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1. INTRODUCTION

Euler-Lagrange Equations (EL) are well known necessary conditions for a function z to be a

minimizer of the functional . .
I(z) = / (6, 2(2), 2'())dt

under given boundary conditions.
In order to prove the validity of such Equations one imposes that the Gateaux derivative in

of the functional along a certain class of directions is zero. More precisely, one imposes:

d
7 + 4 =

6=0

for any £ with essentially bounded derivative and zero boundary conditions. This procedure requires
the differentiability of f with respect to the second and the third variable and the integrability of
f and of its derivatives along trajectories close to the minimizer z. This last requirements can be
satisfied by imposing some integrable bound on the growth of f, V. f, V. f in a neighbourhood
of the graph of z. Actually, such assumptions are strong enough to ensure the continuity along a
wider class of variations including, in particular, lipschitzian approximations of z. In other words,
the hypotheses under which Euler-Lagrange Equations are usually derived, exclude Lavrentiev
Phenomenon, which consists in the relevant fact that the infimum of 7 on the class of admissible
trajectories with essentially bounded derivative can be strictly larger than the minimum on the
class of all admissible trajectories.

For this reason the work reported in this thesis moves from the search of conditions which pre-
vent Lavrentiev Phenomenon to occur, in the aim of extending such a result to the problem of the
derivation of Euler-Lagrange Equations. Indeed it is easy to exhibit simple examples (Mania’s func-
tional) in which the standard assumptions under which EL are derived are not satisfied; however
one can check that formally equations E L are satisfied.

The study of conditions excluding Lavrentiev Phenomenon was considered since the first works
on the subject ([L], [M] and [T]) and, more recently, by many authors ([A], [BuM], [CV] and [Lo] ).
In [T] Tonelli defined a kind of lipschitzian approximations of the minim‘zer and determined a class
of functionals, characterized by some assumptions involving the differentiability properties of the
integrand f, which are continuous along such approximations. In [A] the author, with a refinement
of the idea of Tonelli, gives a very general condition on f which excludes Lavrentiev Phenomenon.
In our first result, with a proof similar to that one of Angell, we provids a class of functionals for
which the Lavrentiev Phenomenon does not occur, that is strictly larger than the class singled out
by Tonelli.

The approximation procedure that we define, suggests to consider & class of variations around

the minimizer, depending on a continuous parameter, along which the continuity of the functional
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is ensured. Even though such variations are not taken along a fixed direction, we study the dif-
ferentiability of 7 along these variations, in the aim of deriving Euler-Lagrange Equations under
assumptions weaker than the standard ones. Indeed, since such variations are obtained by trun-
cating the derivative of z, some of the classical requirements on the behaviour of f near z can be

removed. In such a way, we obtain a result which enlarge the range of validity of Equations E L.
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2. PRELIMINARIES AND NOTATIONS

We consider an open subset A of R x R" and a compact interval of R, I = [a, b], and assume
that, for any ¢ € I, the set {z € R": (t,z) € int(4)} is nonempty. Let f: A x R" — IR; we are

interested in the study of the functional

b
I(z) = / £(t,2(0), 2'(t))dt
a
defined on the class of admissible trajectories with given boundary conditions, i.e. on the set
Q={ze W\ (I,R"): foranyt€ I, (tz(t)) € A and z(a) = 4, z(b) = s},

where z,, =, € R® are such that (a,z,), (b, ) belong to A and {2 is nonempty.
This thesis is mainly concerned with the problem

P: Minimize {Z(z); z € Q}.

Given z € 1 we call graph of z the set T' = {(¢,z(t)) t € I} and given o > 0 we call s-neighbourhood
of the graph of z the set T'y = {(t,¥): t € I, s. t. |y — z(t)| < c}. We say that the graph of z lies
in the interior of A if there exists a c—neighbourhood of the graph of z contained in 4. We say
that ¢ € ( gives a strong local minimum for I if there exists o > 0 such that for any y € 2 with
graph contained in T, it is Z(y) > Z(z). We say that z € ) gives a weak local minimum for T if
there exists o > 0 and 7 > 0 such that for any y € ) with graph contained in I'; and such that it
is [y'(t) — 2'(t)] < 7 for a.e. t € I, I(y) > I(z).

