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CHAPT ER I

PHYSICS AND STRINGS




1 = INTRODUCTION.

For the last five years, a large part of the theoretical
physics community has been focusing its work inm a highly
speculative approach to the fundamental structure of
matter, the theory of relativistic strings. Proponents of
this theory have claimed that it provides the basic 1aus
un{fving all known interactions, gravity itncluded, and that
it promises the solution to some of the deepest remaining
questions about Nature, including for example, the origin
of the quark and lepton generations [11].

Such a fundamenta]ydescription of Nature seems even more
wonderful because it is built of elementary entities of a
simple and concrete structure. These basic entities are,
of course, the elementary strings, and all the particle

spectrum can be visualized as different "excitation modes®

of this fundamental object. ¢

Before h&ggining:tﬁé'expTicétﬁohiiit is worth reviewing the
main properties of the string f%eories and, especially,
that of supersymmetric uersions,?@hich shows the most
promise of making contact with the fenomena of elementary
particlte physics. This version &qé originally formulated in
1970 by Neveu and Schwarz, Ramon&{and Thorn,

However is in the early of 1980's. when Green and Schwarz
clarified many of their propE}ties and pressed its
interpretation as a unifying theory for all interactions.
The main properties of this ;uperstring theory which

holster its interpretation as a fundamental theory of

Nature are the following



i) The theory requires, as it was said before, that all
particles ( gquarks, leptons, gauge bosons, gravitons, and
their supersymmetric partners ) are built of the same
fundamental entities, the elementary strings. In this
sense, string theories are the most elegant of all models
of elementary particle substructure.

iiy The theory require that space-time ( SP ) be
fundamentally supersymmetric. It also requires the
existence of 10 5P dimensions. This would be an excesive
number if all of thesedimensions were extended to the size
of the four dimensions that are part of our every day
experience. However, the extra 4 dimensions may play a more
subtle role, being probably "compactifyied" to a size of
the characteristic length of an elementary string, of the
order of the Planck length, 10727 ¢ or (1077 Gew)

iii) The theory naturally contains as a part of its
structure the gauge invarian;e ;?f vang-Mills theory and
gravity. In’f;ct, this invariahE%5gi$ realized as a small
part of an enormous group of genéra]ized gauge symmetries,
iv) Although the themory contains within it a quantum
theory of gravity, it is appare@tly free of ultravieolet
divergences. The finiteness of tbé theory has been shown
gxplicitily to oneg~-loop order, iand it's plausible this
property holds at all order.

v The theory restrics the possih]e choices for its
Yang-Mills group to only two candidates : 0(32) and Eg X Ez-
I would Tike to conclude this section by citing the major

problems which must still be solved in order to hring this

theory from the level of especulation to a point where it
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can make concrete predictions for experiment. The most
pressing problems are those which concern the conversion of
the 10-d 6P of string theory intoe a form closer to

experimental reality in which 4 of the 10 dimensions are

curled up to a very small size, the so-called
compactification problem . The geometry of this
compactification of dimensions determines all of the

detalled properties of the system of elementary particles

which would be vigible at ensrgies accestble to
experimant : the number of quarks and lepton generations,
the gauge group which results from breaking the grand

unification symmetry, the values of the strong and weak
coupling constant, and the existence and number of the
supersymmetric partners. The most basic aspects of houw the
geometry of the compact 4 dimensions determines these
parameters have been clarified by Candelas, Horowitz,
Strominger and Witten, among ofhers. However,imanv issues,
especially the mechanism of supersymmetry breaking and the
relation of the weak interaction scale to the fundamental
string length scale, remain obscure., In addition, we still
have no idea how Nature chooses a particular geometry for
the compact 4 dimensions fronm among a wealth of
possibilities. The subject developed in +this thesis is
deeply related with the solution of this puzzle.

There are another problems of "technical" ( mathematical )
order in string theory . We still don't have a complete set
of rules for computing the perturbation theory in string
interactions ; also, we have almost no idea of how to

discuss string dynamics beyvond perturbation theory,



This last formal problem is a particularly important one,
because it's known that many of the aspects of
compactification that seem to wus the most misterious

( which compact space is chosen, for example ), are simply
not determinated at the level of the first perturbative
loop corrections; quite plausible, these gquestions can only
be settled by looking bevond perturbation theory.

