/2)Q7 QF | the variational

with ' =SU(2)-Maurer-Cartan forms such that dQ0* =
equations obtained from the lagrangian (6.18) read:

. Matter equations (g—, f—wvariations respectively)
(6.22a)

9 _ VLo 29 97 _

FONETT ff
fn /f, 3]1'! 1 fl 2 gl 2—

2 _ g6 | TN r7“§<_) ]+<7> — 0 (6.22b)
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. Einstein equations (V¢—wvariation)

! ! ! ! 2

82”7 — 4(/\’)2 + 163\7—‘w — 4/\l§— — -78:1;— + (]; ) + <—}_—) =0 (6.226)
! / I\ 2 i\ 2

—12(N)? + 24 - 12/\'1;— - 1—7:2-1;— ~ 2(2}) - (-’%) =0 (6.22d)

primes meaning derivatives with respect to 7. One sees that under the position A’ =
1(f'/f) the Einstein equations reduce to a single expression, (f'/f)? —(g'/f)* = 0, requir-
ing

fl==g (6.23)

Inserting the above conditions into the matter equations, the following solution is obtained:

A =log T/ Ry s f= -1——~—(—~7-:—/~&le——— (6.24)

1+ (r/Ry)? ¢1+(r/Ry)’

where ¢, Ry, R; are arbitrary constant,which clearly reproduces the metric configuration
of the one-instanton solution of Callan et al. [3]. For the choice ¢ = 2 we have indeed

2% _ 72X i _ _R_U + R_g (6.25)
2f Rl T2
which gives the correspondence
2
<§“> =e?™ 5 Rj=n (6.26)
1

The configurations leading to the SU(2) x R model, associated with a solvable (4,4)-
theory is obtained in the limit RB; — oo.
For example in this last case it’s easily checked that also the expression for the torsion
agrees: making formula (6.16a) explicit we find

1

( 1 0.9
S+8

—~ 8,9 =
s+5°9 2f

8.5 — 8,5) =

ty =

DN =

and inserting this in the relation (6.23), we get ¢, = 10, log f, that is
t; =0

1 rl 1
to = EVUT(log ) = (108 f)y = \/— pg \/_
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From the parametrization (6.14) we obtain thus

T() —_ O
T = gy, L yiy

Jn

which agrees with the expression of the torsion for this particular solution, as obtained by
Callan et al.,with the choice x, = 1.

-

(6.27)

It is then clear that the configuration

ds® = e 2% (dz)? Ve =e Pet
2%k — 2%k (6.28
T T

1
Ha.bc = ‘é’ Ea.bcdad(p

is an exact euclidean solution of the effective superstring lagrangian in the New-Minimal
formulation. When transformed back to the Old-Minimal formulation, by means of eq.s
(6.15), this configuration becomes the dilaton-axion instanton found by Rey [22]. This is
obvious from the fact that the metric in the Old-Minimal formulation becomes the flat
one.

Fig 6.1 The metric of the configuration (6.28)

The configuration (6.28) is asymptotically flat, and it can be shown that its torsionful
curvatures R~ and RT are respectively antiselfdual and selfdual; it corresponds thus to a
GHK space. In Fig. 6.1 it is pictorially depicted the metric of (6.28): note the singularity
of the vielbein in r = 0, giving rise to the detachment of the principal SO(4) bundle from
the tangent bundle.
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Chapter 7

The SU(2) x R Instanton
and its associated CFT

Let us now consider the imit 4 — 0 of the configuration (6.28):

ds? = e‘z'I’(d:c)z Vo = g %en
2%k = r (7.1)
-2% _ i @ = 10
e = g o
1

Hape = gfabcdad@
In this limit the manifold has the curious and somewhat unwanted topology of $® x R ~

SU(2) x R, which is not asymptotically flat. Asymptotic flatness is instead ensured when
A is non vanishing.

S3

é /ﬁ@ 6 R

constant-time  slice

Fig. 7.1 The S° x R topology of (7.1) rensembling an infinite “tube”

Yet as we are going to see at 4 =  the corresponding o-model defines a solvable conformal
and superconformal field-theory. Hence this limit is quite worth to be considered. In (7.1)
{e?} is a set of vielbeins for the flat 4-dimensional space, T being a radial coordinate and
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the remaining 3 coordinates being the coordinates of a 3-sphere. Indeed we choose to write
the flat metric as follows

7'2 , .
dz? = dr® + -Z—Q1 ® 0
where Q! are the Maurer-Cartan forms of SU(2) which satisfy the equations
: 2L
Q' = —— Q7 OF
V2

so that %Qi ® QF is the metric on the three-sphere of unit radius. The metric of the
configuration (7.1) becomes

2

ds® = 219_‘1’"7 +EQ @ O (7.2)