We shall use the following standard notations. By (-,-) we denote the scalar product in R" and
by |- | the associated norm; E° is the complement of the set E and p(-) is the Lebesgue measure.
We shall denote by C(I), LP(I) and W'*(I), the spaces C(I,IR"), L”(I,IR") and W' P(I,IR"), for
1 < p < oo,and by || -|lein, || - llc» and || - 11 the respective norms. By V.f and V. f we
denote the gradients of f with respect to the second and the third variable. We set also, forp > 1,

p=p/(p-1)

A

Definition 2.1. Let E C R" be measurable, A : E — IR be measurable and o, € R. We set
Eop(h):={t € E: h(t) €la, A},

and Eq(h) := Eq +o0o(h) . We set also w(h, a) := p(Eq(h))-

We will make use of the following theorem (see [WZ] pp. 81-83).
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Theorem 2.1. Let E C IR" be measurable, p(E) < oo, h: E - R ﬁzeasumble, a,BeER,a<P
and ¢ : R — R be continuous and such that $o h € L'(E). Then

B8
[ blheds =~ [ d(e)duh o) (2.1)
Ea,5(h) o .

(where the last is a Stieltjes integral). In particular

B 8
/ RP = — / oPdw(h, o) = —BPw(h,B)+ cPw(h, a) + p/ o-p_lw(h, o)do. (2.2)
Eq,p(h) o a

We recall Tchebyshev inequality (see for instance [WZ] p.82).

Theorem 2.2. Let E C IR" be measurable and h belong to LP(E,R"). Then

P
w(|h|,o) < M—ZQPLE for any o > 0.

3. LAVRENTIEV PHENOMENON

We say that the functional 7 exhibits the so called Lavrentiev phenomenon if

inf T inZ(z).
a:éQﬂlﬂ-"'m(I) (“’)>I§‘.§8 (=)

In the study of such phenomenon it is of particular interest the following example due to Mania
(see [C] pp. 514-516, [D] pp. 92-95, [BuM] p.13), consisting in the minimum problem

P, : Minimize {Ig(m) = /0 g(t,z(t),z'(t))dt; ¢ € WH([0,1],R), z(0) =0, =(1) = 1}

where g(t, z,v) = (2% —t)2|v|7. It is easy to see that the solution of P, is zo(t) = t3 and I(zo) = 0.
We have the following result.

Proposition 3.1.
. 9 ‘
i) If 0<gq< 5 then inf {Ty(z); = € W"([0,1],R), z(0) =0, (1) =1} = 0.
i’ 9
it) If g25 then inf {Ty(z); = € W-([0,1],IR), z(0) =0, =(1) =1} > 0.

4




Proof. We prove statement 1), for 1) see [BuM].

Let us define the following sequence {z}ren in W1°(I,IR) of lipshitz approximations of zo(t) =
1

ts:

{ 3kt, te[0,(3k)"2]

Hence limg_,o0 Zg(zx) = 0. O

The study of Mania example leads to the investigation of general properties of the integrand
f which prevent Lavrentiev phenomenon to occur; Theorem 3.1 below provides a result in this

direction extending the original work of Tonelli [T] (see Remark 3.2 below).

We shall need the following technical lemma.

Lemma 3.1 Let E C R" be measurable, u(E) < oo, and let ¢ belong to LP(E), p > 0. Let
q1,q2,71,72 be positive numbers such that qo < p and v1(p— q1) = (¢2 — p)y2. Then, for any
§>0,

Y2

(/(E,s(lxmc [m(t)l(hdt> (/E.s(lmnlx(t)lqzdt> S</<Ea(|x|))c|”(t)|p> (/Eé(m)lw(t)l”dt) .

Proof. First of all the integrals in the L.h.s. do exist. For any o > 0 we set ¥(c) = —w(|z|,0); ¥ is
non decreasing, hence, if f and g are real valued continuous functions defined on [0, +00[ such that
f<yg,itis

/a " Ho)dw(o) < / " o(o)aw (o)

for any o, € R*. Now using formula (2.1) we have

Y2

(/wﬁuxmc 'z(”'q‘dt) ﬁ ( A o) 1z(t)|wdt> =
(/06 ot dﬂ")) A (/;o T”qu’“pdlb(‘r)) " )
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12’ N
Since for 7 > § it is 7927P < §927P, and for 0 < o < § it is §lz=p)3t < gla phzt, the right hand

side of (3.1) can be estimated as
o0 T2
(/ Tpé"?“pd¢(7)> =
5

[
( / o-‘“dz/)(cr)>
0
é T2
(/ ot glaz— p)ndz/) ) Tpd¢(7)) <
0
é
/ q1+(g2— P)n,ldw
([l (]