In the following sections, we will restric ourselves to the
bosonic string theory; the treatment of the supersymmetric
case is similar (¢ although more complicated, of course ).
This will give the basic elements to introduce to Chapters

IT and III.

Z - THE CLASSICAL STRING.

We will work in this chapter in Minkowski space with metric
signatures like (-1,1,...,13).

A string is, from a mathematical point of view, a bounded
set of points continuously joined. In Fig.1 are showed the
two possible configurations corresponding to ‘"open" and

"rlosed” strings, isomorphic to a segment of line and

(

L \

(a)

circle respectively.

F‘.g- .1 (0)
We may consider an object of this characteristics moving in
D-dimensional space-time ( SP ) ; in that case we describe

it using some coordinates XM(T,G) , M= 0,1,.,..,b=1 , with

@ labelling the points of the string , and 7 like a "proper



time" ¢ if xd(a,T) =t is the time as measured by the
observator, then T = T(e, t) defines the proper time
corresponding to the point e at time t ).The study of the
dynamics of this one-dimensional extended object define the
bosonic string theory.

When moving, the string sweeps out a surface in SP, the

"world-sheet”, as illustrated 1in Fig.2z.

@) Open string

Fifj- A

In order to study the dvnamics,’of the string, we nust
stress that the way in wvhich we parametrize the world-seet
cannot incide tn the physics, namely, the theory must bhe
tnvariant under reparametrizations of the world-sheet,

Also we ask that Poincare invariance holds.

There are two "natural" ways of guessing the action for the
free string. The first way is to study the dynamics of the

string considered as a set of relativistic point particles.



The second way rests in the knowledge of the action for a

relativistic free point particle. This is proportional to

the length of the trajectory of the particle in SP. The

obvious generalization is proposing that the action for the
string to be proportional to the area of the world sheet

( WS ) swept out by it in its trajectory. Remarkably, these

two formulations are eguivalent, as it was proved Tong time

ago hy Nambu and Goto. So, we propose the action

S-]:/(] - T GI?— \[:/;;K' Mﬂfﬁ(/{{r})r
e (1)

Map (X)) = SuXle) Dp Kpie)

However, the awkward form of (1) led to Brink, b Vecchia

and Howe, and Polyakowv to replace it by

— z /r/} ol 4 7 PR
S[/‘(/y} - = a/,f m Vi Pw K 9P Xpis)  (2)
: Z
where T = (zma' Y1 is the string tension, introduced 1in

these equations by dimensional reasons, and ?kﬁ is a 2-d
metric on the WS ¢ = det(¥,a) ).
Both (13 and (23 are manifestly invariant under

reparametrization of the WS

/)/' ) = 2 c7 2 c® V5 ) (3-4J
tuﬁ(/ — \,G‘f": ‘Pﬁ‘ /}
Ry A M .0 - “(_w
X' e = X7 e (3~2)

10



S[x, 7] = 20X, 9] (2-4)

In addition, (2) presents the Weyl symmestry :
Z Yes) - e
Top o) —_— € TAp (&)

for any @(o), The possible breakdown of this symmetry at
quantum level plays an essential role in string theory, as

we shall see.

Also, of course, we have the "internal" ( global )

Poincare invariance

X},a _ /Lai/ X/( - g..z/ (5_)

Classical covariant gauge fixing

and the equations of motion.

The Z2-d energy-momentum tensor is defined by

(¢ = - = : z - - N
AP T Vme 57eE, (€)

3’5 A . .-
= .QXZ(ﬁ;;%/Xuﬁf“ 2L Ypory T Ik s Ky &)

which is traceless : ?fg Tapcy = 0 as a consecuence of
(4). The classical field equations obtained by varying (2)

areg

Tiper = o (F-3)

11



" C
A? /((;0‘] = O (7 =4y

p Laplace~ Beltrami
. rvl/)
A—f = -4 P T Tisy g:ﬁ

Ve operator

It's easy to show that inserting (7-a) in (7-b) we obtain

o~
S
S

T — Ak
P L{M Mx/s(,f(w) Mc'x'zoj) q/sX «) = O

which is the same equation of motion derived from (1). Fronm
this result (1) and (2) are classically equivalents ; the
metric ¥, in (2) acts like a "Lagrange multiplier"” that
enforces the "constraint condition" (7-a).