Redefining the radial coordinate as follows: ¢ = v/2klog (r/v/2k) we obtain:
ds? =dt* + kQ' @ Q° (7.3)

(showing that the singularity in (7.2) is a coordinate artifact), while the dilaton is linear
in the coordinate t:

o=—— (7.4)

In correspondence with eq.(7.3) we choose the vielbeins as follows:
VP =dt (7.5)
dvi = —VEQ '

The only non-zero components of H in the Maurer-Cartan basis { ¢} turn out to be

. 1 ' 36(1) . k €ijk
Hl]k = _3‘67‘Jk(~\/E) —5{ = 5”—\7—5 (76)

(note that, with our choice of Maurer-Cartan forms , \/ieijk are just the structure con-

stants of SU(2) ).
7.1 The classical Sigma-model

Consider first of all the bosonic o-model . The action corrisponding to the configura-
tion we have described is S = S; + Swzw, where

1 2
Sy = _/ dt (Myet —T_e™ )+ I, I_ete™ — \/th(” +p TT +p_ T~
471' OM k
1 . - . . . 1 k E’k . .
Siwrw = — —VEQE z —{—__Hz - K + - - _”_.Q’QJQI“
WIW = " vk (I e Lem )+ LI eTe 34r ) 3

(7.7)
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Once rewritten in 2"%order formalism, these two actions take the simpler form

S, = ! / dzdz 65t
4 oM (7 8)
1k )

Swaw = = [ dzdz Q74 Q7_ - S E—%Q Qi Ok
oM M

Sywzw 1s the correct expression for the action of the WZW model realized at level &, and
corresponds to a CFT of central charge

3k

iy = 7.9
CWZW k12 (7.9)

The field ¢ = —it is a free scalar boson with background charge Q) = ——z'\/%. Indeed from

the action (7.7), using the general recipe provided by eq. (2.8), we obtain the following

stress-energy tensor:
1
Ti(z) = — (01

1

5200t (7.10)

which corresponds to a central charge

=1 +% (7.11)

As one sees the o-model on the configuration (7.1) is exactly conformal invariant at the

quantum level and leads to a solvable conformal field theory: namely a tensor product of
a Feigin-Fuchs model with a WZW-model (see ref.s [27,28,29] ).

We can proceed a step further and analyze the (1,1) supersymmetric o-model on
this background, showing that indeed the conditions to admit (4,4) supersymmetries are
matched.

Using the vierbein (7.5), we can write the Maurer-Cartan equations of the group-manifold

SU(2) x R as follows:

1 /2
v = 5\/;fachbV° a=1,2,3,0 (7.12)
where the totally antisymmetric structure constants f,;. are given by

fUab =0

7.13
fijk = €ijk (7:13)

With these notations, an SU(2) X R element in the adjoint representation is given by the
4 x 4 matrix
I'y; 0
Loy = < 0 1) (7.14)
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the 3 x 3 submatrix I';; being an SU(2) element in its own adjoint representation. As
such the matrix I' has the properties that

rr=1
| 2 y (7.15)
(FTdF)ab - \/;:‘fabcv ¢

In 2" order formalism the action (2.29) for the (1,1)-supersymmetric o-model on a generic
manifold is written as follows:

-1

T 4r

S / dzdz {V;V’; 2T LAY — 260V p® — 4R“bch“/\bp,cud} +
O M

1

— H
For our particular background, as for any other group-manifold, this expression simplifies,
due to the existence of two non-Riemannian spin-connections (the “zero” and the “one”
connection in Cartan terminology [15]) that are proportional to the structure constants
and that parallelize the manifold. These two connections coincide exactly with the w™ and

w™ discussed in the previous section. Indeed, utilizing the expression of the torsion that
follows from eq.(7.12), we find:

(7.16)

we =0
9 (7.17)
w:_b = \/%fabcvc
so that
R,=RH =0 (7.18)

The “minus” covariant derivative is just an ordinary derivative, so the fermions A® are just
free left-moving fermions. The p%, instead, are neither free nor right-moving. However we
can rewrite the action in terms of right-moving quantities, using the 1-forms Ve = rabyh
that provide an alternative set of vielbein for our manifold. They are given (compare with
eq.(7.5)) by:

VY = dt (7.19)
7= VR
where the forms QF are the components, along a Lie-algebra basis, of the right-invariant
form on the group manifold: Q=dgg—'. We expand these right-moving vielbeins on the
superworld-sheet as follows:

Ve = 17116‘*’ + Vo™ + X%t + ple”

Relying on the relation
e =Tyt (7.20)
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on the definition of ¥ and on the properties (7.15) of the adjoint matrix we find that
. + c-g 0 ~d
~2ip® V. pt = =24 00

Hence for group-manifolds the action (7.16) can be rewritten in such a way that involves
only free fermions:

