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Introduction

A Quantum Field Theory (QFT) is completely described by the set of the correlation
functions (CF’s) of the fields. The CF’s must satisfy some fundamental properties [1}],
[2], in order to recover the defining features of a QFT, i.e. the probabilistic interpreta-

tion, the Poincaré symmetry and locality.

The properties of the CF’s can in their turn be translated into the language of
the algebra A of the local ! fields. For example, the fundamental operator product

expansion gives the exact short distance structure of the CF’s.

Using this algebra we can build a structure of Hilbert space, and obtain the
quantistic interpretation of the theory in terms of states and of a scalar product.
The algebra .4 must obviously contain the generators of the fundamental Poincaré
symmetries, i.e. the hamiltonian, the linear momentum, the angular momentum and

the boost generator.

In the physical Hilbert space we can usefully choose the bases of n and out
states. These are defined as the eigenstates of the Poincaré generators, and of internal
symmetries resolving possible degeneracy, in the very past ( £ — —oco ) and in the very
future ( ¢ — +oo ). Besides the mentioned symmetry generators, .4 must contain
also an operator S defined by

| {a}, in) = S| {a}, out) .

Hence every scattering amplitude ({8}, out | {a}, in) is encoded in the S-matrix

Stor—{a} = ({8}, out | S| {a}, out) .
As it is well known, the pole structure of the functions Syg}._ (s} gives us the discrete
part of the spectrum.

A generic operator O(z) will be then characterized by its matrix elements in

the basis chosen. Under the assumptions of Poincaré symmetry and locality, every

{Here for local fields we don’t mean what is usually understood in QFT (see Chapter 2), but only
the requirement that these quantum fields guarantee microcausality of observables. So the fields of
A can be strictly local, semilocal etc.etc.



plece of information is encoded into the form factors
(01 0(0) | {8}, in) .

If a lagrangian formulation in terms of some fundamental massive fields is avail-
able, the in and out states are described in terms of asymptotics free fields. In this
case the LSZ-formalism [3] allows us to express both the S-matrix and the form fac-
tors as proper on-shell limits of general CF’s of the theory. It is common to refer to
the properties of the S-matrix as to ”on-shell physics” since it directly determines the
scattering processes of physical particles. Analogously for the form factors one refers
to "off-shell physics” because they permits the reconstruction of the CF’s at any value

of external momenta.

In the last years many results have shed light in the interplay between on-shell
physics and off-shell physics for two dimensional massive integrable models (2dMIM’s).
The factorization of the S-matrix implied by the complete integrability, allowed the
classification of many possible S-matrices through the development of the boostrap
program [16, 20]. On the other hand, the complete solution [4] in terms of Virasoro
algebra representations of the conformal field theories (CFT’s), provided us with the
tool for the accurate study of the UV-behaviour of the 2dMIM’s. Hence a 2dMIM can
effectively be thought as relevant perturbation of some CFT [18, 19, 23, 20]. The UV
behaviour of a large class of 2dMIM’s was so identified as an equivalent description of
a corresponding integrable statistical lattice model near criticality [5].

The natural subsequent step towards the complete solution of a theory has
been the determination of its local structure, i.e. of the off-shell physics. A study of
the monodromy properties and of the pole strucure of the form factors for 2dMIM’s,
led [25, 26, 27] to a set of equations, depending on the two-particle S-matrix. The
assumption of an exact S-matrix together with some prescription on the UV-behaviour
of the form factors, is thus in principle sufficient to determine the local structure of a

2dMIM.

Another completely independent route towards the local structure of a 2dMIM
is through the inverse scattering method (ISM) [6, 7]. According to this method,
one has to describe the model through a set of action-angle variables, in terms of
which the classical time evolution becomes linear. Obviously the difficulty consists in
expressing the inverse canonical transformation from these new variables to the original
fields degrees of freedom. The quantization of this scheme brings in general further
complications due to the operatorial character of the fields. The general outcome is
that, in order to preserve the integrability also at quantum level, one has to find a ad hoc
quantization procedure, different from the naive corresponding principle, which must be
only recovered in a semiclassical limit. Now we know a great deal of quantized version

of classical two dimensional integrable models, i.e. of ad hoc quantization procedures.



What is still lacking in general is the precise relation between the quantum action-angle
variables and the quantum local fields, i.e. the setting and the solution of the Quantum

Gelfand-Levitan-Marchenko equation.

For the Sine-Gordon model [8, 9] this program has been carried out by Smirnov.
As discussed by Sklyanin [33] the same construction can’t be straightforwardly mapped
to the Sinh-Gordon model, for the impossibility to describe for this theory the Bethe
vacuum state in the infinite volume limit. By modifying cleverly the algebraic Bethe
ansatz technique, Sklyanin managed to find a representation of the algebra of the
quantum action-angle variables. But the solution to the locality problem for this model

is still unknown.

The possibility to determine the local structure of the Sinh-Gordon model, be-
sides being interesting by itself as an example of a non-trivial solved QFT, could thus
also throw some light on the quantum ISM, and more generally on the problem of the
quantization of integrable models. In this thesis the solution to the equations for the

form factors for the Sinh-Gordon model is presented [10].

We close this Introduction by mentioning very recent results which suggest a
new classical interpretation of integrable models through the discovery of some non-
local symmetries [11]. What is hoped is that a two dimensional integrable QFT can
be solved using a suitable quantization of these symmetries [12]. Hence this approach
could give a very fundamental explanation to the characterization of two dimensional
integrable QFT’s in terms of classical integrable differential equations satisfied by the
CF’s [13] and of the corresponding 7-functions [14, 15].






Chapter 1

S-matrix for Quantum Integrable

Models

1.1 Asymptotic States in the Lagrangian Approach

Our aim is to describe a two-dimensional massive Quantum Field Theory whose La-

grangian is the sum of a free part and an interacting one
L=Lr+L7. (11)

For simplicity we will treat the case of a simple scalar boson defined by the action

s = [ [%(a“qs)? _ %mﬂqf _zo(e)] (1.2)

The short distance character of the interaction of the theory, allows us to consider the

asymptotic behaviour in time of our theory as a free one. In and out states are thus

defined a la Fock
B> 82> o> fuyin ) = abh(B)alu(Be) - -ein(Ba) [0 (1.3)
| Br>Bo> oo > Bay out ) = alu(B1)a0u(B2) - - Gou(Bn) 10)

where we have adopted the on mass-shell parametrization of the momentum p! of the

particle with mass m , m? = p} = (p?)Q - (P})Z
p. = mcosh B; , p; = msinh 3; . (1.4)

B; is called the rapidity of the particle. The creation operator in (1.3) is the hermitean

conjugate of the destruction operator

@ /d:c‘ P By b (z) - (1.5)

oul oul

7



The asymptotic fields ¢ (z) satisfy the free massive field equation

out

(O + m*)¢u (2) = 0 (1.6)

oul

and they are the weak limit of the renormalized interaction field

lim ¢(z) = Hm ¢u(z) . (1.7)

20— Feo 0 —Foo  out

Canonical Quantization for free fields implies that a.,(8) , aﬁn(ﬁ) satisfy the algebra

[am(/@), ijn(,@/)] = 2n6(B8— 1) (1.8)
[2:a(8), ain(B)] =0 .

The same obviously holds for out-operators. We assume the existence of a unique

vacuum | 0 ) such that

an (B)[0) =0 . (1.9)

out

Qur basis vectors are normalized as

(B> ...>8 ,in|B>...> 0 in) =

= 5m,nﬁ27r5(ﬁz{_ﬁi) . (110)

In order to correctly implement the fundamental translation symmetry, a 2d vector
operator P* must be defined such that the following algebra holds

[P*, ¢in(z)] = —i0udin(z) (1.11)
or in terms of creation operators
[PH,al(8)] = 5 (& + (~1)e™) ala(8) - (112)

This implies that our basis vectors are eigenstates of P*

PUIIB1>...>IBH,7;TL>: _
(% + (1)) [B1> ... > Ba, in ) (1.13)

m
2 =1

Note that the ordering on the rapidities of (1.3) is necessary in order to avoid over-

counting of the states.

We can now define the operator §

|B1> ...>Bn,tn ) = S| B> ...> B, out ) (1.14)



such that its matrix elements in the basis {| out ) } are the amplitudes of probability
of the transitions {&;} — {06!}

(,6{>...>,B:n,out]ﬂ1>...>ﬂn,in):
= (B> ...>0,,0ut|S|BL> ...> B, out)
= S, — {6}, - (1.15)

It is possible to express the on-shell objects S{gn . (5, in terms of a limit of the

off-shell correlation functions of the theory, i.e.

1 m-+n ‘ n plg _ mz m pl’l — m2
S8 = (B} = (ﬁ) Jim 1 <-——z ) 11 (“——“J ;
= PTm =

72 2 j:1
pir —m?
>< <2w>‘~’62(zpi+zp;> Gy BBl ) (116)
=1 j=1

where
(271')2 52 (Z pi) Gn(p17p27 s ;Pn) =
i=1

[T dmi 7 S0 {01 T(6(21)d(22) - dlza) | 0 ) (1.17)

are the correlation functions in the momentum representation. In order to obtain (1.16)
we have used egs. (1.3)-(1.10). S is an unitary operator, since {|un )} and
{] out ) } are considered as complete sets

|,81>...>ﬂn,in):S|ﬂ1>...>ﬁ",out> (1.18)
(B> ...>8 m|=(8>...>0,ou]|S . (1.19)

Hence

(By>...>0,m|Br>...>0n ) =

1> ..> B, out | Br> ... > B, out)
"> .> 8, 0ut | STS B> ... > By, out)

5's = (1.20)

Furthermore, S must in general satisfies crossing symmetry. This is the relation
that exists between amputated correlation functions of particles and antiparticles and
can be proved using locality properties. We will be more precise in the next section,
when two-particles S-matrix elements properties for quantum integrable models will

be discussed.
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1.2 Quantum Integrable Scattering

In the case of integrable models scattering amplitudes acquire a very restricted form,
due to the very simple kinematics and the existence of an infinite number of non
trivial conserved currents. A quantum integrable model is a system which possesses
an infinite number of local conserved currents ! , among them the stress energy tensor.
The corresponding conserved charges have in general tensor properties. It is therefore
useful to organize them as eigenstates, in the algebra of operators, of the Lorentz Spin,
i.e. the generator of the Lorentz boosts. In the light-cone system of coordinates