The subsequent analysis of string dynamics is expedited by
making a convenient choice gauge, neccesary due to the
presence of three ‘local invariances : two
reparametrizations and one Weyl scaling.

By using the first one, we may choose a parametrization in

which the so-called conformal gauge holds
Z Yo N
(3
I R () = - 7/( B /

In this gauge, the equations of motion (7) read

E s \ - Tl 1% —_n
AR () = In K A 9/3 Xjf - -:L’— Z-,’r'_/} 7 /( 77‘/(’,/ Sl <)
v M X > .-

D /< () = O , 0 = 7 7 { ID'*D/

At this point, we recall that, in order to get a stationary

action (23, eqs. (10) must be supply by boundary conditions

12



coming from the variation of (2), which in conformal gauge

(4) reads

; / . i /_M ' ! .
ST e [ S Ke | = XS] lzo
> e [

where we parametrized the string by

e & [0,71 , T € R
and introduced the notation : %4 = %%, X = 3x%
e ER
The vanishing of this surface term implies the boundary
conditions
z  u ‘ 123
) \ 4 _ .
Open string : )( (’3/ 0) = X (6/427) = 0 ( d/
. Su ; e 1 >
Closed string : X (z,6) = X7 E/Zi) (12~8)
Let's define the "ligth-cone'" coordinates
+ ,:Z"; 2
‘- = L @ (12)
In terms of them, eqgs (10) read -
Iy 4{ (“7”“‘2ﬁ
. 9- X o #=3)

( T+~ = 0 as consecuence of (4) ),

+1

The general solution of (14-a) with boundary conditions

given by (12) 1is

Kooy = 2% + PP+ ¢



g S pAr 2 ey
Xige)= ¥+ P'5 + L 5 L (7

respectivaly for open and closed strings ( note the

doubling of Fourier modes in the last case ).

From the action (2) in conformal gauge (%) follow the

Poisson brackets ( taking 2za' = 1 )

- y ey Y4 . AL = 2
[)(q(gfé-] / XJ/(K/ V"};(Dﬁ: [Xﬁ'@ff},/%tfsz/j:}:??:p [7¢ 4)

; , HY Y
L X (=ja Xlé’z/. 5’) ]fﬁ: i J (5 <) (1&~4)

from where follows for the Fourier and zero modes

v -
[.V% 7 ﬁ?ﬂ ]Fﬁ>: L Ay

L, //Jm =0

C o, s "”]F,B 74 (1% ~c)

be constrained by

However, the solutions of (14- ay. must

Fourier components for Tar o

(14-h). It's convenient to def1ne

In closed strings, periodicity condition assures the

well-definiteness for T, and T.. separetely

o . SO a
~ / - ~ -
.. = j),yd Zeme T de = 1 = Ay, /\/;, (18-32)
" 27 Jo < T R ]
A / ~ -7 ~
vt <A / - P ; -
[n =2 (7 ¢ T de = 2 = Gk s
= T - T W=
P 0
where we introduced the convention a? = p* ./ 2

14



extended

In open strings we define

an

from T,, and T.. ( a¥ = p¥ in this case )

b Y re

—

/&w/’ 4/?4 a
2

(S

7y — 3
%gd/é“c'ﬁ T [y

o

These are the Virasoro generators, which

algebra

—
—

én[m“’ﬂj L%fm

[ ZZO/ Zﬂ ilfg

At quantum level it will be modified by a

sSummarizing, solutions of (14)

Lm = fh = 0 , m e 2

Finally, we can use Poincare invariance (5)

canonical Noether currents and

generators

LA A

L Ay

N
from aﬂ

with analogous contribution

15

periodic

7
ol

"central

correspond to (157)

conserved

e
Fn = Ay fg )

function

= -0 My (17~ </

NS

satisfy the

[ 4 5]

charge".
with ;
the

to get

Poincare

(20-3)

[1&~c)

s 0

/ (‘7’&9”4//

-oscillators.,



3 - THE QUANTIZED STRING.