-1
T A4r

S / dzdz {VIVE + 262°0)* — 23" F4" } + 9—1*\/-5-/ FapcVEVIVE  (7.21)
oM 24 V kB J 0
On the four-dimensional group-manifold SU(2) x R it is now easy to show that the condi-
tions for (4,4) supersymmetry are matched. Due to the vanishing of the w™ connection,
the set of complex structures J% must be constant, and we can choose them to coincide
with the J* of egs.(1-9): A
JE=J" (7.22)

+ . . .
The complex structures 7%, that commute with the previous set and are covariantly
constant with respect to w™ connection, are given by

75 =TT F°T (7.23)

This easily follows from the properties of the adjoint matrix. Substituting eqs.(7.22-7.23)
into the general expressions (2.56), we can write down the explicit classical expression of
the supercurrents in the case of the SU(2) x R background.

Before doing this, we find it convenient to reformulate the theory in terms of free fermions

$%(z),%*(z) that satisfy the standard OPEs:

1 5ab

T 2z—w

P2 ()P’ (w) = (7.24)

(and the same for the $*(2)). This involves a simple renormalization of the original free
fermions. Indeed from the classical Dirac brackets of the fields A* and the 2%, that translate
into their quantum OPEs, we have:

i 6ob
AL (2)X(2) = o P
@) = 2
Hence it suffices to set:
A% = i/t : % = el e (7.25)

For the left supercurrents, recalling the form of the dilaton, (eq.(7.4)), which implies that

811@ — 6(10

9
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we immediately obtain the following expressions

G'(z) =2 {%bavf + %\/%Eijk WihIp* 4 \/%51&“}

(7.26)
G*(2) = V2 {(J"W)“V: + \@ cisn () P9 + \/%a(jw}

For the right supercurrents, we must, first of all, give their expression in terms of right-
moving quantities. To this purpose it suffices to make use of the properties (7.15) of the
adjoint matrix and of the additional one

fabc I‘ar Fbs Fct = f’rst (727)

corresponding to the invariance of the group structure constants. These properties imply

ra ~a17a + a 7T =\ay;

pAVE =p ) (F=p)* Vs =(J*p)*V;
i 0§k e N Tz Nij o~k
ejpptpnt = e i e (gTw) et = e (T7R) A

k
(72w = (T°R)"

so that, in our case, from eq.(5.31) we obtain, in terms of the fermions ba:

G'(z) =2 {1/;“ Ve — %\/%Eijkiziiﬁjd;k + \/%5250}

(7.28)
+e) = 3 { (7902 [T g0+ [Facair |

7.2 Quantization and abstract Conformal Field-Theory

In the case of supersymmetric WZW models [30], the analysis of extended global SUSY
can be also performed in purely algebraic terms; a complex structures is in one-to-one
corrispondence with a Cartan decomposition of the Lie algebra. The group SU(2) x U(1)
(this is our case) has actually three complex structures and so N=4 SUSY follows. We
arrive at this algebraic description by quantizing our theory.

The quantization of the supersymmetric WZW on any group manifold and in partic-
ular on SU(2) x U(1) is straightforward [15,16]. Focusing on the left sector (we write the
formulas for the right sector only when some difference is present) and using the currents
J? such that

ot = —i/2J° (7.29q)
Q= Z_\]?Ji (7.29b)
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we find, as result of a standard procedure,

. ) L &t ik Tk
Ji(2) T (w) = = + = (7.30a)

2(z—w)? z— W

JU(2)J" (w) = (7.300)

2(z — w)?

We will use also the notation j* = (J", . ).

V42

The correct quantum expression for the stress-energy tensor includes the Sugawara form

for the level £ SU(2) WZW model, and is given by

070 1 i i .

T(z)=J"J +k+2JJ +m
Comparing this expression to eq.(7.10) we see that at quantum level a shift k — k4 2 is
necessary in the background charge term. This shift of two unities in the value of k can
be understood in the following way.
The term responsible for the background charge couples to the supersymmetrized version
of the WZW-model at level k. From a purely algebraic point of view it is well known
that a super Kac-Moody algebra of level k& corresponds to an ordinary bosonic Kac-Moody
algebra of level £ — Cy- (where Cy- is the value of the quadratic Casimir) plus a set of free
fermions having regular OPEs with the Kac-Moody currents. The shift in %k is due to this
fact: the relevant value of k for the computation of the background charge is the central
charge of the super Kac-Moody currents:

j;Iuper - ja + const. fa.bc ";bb ,wc

and not the central charge of the Kac-Moody currents 7°.

The central charge attribuited to the Feigin-Fuchs boson ¢ is shifted to cpr = 146/(k+2),
‘the only value for which the total central charge sums up to 6, the correct one for a four
dimensional supersymmetric solution:

0J" + 1 0p*® (7.31)

CZCFF+CWZW+Cff=1+k_?_z-I—kg_f2+2=6 (7.32)
where cwzyw is the ordinary central charge of the bosonic SU(2) WZW at level £ and
cyr=2is the contribution of the four free fermions.