Since ¢ + (g2 — p)% = p, this ends the proof. ]

1

Tpdz/)(‘r)> "

Following Angell and Cesari ([A], [C] and [CA]) we give the following

Definition 3.1. We say that f : A x R" — IR satisfies Caratheodory condition (C) provided
that given € > 0, there is a compact subset K. C I such that u(I\ K.) <e¢, Ag, = AN(KxR")

is closed, and the function f is continuous on Ax_x R".

In the main result of this section we shall assume that f satisfies one of the following conditions.

Hy: f satisfies condition (C) and maps bounded subsets of its domain into bounded subsets of R.

Hy: f is continuous on tis domain.

Theorem 3.1. Let f satisfy either Hy or Hy and let = be an element of O N W'P(I) whose graph

is contained in the interior of A (i.e. there exists a o-neighbourhood T', of the graph of = contained
in A) and such that f(-,z(-),z(-)) € L(I). Assume that

Hy: there exist my M > 0 and v > 0 such that, for any (t,y) € T, it is

|£(t,y,2'(2)) = F(¢,2(2), 2" (0))] < (m + M|z'(t)|7) [2(t) — y|", where ¢ = p(y +1) -

Then, given € > 0, there exists y € W1°(I) N Q such that
lly — zllwrr <€

Z(y) - Z(=)| < e




Corollary 3.1. Under the hypothesés of theorem 3.1, if z is a solution of P, then

. _ T .
Ieﬂﬁll-?:{l’.oo([)l’(m) ];nelg (z),

that is to say, the hypotheses of theorem 3.1 exzclude Lavrentiev phenomenon.

Remark 3.1. Hypothesis H3 in theorem 3.1 includes as a special case, (y = 1, ¢ = 2p — 1), the

following

H,: f is continuously differentiable with respect to the second variable and there ezist positive
constants m, M such that |V, f(t,y,2'(t))] < m+ M|z'(t)|?P~? for any (t,y) € Ty .

Remark 3.2. Hypothesis H, provides an extension of condition (8) in [T] (see also [C] Remark,
p. 512):

(B): f is continuously differentiable with respect to the second variable and there exist positive
constants m,M such that |V, f(t,y,v)| < m + M|v| for any (t,y,v) € T, x R".

We emphasize that, in the case in which z is in W!P(I), the proof of Tonelli can be easily reproduced
under the weaker assumption that there exist positive constants m, M such that |V, f(¢,y,v)| <
m + M|v|? for any (t,y,v) € I, x R".

Remark 3.3. Application.

Let us consider the following Mania type functionals: I, (z) = fol gm(t,z(t),2'(t))dt; where
gm(t,z,v) = (23 — t)?™|v|9, m € IN. The hypotheses of Theorem 3.1 are satisfied for ¢ < 3 +m,
while Tonelli’s condition () holds only for ¢ < 3.

Proof of Theorem 3.1. We may assume z’' € LP(I)\ L*(I) since when z’ is essentially bounded
there is nothing to prove. For any positive number p define the sets I, = {t € I : |2'(t)| > p}, take
R > 0 such that the complement of I, I}, has positive measure and for any § € IR, § > R we set

]‘ !
Bs = m-/lé z'(T)dr.

Since z' belongs to LP(I) we have
6lim p(ls) =10 : (3.2)

and, obviously,
61im Bs = 0. (3.3)
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Consider, for any é§ > R, the function ys defined by setting
0, tels
ys(t) = ¢ ='(8), telr\Is
z'(t)+ Bs, telf
and

ys(t) = zq4 +£ ys(7)dT.

Since yj is bounded by §, ys is in W>°(I). We have ys(a) = z, and

zi(r)dr + Bsp(If) = z(a) + /I:cg(r)dfr = z(b) = z.

ys(b) = za + /

I
Moreover

/[lyé(t%w'(t)l”dt?_/l |2’ (t)|Pdt + |Bs|P(I5)-

Hence, by (3.2) and (3.3), ys is arbitrarily close to z in W'P(I), and also in C(I), when § is

sufficiently large; in particular we have the estimate

s — zllee < 2 /I &/ (7)dr. (3.4)

Inequality (3.4) ensures that there exists §, such that the set {(¢,ys(t)), t € I} is contained in
T, C A for every § > 6y. In particular, for any § > &, ys belongs to Wh>°(I)n Q.