A - 01d covariant quantization.

As it's well-known, to quantize the theory in operatorial
formalism we must consider the degrees of freedom 4oy as
operators in a Hilbert space. A standard method of passing
from classical to guantum physics is to replace the Poisson
brackets by conmutators, wia the substitution

L...,...1 —_— £ A |

8
However, we must be careful in this step, because there may
he problems in interpreting unambiguously operators which
contain products of non-conmuting operators ( «clasically,
numbers conmute among them ! ).

With the coordinates this problem isn't present, 5o it

follows from (14) and (17)

A by ' . s Y . ~ .
[ X//L‘z,s-]/ X)/(g-/:r/jy = o7 5565“5// (275

N M A,f'/ S AN ‘ 7.
Lan; X ] = nnrm 7 £z

A A -~ - _,(42”/ ‘/d o B ]
c2Y, ] = 7 , déc. (27-<)

The ag 'g are therefore naturally interpreted as harmonic

oscillators raising and lowering operators for negative and

positive n . Indeed, if we define for n > 0 ( hermiticity
A,M . . . A_u?‘ _ 4
of X7 (o implies gy = O, )
A A
M A .

" -4 A AJA-Jf
o’ = X4 0T = 4703
14



then the standard conmutation relations hold

A AL . ~
4 &7 ikt (22-6/)
[ a’ﬂ 7 6%7;? J = 4 2. 10 “ /
The representation of the algebra (21) is well-knouwn, We
start with the ground state [0;p> which carries

momentum p¥ and satisfies

A
" 1o M - _
& Jo P> = dy Je pr = o, 20

o, p] o p7> = Cip) g©6f’~-(37

where C(p) is some ( positive ) normalization constant.

Then we construct the orthonormal basis of +the Hilbert

I}

. .. y
space using the raising operators Ay

X0 A "6u . i n
| Tery P> = 7 @ o> (23-3]

2
= )
(23~-¢)

A ! 5
et pl L6152 Scp-p) Cep) Srers, el

In what follows, we will drop out the p-dependence.

At this point, we may observe that the Fock space 1is not
positive definite due to the presence of the time-1like
operators é;! . For example, the state &jﬁ0> has norm
o ag a%ﬂ0> = - 1 ; states of negative norm are called
"ghosts", and are not desirable in a sensible causal
theory [z1. However, we must not forget about the
constraint conditions (14-h). At classical level, Wwe sauw

they are egquivalent to put their Fourier modes Lm ( Tm

equal to zero. At quantum level, we adopt the procedure "a

17



la Gupta-Bleulepr® : we ask the positive frequency
components of Tss annihilatte a "“physical state". This

requeriment is expressed by the Virasoro constraints

(.- 3) [plrs> =0 (24~a)

A

Ly [Plps>=0 . m>po (ﬁ%“g)

with analogous formulae for the Lm 's.

S0, the physical space will be the subspace of the complete
Hilbert space ( expanded by the states (23) ) whose states
obeys the conditions (z4).

We have introduced an undetermined constant a by the

following reason : all the Virasoro generators (158) can he

interpreted unambiguously as quantum operators, except Lo,

P

because af and aj don't conmute. Then, we define
A - /j' - - A Z‘ < .
Lo = 2 2L = Wy, 7 = 2 4, + N (25-2/
2 ﬂ:—pa Z
A res - A L yq A A . — .
M — é /,/__ P %,, [ é N (’?"M"O\‘rﬂ (21) "é)
=z ;e 7 4 = = 7 1
T A ST
and introduce a "norma]—order%ng" constant a in the
constraint equation (Z24-a). Due.. to this normal-ordering

ambiguity, a careful evaluation of the Virasoro algebra

vields to
S T , 25 ) 78
Ling Lf?,’: l= 1-7 L = A ‘;@‘ (n7=7) 5;’7’-/‘,"4 (<)

where a central charge proportional to [ appears ( in the

—
o



modern covariant quantization including Fadeev-Popouv ghost,
the algebra of the complete Virasoro generators Lm  + Eﬁﬁﬁ
results the same, with D replaced by (D-24) ; only in the
"ecritical dimension” : D = 24, we have no anomaly 1in the

algehra ).