0 { 0 _
z ’;w o =T (1.21)

(2°,2") — (o =

the charges Q, satisfy
[27 Qs] = SQS (122)

where X is the Lorentz spin and s € Z since we restrict ourselves to mutually local

operators [2]. The Q, ’s also satisfy
[Qsags’] =0 (123)

(., 5] = 0. (1.24)

First representatives of them are

O, =Pt =pl+p!
Q_1:P— :PO—Pl

Lorentz invariance and locality also imply

Qu, |B) = M,e™ | 8), My=m (1.25)
and
Quy [ B> o> Boyin ) = M, 37 €% | B> ...> Bayin) (1.26)
1=1
Since [Q,,H] = 0, the in and out states of a scattering process have the same
eigenvalues of Q., :
> e*sbi = Z eis'gll', Vs. (1.27)
=1 Jj=1

!Integrability is simply guaranteed by the existence ot these local conserved currents. The existence
of also non-local conserved currents has recently put in evidence the promising possibility to solve the
models according to representations of proper quantum algebras (see Introduction).
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The only solution to this system of equations is

m=n, B =p (1.28)

In other words, scattering processes take place in a purely elastic way and the matrix

elements of S can be written as
S8 = (8}s = S |1 27 6(8] = Bi) Sn(Br2,B1s, - ) (1.29)
: =1

where the dependence on the differences of the rapidities is a consequence of Lorentz
invariance. From the definition of Syg} (s}, the egs. (1.14) and (1.15) one can
also write

181> ... Buyin ) = Su(BizsBiss -.) | Br> .. > B, out ) (1.30)

where fi7 = f; — @, . The direct implication of the purely elasticity of the scattering
is the factorization of the S-matrix [16, 17] into all the possible two-particles scattering

Processes.

n

Sn(ﬁl?;:@ll% ) - H 52(51' “ﬂj) : (1-31)

i<j

Obviously, factorization must be independent of the order in which each two-particles
scattering process is taken into account. This consistency principle is trivially satisfied
in the case of one single self-conjugated boson. In fact the two-particles S-matrix of a
self-conjugated boson is a pure phase, and therefore is commutative (diagonal S-matrix
case). To illustrate the situation when this consistency principle becomes crucial, we
must complicate the model, introducing n species of particles with masses m, , not

necessarily different one from each other. Let’s denote in and out states as
| A (B1) oo A (Ba)Br > o> Bayin ) = al (B)...al (B)]0)  (1.32)
| A (B1) o A (Ba)yBr > o> By out ) = al  (B)...al(B.)]0)  (1.33)

where obviously

(@i (B1); by, (B2)] = 6iia 27 6(B1 — B2) (1.34)
[ailin(ﬁl)v aizm(/@Z)] = 0

Shortening the notation, the normalization is now

( Az{(ﬁi) "-Aiin(ﬁm)a > | All(ﬁl) iﬂ(ﬁn)’ m > =
b 11 527 806, ) (1.35)
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7:1 / 7:3

Figure 1.1: Elastic three-particle scattering process as a fixed sequence of two-particle
ones.

Usual definition of S 1s

| A (B) « - Ai(Ba),in ) = S [ A (Br) - Ai(Bn), out ) - (1.36)

Pure elasticity still holds, with the further property that the number of species with
different masses is conserved in the scattering process. The matrix element of § is
thus

Sitim ({81, 48)) = mnH2T5 Be) Si i ({8: — Bi}) (1.37)

which can be written as

| Ai(B1) - A (Bn), in Z SiL i (18— Bi}) | A (B1) .. Au(Bn), out ) .
(1.38)

Consistency of factorization of 3-scattering processes is necessary and sufficient to guar-

antee consistency for Vn ;it reads, with Gij = 8; — 5;

S B (Bro, Brss Baz) = Sit it (Br2) S iy 3 (B1a) :uzll(ﬁza) (1.39)

(see the diagram representation of fig. 1.1 which fixes the sequence of 2- scattering
processes). The same 3-scattering process can be obtained by a different sequence of
2-scattering ones shown in fig. 1.2 and therefore we arrive to the famous star-triangle
or Yang-Baxter equation [5]

NIaN

Sit it (Br2) Zl;’(ﬁw) i ,,(,6 3) = Sijiy (Bas) flfu(ﬁls) 317'([312)- (1.40)
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~,
i1/<

12

i3

Figure 1.2: Elastic three-particle scattering process as a fixed sequence of two-particle
ones, different from that shown in fig. 1.1.

All this is conveniently formulated by a non-commutative algebraic approach
[16]. Let each particle be represented by the non commutative symbol A;(F) and
each asymptotic in-state by the product of these symbols in decreasing order of the

rapidities (the opposite conventions for the out-states):

‘ Ail(ﬁl) e 'Ain(ﬁn)7 51 > > /an m ) ~ Ail(ﬂl) . -Ain(ﬁn) (141)
l Ail(ﬁl) .. 'Ain(ﬂn)’ ﬁl > o> /Bm out > ~ Ain(ﬁ"> - 'AiL(ﬁl) :

The commutation property of these symbols represents the two-particles scattering

A3 (B)An(B2) = 3 512 (B12) Ai (B2)Ai (Br) - (1.42)

zz.,

So the three-particle state

A (B1) A, (B2) A4 (Bs) = Z S (181 A (B3) Aiy (B2) s (Br) (1.43)

11 z., 3

can be obtained in terms of two-particles S-matrix by commuting iteratively pairs of

A,

Ay (B1) A (B2) A (Bs) = 5;1‘11: (B12)Aiy(B2) Aiy (B1) Aiy (Bs)
= Sl ﬁlz)SZé'g(ﬁw) ir(B2) Ai (B3) Air (B1)
= S (B12)SiE (B13) 518 3(Bas) Asy (B5) Asy (B2) Ay (B1)
= S (Ba) i, (B Aig(8) Ay (B2) (1.44)
= SE5(B2)Si! 12(Brs) Ay (Bs) Ay (B1) Aiy (B2)
= SEE (0251 3 (B15)S0h i (Bra) sy (Bs) A (B2) iy (Br)
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Comparing the third line with the sixth line we obtain again the YB equation. This non
commutative picture can be furtherly formalized by the assumption that for quantum
integrable models there exists a set of creation and destruction operators denoted by

ZYB) such satisfying the following algebra
ZH(B) Z2L(8:) = Sii(Bu) 2L (8:) 2L (81) (1.45)
7B ZL(8) = Z(8:) Z7(8) Sil 2 (Bra) + 612w 6(By — Ba)

with
ZY(B)|0) = 0. (1.46)

Hence we can define

161> B2 > ...> B, in) = ZL(B)Z5(B:)... 2] (8.)]0) (1.47)

= 1{8}),
|B1> B> ...> Bny0out) = Z (Bn)Z] iny (Br-t1) - Zifl(ﬁl)i0>

= |{8}) .

These definitions automatically take into account the factorization property of quan-
tum integrable models. The connection between the operators Z(8) and au(B8) ,

aout(ﬁ) is
ain(0) B} ) = zaa~ ) HB-B}) (1.48)
tou(o) {B}) = Zao—— V{8 - B:1)

l.e.

{8}) = al(Bal(B2).ah(B.) 0) (1.49)
{8}) = abu(B)abu(Be)- - atu(Bn) [0 )



Figure 1.3: Two-particles scattering process A4; x 42 — A, + A» and kinematical
variables.

1.3 Analytical Properties of the Two-particles 5-
matrix

For two-dimensional two-particles elastic scattering
A x 4y — AL+ A (1.50)
depicted in fig. 1.3, with external momenta
p) = mcosh B; , p! = msinh §; ,i=1,2 , (1.51)

there is only one independent kinematical variable. The Mandelstam variable s =

(p1 + p2)* becomes
s = m; +mj + 2m; my cosh(By — B2) (1.52)

Scattering obviously occurs for B2 € R, s > (my + m2)? . But locality of Quantum
Field Theory has some implications which can be exploited on the analytical contin-
uation of 5;1‘ :Z(s) to the complex plane. For example, crossed scattering, i.e. the

scattering process

Zl X Ag —_— Zl -+ AQ (153)
can be expressed, due to locality, in terms of the crossed 5 variable

§=1t=(—p +p2)’ = ml+mj—2m;m, cosh B, (1.54)
as argument of the analytically continued direct scattering S-matrix. Crossed scatter-
ing process thus occurs for s < (m; —ma,)? which corresponds to the line Imf; = .
We thus expect S::L Zj(s) to have two branching point at s = (m; & m2)* with cuts
going to infinity. Elasticity of the scattering, eq.(1.28), forbids n-particle thresholds
with n > 2 . In the intermediate region bound states, i.e. poles of 5::‘ fl(s) , Can oc-
cur. The intermediate region corresponds to the segment Ref1, =0, 0 <ImpB, <
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in the rapidity variables. Parametrization (1.52) tells us that the complex s-plane is

mapped into the half-cylinder
0 < ImfBis < 27 ,RefB12 >0 (1.55)

where the lines Imf;, = 0,7 are the two cuts with branchings in Ref;» = 0 . Since
the delta function in eq. (1.16) with n,m = 2 transforms on the mass-shell as

lim (2m)28%(p1 + po + P + ph) =

1 , ,
= s () (P A1) 88 = B)
2
N 5(6. — BL)6(B> — By) , (1.56)
\/(5 — (M1 —m2)*) (s — (m1 +ma)?)

the parametrization (1.52) uniformizes Sl1 i (ﬁlo) as defined in (1.29).

Another fundamental property is the unitarity (1.20), which becomes for the
two-particles S-matrix

Z(Sllclllkz( ) 55:5”(5) = 0;, b Oigks - (1.57)

AN
RL]

Real analyticity is the property that S, 12( s) is real in the intermediate region,
i.e. under the threshold; for complex s it becomes

Siii(s) = (SEEGE) (L.58)
In the physical sheet 0 < Imf@ < = it becomes
SiE8) = (A=A (1.59)
and in the scattering region Imf@ =0
Sii(®) = (St (1.60)
Unitarity can thus be expressed as
S S (=B) StiB) = ik bins - (1.61)

i1
This is continued for any value of 3.

For diagonal S-matrices, which occur in the case of n species of particles with

different masses, we have

5111’1;(,3) = 6, 6% Suk() (1.62)



17

This implies that Sk, £,(8) is a pure phase.