To prove the theorem we shall show that Z(ys) is arbitrarily close to Z(z) when § is sufficiently
large.

Let us write
[Z(ys) - Z(=) = | [ e, (0) = £t 2(0)5'(0) | <
| . |f(t,ys(t),0) — f(¢,z(2), 2'(t))] dt+

. | F(t 9s(t),2'() + Bs) — F(t,z(t), 2'(2))] di+

/ £t ys(t),2'(2)) — £(t, (t), 2'(t))| dt =
Ip\1Is

A(8) + Aa(8) + As(6).
We claim that lims_.o, A;(8) =0,¢=1,2,3.

1.)
M) < [ 1#us©,0lde + [ 17t e(0),9'0)] e (3.5)
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For any § > &, |ys(t)] < |z(t)| + o, t € I, hence, since f maps bounded subsets of its domain
into bounded subsets of IR, the first integrand in (3.5) is bounded by a constant. By hypothesis
f(-,z(-),z'(-)) belongs to L'(I); hence, by (3.2), absolute continuity of the integral implies that
lims .o A1(8) = 0.

2.) On the set I§ the family {z/(-) + 85,6 > 6o} is uniformly bounded by a constant. Hence the
family g
{hs(t) = [f(t,ys(t), &'(t) + Bs) — f(£,2(),2"(¢))], & = o}

is integrably bounded on I%.

Assume first that f satisfies H, (i.e. f is continuous on its domain). By the pointwise convergence

of ys to z on I, by (3.3) and by dominated convergence we have lims_.o, A2(6) = 0.

Assume that f satisfies hypothesis H;. Given ¢ > 0 we can take a compact set K. contained in
I such that f is continuous on Ax, Xx R" (Ax, = AN (K. x R")) and such that the measure of
I'\ K. is small enough so that, by the absolute equiintegrabilty of the family {As},

/ hs(t)dt < < for any § > §.
(NK)NT, 2

By the continuity of f on A, , the pointwise convergence of ys and by (3.3), there exists §. such

that, by dominated convergence,
/ hs(t)dt < £ for any § > é..
KNI, 2

Hence ff?z hs(t)dt < € for any § > ., and, also in this case, lims_.oo A2(8) = 0.

3.) Hypothesis Hy and (3.4) imply that

80() < [ 1F(ws(2),#'(0) = £(1,2(0), (2)) | dt <

[ M1 O as(e) = ale) e <

c
§

2 /1; (m + Ma'(8)]) dt (/[ |;c'(7-)[azfr>7 <

2'm < ) |ac'(f)|df)7 LM (/[ |m'('r)]qd1') ( ) |z’(7’){d7‘)7.

Applying Lemma 3.1 with ¢; = ¢, ¢2 =1, 71 =1 72 = 7 to the second term in the r.h.s. of (3.6),

(3.6)

T s ([ wew) o [wera) ([ wors)
Hence, by (3.2), lims_.o A3(5; = 0. 6 O




4. EULER-LAGRANGE EQUATIONS

Euler-Lagrange equations are well known necessary conditions for a function z in Q to be a
local minimum for the functional Z, when f is assumed to be of class C'! on its domain and satisfy
some growth conditions in a neighbourhood of the graph of z.

Our aim is to weaken these growth assumption. We begin by stating the classical theorem (see
for example [C] Remark 2 pp.40-41, and Remark 1 p. 44) in order to compare it with our result
(Theorem 4.2).

Theorem 4.1. Let f belong to C*(AxIR",IR) and let z belong to ANW1P(I), 1 < p < co0. Assume
that the graph of z lies in the interior of A, (i.e. there exist o positive and a c-neighbourhood T',
of the graph of z contained in A), that z gives a weak local minimum for I and that there exist

positive constants m, M such that f satisfies the following conditions:
Ci: |f(t,y,v)] < m+ M]v]?,

Cy: [Vaf(t,y,0)| < m + MIvP?,

Cs: [V f(t,y,v)| < m+ M|v|?

for any (t,y,v) € T, x R".