Let's return to eq. (24-a). It has a very special status

1t corresponds to the mass-shell condition because, being
M% = -p®, we get using (25)
open string ¢ af = p4 )

MZ 2 2 (N - a ) (27)

closed string ¢ a= p# /2 )

Now, it's our hope that the constraints (24-b) define a
thSiC&] Hilbert space free of ghost. We give without
demostration the following result, known as "No-ghost
theorem" : the constraints (24) define a physical space
free of negative norm states if

il D = 24 , a = 1 , or

11 D < 24 , a4 g1

S50, at "tree level” we can consistently work in any of

these cases. However, at one-loop level Lovelace proved

that unitarity holds only in the first case. Furthermore,
only for a = 1 we get massless particles in the spectrum
( see below ), which are the "salt and peper" of string

theory. S0, we will consider this case in the following,



Analysis of the spectra.

First, we note that conditions (24-b) hold if and only if

they holds for n =1 and. g , as consecuence of the

algebra (24). We don't analyze higher massive levels here.

Open string : using (27) we have

N = 0O M~ = - 2 = - 17

Only the scalar ground state f0;p> , a Tachyon.

N = 1 M~ = 0O , massless level.,

It corresponds to the states : f(p)acgflo;p> with f”(p)
a polarization vector. The L4 -constraint implies

E(pleap =0 , leaving (D-1) independent states. The norm of
this states is E(p) o E(p) ; so, the longitudinal

( proportional to pH4a ) polarization <corresponds to a
physical state of zero norm, a so-called “"spurious state".

The abundant presence of these spurious states 1is a

characteristic of the string theory in the critical
parameters, and may indicate a huge underlying gauge
symmetry, yet not well understood. OFf course, the state

analyzed before is the massless gauge boson of the open

string theory,

Closed string : with (22) we have

N=N-z=0 M = -8 = - 4 1/ra

A tachyonic state as before,



N = ﬁ = 1 MZ = 0 , massless level.

This is the more interesting. The states of this level are
written, with &,,(p) a polarization tensor
Euy (P) &if éﬁf {0;p>
The L,- constraint gives the transversality conditions
£.,(p) p¥ = &, ,,(p) pX = 0
From the Lorentz point of view, these states descompose in
the symmetric traceless, antisymmetric and trace parts, the

famous spin-2 "graviton", "antisymmetric tensor" and

scalar "dilaton" respectively,

B - The Feynmann-Polyakov quantization,

This quantization by path integral was introduced by
Polyakouv [31 few years ago, and it has became the most
popular because of its geometrical appeal.

It has been clear that Jjust as the amplitudes of free

particles are defined by

P LT Prux)d

G A ) = = C (2f3)
f’/’(;a/ ),/)g’
where P2, x*) is a path connecting points x and x', and

LIP(3x,x'")]1 is the length of the path ( the action ), one

should define in string theory

. - T/Q[Sc'c,cy'] o
& C,C"} = _fcyl/% c (36/

where ¢ and C' are the initial and final configurations of

the string, S(C,C') is a trajectory ( surface ) connecting

BN
-



¢ and €', and AL[S(C,C')] is the area of S(C,CY) ( the
Nambu-Goto action (1) ). The urgent problem to face in this
approach 1is to define in (30} the sum over “"random
surfaces" 5(C,C').

We will restrict here our study to the <closed bosonic
string at "tree level", that is, considering the WS a
sphere ( which corresponds to a virtual string that appears
in some place, propagates, and disappears ).