Charge conjugation is implemented in our notation by requiring that among the
fundamental particles which are assumed to exist {4,} , for each particle A; exists
another particle A; with the same mass such that A;=A;. When 1=7 A; isa

self-conjugated particle. In this notation crossing symmetry becomes
22(8) = St (im — B) (1.63)

We end this section summarizing the fundamental properties of two-particles

S-matrix S”‘l?(ﬂ) of quantum integrable models so far discussed:

e Monodromy: the function 5’1 i (ﬂ) has no branching points.

e Unitarity:
Z 51 i :f:(ﬁ) = Oiky Oigky - (1.64)
e Crossing symmetry:
Sk e(8) = S (im — 8) (1.65)
o Factorization:

Si E(B12) iy F (B12) S (Brs) = S (B)SiL 3 (B1a)Siiip(Brz) - (166)

If we restrict ourselves to the diagonal case last three properties become

Unitarity:
Sap(—0) Sas(B) = 1. (1.67)

e Crossing symmetry:

Sab(B) = Sap(im = B). (1.68)

Factorization is trivially satisfied.

These two equations imply periodicity of Su . It can be shown [21] that the general
solution of (1.67) is

Seo(B) =TI w(B) (1.69)

z€lyy

_ sinh £ (,8+z7r9:)
ua(f) = smhz(,@ iTe)

(1.70)
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where z can be restricted to the segment —1 < z < 1 due to the periodicity of
u,(0) . Simple poles of u,(8) in B = imz will determine the presence of bound

states. In the case of self-conjugated particles

Sas(B) = Saslim — B). (1.71)
we have the solution of (1.67) and (1.71) in the form
Sas(B) = I £-(8) (1.72)
z€lay

tanh $(8 + irz)
tanh %(ﬂ —mwe)
Now the two poles of f,(f) in B = imz and B = im(1 — z) corresponds to the

occurence of bound states in the direct and crossed channels.

(1.73)

f=(8) =

The set I,;, must be fixed by dynamics. Determining I, for V (a,b) of the
model means to determine completely the analytical structure of the S-matrix, and so
to resolve on-shell physics of the model under consideration. The boostrap principle
which we are going to describe in the next section establishes fundamental relations
between different poles of the S-matrix which have to be fulfilled for sake of consistency
of the theory.
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Figure 1.4: Bound state pole in scattering amplitude.
1.4 Bootstrap Principle for the S-matrix

Let’s put ourselves for simplicity in the case of a system whose S-matrix is diagonal

and possesses a single pole in s = m

Sab ~ Pabc———i__qrabc . (174>
m2

[

This pole can be interpreted as a propagator with mass m. and this means that the
system {A,} must contain a particle A, with mass m. . The location of this pole
on the segment 0 < Imf < 7 is at B = iu’, which is fixed in terms of the masses by

m? = m2 + m; + 2mg,mp cosul, . (1.75)

We can describe diagrammatically this kinematical situation as shown in fig. 1.4. The
residue HRgpe of Sy at the angle uf,

iRabc
(B —1ug)

can thus be interpreted as Rue = f, f5, , being fS, a three vertex function I',(p1,p2,ps)

Sap ~ (1.76)

at a fixed value of external momenta and so playing the role of a coupling constant.
Since each particle of the set {4,} is at the same level of fundamentality of the others,
F¢, must be symmetric in the particle indices, f% = fab , and we must find simple

poles also in S,. and Sy at the values of the angles ub_, ul given by

my = mZ +m? +2m,m, cos ub, (1.77)

2 2 2 a
m, = mj +m;+ 2m,m, COSUp,
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m Ubc
c

Figure 1.5: Geometric relation between masses and angles of the bound state a b —
c.

We can give a geometric picture of the mass-angle relations as in fig. 1.5. The angles
thus are not independent

ul, + up +ud, = 27 . (1.78)
These poles must show themselves also in the multiparticle scattering amplitudes; we
are allowed to determine the two-particles scattering amplitude S,y of the particle ¢

with any other particle d by
Scd(ﬁcd) = [RESgabziungabd} / [ReSgabziungab] (179)

where 0. = B, — b, and @S, = 7 —u®, . Taking into account factorization, we end

up with the boostrap principle equation

Sca'(ﬁ) - ad(/@ + iﬂgc)gbd(ﬂ - ,l’ﬂgc) (180)

We can express this fusion structure ab — ¢ in terms of formal analytical continua-

tion of asymptotic states
| A(B) ) = lim ¢ | Au(+ im0, — 5) AB —iT+ ), in ) (181)

If we apply the conserved charge operators to eqs Q, and (1.81), using eq. (1.26) as
well, we obtain the consistency boostrap equations

M? = MPe%c 4 Jbemisui (1.82)

This set of equations are satisfied trivially by M¢ = 0, but this solution does not
correspond to a quantum integrable model because all higher charges would be absent.
For non-trivial values of M{ they impose severe limitations to the possible values of
conserved spin s , once the structure of the model in terms of fundamental particles
is guessed. Let’s show this with a very simple example. Let’s consider a theory of only

one self-conjugated particle with the fusion structure

441 Al — Al (1-83)
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The only bound state angle is uj, = 5;— , from (1.78). Bootstrap comnsistency (1.82)

becomes
T
2 cos <s §> =1 (1.84)
which is solved for only s = 1,5(mod6) .

As another example we add to the previous model a particle A, such that

.‘41 X ..-41 e Al + Ag (185)
443 X AQ — ‘41

So in addition to the constraint (1.84) coming from the pole Ay x Ay — A, , we have

from (1.82)

M? = 2M} cos(suj,) (1.86)
.Msl = 2M? cos(sﬁ%l)

oT

, 1
cos( sy, ) cos(sUy, ) = 3 (1.87)
This equation have two solutions:

7 ) 5
al, = ;—2 i, = 1325 s = 1,4,5,7,8,11 (mod12) (1.88)
and 5
T T
Ty, = = gy = = 8= 1,3,7,9 (mod10) (1.89)
which become, including @}, =%, s=1,5(mod6)
s = 1,5,7,11(mod12) (1.90)
and
s = 1,7,11,13,17,19,23,29 (mod30) . (1.91)

We have thus seen that guessing the qualitative particle content of a quantum
integrable model, thanks to the boostrap principle we are able to determine the scat-
tering angles, mass ratios and the spin of the effectively conserved charges. But the
power of the boostrap principle can give more. The very dynamical content of the
boostrap principle is that, starting from the lightest particle A4; and its S-matrix
Si1 , it gives us

Sa(B) = Su(B +iwy;)Su(B — iy, (1.92)
where A; are the fundamental particles which appear as bound states of the scattering

process

141 X A1 — ZAl (193)
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This argument can now be iterated to the new particles appearing as bound states of
the S; ’s. The Boostrap program is devoted to exploit this iteration comsistently to
end up with perfectly well defined on-shell physics of some quantum integrable model.
We stop here and for more details on the Boostrap program we refer to the references
(16, 20].

The Boostrap program provides us with a method of classifying possible S-
matrices. But in order to make a theory complete we need its local structure, i.e. off-
shell physics. In other words we need to connect a possible S-matrix with a Lagrangian,
or more generally with a complete set [2] of correlation functions. Many results has
already been reached in this direction for many models. In order to get some collection

of them again we refer to the references [20].

Next chapter is devoted to show how the formalism of form factors can be a

very useful approach towards off-shell physics.



Chapter 2

Form Factors Approach

A complete description of a given theory is equivalent to the knowledge of the whole

set of correlation functions

( On(z1) ... Oi(zn) ) = (0] T(O0;,(21)... 0 (2a)) | 0) (2.1)

where O;(z) are the local operators of the theory on which the group of translations

acts with the unitary operator Ur,

Ur,0:(2)Ug! = Oz +a) . (2.2)
Making use of the base of the in-states (A1.3), (1.47) in order to split the product of
field operators for z! >z} > ... >z}

‘OIT('( 1) Oi(2a)) [ 0) = (2.3)
Z > (0] Ox(m) [ {aM}, in )( {aM}, in | Oy(z2) [ {«®}, in )

i=1 {ali)}
({a}, in | Oiy(a)... ({a"™V}, in | Oi(za) [ 0)

it becomes clear that the knowledge of the matrix elements

({a}, in | O=) | {8}, in ) (2.4)
is equivalent to the knowledge of the correlation functions. By means of crossing

symmetry and translation symmetry, every information is encoded in the set of the so

called form factors
(0] O;0) | B1,B2y- s Pnyin ) = FOHB1, P2, 18n) - (2.5)

The inverse formula, i.e. from correlation functions to form factors, is straightforwardly

obtained thanks to LSZ formalism (1.3)-(1.13),[3]
1

Fo Dygaas n) = = i - Bz“__‘_— Gnu 1y ) P2 ybPn
n (1817:6..7 7/6 ) <\/§) I)?inn12 g( K ) ZP YUY S P )
(2.6)

23
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Figure 2.1: Diagrammatic representation of the form factors in terms of the correlation
functions.

where
(271')252((1 + ZP:’)GT“O(%PhP% e 7pn) =

/ﬁdm,— dye= Lo =i 0 | T(O(y)d(21)(@s) .. d(z)) [0) (2.7

for a theory of one scalar self-conjugated boson, (fig. 2.1).

The form factor FY(B1,Bs,...,0n) 1is, strictly speaking, a function of the
n variables (Bi,...,0.) in the region Gy > f > ...,> B, . In terms of the
Zamolodchikov-Faddeev vertex operators Z'(8) (1.45), it is natural to extend this
definition to the whole R"

F2(B1,B2,-,8a) = (0] O(0)Z7(B)Z7(B2)... Z27(Bn) | 0) (2.8)

which reduces to(2.5) in the region £, > f2 > ...,> B, . With this definition we
immediately realize of the property

Fr?(lgl.a-"7/61'7Bi+1)"'7:6n) - S(/Bi“"ﬁi-{-l)Fyf)(/Bla'"7ﬁi+17/6i,"'1/8n) (29)

which follows directly from the Zamolodchikov-Faddeev algebra (1.45).