Then
d

Evz:f(t,m(t),m'(t)) = V.f(t z(t),2'(t)) ae tel. (EL)

d 0 , 0 ) _
a(afw: f(t,z(t),z'(t))) = b_;::f(t’ z(t),z'(t)) ae.tel i=1,..,n

Let us consider Mania example introduced at the beginning of section 3. The assumptionss
C1-Cy of theorem 4.1 are satisfied only for ¢ < 3, since the solution z(t) = t5 belongs to W1(I)
for p < % On the other hand it is easy to check, by direct inspection, that z, satisfies equations
(EL) for any g. This simple example shows that conditions C;-C3 are far from being optimal,
hence it is worth to make an effort in order to enlarge the range of validity of equations (EL). The

following theorem goes in this direction.
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Theorem 4.2. Let f belong to C'(AxR",R) and let z belong to ANWP(I), 1 < p < co. Assume
that the graph of z lies in the interior of A, (i.e. there exist o positive and a o-neighbourhood I',
of the graph of = contained in A), that x gives a strong local minimum for T and that f satisfies the

following conditions:
Ey: f(,=(),2'(+) € LP(I);
Ey: Vl-f(,li(),il)/(» € Ll(I);

Ej : there exzist my, My > 0 such that, for any (t,y) € 'y, and for any v € R"
|V f(ty,0)] < my + My |v]”
E, : there exist my, My > 0,y > 1 such that for any (t,2) € T,
Vo f(t, 2,2'(t)) = Vo f(t, 2(t), 2'(2))] < (ma + Male'(2)]7) |2 — (2)]"

wherep < ¢ < p(y+1)—~.

Then equations (EL) hold true.

Remark 4.1. Comparison between hypothesess C;-C3 and E4-E,.

The proof of Theorem 4.1 is performed by taking the Gateaux derivative of the functional along
directions determined by elements of W1:*(I). To do this one needs integrability of f, V,f,
V. f along trajectories whose graph is contained in a neighbourhood of the graph of the solution:
conditions C1-C3 ensure such property since guarantee that near the solutions f, V. f and V. f are
bounded by an integrable power of the derivative. If we consider Mania’s functional, we notice that
the integrand g = g(t, z,v) and its derivatives with respect to ¢ and v are zero along the solution
but, if ¢ > %, they are not integrable along trajectories contained in a neighbourhood of its graph.
Hypotheses £y and E; are intended to take into account integrands which behaves "well” along
the solution z, disregarding the behaviour in a neighbourhood of the graph of z.

While Fj is analogous to C3, we replace Cy by E, and E,, where E, involves some continuity of
V.f and E, guarantees its integrability along the solution.

As far as it concerns Mania example it is easy to see that
E,, Ey are satisfied for any g¢;

Es, E, are satisfied for ¢ < 2.

Proof of Theorem 4.2. Our aim is to show that, given any £ € Wy (), it is
[ V2 A(t2(0,2'(0), €0) + (Var 2, 2(0), (0, €/ e = 0.
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If this is so, by integration by parts, and by a standard argument (see for example [C] p. 42), it
follows that

- /t Vo f(s,z(s),2'(s))ds + Vo f(t, z(t),2'(t)) = const.  t € [a,d]
and then, by differentiation, one obtains equations (EL).
In the following we set, for the sake of brevity,
G(t) = (Vaf(t, 2(), 2'(2)), £(2)) + (Var f(8, 2(2), 2(2)), £'(2))-
Hypotheses E; and Ej imply that G € L'(I).
In the proof of Theorem 4.1 one consider variations around the solution ¢ of the form
' =z +6¢, and z—z+ 6,

for a real 6 belonging to a neighbourhood of the origin; as we have already remarked, this requires
some bounds on the growth of f, V. f, V. f in a neighbourhood of the graph of z (see hypotheses
C;-C3 in Theorem 4.1). Since hypotheses E;-Ey do not guarantee such properties, we perform
a different kind of variations which involve, as in the proof of Theorem 3.1, truncation of the
derivative of z. This choice weakens the requirements on f and on V. f, and force us to assume

that ¢ is strong local minimum.