First, we consider the action ( as we made in Section 2 )

St 0l = 2 3 JE (5 Kby Ky + Ho sz“ (e (3+)

s? "

where the "cosmological constant" y;i term is required by

renormalization. The tree level vacuum amplitude will be

given by
<“ .
- STAL7]
z - 3 (o7 texl G (32)
C‘L
The following step is to use the reparametrization
invariance of (32) ( integration measure included ! ) to

fix the conformal gauge (9) ( we make a stereographic

projection of the sphere onto the complex plane )

¢
‘3kﬁ - éi 9,@6

Under an infinitesimal diffeomorphism
‘ 1 v
e’ o7 + &'
the metric change according its Lie derivative

e — ¥y - [spler + eyl )



S0, the gauge-fixing condition is

Feus) = Tup = Uy Up G = £ Sap (37)

Going to complex coordinates : z = o, + i @, , the

Fadeev-Popouv determinant associated with (32) results [4]
App = de& |Vl d2g [0z (33)

where @5 and D% are the covariant derivatives respect to

(9)., Therefore, we can write (32 in the form

: ~Werel
z = Ywex 2 C 57

Wrel = 2 indet by = App

By regularizing according to the proper-time cutoff
procedure ( see Chapter 1II, Part B, appendix ) the

evaluation of (34) gives

*
0
AS

d
J

A A R A (/ﬂ L I/V/) ./_;/’// ‘4‘.,‘
Wipl = 2¢-10) ﬂgdf{ig %%ﬁh ML =T/ (JO/
A1Z 7T

-~

where g~ 15 a quadratically divergent renormalization of
pbz. This action is known as "Liouville action", and

shows wvery clearly the origin of the commonly known
"critical dimension" of the bhosonic string theory., It's
only in D=24 that the conformal factor @ decouples of the

theory , and then it is actually Weyl invariant. It can be

shown the spectrum and scattering amplitudes < to be



defined in the course of the following chapters ) given by

this gquantization procedure coincide with those obtained 1in
the operatorial formalism in the critical porometers D=24
and a=1.

For later convenience, we write down the expression derived

from (35)
- 7 - 29%57
SWiel _ ze-0 (-0%,) + 28 4%¢
;Lpﬂ‘j N 2 12T

(5’6)



CHAPTER II

STRINGS AND SIGMA MODELS
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PART A : [-FUNCTIONS AND CONFORMAL ANOMALY.

1 - INTRODUCTION.

Let's consider the problem of coupling the bosonic

closed string to background fields G4, , By, and D, that we
can interpret as "vacuum expectation wvalues™ of 1its
massless modes graviton, antisymmetric tensor and dilaton
respectively. The ™natural™ way of doing this i3s3 to

generalize the free action to

Stxv 1 = Seiwnil + S LATI F Sp K7

Se U7l s 2 SE T Guw () Tior Fr Ko Zp K
M

- hd "Pr,p,, {/_/- “'2/// ]
= j JE VT B () €l A A0
a* -

-7
-

w59 = - g §, 47D A DOk

&7 #

where:
M, = compact oriented 2-manifold without boﬁndary
o = (o, of) |, coordinates of M,
Yup = metric on Mz, R,(y) = scalar curvature of M,

&7 = antisymmetric tensor on M
a* = 2ot , o' is the string tension
All in euclidean notation ( the reason of the "i™ 1.
The action (1) is manifestly covariant in WS, and also it

is in 8P 1f we change the fields according the tensor

(7-3)
(1~4)

(1-<)

.

(1~d )



rules ( however the true symmetries of this type are those
genereted by the XKilling wectors of the fields [5] .
Also it presents the "gauge invariance™:
Bupy (X)) ——= B,, (X)) +  Jpy Ayp(x)
for an arbitrary vector Ay, (%), This action defines

the "so-called "generalized e-model™ on a 2-d curved space.

The quantization of the string in presence of the
backgrounds 1is described by the Polyakov functional
integral

» - S0 T Pyl
=zl = k9 wricox1 € )
9=e chsj
where g is the genus ( number of handles ) of M, , and k is

the coupling constant of the theory. Due to the particular

coupling of the dilaton , and the relation [6&]

- - . 2 (de (7 Rar23
b 2 29 -
s Hreg)
{ 2 15 the Euler characteristic of M, 1 , é'a’ acts like an

effective coupling constant, where Do is the constant mode
of the dilaton field ; [ Uy ] and [X¥ 1 are some measures
to be ( covariantly ) defined.