Locality of the theory imposes well defined analytical properties of the form
factors. We take them into account stating

Fri)(lgl + 27”;1/627"' 7ﬂn) = f[ S(ﬁ] —/gl)Fr?(ﬁhlB??"')ﬁﬂ) (210)

which becomes, using (2.9)

Frf)(l61 +27ri7ﬁ'27-'-7l6n) = Frf)(/g‘la"',ﬁmﬁl) . (211)



For the case n =2 (2.10) 1s

EP(By + 27, B.) = S(B2 — B1)FY(B1, )
= FY(B0) -
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(2.12)

For a scalar field O(z) Lorentz invariance implies Fy(81,08:) = F (B — B2) ; so we

can rewrite (2.12) as

Fy(Bi2) = S(B12)Fy (—Pra)
Fy(im — o) = Fy(im + B -

As an example we prove these equations following mainly [26]:

FP(Be) = (0] 0(0)]B:,0s, in )
= S8 = B2) (0] O(0) | B, B2, out )

due to the complete integrability of the theory. Now if Of = O we have
< 0 ‘ 0(0) ’ 617/627 out > = (< 1517/627 out I O(O) ‘ 0 >)*7

and CPT symmetry implies

(( B1, B2, 0ut | O(0) [0 ) = (0]0(0) | im — fy,im — Bs, in )
= on(“ﬁlz)

where iw — 3 implements the CPT-transformation
P* = (mcosh(8),msinh(8)) LA (—m cosh(8), msinh(B)).

Eq. (2.13) comes putting all together.
Analogously for eq.(2.14), let’s start from

(B1, 0ut | O(0) | B2, in ) = (0]0O(0)]Bs,5 —im, in)
= F;)(iw_ﬁw):

where we have implemented the crossing symmetry this way

(m cosh(B), m sinh(8))pu Croseins (—=m cosh(8), —m sinh(8)):

(2.21)

(so that Gy — im — (12 ). For one-particle state the distinction between in and out is

immaterial, |8, out ) =|8, in ),

( B, out | O(O). I B2, in ) = ( B, in | O(O) |52a out >
= (( B2, out [ O(0) | By, in ))".

(2.22)
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Figure 2.2: Diagrammatic representation of the contribution to the kinematical pole

Of F3.

Again CPT implies

({ By out | O(0) | B in )" = (i — B, out | O(0) |im— oy in ) (2.23)
and crossing
Lim— By, out | O0) i — foyin ) = (0] O() im— G2~y in) (2:24)

= FY(im 4 Pi) -

Comparing eq.(2.20) with eq.(2.24) we recover eq.(2.14). In other words, we have
shown that using locality properties, i.e. CPT and crossing symmetries, we can
determine the analytical properties of the theory in the language of form factors. The
result is that discontinuity (2.10) on the cuts F;; = 2m¢ is determined by scattering.

In order to have a complete description of the analytical structure of the theory,
we must state precisely the location of the possible poles of the form factors. The origin
of the poles is twofold. Some poles surely occur kinematically, as we will see. Other
poles can occur if bound states are present. To show how kinematical poles appear,
let’s consider the LSZ-formula for form factors(2.6). In a perturbative approach, let’s
turn our attention to the contribution to the Fy form factor from the diagrams of
the kind shown in fig. 2.2. Clearly the propagator

7

(2.25)

( :ij:l pi)2 - mz
factorizes. So a pole can appear when (30, p;)> = m® . This happens when p, +p; =
0 or pr+p3=0 or pp+p3 =0. In terms of the rapidities, p; +p; = 0 implies
B; = f3; +im . So near the pole ps+ps =0, Fy(pi,p2,ps) from LSZ can be written

as

FP2(py,payp3 ~ —p2) ~ Dhpinc(=p1,P1, P2, *PQ)(E;; S GMO(p1).  (2.26)
i=1 1 -



Figure 2.3: Kinematical recursive equation for the form factor Fj,.

Recalling the LSZ formula for the S-matrix(1.16), we can take the residue in the

rapidities variables

—1 gg(é — B)FY(B +1im,B,8:) = [1 — S(B—B)IF(B1)- (2.27)

The elasticity property of the scattering processes implies that the only possi-
bility to have kinematical poles for FY,¥n ,is through subprocesses of four particles
as the one shown above. Therefore in order to fix the kinematical pole structure is
sufficient to fix it for the four particle subprocess. Taking the residue of Fno+2 at

this kinematical pole, making use of LSZ formalism, one obtains a recursive relation
between F2, and F? (fig. 2.3),

—1 lim(ﬁ-_ﬁ)Fr?+2(ﬁ—+i7rvﬁaﬁla-"7&”) = [1 - ]i[s(ﬂ—ﬁl)]Fnu(ﬁlvﬂgn) (228)

3—38

The second type of poles in the FY only arises when bound states are present
in the model. These poles are located at the values of §;; in the physical strip which
correspond to the resonance angles. Let G;; = zufj be one of such poles associated to
the bound state Aj in the channel A; x A, . For the S-matrix we have (fig. 2.4)

oo .k E\?
-1 dliflfulk(ﬁ - Wij) 5ii(B) = (Fij) (2.29)
G—iuk;
where I‘fj is the three-particle vertex on mass-shell. Near the pole f;; = zuf]

the contribution to F<,, will come from the diagrams of the kind shown in fig. 2.5.

The corresponding residue for the FZ, is given by

— i lim eFO (81 + 1T — €51 — 1Ty + € Bay- .1 Bn) = THE (B1,Bas .-, Bn), (2:30)
which can be depicted as in fig. 2.6.

We now summarize the properties of the form factors so far discussed
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‘ an—-!

Figure 2.5: Diagrammatic representation of the contribution to the bound state pole

of F, .

Figure 2.6: Bound state recursive equation for the form factor 7.
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Fr?(/gh ce 7Bi7/8i+1’ T 7ﬁ”) = S(/Bl - Bi+1)Frf)(:Bh .- '7/6i+1vﬁia v 7ﬁn> (231)

S(/BJ — ﬁl)Fr?(ﬁla/BZ’ v 7/Bn)

s

Frf)(ﬁl +27I'i,,82,...,/8n) fnd

= Frf)(ﬁ’b e 7ﬁmﬁl)
—i lim (8 — B) Fo(B 417,881, -1 5n) (2-32)

3-8

_ L—ﬁSW—&)Fﬂ@ww&)

—1 llj% € Frﬂ-l(lgl ‘H;L—?;— €,01 — %@%- €02, .,0n) (2.33)
= Ffj Frf)(ﬁ17627"',;3n) .

Smirnov and Kirillov have shown that these equations can be regarded as a
system of axioms for the whole local operator content of the theory. They have also
shown that not only locality but also free asymptotics of the LSZ-approach can be
recovered [27].

We close this chapter by mentioning that these equations are, strictly speaking,
valid for spinless local operators. If @ is an eigenstate, in the algebra of operators, of
the Lorentz Spin operator with eigenvalues s

[Z, O] = sO (2.34)

then FY will transform under Lorentz transformations as

FOBL+ Ay, Bu+A) = e F2(B,....B) - (2.35)

Spinless operators thus depend only on the difference of the rapidities B;; = 8; — G; .

Slight modifications of eq.(2.31) for general semilocal tensor operators can be

found in [28].
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Chapter 3

The Sinh-Gordon Model

3.1 Classical Integrability

As already anticipated in the introduction, in this thesis we present the solution to
the problem of form factors for the Sinh-Gordon model. It is the simplest example of

integrable model and it is described by the action

. 11 ,  m?
S = /d“:v [5((%91‘))2 ~ cosh(g¢) (3.1)
which gives rise to the equation of motion
m2
08(a) + - sinh(gd(=)) = 0 (3.2)
Its Poisson structure is defined by the algebra
{6(z°,2"), du(2",2"")} = §(=' — ') (3.3)

being ¢(z) the classical variable and Oy¢p(z) its canonically conjugate momentum.
Boundary condition should also be precised, for example vanishing fields at infinity
or periodicity on a cylinder. Its classical integrability can be established showing the

equivalence of the equation of motion with a zero-curvature condition
a()U - (%V + [U, VP] = 0 (34)

where U and V are 2x2 matrices whose entries are functions of (¢(z), Ouvd(z), 01¢(z))

and of a spectral parameter A

(3.5)
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1] —28,¢ cosh(A — 2¢) (3.6)
2| —cosh(A+%¢) 2019 |

where we haveput m = 1. U and V are determined modulo a gauge transformation

V =

U - QUG + (8,G)G™! (3.7)
V = GVG + (8,G)G .

In terms of U we can define the transition matrices

T.(0) = p[efo"ffmdf] (3.8)
T() = lm B (NTLA)E()

where Ep()) is the asymptotic solution to the auxiliary linear problem
OF =UF . (3.9)

Using the Poisson algebra (3.3) one can show that

19,
500 TrT(A) =0 . (3.10)
So TrT()) can beregarded as a generating functional of non trivial conserved charges.
A more direct way to obtain conserved currents is to use the so-called Backlund

transformation. Let’s introduce light-cone coordinates

0 1 0_ 1
(z°,2') — (% = rET , T = i ). (3.11)
2 2
The metric tensor transforms as
10 0 2
guu:{o —-1}#’:0’1—*9/1“1/:{2 O}M/:"{W—v (3.12)
and
O = (6o) — (8, = 9,0_ . (3.13)
The equation of motion becomes
m? .
8.0 _¢é(z) + p sinh(gp(z)) = 0 . (3.14)

Let’s define a new field qAS(:c'F, z”,¢) through the Backlund equations

A

Bu(d + B) = ?—’!?fsmh(gw — ) (3.15)

(¢ — ¢) = —gg%sinh(%(qb + 9))



It is immediate to see that ¢ is a solution of the equation of motion, the same is true

for ¢ . One can check immediately that the following conservation law

e 10, (cosh %(qb + qS)) +ed_ (cosh g-(qﬁ — gi))) =0 . (3.16)

L

holds. Express now ¢ as a formal power series in €
qﬂﬁ(:c*", Tz ,€) = Z qﬁ(”)(m+, z”)€e" (3.17)

where the coefficient fields #(")(z*,z~) are obtained in terms of ¢ and its derivatives
through (3.15). Now from eq.(3.16) we can extract order by order the infinite set of

COIlSCI'VCd currents

0:Tyss + 0-0,; = 0 (3.18)

whose conserved charges are
Q, = /da:+ Tooy + /dm_ O, . (3.19)

Indices means that Q, , 7,41 and ©,_; areeigenvectors of the Lorentz Spin generator

in the algebra of observables

{Z, 9} = sQ, (3.20)

Being the @, ’s of different spins, we are also sure that they are independent.