In other words we have a (6,6), 4 in agreement with the general set up of section 2. Note
that the dilaton, not necessary to obtain N=4 supersymmetry at the classical level, is
essential at the quantum level to fix the central charge to its correct value.

The quantum expressions of the supercurrents (the classical ones were given in eq.(7.26-

7.28)) are:

0(x) =24 _giepe o LSk ik W}

- (7.33a)
.. N N i T 0
G"(z):z{—ij“j;m”+ it (Gt 4 DT }

vVk+2 vk +2
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=0 - ~a Ta 1 Eijk IR B’QZU
G(z)_z{_” R = A /c+2}

o (7.335)
i - _sragm gb Eijk Fr TNt 17 Tk B(j:z:,¢)0
G*(:) —2{ T — R (T S }

Without the dilatonic contributions (the last terms in the above eqgs.), as already stressed,
N=4 symmetry would be still present, but the supercurrents would not close the standard
algebra; they would rather close the so called N=4 extended algebra [6], based on the
Kac-Moody algebra of SU(2) x SU(2) x U(1). The canonical way to reduce this extended
algebra to the standard one is to add a background charge with a particular value. The
solution we are considering automatically performs this reduction, assigning the needed
background charge to the field t.

The SU(2); currents of the two sectors are realized entirely in terms of free fermions:

(=) = — Ly Tt = i(9OP + 3 Tyt
(7.34)

. P e - S o
Bi(s) = 2 Tid = —i(@°F — 4 g
i.e. they have the same expression as for the flat space (see eq.(2.44c)), except that, due to
the non-vanishing torsion we are forced to use the two different sets of complex structures

in the two sectors. The supercurrents G%, G= = (G®)*, organized in SU(2) doublets as
dictated by the above OPEs, are given by

1 GY —iG? = 1 GY +iG3
for the left sector, and by the same tilded expressions in the right one.
Subsituting the explicit form of the tensors J*,J* into egs.(7.33) we get

: : ' " 2 op°
G — 2| _iJ%° — 4 Jixi 1,/2.13 ]
ARV = ARV L Y =
[ ' 2 oy’
G =9 iyt — " JiY — T2 1 J3y2 0,213 _ ]
—z v \/k—i—Z( v v ¢)+\/k+2¢¢¢ vk +2 (7.36)
g ; 2 8? '
G? =9 |72 — L T3 1 J20 — J31 1,08 }
09— ST T - PP e
B ' 2 , oy®
G =9 |70y — " T % 4 T2t 4 T30 10200 ]
_z¢ m( CHE A ¢)+m¢¢¢ —
while the G have analogous but slightly different expressions.
The doublets of supercurrents can be written as
. . .. 2 ., 2 PO+ o
| i/ — i3 4 9 (b0 — b e s .
g [M(J %) + 24 i - ) + k+25} (Borim)+
(7.37a)

—V/2(52 +ijY) (f;o_—iz‘é;?'))
G=(gy
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and by

G = {i\/i(j‘” +i7%) + 2

-iva i) (L)

G=(9)

The relevant point is that we can easily obtain now the explicit form of the moduli operators
for the conformal field theory we have just described. We need primary fields of dimension
one which are the same time last components of an N=4 representation, namely we have
to find solutions to the OPEs (2.43). Remarkably, in our case the solution of these OPEs
is very similar in form to the solution (2.45) one obtains in the flat space case. Indeed

consider the SU(2) doublets:

Ty (z) = e~V FE (‘bo + ws) L Uy(s) = o~V F (_‘bz — ) (7.38a)

$2 + i (4" — i)
- 7 ; —~O——i~3 _ I “2_7:"1
By(z) = e VA ( E;gﬂfl )> L By(5) = eV F (;1’0“53)) (7.380)

These operators satisfy eq.s (2.43) with as last components the operators

3y(z) = e V7 {z\/i(f 357 + 24 s (87 + ) +z‘¢1)}
(s) = ¢~V 7" {ix/iu‘) +i7%) + 20 g (90 - ¢1¢2)}
By(z) = eV 7! {~i\/§(j° — i) + 2i1/ﬁ%(¢°¢" - ¢1¢2)}

o(z) = e~V 7t {i\/é(jz — 1) +2 k%z(;b” — i) (9 —i¢1)} (7.39a)

and

1(z) =V {Nﬁ(i? + 1) 4 24 g (00 - i) ww}

ol
+ |
b
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iy () = e~V 7o {i\/'é(jz — G+ 2.,/%(150 + ) (92 — izzl)} (7.39)

Note that, as expected from the purely fermionic form of the currents of SU(2), the
doublets are quite completely expressed in terms of the free fermions, the exponential term
being only needed to cancel some unwanted poles. We stress that, due to the existence of
the background charge, the operator of the F.F. theory

eV EE (7.40)
has conformal dimension zero. Indeed in a F.F. theory with stress-energy tensor
1
T(z) = —10t0t — éQbk(?Zt

the vertex operators : exp(iat) : have a conformal weight A, = ta(a + Qpx) and in our

_ o/ 2
case Qbk - —1 i

This factor is the counterpart of the plane-wave factor e appearing in the
flat space case. Also there the exponential factor has conformal weight zero since k? = 0.