The VEV of some operator CDQ@QQ is given by

BT 75 7/ :
<0 > = = K3 (73Xl £ Sii,s) (3)
I

Let's consider now some fixed genus g

- ' S ANV 2 ‘ ’ / .
Eg‘tq//]: ( 2 dON V) SIS (7
4%t%/
By using the well-known fact [4,6]1 that all metric on a

27



Riemann surface is conformally agquivalent by
o , - ) A

diffeomorphisms to some reference metric Y(T) where T are

the moduli or Teichmuller parameters of M, which label the

possible conformally non-equivalent metrics, we can fix the

so-called conformal gauge:

Z (’?("u‘/’ A - -
Tapie) = L vp (m/ (5)

/

S0, the integration over metrics of some function f(p) will
be given ( discarding the volume of the connected part of

the diffeomorphisms group ) by

. - (07 . A N
Storte) = §LVEI 0T Aeeir] €| 05
2ef) zp

7=C 7
where éﬁFP (7?) is the Fadeev-Popov determinant

corresponding to the gauge fizing (5) ( see Chapter I,

Section 3-B ). Then, (4) can be written as

o= - l“/ar'z?'j - i i (=2
23091 = | D2l (rwdd 2 Zr¢71 ?2)
THéck /2’/42/-4 :
by ‘7’
~[itr #1 = W14 Veirl ¢ m e Srpa U] A
Zrg91 = C ( g 7 > = £ IJ;7—7/63/(] e Ly 7] (7 é)

where 80 1s the free action and W [¥] is given in Chapter
I, eq.(253. We shall consider in what follows the 2-d QFT
defined by (7-b) discarding Wo, that 1is, the o-model

itself.



2 - A WARD IDENTITY FOR THE TRACE ANOMALY.

In this section we shall wuse dimensional regularization

assuming there is a consistent prescription [5] : the
reasons will become obvious below. So, we extend the
dimension of the parameter space to : d =2+ &, 8 — 0

Let's consider then in some d-dimensional manifold with
metric ¥, infinitesimal coordinates transformations with
parameters ( k%) and Weyl transformations with parameter

2x(oy, under which the metric transforms like
SY%pe) = Un e * pec) + 22D Typis)  1F)

If we choose some fixed  metric ?;ﬁ , we can seek the
transformations leaving invariant, i.e., the parameters
(k¥ ,2n) such that égm =0. The vectors k® for which some A
can be found in the way this condition be fulfilled are
the conformal Killing wvectors and the set of
combined diffeomorphisms and local scalings which preserve
7. form the conformal group ( of E¢ ). We shall be

interested in the conditions under which the @©-model

defined by (7) results in a local scale invariant field

theory , that is, invariant under local rescalings of the
metric.
For later use, we write down some useful formulae ; under a

Weyl scaling in d=2+& dimensions we have

26T
”Z%ﬂ (67‘ —_— (U /Cﬂﬂ 66// // ) ,:;

Y Z /}C"Z - o
Exple) ——=>  C ipls)
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Ty (i) — L Fiw (765 # &%) A

-~ £ (s -
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The o-model will be local scale invariant if

5 < Teyy= -5 W e Ao, ¢ = O
5— Aw) A= o
— S (40)
Tops) = ~ 2 é—
< ey FyhY

Teo) = T Trpis)

and the expectation value is deflned by

<0\*->:‘ ) i (’{{/

(4
=
)

It's widely believed that the ; Ueyl anomaly iz closely
related to the pB-functions of the theory. It's our purpose
now to make precise this relatlég.

For convenience in the handling éf expressions, we redefine

fhe background fields as follows



s ) ] = s ]
L &y (X —_— Sup (A

T 7By (X)) ——=  Bup(XJ (12)

- P > L PO
&I

Then, we will consider the "bare™ action

St omewl= Sde e [ 3 (aw s Buwldl)s /
- (43
(o rE) 2xls e+ falrl POX ]
ZJa’-u“/j

As Friedan showed [7], the model is renormalizable in a

generalized sense, changing the Dbackgarounds and wmixing
among themselves under renormalization. In order to

explicit this fact, we define a vector of backgrounds

w o= ( Gy, B:,h, D ) (14)
we = ( Gf ., BE , DMy
calling ¥, to the correspondi@g "renormalized™ vector.