3.2 Quantum Integrability

As pointed out by [34], direct canonical quantization of the Poisson algebra gives
rise to a Quantum Field Theory which, in general, loses the fundamental property of
integrability. In order to maintain this property, the quantized transition matrix must
satisfy an equation which can be seen as a generalization of the quantization procedure.
For the Sinh-Gordon this equation takes the form

R\ = w)T(NT (k) = T()T(V)RO ~ p) (3.21)

where the 4 x 4 matrix R(A) is

a 00 0

0 b c O
RN = |0 050 (3.22)

0 00 a

a = sinh(A — i7)
b = sinh(A)
c = —isin(7y)
-2
and satisfies the Yang-Baxter equation [33].
For the quantized gauge field U(z,A) ,(3.21) becomes

R(X — ) (3.23)

. 1 x+A 1 1
U@, )@l +18U0sp) + lim < [ [ da'dy' UGz, MUy, )| =

. 1 ks 1 1
U(z,)®1+10U(x,p) + lim & [ [ do'dy' Uz m)@U(y,3)
R(A—p) .

It is a lenghty but straightforward exercise to see that if one quantizes U(z,A) naively
with canonical commutation relation, (3.23) can’t be satisfied. Then, one has to guess
the form of U(z,)) which fulfills (3.23). This corresponds, as already said, to a
generalized quantizaton procedure. We note that the old correspondence principle is
recovered in the semiclassical limit A — 0, which is equivalent to a weak coupling

limit ¢ — 0

+5loy0] = 555lad = 4,11 (3.24)

This is the reason why the new algebra which corresponds to this new quantization

procedure is referred to as a deformation of the Poisson algebra.



Sklyanin has given a representation of the algebra(3.21) [33]. But in order
to have a complete description of the model, we need the canonical transformation
which connects the elements of the transition matrix T'(A) with the fundamental field
¢(z) . This would imply the knowledge of the local structure of the quantized theory.
This problem can be solved, in principle, through quantization of the Gelfand-Levitan-
Marchenko equation [7], as already performed by Smirnov for the Sine-Gordon model

8, 9].

Another possibility could be to guess the quantized version of U(z,A) and
construct T'(A) .Then, comparing with Sklyanin’s result we could extract the canonical

transformation that we need.

However a completely different approach to the local structure of the Sinh-
Gordon model can be followed through the form factors approach [10].
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3.3 Form Factors Properties for the Sinh-Gordon
Model

Since Sinh-Gordon is a quantum integrable model, its S-matrix is factorizable and so
all on-shell information is encoded into two-particles S-matrix. The explicit expression

was computed in [22]

tanh (15 B — ))
5189 "~ fanh (% B+1% B )) (3:25)
Blg) = ir 1 _;_lg_
8w

. This formula has been checked against perturbation theory in [22] and more recently
by [24].

The spectrum of the theory consists in one self-conjugated boson which does
not have bound states. This result is in agreement also with the Z,-symmetry of
the Lagrangian. If spontaneously symmetry breaking is assumed not to occur, this
symmetry forbids the existence of non-null vertices with an odd number of particles;

therefore a bound state is forbidden, since it would imply
(TG ~ ResS # 0 . (3.26)

We will come again on this symmetry property later, when we will discuss the possible
structure of the algebra of local fields.

The knowledge of the exact S-matrix is crucial for the approach to the form
factors. We recall from the previous chapter the properties which we expect to hold
for the form factors of local operators of spin s for a theory of a single scalar self-

conjugated boson with no bound states

an(ﬂhﬁ%---,ﬁn) - ( 0 I O(D) [ﬁlvﬁ%'--yﬁm in > (327)

whose analytical continuation to the strip 0 < Imf < 27 satisfies
FO(Br+ 0y a4+ A) = €V F (B, Bn) (3.28)

and

Fr?(ﬂlw"aﬁi’ﬁi+l""75n) = S(/Bi—/Bi+1)Fp(1:)(/817'"7ﬁi'+17ﬁi7"-71371)7 (329)



FO(By + 211, By .., Bn) (3.30)
= HS(BJ_/Bl)Fr?(ﬂlvﬁ%"'ﬂgn)
Fr?(ﬁzs e 7/81”5'1) )
—i lim (B B)FSu(B +im, 8,81, ..., Bn) = (3.31)
1 - H S(B—6i)| F(Bry---Bn) - (3.32)

Equations (3.29)-(3.31), reversing the logic, can be used a la Smirnov to define

local operators. In order to prove locality, i.e.

[O(2), O(y)] =0 (z ~y)" <0 (3.33)
or for Lorentz symmetry

[0(0,2"), 0(0,0)] =0 2" #0, (3.34)

we need a further assumption: FY(81,0s,...,0,) are polynomially bounded in the
momenta, i.e.

JK :Vn F°(Bi,...,B.) — o(emﬁ"l) as | B; | — oo . (3.35)

This hypothesis is equivalent to the requirement that the singularity in(3.34) is a
distribution made of a finite number of derivatives of §(z') . One can show that this
set of equations has unique solution up to the choice of the first non-null, if they behave
like in (3.35) with K < 0. The classification of all the possible solution of the other

case is still an open problem.

Under this hypothesis, we can bring solutions of (3.29)-(3.31) into the form [26]

Fn(ﬂly e ,/@n) = I{n(ﬁlr .. a/Bn) H Fmin(lgij) ) (336)

i<

where Fuin(8) satisfies(3.29) and (3.30) for n =2 and is analytical in
0 < Im8 < 2

Fmin(/B) - S(/B)Fmin(_f@) (337)
Fmin(i’n_ — ﬁ) - Fmin(i"r + 16)
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and thus the K, 's resume the pole structure (3.31) and satisfy (3.29) and (3.30) with
S = 1, which means that they are completely symmetric, 2mi-periodic functions of

the g,

Kn(lB17"'7ﬁi7/Bi+l7"'7/87‘-) - I{n(lgla'"7ﬁi+la/3i7---,ﬂn) (338)
Kn(ﬁl +271'"I;,...7.6n) = Kn(ﬁl,'-'yﬁn) .

Karowski and Weisz have shown that using an integral representation of S(#) in the

form

S(8) = exp VUOO %f(m)sinh (3@—” . (3.39)

1T

then a solution of (3.37) is given by

F, % = do o (5) 3.40

min(8) = N exp /U — ) (3.40)

where B =ir —f . The overall normalization constant A is chosen such that
lim Fon(8,B) =1 (3.41)

B—0
l.e. ()
1 reede flz R
= e - —_—— 42
N eXP [ 2/0 z sinh :z:] (3.42)
For the Sinh-Gordon model

sinh (22) sinh (£(2 — B)) sinh Z
f(z) = (5£) sint (52 - B)) sinh . (3.43)

sinh =

An useful identity satisfied by Funin(8) for the Sinh-Gordon model is given by the

functional equation

sinh 3
sinh 8 + sinh %2

2

Fmin(i'ﬂ' 'TI“BaB)Fmin(IB)B) - (344‘)

(see Appendix A).

Let’s now discuss the pole structure of the theory. Since in this theory there
are no bound states, the poles are all of kinematical origin. As already discussed in
Chapter 2 in the LSZ formalism, they can be seen to occur in the limit p; — —p; , or
B8; — B, , from the singularity of the propagators

1

(pi + pj + pi)? — m?

(3.45)



In terms of rapidity variables this means
1

8m? cosh %,312 cosh —;—[313 cosh é‘ﬁgg

(3.46)

All possible three particles poles are taken into account by the following parametriza-
tion of the function X,

QI (/617"'7ﬁn)
I cosh : ﬁ” '

1<J

I{n(ﬁla-"u@n) = (347)

where @' is free of any singularity, and from (3.38) it satisfies

Q/n(ﬂh"'7/3i7,6i+1a"'7/6n) - Q;(/Bh"'aﬁi-l—hﬁiw"7:371) (348)
Q;l(ﬁ] + 27”:3' ' '7ﬁn) = (_1)n—1 an.(ﬁl7"'7ﬁn) .

Since we require that F, behaves like o(el‘_lﬁf‘) as |Bi|— oo ,and Fun, — 1 in
that limit, @’ will be a symmetric function of the variables z; = ¢ , with a finite

number of terms. Using

i7 1 L; j 1 !

cosh& = —|,/— + 2 R i (3.49)
2 2 T, z; 2 VT T ‘

and redefining @/, into @, , from (3.36) and (3.47) we end up with the following

parametrization of Fj,

FulBr, o) = Ho Qulary...yma) T] 2minlPia) (3.50)
i<; Tt T
where H, is a normalization constant which can be fixed to obtain a simplified kine-
matical recursive equation for the @, ’s. This parametrization fulfills properties (3.29)
and (3.30) of form factors, and takes into account the prescribed pole structure. All
‘ignorance is now in the @, ’s. Considering Lorentz properties of F),

FOBy+ A, ..,Bn+A) = e FO(Bry...,Bn) (3.51)
for a spin s operator, we see that for the functions @ ’s they become

Qn(eimb B eimn) = e(8+ - nz_t))AQ”(mh e 71:”) : (352)

So @, must be a symmetric function of the ®;’s, with a finite number of terms
which transforms like (3.52), with s + ﬂ—"{l—) € Z . It is therefore a symmetric poly-
nomial in the z;’s, homogeneous of total degree s+ "('%Q . It’s convenient to intro-
duce in this functional space the basis given by the elementary symmetric polynomials

a,i'L)(ml, ...,T,) which are generated by [37]

H (z+ ;) Z:B k :z:l,z:a, ey ) (3.53)
i=1
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Conventionally the G‘,En) with & >n and with n < 0 are zero. The explicit expres-

sions for the other cases are

G'U:]. y
0'1:331+5132+...+IE” ,
02 = Z1To+2T1Z3+ ... Ln-1%n , (3.54)

Onp = L1T2...Tp

The O';EH) are homogeneous polynomials in z; of total degree &k and of degree one

in each variable (except for J(()") which is the constant 1 ).