1.) Take € € Wol'oo(I) and 0 < a < 7 such that ¢ =p+ {72(p—1). We consider, as in previous
section, the family of subsets of I, I, = {t € I : |z/(t)| > p, p > 0}, and define §: R\ {0} — R*
by setting §(8) = [9|'H'% Take R > 0 such that p(I%) > 0 and 6y such that §(8y) > R. For any

6 € [~6y,060] we define the function 7y by setting:

L ! T)aT ! T)ar
IBG a IJ‘(I}L‘?) |:‘/;6(6) m( )d + 9 [5(9) E( )d :|

no(t) = 0 for § =0
——:I:’(t), t e Ig(g)
ne(t) = ¢ 6E'(t) + Be, telf for 6 € [—6o,00] \ {0}
96’(25), teclg \I,s(g)
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and

nolt) = / y(r)dr  teI=[a,b]

For any ¢ € [~00, 0y], 1 is in W'P(I) and, remarking that [, £'(7)dr = 0, we have

w() =~ [ e)ar+o [ €)ir+u(Iz)8e = 0= mo(a)
Is9) [g(s)

Hence 75 € Wy P(I).

We now list some properties useful in the following, denoting by ¢y, cg, c3 suitable positive constants

depending only on g, ||z||w1.2, [|€]|w1=, R and p(I).
i) Using Tchebishev inequality:

w(Ise) < |l2|17.6(6)7F < ||2']|2,|g](T+P,

it) By Holder inequality, (4.1) implies that, for any h € LP(I):

1

P

| 1hmldr < ultan)” (/ |h(T)IpdT) < 115" [Blslof* .
I5 gy Is(s)

iii) By (4.2)

1 8 - [e4
851 < gz (151012 €/ eo 1=/, 101 < ealo
) It is
*-'é—il!,(t) —_ gl(t), t E Ié‘(g)
/
ﬂeét) ~&) =1 %, telp
0, t € Ir \ Isg)-

By (4.1) and (4.3) we have that

i

Qé@ _5’(;5)‘ =0 ae.tel.

v) It is, by (4.2) and (4.3),

g

leg_g(t)i < /at M—E'(T)ldﬂf <
Be

1 ! 1 c @
5 1N [ 1€+ Gutrg) < ol

13

(4.1)

(4.2)

(4.3)

(4.4)



Hence

Jim 1%~ €llz= = 0 (45)

and, in particular,

gl < 3ol (4.6)

2.) Consider now ¢y such that 0 < oy < o and for any y € W1P(I) N Q with graph contained in
Iy, (CT,)itisZ(z) < I(y). By (4.6) there exists 61, 0 < 6; < by, such that for any 6 € [0, 6]
the graph of = + 74 is contained in T',,. Hence z + 7y belongs to Q and Z(z + 19) > I(z) for any
6 € [—0y,6,], and the function ¢ : [~8,,60,] — IR, defined by ¢(8) = Z(z + 1) has a minimum in
6 = 0. Our aim is to show that such a function is differentiable in zero and that ¢'(0) coincide with
J; G(t)dt. This would prove the theorem.

Let us write

]“’(‘9 #(0) /G t)dtl l Nzt ’7" /G dtl
/ f(7 ( )+779(t)109)“f(t733(t)7 ( ))——-G(t)'dH—
Iss
/ )f(t, z(t) + 7s(t), 2'(t) + 95;(’5) +Bs) — f(t,2(t),2'(t) G(t)l dit

£t 2(t) + malt), 2'(8) + 66'()) — F(t,2(t),2'(8)) G(t)I it =
8

‘/IR\Ié(G)

We claim that limg_,q A;(0) =0 for ¢ =1,2,3.

3.) Estimate of A;(9).

A (9) <1

O TORIEES y SRECEORIOIEY SREGTE

58y 5(9)

Recalling (4.6), the set {(,z(t) 4+ 7s(¢),0), t € I, 6 € [—0;,6,]} is contained in a fixed compact

subset of A X IR", and since f is continuous, there exists a positive constant M such that
[f(t,z(t) +n6(t),0)] < M for any t € s

Hence, recalling (4.1), (4.2) and E,
M (0) <GMulTsn) + G 1FC () Ol 171604 + [ (601 de <
M1 a2 sl P61 + [ j6t)ae
I5s)
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Since G is in L' (I) we have that limy_.o A4(8) = 0.

4.) Estimate of A,(9).

Ax(0) <

F(t,2(t)+ mo(t), 2 (¢) + 0€'(2)+ Be) — f(£,2(t) +me(t), 2'(t))
0

i

J,

R

(Var £(2, 2(8), 2'(1)), €'(2)) |t +

Ft,z(t) + mo(t), 2'(2)) — f(t,=(2),2'(2))
0

(4.7)

(Vaf(t, (), 2/(1)), E(2))|dt.