[i k- X(z,2)]

Indeed we can say that k) = is the energy component of the four-momentum.

2
k+2
It is fixed to a constant value in terms of the space-like components k. The difference
resides in that k is a continuos variable for flat space, while its analogue is quantized to
fixed values for the SU(2) x R background, namely there is a finite number of zero-mode
operators rather then a continuous infinity as in flat-space. This difference follows from
the different topology of the constant-time slices in the two cases: noncompact R? for
flat-space, compact 52 for the case under consideration.

The four fields ®,,1I,, a = 1,2 are the moduli of our conformal theory. Combining left
and right fields, we find 16 infinitesimal deformations of our theory that preserve the N=4

superconformal algebra. These combinations are formally the same as the combinations
(3.9). Moreover it is possible to construct two abstract (0,1)-forms ¥%, [3’%], analogously
to eq.(3.11). 2

As an abstract (6,6)4 4 -theory the SU(2) x R background has the same Hodge-diamond as
flat space (compare with eq.(2.46)). However since the torsion is different from zero, these
abstract Hodge numbers are not the usual ones of compactified version of the underlying
manifold §* x §°, whose Betti numbers

W=1,0=1,0=0,0=1,b=1

are obviously incompatible with such an Hodge decomposition.
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Chapter 8

Deformations of the Target Space
Geometry in the SU(2) x R case

The existence of non-trivial N=4 moduli implies that the geometrical data of the o-model ,
namely its metric g,, and torsion (related to the axion B, ) can be deformed in such a way
as to mantain N=4 supersymmetry. In other words the existence of A" moduli implies
that the generalized HyperKéahler manifold we have considered is just an element in a con-
tinuous family of generalized HyperKahler manifolds, parametrized by 4 h''! parameters.
For instance in the case of the K3 manifold the existence of 20 N=4 moduli follows from
the fact that, as an algebraic surface, K3 is described by a homogeneous equation with
19 nontrivial complex coeflicients fixing the complex structure and that, for fixed complex
structure, we still have a one parameter family of deformations for the Kahler class. These
deformations of the metric and of the torsion fill an 80-dimensional moduli space whose
global structure turns out to be Mg, = §0(4,20)/S0(4) x SO(20)/50(4,20;Z). In a
similar way flat space has four N=4 moduli because the constant metrics and constant
torsions fills a space of dimension 16, namely the space of all 4 X 4 matrices (the symmetric
parts is the metric, the antisymmetric part is the axion).

For the limit case of the SU(2) x R instanton we have discovered from the algebraic
approach that there are four N=4 moduli just as for flat space. Their geometrical inter-
pretation, however, is less clear. In this section we explore the consequences of the N=4
moduli on the geometry of the target space. Namely we calculate the explicit form of
the infinitesimal deformations of the metric and of the torsion due to these moduli. We
show that the deformed space is still generalized HyperKahler as expected: the curvatures
of wT and w™ are no longer zero but still self-dual (respectively antiselfdual) after the
deformation and there exist deformed complex structures fulfilling all the requirements. A
global characterization of this space of metrics and torsions is still an open and interesting
problem. Let us discuss the infinitesimal deformations obtained by inserting the moduli
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operators in the o-model Lagrangian.

We focus on the bosonic sector which suffices to give us informations about the new
metric, new torsion and new complex structures. The bosonic parts of the moduli, reshift-
ing the background charge to its classical value, are expressed, for the left sector, in terms
of the components of the left-moving vielbeins:

B1(z) = (V2 +iVH)e V! Bo(z) = (VO +iVP)e Vi (8.10)
dla
W) = (V2 =iV2)e Vi I(z) = (V2 —iVi)em Vi
and for the right sector, in terms of the right-moving ones:
(i)l(z) = (VEZ ‘[‘ﬂ;vsl)e—\/%—t éZ(z) = __({720 - ﬂ?;)em it (8 lb)
iy (2) = (V2 +iV2)e V! fy(2) = (V2 ~ iV2)e VE

Now we can construct conformal operators of weights (1,1) to insert into the Lagrangian
combining these (1,0) and (0,1) ones in all possible ways. Hence the most general expres-
sion we can add to the Lagrangian is simply

e—-\/%i(z,f)vza -A/—[ab ng (8.2)

M,y being a constant matrix. The reality condition for this expression imposes M €
GL(4,R). Thus our deformations depend on 16 real parameters as anticipated from the
abstract counting.