So @, can be formally expressed as

n

Qn(zy,. .. z,) = Z (.T/E.T:) . .o-}i;?n Qhy knr, (3.55)

LI kJ\ln =0
Mn n(n—1
Yoot kit )

where M, 1is the degree in each variable. Since it should exist a constant K , such
that
Vn F, — :cl]‘ as ¢; — 0o , (3.56)

from the parametrization and the property Fuin — 1 we determine M, to be
M, =K+n-2 . (3.57)

Note that this discussion is independent of the sign of K . From [27] we know that
in the case K < 0 the solution of (3.29),(3.30) and (3.31) is unique, up to the choice
of the first form factors different from zero (initial condition). Hence each K < 0,
together with an initial condition, identifies a precise local operator (O of the theory.
The identification of @ with some composite operator of the fundamental field ¢ of
the Lagrangian approach is obtained through the LSZ formula(2.6), with which one
also determine the asymptotic behaviour and F, or F, of each operator.
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3.4 The Kinematical Recursive Equation

Recalling the properties discussed in the last section, the form factors F© of alocal

operator O,(z) of spin s can be put in the form

Fmin(/Bij)

T; + Ty

Fo(Biy.r s Bn) = HaQulzi,..ohzn) [ , (3.58)

i<y

with

n

Qu(zr, .. z,) = Z o',(;:) .. .cr,(gzan Tk, .. Ear, (3.59)

ki oikpr, =0
and with M, = K¢ +n—2 , where K9 must be fixed by the asymptotic behaviour
for z; — oo . This parametrization takes into account the Lorentz properties of trans-
formation (3.51), the locality axioms (3.29),(3.30), (3.35), together with the prescribed
presence of the kinematical poles z; = z; ,(3.31).

Tt is then natural to obtain a recursive equation for the unknown polynomials

@, simply plugging the parametrization (3.58) into the residue equation

—1 gﬁ(B*ﬁ)Fr’i—l(é‘*‘ZW,ﬂ?ﬂh)IBn) - (360)
1 - f[S(ﬁ—ﬁi) F2(Bry- 1 Ba) - (3.61)

We have to express the S-matrix (3.25) through the variables z; = ebi

sinh(8 — §;) — sinh ZB

—pBi) = — 3.62
58— 4) sinh(8 — B;) + sinh £P (3.62)

N (z + wlz;) (z — wz;)

5(6 -4 = (z — wlez;) (z + wz;)

where w = e'%" | so that the S-matrix factor in (3.60) becomes
. n (e —wlz) (24 we) — [y (2 +wlz) (2 — we;)

1 _ S —03; — =1 (:E w T ) (m =1 . 3-63
1 5(6-5) [T, (2 - o 75:) (o + w50 (569

Considering the left hand side of (3.60), we note that the pole as B — B of FO,(B+
1

‘ ] e
i the parametrization (3.58), so

im,3,81,...,0,) comes from the factor
that

—~ 1 lim -’é,_ﬁ :i, (3.64)
f—pa(f+ir)+z(B) =
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and the left hand side reads

7 Ny = Fon(B — Bi +im) Froin(B — 3:)
> Pl L e+ =)

=1

- Hn+’2 er+2(—wam7$l7 s amn) .
r;+x;

ﬁ Fmin(/Bij)
i<j
Using the (3.44) in the form

Fmin(iW+IB7B)Enin(/g7B) = (:E _wi:;g;i—) (ﬁ};—{— wmi) (365)

the left hand side transforms into

éFmin(iﬁ)(—l)rl ﬁ !

=1

(z —w™lz;) (z + wz;)

n
Hﬂg‘@ﬂlﬂnw Cnia2(—z, 2, 21,...,20) -
i<j TT T

Comparing with the right hand side

Mo, (¢ —wle) (z +wz) — [T, (z +wle)) (z — way)

ey (2 —whe) (2 + wa;)

Fmin iy
11 2225 g o (e, en)

& Ttz

we finally obtain

Hopo Quio(—z,2,21,...,2,) = Forn(in) Uz |21, 20) Hy Qu(zy,y ..o y2n)
(3.66)
where
Upn(z | @1,...,zn) = T {H (:1: —w_lmi) (z + wz;) — H (a: —l—w_lml) (z — wmi)} .
=1 =1
(3.67)
This function is usefully written as
Upn(z | z1,. .. 2,) = (3.68)
noo rB n n
21z Z 2 (—1) sin 7——2—(.19 - 1) o‘,(i )(mj,. ..,mn)cr,( )(an, ooy Zn)

k,l:()

making use of the relations

n

Mo+ a) = 32 7~ offam, .. pama) = 3= 7% abofon, .. 5r) . (360)
k=0 k=0

=1
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The non-zero terms entering the sum (3.68) are only those with (k —1)odd

Un(z | Ty o) (3.70)
- 2 k . B n n
= diz Y, "L (—1) sin 11}2—(19——1) U,(c )(m,...,mn)(r,( )(ml,...,mn)
fmlmodd>0

B
= 417 sin (%——) Du(z | z1,y...,20)

where we have defined

. 'Dn(iﬂ I $1,...,mn) = (371)
: ‘=B
= sin (22 (k — l))
2n—k—l i 2 (n) (n)
—1 < [ Rt ) N .
kgo i (=1) sin (wB/2) o (21 zn) oy (T4 Tn)
E—l=odd>0

Hence we can write the recursive equation as

Hopo Qn—i—Z("‘(B,(E,IEl,...,IBn) = (3.72)
4 sin Eg
R (1) 2 Dule |2 @) Ho Qul@i, .. Z0) -

This equation fixes the product H, @, , up to the choice of the initial conditions. We

can choose H, such that

4sin =B
Hy o = —*H,, 3.73
i Fmin(i'/'r) ( )
which can be accomplished by
4sin(wB/2)\" "
Hf) - > 1 f

2n+1 H, (ijn(iﬂ,B)> n 2> (3.74)

4sin(rB/2) n

H"n - H‘.Z X >1
) ( Fmin(lﬂ-yB)) "

The recursive equation takes the final form

Qniz(—z,z,21,...,2n) = (—=1)"zD,(z | TiyeeosTn)Qnl(zi,. .o 0) , (3.75)

where D, , due to the relation

n—l|

sinne = nsinz | (l_ - ————sil—l;—m——> (3.76)
1

i sin®(jw/n)

is a polynomial also in the variable sin® (%3—) .



44



Chapter 4

The Algebra of Local Operators of
the Sinh-Gordon Model

4.1 Zy-grading and Descendent Structure

Having discussed so far in some details the properties of a general local operator of the
theory, we come now to face the problem of the solution of the recursive equation (3.75),
citenostro. With this aim, we characterize the local operator algebra A according to
the symmetries of the theory. Lorentz invariance allows us to write A as a direct sum

over subalgebras of fixed Lorentz spin
A=A, . (4.1)
FEach subalgebra A, with s odd contains the non trivial conserved charge

0, = /d:c+ T\ + /dm‘ 0,1 . (4.2)

If we assume that the symmetry of the Lagrangian under ¢ — — ¢ holds also
at quantum level, and with the further hypothesys that A is made only of com-
posite operators of the elementary fields ¢(z), we can split A according to this
Zy-symmetry

A= Aaa D Aeven (4.3)

where obviously
| Avad 2 — Ao
Acen =5 Acven -
One can conclude, referring to (2.6), that
Oc Aa = Fy =0 (4.4)
Q€ Aowen = Fp, =0

45
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Let’s now consider an operator O, of A . Its form factors F9¢ then transforms

under a Lorentz boost as

FO B+ Ay Bu+A) = e F (B, 0n) - (4.6)
Consider now polynomials I¥(z,,...,z,) with the following properties
I;I(:z;l,...,zz:i,...,a:j,...,:zzn) = Iil(ml,...,mj,...,mi,...,:zzn)
Ifll(e‘&ml,...,e"\‘:nn) — A I;I(ml,...,a:n)
I~z e, @) = I3 (i, @a) (4.9)

The functions F), defined by
F'(zyy.. mn) = (@1, 0) FO¥ (@1, Tn) (4.10)

can be thought as defining a local operator O € A,y , since they satisfy the axioms
(3.29), (3.30) and (3.31), together with (3.35). From the properties (4.7), (4.8) I}

is a polynomial which can be expressed in the basis Uﬁ")(ml, .oy Tn) (3.53)
Iz = - (n) (n) . 4 11)
METTN- oo Thoy by biny, - (4.
By ek =0

As shown by Cardy-Mussardo in [29], any polynomial I¢" solution of (4.9) can be
thought as a polynomial in the odd spin polynomials I2**' which satisfy the following

recursive relation

ol = gl el sy oI (4.12)

n

Explicitly they are

Il = o'gn) ,
I = agn) — aS”H”) ,
I? = a-gn) - o'gn)(aén) — O’gn)dgn)) — aﬁn)agn) , (4.13)
A closed expression of I?*~! has been obtained in [32]
I = (—1)" ! det T (4.14)
where the entries of the (k x k)-matrix Z for j=1,...,k and i=2,...,k are

Lij = 0251 ILij = 09j-2i42 (4.15)
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1.e.
oy O3 O 07 ... O2j—1
1 Oy T3 0 v 022
T = 0 1 09 T4 «on O9f_y . (416)
0 0 1 T2 vus O2pn

The determinant of Z will always be of order 2k — 1 as required.

As it was first noticed in [29], eqgs. (4.10) naturally provides a grading in A . In
fact, given an invariant polynomial I? , eq.(4.10) defines form factors of an operator
@' which, borrowing the terminology of Conformal Field Theories [4], is natural to
call descendent operator of the spinless field O . In particular, choosing O to be the
trace of the stress-energy tensor, the form factors defined by eq. (4.10) are related to the
matrix elements of the higher conserved currents, as can be easily seen by eq.(1.26)
and by the fact that the symmetric polynomials which appear as eigenvalues of the
conserved charges &,

sp = o +ab 4.+ a2k, (4.17)

can be expressed in terms of the invariant polynomials I° . Indeed they satisfy the

recursive relation
Sk — Sk_101 + 8200 — ..+ (=1 51044 + (=1) ko = 0, (4.18)

that, together with eq.(4.12), permits to express s in terms of the invariant polyno-
mials I .

We don’t have the proof that any operatorin 4, can be obtained by an operator
in A,y by means of the invariant polynomials(4.10). Nevertheless, we will limit
ourselves to the solution of the form factor equations for the two most significant

fields, the elementary one ¢(z) and the trace of the stress-energy temsor.
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4.2 Asymptotic Behaviour and Initial Conditions
for the Elementary Field and for the Trace of
the Stress-Energy Tensor

The elementary field ¢(z) is a Z,-odd spinless operator of A. The initial conditions

for its recursive equation (3.60) are

Fy =0, (4.19)

Fy = 7 (4.20)

The first one is simply Z;-odd parity which implies
Fo, = 0. (4.21)

The other one is the normalization of one-particle wave function, which one can read
from the LSZ-formula

(2m)*8%(p1 + p2)G(p1,p2) =

_ /Hd e~ X0 0 | T(¢(z1)d(w2)) | 0 )

= (27)*8*(py + p2) {1_32_:1'W + Reg.} , (4.22)
1

where the pole in the physical mass comes from one-particle states, and the Reg.
term collects the higher number of particles contribution. Now (4.20) is obtained plug-
ging (4.22) into (2.6).