By mean value theorem there exist two functions, yg, zg, defined on I, such that yg(t) lies in the
line segment joining «’(t) and z'(t) 4 0€'(t) + Bg, for a.e. t € I, z(t) lies in the line segment
joining z(t) and z(t) + ne(t) for ¢ € I, and the right hand side of (4.7) is equal to

Jl
Al

We remark that both integrands in (4.8) equal a.e. measurable functions and then are measurable.
On I}, |z'| is bounded by R, hence, recalling (4.3) and (4.6) the sets {(t,z(t) + ng(¢), yo(t)), t €
I, 0 €[-01,0,]} and {(t, 26(t),2/(t)), t € I, 6 € [0, 0,]} are contained in a fixed compact subset
of A X R" and, since f is of class C'(4 x IR"), there exists a positive constant L such that

(Vars(t, )+ﬂe(t),y9(t)),£'(t)+%)~(Vx'f(t,w(t),z"(t)),f’(t»‘dt+

(4.8)

1t (0,0, 250 — (950,200, /), €00 a

IVef(t zo(t), 2 () < L, |V £, (t) + 76(t), ys(t))| < L for t € I5.

These inequalities and hypotheses E,, E3 imply that both integrands in (4.8) are uniformly bounded
by an integrable function. Moreover, (4.3) and (4.6) imply that they tend to zero a.e. on I§ and,

by dominated convergence, we have limg_.q Ay(8) = 0.
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5.) Estimate of A3(6).

A3(0) <

/ |f(t, z(t) +me(t), 2'(t) +6€'(1)) — f(t,2(2) +70(2), 2'(2))
6
I

c
5(8)

(T (1, 2(2), (), €1(8)) | de+

/ ' f(t, z(t) + na(2), m,(t)) - f(, m(t)a z’(t)) _
I 8

5(8)

(V2 £t 2(2), 2'(£)), €()|dt =

A4 (6) + As.z(e)-

As in point 4., we can find yg(t) belonging, for a.e. t € Ify,, to the line segment joining z'(t) and
z'(t) + 0¢'(t) such that

A3.1(0) = /1 (Var £(t,2() + 16(£), 98(2)), §'(£)) = (Vo £(2, 2(2), 2'(2)), £'(£)) ] dt.
5(8)
By Ej3, we have
(Vo £(£, 2(t) + mo(2), wa(2)), §'(£))] <
(may + Myla!(t) + 0€'(£)|7) [€'(2)] < my + M| (2)]P (4.9)
where m), M] are positive constants depending on ||¢'||L~. Since z’ belong to LP(I), (4.5), (4.9)

and dominated convergence imply that limg_.o A3 1(8) = 0.

Let z, defined on If, be such that z5(t) lies in the line segment joining z(t) and z(t) + ns(¢) for
any t € Ig(g). It is

A32(0) < /;c

5(8)

J,

5(8)

A3 5(8) + A, (6).

(Ve (t 2o(8),2'(0), ) - (V. f( (0),2'(0), D) et

(V. £t (0, 2'(0), T — (0t =

Recalling Fy and (4.5), limg_.o AY ,(8) = 0.

Using E, we have

14,(0) = [

[g(a)

(Vaf(t z(t), () - Vo f(t (), 2'(8), o) dt <
5(8)

"Be(t)l (ma + Male' (1)) z9(t) - w(2)|” dt.
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[A]

Now, by (4.6),

neét)‘ < ¢y and |zp(t) — z(t)| < |n6(2)] < ¢3]6] for any ¢ € 15, Hence

AL 5(6) < e Tmap(D)[8 + ¢ My 6] / &/ (1)|7dt.

509)
Recalling formula (2.2) and Tchebishev inequality, we have
5(6)
[ 1= - s@ye(e) @) e [ o u(ls],0)do <
Iy 0

(6
=1 [ g1t = gl 0P
q Le 0 ""q Le .

Inserting (4.11) in (4.10) and denoting by ¢’ and ¢ suitable positive constants, we have:

l1t+a

AL, (6) < '|0)7 + c1g)THITPIEE = ¢|9)T 4+ 9],

Hence limy_.o A} ,(8) = 0 and, finally, limg_.o A3(8) = 0.

Collecting the results of points 3.), 4.) and 5.) we have the proof.
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