In terms of the components of the undeformed vielbein, which we have chosen to be the
left-moving omnes, the term in (8.2) has the form:

e~ VEVL(MT),, VE (8.3)

I' being the variable SU(2) x R element (point in the manifold) in the adjoint representa-
tion.

It is useful to separate the symmetric and antisymmetric part of the matrix MT and to
this purpose we introduce the notation

hap = le—\@f(Mr +TTMT),,
2 (8.4)
by = _.2_6‘\/%_t(1\/11“ —TTMT)y,

The overall normalization of the new term is of course irrelevant, since M is arbitrary, and
we choose it in such a way that the bosonic part of the deformed o-model action is:

-1

T 4r

1
S / dzdz {VIVE + 2V hay VI — 2V bV} + — / H (8.5)
oM ) 4 J
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The torsion deformation (parametrized by the antisymmetric matrix 4) can be recast in a
shift of the 3-form H:

-1 1
S dzdz {V VS + 2V hey VI } + o / (H + 6H) (8.6)
M

4 Jom i

where §H = dB with B = b,, V*V?.

Following [31] it is also convenient to use the combinations:

Gy = hap + by = e VEITMT),, = (G7)F, .
G2, = hap — bay = e VE(MT)

Relying on the properties of the adjoint matrix (see eq.s(6.4)) simple expressions are ob-
tained for the derivatives of the above matrices:

2 _
aaG[;—c = \/;(“5ELUG[;—C -+ Gb,.frca)

(8.8)
2
aaG;_c - “‘\/;(50.06!2; + fa,erj_c)
So far we have identified the deformation of the vielbein (i.e. of the metric):
VI* =V 4 Ve =V 4 hy VP (8.9.a)

and the components of the new torsion in the old basis which are given (this follows from
the same supersimmetry variation argument as in the undeformed case) as

(T -+ 5T)abc = —3(H + 5H)abc (8.9.b)
Now we must solve the relevant torsion equations for the two non-Riemannian connections

we are interested in, these latter, in the undeformed situation, being given by eq.(6.6) The
two torsion equations are, working at 1% order in the moduli:

dV' 4 (wF + sw®)? V' = (1) (8.10)
The solutions of eqs.(8.10) are given by

+ B
&‘uj:b]c = —‘QV[GGﬁc + 4G-[:Z1-Trb]c - VCG[:E[,] * ZGTZ!:CTrab (811)

Making the covariant derivatives explicit, using eqs.(8.8) and the undeformed connections,
we finally get

2
6w, = \/; {26006, + 60 Gy £ G fo £ O frab} (8.12)
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Next we look for the deformations of the associated curvatures. From the general formula

SR = V bw we have
_ _ 12, .
bR, = dbw], = (G, bw g T 5 E&"'abh-f'qu)v v

1 /2 2
5R2‘b = (8p 6w:-b[q -+ 5\/;6w:—b|1_frpq + 2\/;f[arp 5w:;)”q)vpvq

Using eqs.(8.12) and (8.8), after some algebra one ends up with the following results:

(8.13)

2 - .
6Ry; =~ {GEV VI % G VIV
SR}, = +eiji 6Ry;

(8.14)

We have that the curvature of w® + w™ (which is §R™) is selfdual, while that of w™ + bw™
(which is 6R™)is antiselfdual:

1
SRE = £ €abed SRE, (8.15)

Recall that this is a necessary condition for the deformed Ma;get to have N=4 supersym-
metry, as we discussed in sec.5.

8.1 Deformations of the Complex Structures

Having singled out the deformations of the vielbein, of the torsion and, consequently,
of the two non-Riemannian connections, our aim is now to find the deformations of the
complex structures corresponding to the insertion of the N=4 moduli in the lagrangian.
Indeed they must exist since N=4 symmetry is mantained.

Any infinitesimal deformation of one of the sets of complex structures must be such that
the quaternionic algebra is preserved:

(jz+ 5J$)(jy+ 5jy):_5zy+ EzyZ(jz+ 5jz)

that is
ST TY + T=8TY = "V 6T * (8.16)

The general ansatz solving this requirement is

8T =[J*, Fl + ) M.e*v g7 (8.17)

F being a generic (infinitesimal) matrix and M, generic infinitesimal parameters.
We have to impose the “deformed” covariant-constancy conditions, different for the two
sets of complex structures relevant in the left and in the right sector:

+ + +
V875 20w, gz =0 (8.18)
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Inserting the ansatz (8.17) with M,=0 into eq.(8.18) we get

*

T (V= = 60%)y = 0 (8.19)