Using again (2.6) we can learn an useful factorization property of Q°

Qrosr(@rse - Bongr) = bt Ph (21, @a0s) n >0 (4.23)

The reason is that from any Feynman diagram which enters F;;H we can factorize

the propagator .
1

q=- Zp,‘, pi=m? (424)

q2 —m?

that, written in terms of the variables z; , becomes proportional to cr;(zirril)

. (2n+1)
: v Tont1

9 !CI:— i) pi=m2 — 2 2 3 3 . (425)
qZ —m ZP P; m2 O_E Tl+1)g§nrl+l) . «g,::l)

The presence of the propagator (4.24) in front of any form factor of the elementary
field ¢(z) also implies that F3,., behaves asymptotically as

ng’l—}-l(:@hﬁ% oy Bongr) — 0 as B; — +oo [z fixed. (4.26)
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Figure 4.1: Lowest terms in the perturbative expression of the form factors of the
elementary field ¢(0). G*"*1) is the Green function with 2n + 1 external legs.

In fact, the propagator (4.24) goes to zero in this limit whereas the remaining expression
of the Feynman graphs entering Fh,y; is a perturbative series which starts from the
tree level vertex diagram shown in fig. 4.1, which is a constant. Other tree level
contributions at the lowest order and higher order corrections are either finite or they
vanish in the limit (4.26). In fact, by dimensional analysis they must have external
momenta in the denominator in order to compensate the increasing power of the mass

in the coupling constants.
Using the transformation property

2 _(n)

0',(6"“)(—93,:1;,:1;1,...,93”) = o-,in)(:nl,:ng,...,:nn) —zioy (T, Ty Tn) 5, (4:27)

and (4.23), (3.75) becomes the recursive equation for the P? ’s

. , 1 ,
(——)”"H P,‘f’+,_,(—m,a:,a:1,...,:vn) = ;Dn(m | 1121,(132,...,ZEn)P;:)((E'I,(B'_),...,mn) . (4.28)

where in this case m is odd.

An analogous factorization property exists for the trace of the stress-energy
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tensor ©(z) . This field is classically defined through the stress-energy tensor

4 65
T, = 4.29
Y Vg () (429
= 27 (@Nbaﬂb - g#,,ﬁ)
as
m2
O(z) = Tj(z) = 4m—; coshgo . (4.30)
g

It is spinless and Z,-even. For the definition of this operator at quantum level we
need, in the form factors approach, to precise the initial conditions and the asymptotic

behaviour. Z;-even parity implies
Fl.. =0. (4.31)

The mentioned factorization property for F2 can be proven if we consider the con-

servation laws satisfied by the stress-energy tensor
0-T(z",z7)+ 8,0(z,z7) =0 , 0. T(zt, 27 )+ 0_.0(zt,27) =0 (4.32)

where T (T ) is the component of the stress-energy tensor which in the conformal
euclidean limit becomes holomorphic (anti-holomorphic). Using eq.(2.2), (1.13) the

identities

n (n)
Ze.@i — o_](n)(mly--'7mn) , Zeﬂﬁi — Un~l(ﬂ717-..,wn) (433)

=1 =1 On (.’El,...,:l}n)
together with (4.32), we obtain
O’](.Qn)o-gin)F‘;:l(ﬁ17 M 75271) - o-é:len—)lFQ(?l(ﬁ17 ret 7ﬁ2n) (4'34)
(B o Bon) = oML ER (B, Ba). (4.35)

Since FI

2Zn

conclude that FP(8i,...,B82n) is proportional to the product o!™e{*™, for n > 2.

Fg; and F,? are expected to have the same analytical structure, we

n—1
So we can state that
FQG) . {2n) _(2n) P@

= 09 Oon-1 42

(4.36)

One can convince himself of this property also through LSZ formalism, in a perturbative
framework in which, for example, a total tadpole subtraction normal ordering can be
adopted. Plugging (4.36) into(3.75), using again (4.27) we see that also in this case
P(—)

2n

satisfies

. 1 ,
(_)H-H Pr?+2(_17,$7$17-'-7mr1) = ;Dn(w 1 ml7m27"'7$71)Pr?($1’$27"'7m") . (437)
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with m even.

It remains to discuss the non-null initial condition for ©(z) . It is taken to be

O 2 Fmin(ﬂl’l)
FP(B12) = 2mm® 2= 4.38
- (/Bl~) o Fmin(iﬂ-) ( )
where m is the physical mass, since it must fulfills the properties (3.29), (3.30) and
the limit
F2(Byy =ir) = lim { out,Bs|©(0) | By, in ) = 2rm*, (4.39)

Ga— B
in order to match the interpretation of ©(z) as the generator of the dilatation trans-

formation which controls the flow of the renormalization group in the space of the
2d-theories [2, 40, 41]. Again, (4.39) can be easily checked perturbatively.

We conclude this section with the discussion of the form factors of a third oper-

ator, thanks to general properties. It is the composite field
O =:sinhg¢: (4.40)

whose form factors can be easily computed in terms of the form factors for ¢ . In fact,

using eqs. (2.2), (1.13) we have

(01]8.0-¢(zt,27) | B1...0m, 0 ) = (4.41)
—ZZ—Z eﬂiZe_ﬁiZe_iwpiFf(ﬁl,...,ﬁn) .

Employing the equation of motion and choosing z* = 2z~ = 0, together with the

identities (4.33) we derive the relation

ga'la'n—l FTZ’; ' (4_42)

Fsinh g __
" =
On

and thus
Qsinhg(b = ga'lo_n—lp;f) . (443)

n

Hence we can describe the fundamental vertex operator e9%(*) using the solu-

tions for the form factors of © ~ coshg¢p and ¢ .
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4.3 Solutions of the Recursive Equations

Let us summarize the analysis carried out in the previous sections. The form factors
Fy... (n>0)of the elementary field ¢(z) are given by

Fi(Bis- s Bongr) = (4.44)
1 4SII1(7TB/2) " (°n+l) Fmin(ﬁij)
—_— | — st Lan TyeeyTon _—
V2 <Fmin(i7r,B)> Tanr Pantr (1 Zant1) ;E‘E T; + T
and the normalization of the field is fixed by
® 1
FP = — . (4.45)

V2

The form factors FY (n > 1) of the trace of the stress-energy tensor ©(z) are
given by

F’ﬁ;(ﬁ17"')ﬁ2n) = (44‘6)
27?7)’1.2 4SII1(7FB/2) nt (r)n) (2n) mm )
- - 9 P’)n P n

Fraan(i) ( Froiali7) > R R

1<y Z; +m]

where the normalization is fixed by the matrix element of ©(0) between the two-

particle state and the vacuum
Frain(Bi12)
FP(Biz) = 2rm? =22 4.47
2 (IB1~) T Fmin(iw) ( )
Notice that (4.46) for n =0 leads to the expectation value of ©® on the vacuum

2
T

<Ol@(o)|0>zm- (4.48)

Using the recursive equations (4.28) and the transformation property of the elemen-
tary symmetric polynomials (4.27), the explicit expressions of the first polynomials

P.,(z,...,z,) are given by

Pi(zy,...,z3) = 1

Pyzy,...,z4) = o2

Ps(zy,...,z5) = 0203 — cios (4.49)
Ps(zy,...,26) To3(0y — 0g) — c: (0405 + 010206)

Pr(zy,...,z7) = 092030405 — (o407 + 01020506 + ooy — Cio90s) +

22
—cy( o607 + 01020407 + 030506) + cic307

'The upper index of the elementary symmetric polynomials entering P, is equal to n and we
suppress it, in order to simplify the notation.
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where ¢; = 2cos(nrB/2) and ¢, = 1 — ¢? . Expression of the higher P, are easily
computed by an iterative use of egs. (3.75). For practical application the first represen-
tatives of P, are sufficient to compute with a high degree of accuracy the correlation
functions of the fields. In fact, the n-particle term appearing in the euclidean correla-
tion function of the fields

(O(z)O0) ) = (4.50)
g, ...dB, . . \
- Z/%@Tﬁ"wm( 2) | By, Buy in ) 0y iy, B | O(0)0)

where r denotes the radial distance, i.e. 7 = ,/z} + 2] , behaves as e~™m") and for
quite large values of mr the correlator is dominated by the lowest number of particle
terms. This behaviour is also confirmed by an application of the c-theorem which is
discussed in sect.6. Nevertheless, it is interesting to notice that closed expressions for
P, can be found for particular values of the coupling constant, as we demonstrate in

the next subsections.

4.3.1 The Self-Dual Point

The self-dual point in the coupling constant manifold has the special value
B(V8r) =1. (4.51)

The two zeros of the S-matrix merge together and the function D,(z,z,z2,..., Tn)

acquires the particularly simple form

n ] k “ n I .
Du(z|zy,zs. .., 2n) = (Z(—l)“jL sin —gm”"l‘aﬁn)> (Z(—l)l cos —;Ea:”—lal( )>

k=0 [=0
(4.52)
Tn this case the general solution of the recursive equations (4.28) is given by
P.(z1,20,...,2s) = det A(zy,20,...,20) (4.53)
where A is an (n — 3) x (n — 3) matrix whose entries are
n . AT
Aij(zy, @y, 2n) = o‘éj)_H_] cos® [(z ——])E] , (4.54)

1.e.

0
A=|1 0 oy 0 - (4.55)
0
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This can be proved by exploiting the properties of determinants. i.e. their invariance
under linear combinations of the rows and the columns. Let us consider the (n—1) x

(n — 1) matrix associated to Pnia2(—2, 2,21, .. 3 Tn)
™

Ay = <0-:('?)—i+1 -z’ U".gr;)—i—l) cos” {(1 —j)g} ) (4.56)

where eq. (4.27) was used. Adding successively z* times the row (1 +2) torow 1
(starting with 7 = 1), we obtain for the entries of the matrix A

n § n 2 : N
Ai; = (G'gj)_i+1 - ml‘fgj)—i—a) cos {(1 "J)'z'} : (4.57)

Adding now z* times of the i* column to column (i + 2) (starting with 7= 1),

we obtain the following matrix:

0 0
A(n=3)x(n=3) : :
A(n—l)x(n—l) — 0 (458)
koo Xk A(n——?)(n——?) 0
e 0 An—1)(n-1)

where the entries in the lower right corner are given by

n k \
A(n—z)(n—z) = Z(—l)k cos —E:E"_k—lo',(c')

k=0 2

n l
A(n_1)(n_1) = Z(—l)l+1 sin —21:1:”_[01(”)

=0

Developing the determinant of this matrix with respect to the last two columns and
taking into account egs. (4.52) and (4.53), we obtain the right hand side of equation
(4.28), Q.E.D.