Note that the deformations of the connections, (see eq.s(8.12)) can also be written as

by =~V Gf, \f ZGE VT
(8.20)

b7, = — %}G[;b] + \/;j;ba;.vr

where j" and j‘” are the two sets of constant complex structures introduced in sec. 5.
(see eq.(5.16)). Therefore if we start from the ansatz (17) with

FE = G[‘—:b] (8.21)
and M.=0, the requirement (8.19) reduces to
Y Ay + yr
Tk, o Gy V=0
(8.22)

‘_7[a yG VT =0

Recall that for our undeformed manifold, j z = J%. The above equations hold then true
due to the commutations relations (see sec. 5)

. ] =0

X ) Ve,y (8.23)
57,27

Summarizing, we have obtained that the deformations of the left- and right-moving com-
plex structures due to the insertion of the moduli in the original N=4 theory are given

by
+
577 = g%, | - (8.24)
where

by = FGE, = e VE(MT —TT MT),,

8.2 Breaking of the old Isometries

As in general the deformed curvatures differ (as forms) from zero, the effect of the
deformations cannot be trivially reabsorbed by a coordinate change. The deformed space is
actually a new kind of manifold: it is no longer a group-manifold. Intuitively, the situation
is depicted in Fig. 8.1. Due to the exponential factor, there is no longer a direct product
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between a “time” coordinate and three “spatial” ones. The “radius” of the constant-time
slices increases as ¢t — —oo; at the same time these slices get more and more deformed
respect to a three-sphere along some appropriate harmonics of the group SU(2) (recall
the presence of the adjoint matrix in the deformed expressions). The deformations of
the “radius” and of the “shape” of the constant-time slices interplay so as to mantain
the properties characterizing the space as Generalized HyperKahler . The undeformed
situation (the “tube”) is recovered as ¢ — +oo

=

constant-time

deformed along appropriate
harmonics of SU(2)

Fig. 8.1 The deformed geometry

In agreement with the above considerations, we show now that apparently none of the
isometries is conserved by the above infinitesimal deformations. However, as stressed in
the introduction, further study is needed to discuss the possibility, for some particular
choice of the moduli, of modifying the old Killing vectors in such a way to become Killing
vectors of the new metric, corresponding to the possibility of readsorbing the effect of
thedeformation by coordinate changes.

The group of isometries of a group-manifold G is, for G a non-abelian Lie group, G X G,
corresponding to the existence of two basis of Killing vectors, the left-invariant ones k 4,
generating right translations, and the right-invariant ones k 4, generating left translations.
The two sets are related by

ky=T,pks (8.25)

I' being as usual the adjoint matrix of the L.A. representing the group element g.
The vector fields k4 are dual to the group-mamnifold vierbeins: *

i, Q8 =65 (8.26)

* Ve use the geometric formalism extensively developed, for instance, in [15]; we indicate in particular with

i1 1" the “contraction” between vectors and forms, and with 3 the Lie derivative along the vector k
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For G abelian, the two translations coincide, and the isometry group is simply R or U(1).
The isometry group of the manifold SU(2) x R is therefore

SU((2) x SU(2) xR

and it is generated by the Killing vectors k;, k;, ¢ = 1,2, 3 and kg, which can be normalized
so that their non-zero contraction with the vielbeins of the manifold are

i, V7 = 6;;
i, VI =Ty (8.27)
i, V' =1

To check explicitely that these vectors correspond to isometries of the manifold it is suffi-
cient to compute the Lie derivative of the line element ds? = V°® ® V2 along each of them,
finding in all cases that it vanishes.

To perform the computation one uses the fact that, from the formula for the Lie-derivative

LV = d(’LkV) + 1,dV

one gets

b, Vi =4 Ve =4, V° =0

_ ) (8.28)
b,V = *\/%fijk VE

Now we raise the question whether any of these isometries remains an isometry of the
deformed manifold. To see if this is the case, we have simply to compute the Lie derivative
along the above Killing vectors of the deformed line element:

ds? = ds® + 6ds® = Vo @ V° + e VEWV @ (MT + ITMT),, v (8.29)
By explicit computation we find: ‘
by, bds® = — %e"‘/%—t(]\/IF +TTMTY Ve VP (8.30a)
2 7
Ly, §ds? = —2 —];-e_\/%—t €ilk (MI‘)MV“ & & (8.306)
El}i 6ds? = Z@e_ﬁt €pni ij M, Ve ® Vi (8.306)

Since in general none of these expression vanishes, none of the isometries is mantained after
deformation. This does not exclude that some modified Killing vectors exist, as discussed
before.
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Appendix