4.3.2 The “Inverse Yang-Lee” Point

A closed solution of the recursive equations (4.28) is also obtained for

B (2y7) = % . (4.59)

The reason is that, for this particular value of the coupling constant the S-matrix
of the Sinh-Gordon theory coincides with the inverse of the S-matrix SyL(B) of the
Yang-Lee model [30] or, equivalently

2

lS(ﬁy—g) = Syvu(B) - (4.60)
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Since the recursive equations (4.28) are invariant under B — —B (see sect.4.2), a
solution is provided by the same combination of symmetric polynomials found for the
Yang-Lee model [9, 31], i.e.

P.(zi,zay...,@,) = det B(zy,zo,. .., Tn) (4.61)
with the following entries of the (n — 3) X (n — 3)-matrix B
Bij = 03j-2i+1 - (4:62)

The proof is similar to the one of the previous section and exploits the invariance of a
determinant under linear combinations of the rows and the columns. In this case the

function D, is most conveniently expressed as determinant of a 2 X 2-matrix

(i (—1) cos %m”“lnl(n)> <l{i:u cos %T—a:"‘lo',(n)>

Dn = det l.—?lU I (L) ‘'n I (n) (4'63)
(l;u(_l)l sin ?":l}”_lo'l ) (lgosin —g:z:"“lal >

Let us consider the (n—1)x(n—1)-matrix entering the expression Pnyo(—z,z,1,.. ., Tn),
l.e.
Bij = 03joaip1 — T 03j-ni-1, (4.64)

By adding successively the i** row to row (i — 1) (starting with i = (n —1) ), we

obtain B;; = 03j-2i+1 — iEz("—i>0'3]'_2n+1. Then by adding successively z® times the
i column to column (i + 2), starting with ¢ = 1, the entries for the matrix B
read
By = Y o3j-0imeip1z” — g2 g 6l (4.65)
1=0

Subtracting z° times of the row (i+3) from row ¢ (starting with ¢ =1 ) we finally

obtain the matrix

Blr=1)x(n=1) _ 0 0 (4.66)

S B(a-2)tn-2) Bn-2)(n-1)
K oeowoek B(n—-l)(n—'z) B(n——l)(n—l)

where the entries of the (2 x 2) matrix in the lower right corner are still given by
(4.65). Tt is easy to prove that the determinant of this (2 x 2) matrix in the lower
right corner is equal to (4.63). Therefore, with the definition (4.61), the determinant
of Bn—1x(n=1) gives rise the right hand side of (4.28). Q.E.D.



4.4 Form Factors and c-theorem

The Sinh-Gordon model can also be regarded as deformation of the free massless theory
with central charge ¢ = 1 . This fixed point governs the ultraviolet behaviour of the
model whereas the infrared behaviour corresponds to a massive field theory with central
charge ¢ = 0. Going from the short- to large-distances, the variation of the central
charge is dictated by the c-theorem of Zamolodchikov [38]. An integral version of this
theorem has been derived by Cardy [39] and related to the spectral representation of

the two-point function of the trace of the stress-energy tensor in [40, 41], i.e.

Ac = /Ooo dpei(p), (4.67)
where c¢;(u) is given by
6 1 ,
in) = S = —i) (468)

G*) = [dwe™ (0] 0()O(0) | 0 Jeumn -

Inserting a complete set of in-state into (4.68), we can express the function ci(p) in

terms of the form factors F,

c1 =

i : /dﬁzé;)iﬁgn | Fy(Bry -+ Bzn) | (4.69)

stmh B:) 5(chosh B —p) .

12
w3

For the Sinh-Gordon theory Ac = 1 and it is interesting to study the convergence
of this series increasing the number of intermediate particles. For the two-particle

contribution, we have the following expression

f

3 oo ‘
A (2) = / Fmin 9 2 . 470
S A b oot ) (0.10)

The numerical results for different values of the coupling constant g*/4w are listed in

4.1.

It is evident that the sum rule is saturated by the two-particle form factor
also for large values of the coupling constant. Hence, the expansion in the number
of intermediate particles results in a fast convergent series, as it is confirmed by the

computation of the next terms involving the form factor with four and six particles.



B|LZ| Ac®
! 2

%% s
P 9989538
10 19 '

2| & 10.9931954
2| L ]0.9897087
1] £ 10.9863354
2 | 1 |0.9815944
&= | £ 10.9808312
2] % 10.9789824
1| 2 |0.9774634

Table 4.1: The first two-particle term entering the sum rule of the c-theorem.
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Conclusion

In this thesis we have presented the solution to the locality problem for the Sinh-Gordon
model solving the axiomatic equations for the form factors of the elementary field
and of the trace of the stress-energy tensor. It has been proposed a characterization
of the whole local operator algebra in terms of descendent of the above mentioned
fundamental fields. This method can be in principle generalized to any two-dimensional
massive integrable model whose exact S-matrix is known. The only obstacle to the
solution of more complicated models, e.g. Affine Toda Field Theories [20, 23], would
consist in the technical difficulty of the equations. The Bullogh-Dodd model [35] is
perhaps the simplest of these theories, besides the Sinh-Gordon model [35, 36]. The
method described in this thesis for this model seems to show very interesting features,
like the existence of a decoupling point in which the model is equivalent to the Sinh-
Gordon model at the inverse Yang-Lee point (we anticipate that in this approach the
Z,-symmetry of the Sinh-Gordon model is seen to be dinamically recovered in a very
natural way).

Since these models have an explicit dependence on some coupling constants, their
solution allows to characterize the flow of the renormalization group along particular
directions in the space of the two-dimensional theories, (2, 38, 40, 41]. In this thesis we
have used this characterization by checking our result against the c-theorem finding a

good agreement.

As a final remark we underl%;ethe fact that the form factors can be expressed as
determinants of some matrices of size proportional to the number of external particles.
This seems to be very promising in the direction towards the interpretation of the

correlation functions as 7-functions of some new classical integrable system [15, 13, 14].
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Appendix A

We prove in this appendix the eq. 3.44. We will refer to some useful formulas of [42].
In order to obtain 3.44 we need first to represent Fi,;,3, B as an infinite product of
FEuler’s I'-functions. Let’s start from the following identity

2 — B 2—B
( e sinhz/2 = 2 <smha: — smh——2E — sinh —(———é———)—m—)

8 sinh Tm sinh
(4.71)
which together with formulas 1.232.3 and 3.946.2 of [42] allows us to write

8 / 2% sinh =2 sinh (2 )z sinh z/2 sin? égi —
z 4 4 sinh® z 27
400 oo oo . o R
= 4> > /+ de o (2h+2nt2)z (ef e e ‘-’B),> n? Bz
n=0k=0 Y z '

. 2 i 2 ) 2
/% 6/m 8/w
I feo 1+ (2k+2n+1) L+ <2k+2n+2+5/2> L+ <2k+2n+3—8/2>

- 2 - 2 ] 2
n=0 k=0 6/77 1 6/7‘- | 6/7‘-
1+ <2k+2n+3> 1+ 2k+2n+2-B/2 1+ 2k 2nt1+B/2

Using the functional relation 8.326.1 of [42] of the Euler T'-function we arrive to

T(k+1/2)T(k+1+ B/4) T (k+3/2— B/4)|
Frin(P, B) NkHU T(k+3/2)T(k+1—B/4) T (k+1/2+ B/4)
)T

T (k+38/2+i8/27) T (k+1— B/d+iB/2x) T (k+1/2 + B/d+if/2x)|
T(k+1/2+i6/2n) T (k+1+B/4+if/2x) T (k+3/2 — B/4+if/2r)

Let’s recall the normalization limg_.co Fiin(B,B) =1 in order to obtain N

T(k+1/2) T(k+1+B/4)T(k+3/2-B/4)
P'(k+3/2)T(k+1—B/4)T(k+1/2+ B/4)

Lim Frin(8, B)

With this result we simplify the above expression for Fin(8, B)

= | (ke 3/248)2m) |
Fuin(8,B) = ] r(k+1/§+ié/2w)

k=0
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I (k+1—Bjd+if/2r) T (k+1/2 + B/d+if/2r)|
T (k+1+B/4+if/2r) T (k+3/2— B/4+iB/2r)

The product of the left-hand side of 3.44 therefore becomes

Fmin(i"r +:67B)Fmin(/87B) =
B/4 B/
L+ E+1/24:8/2w 1 - Eritid/2w

- I

(1/2 + B/4+if/2x) T (1 - B/a+if/2r)|
I (1/2 +iB/27) T (1+148/2)
where we have used the property I'(l1+=z) = zI'(z) and the formula 8.325.1 of [42].
Let’s evaluate it on the line § = F + a ,a€ R :

Frin(i™ + B, B) Fuin(B, B) =

T (1/2+ B/4+if/2r) T (1 — B/4 +if/2r)

T (1/2+4B/2m) T (1+148/2x)

I (B/4—if/2r) T (1/2 - B/4 —if/2r)
T (—if/2r) T (1/2 - if/2r)

cos 5,? sin ‘—q

3 = :
cos (2 + 2) ein (2 )

where we have used the formulas 8.334.2 and 8.334.3 of [42]. Simple trigonometric
transformations then lead to the relation 3.44.

2

We close this appendix showing an useful expression for the numerical evaluation
of Finin(8,B) is given by

Foin(8, B) =
o\ o k1
3/2wr
N (1+ k% )
N1 ‘

X ocdzsi“h(%ﬁ)““h( (2— B)) sinh £
X 68 0o = sinh? o

- =23y —IN o z8
(N+1-Ne™*%)e T sin® <2’_)
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The rate of convergence of the integral may be improved substantially by increasing
the value of N. Graphs of Fi,in(8, B) are drawn in fig. 4.2.
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Figure 4'.2: Graphs o 2 as function o or d nt values o
raphs of ]Fmin(,@,B)/Nl“ s functi i G for different values f B(g)
g -
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