We show now explicitely that the vertices declared in Chapter 5 to transform in the
adjoint representation of SU(6)really do so. We focus on the right moving parts of the
of the “SU(6) Gauge bosons” or “Gauginos” vertices, as reported in Section 5.2. They
involve the currents of the SO(6) group of the heterotic fermions and the currents of the
U(1) of the N=2 supersymmetry (that of the internal space) and of the SU(2) of the
N=4 supersymmetry (that of the spacetime). Between these currents there is a subset of
5 mutually commuting (in the OPE sense) dimension-one operators, namely

e the currents in the Cartan subalgebra (CSA) of the SO(6)
e the U(1) current j(Z), bosonized as —\/’—5(9(;5(2)
e the CSA current of the SU(2), 4% = —%51‘(2)

Let us consider the eigenvalues of these operators (which will constitute the CSA of some
Lie Algebra) on the right-moving part of the vertices under discussion:

e SO(6) currents J*(Z) (between them there are 3 CSA generators), 15 fields

o the 3 SU(2) currents (with one CSA generator)

e the U(1) current, which is in the CSA

o 1[12](2)8a(2)e 73, 4 x 2 = 8 fields

o 1[4 (2)Ba(2)e™"F#), 4 x 2 = 8 fields
for a total of 35 fields, exactly the dimension of SU(6), so that it is possible that these
fields indeed form its adjoint representation. Note that in the last two cases e 7 8(3) i

the explicit bosonized expression of the internal operator 1 <j§?{/82>

If the ipotesis is correct, the weights (the CSA eigenvalues) correspondent to these fields
should actually form the SU(6) root system; we should then be able to find explicitely the
simple roots and to work out the Dynkin diagram, recognizing it to be precisely the SU(6)
one.

Let’s introduce briefly some notations. The twelve SO(6) roots can be described by the
vectors

:{:Ei:*:Ej i,j:1,2,3
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{ei} being the versors of a three-dimensional Euclidean space. The SO(6) simple root-
system is made of
M= — g

2
A =€ — e

M=+
so that its Dynkin diagram is simply
. | U G
O O— O

The foundamental weights 7, such that ZE—;—-”—}% = §' are expressed as

1

7r1 :—(61+62—€3)
2

T =€

1
= 5(61 + €2 + €3)

The weights of the spinor (s) and antispinor (5) representations of SO(6) are given by:

s:%(61+62+63):7r3 5:%(61+62—63)=7r1
%(61~62——65):7r3——/\3 %(61—62+63)=W1~A1
S I P Satata)=al -2y
%(—-61-—62+63)=Tr3—/\3—A2—)\1 %(—El—-fz—ﬁ;;):ﬂ'l—‘Al—Az——Az

Let’s now collect the weights that we obtain acting with the CSA generators on those of
the above 35 operators which are not in the CSA; in some cases we already know the result,
in some other we perform the relevant OPEs. Beside the versors for the weight space of
SO(6) we introduce the versors p, dual to the CSA generator A° and «, dual to ; = —ﬁ@gb
We have:

e from the 12 non-CSA currents of 50(6) the weights

tete;  i,j=1,23
o from the 2 non-CSA currents of SU(2) the weights
i{/ﬁ/i
* from the operators 1[1/2](2)Z4(2)e*£4(3) the 4 x 2 weights

1/2
1 V3
5(5161+5262+5363)+—}2~#+‘2—N (515253 =1 ’ n:il)
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e from the operators i[i;;}(i)ﬁd(i)e“i%ig’(‘;) the 4 x 2 weights

1 3
-2“(5161+5262+(53€3)4-—77—/1,—£K, (515253:—1; T]:j:l)

"7 5

These vectors are in number of 30, that indeed equals dimSU(6) — rankSU(6) = 35 — 5
and we call them from now on roots (although we still have to show that they really are
the roots of SU(6)). A simple root system for these roots is given by

AL A7 N8 S0(6) simple roots
1 V2 B : 1 V3

/\4:—5(61‘+62+63)+*2-H+‘2‘—ﬁ=ﬂ' “AI*AZ“P*—*\E#'{”—Q—E
s 1 V2 3 1 3
A :5(“61*62—’{-63)‘*“"2‘“#“—2——/i=7r3——)\3—)\2-—/\1——\7_—5 -k

The splitting in positive and negative roots follows of course the SO(6) one for the SO(6)
roots and the SU(2) one for the SU(2) roots and depends moreover in the natural way
from the sign of the coefficients in front of x for the other vectors. One can show easily
that all positive roots are obtained from positive integer coeflicients-superpositions of the
A'; for example, v2u = Al + A2 £ A% £ \* + A% and so the weights of “spinorial” origine
are obtained from A* or A’ adding in various steps A!, 2203,
Moreover, (A')? = 2 Vi = 1,...,5. For example (M) = (O +1+1+1)+3+
Finally, the Dynkin diagram results to be
N S N
o O O O- O

= 2.

W-jes

that is exactly the one of SU(6)
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