Then, working in minimal substraction scheme

v o= wt (T T L)

T~y
-

; e - A D)
Y. 00 == = T s
L'Crr) = = ¢ [ ()

the earlier statement is traduced in the fact that we can

find the vector of counterterms L?,( w,) which rends the



action (13) finite.

The f3-functions associated with the couplings are

by

After some careful massage in (15) we get [8]

/?9'”(};/2):: - 7% —,«-/5%#\/

/5}‘:%} - — 2677‘- A %7:_) Té"i/’[/!:‘/%)]jﬂ:‘?

where, as usual, the B-functions are

residues of the first order poles, and they are functionals

of the renormalized fields.

Global scale invariance.

Being My

W le,w 1l = We [¥,9, 1 independent of
get the renormalization group equation (RGE) for

,, —_ B o
[ /45)7 i gc/x /Mw 3 f

If, instead of considering

( independent of o I,

to be a constant

integrated trace anomaly
I : P
(/& s < Tiw> =

/)
yesyﬁ.( the ( bare )

Under the rescaling

changes ( see (9) 3 by

[£31
o]

determined

5f S— ] w4

Alo in (103 we

defined

(167

by the

we can

NR:

take

Z)

V/'J/J/?.] =0

farad

action

(133



£
g —= ¢ s

But, considering (1513, we see that this 1s precisely
the way in which the renormalization mass @ enters
explicitely in We !. From this observation we obtain the

key identity:

2 Wet7 1 - 4 2 WRTT %] (=0)
> > M

By combining (18), (19) and (20), we get:

7 We 2% /;JJ = - S Wrerz Y]

> A Ao J 4 Vel

- b 2y o N
Sc/x ﬁ?(z%z,r/) S Wrtypl - SG/X Ak M__waf"”ﬁ/ 2+ )
Y XY

Saru 7 < T > =

where in the last step we used (17) and the fact that
We [#3%,] is finite.
From (21) we get the following sufficient conditions to

assure that global scale invarionce holds

D Roe - - -
Buw T ZHe Vo o+ 2 VgWuy zo
D M R
/ﬁ -~ L/ EZ“ £> = O
for any vectors V, ( because the integrand results in a

total 3P derivative ) and W, ( due to the gauge invariance

Buy ™ Buy * Z{u Wea explained at the beggining of the

43}
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Local scale invariance.

We are actually interested in the trace anomaly itself,
more fthan in its integral. SC, we would like to repeat the
earlier steps ( with some modifications, of course ) for
obtaining an expression for it.

The "key™ equations before were the RGE (18) and the
scaling relation (20). The trick for getting an aproppiated
RGE, a local RGE, is to regard the renormalization mass as
a local parameter (o). Let's introduce local renormalized
coupling functions as follows: the renormalization

group guarantees that the explicit p-dependence in the bare
quantities is compensated by the implicit jp-dependence in
the renormalized ones ( background fields or local
couplings in our case ). Now, the same RG argument tells us
that if we let the renérmalized mass becomes o-dependent,
this can be compensated by a corfeeponding o-dependence in
the renormalizéd couplings #@ .;ﬁ; therefore define local

renormalized coupling functions;;@k(a) by

A i
Y= ,/4& Yiik) =

V()

Lﬁe (.X/ ,1.(4’77 :-‘: L/pﬁ (C) =

and local B-functions

A

f " - - ,a
R(€irue)) = € —

A
\

()| G

I
Iy i)

By using these definitions, we can inmediately write down

[N ]
I~



the local RGE similar to ¢18)

YR by T
— : Faﬁ 2 Yai) o [/(/p [7 % ] = D
[ Mc S T 5 ~ / ( $2e) S ¥4 0k, diry) l 2 (o)

Now, we look for some scaling relation like (203. From (9)

and (23) it follows

<! - - L - -
J?E; < Tig> = - 3L%1L;fﬂ %cbjjﬂkmq
e (e 2
Zho,-07 4 )
= = M) S Wetre "%, rﬂz/lf + e < Ay DCX«//?
> My Jﬂw;#
Aze

The last term which involves the bare dilaton expectation
value comes from the inhomogeneous scaling of JE;'RZ[V]

in (9). This is due to the fact that, at classical
level, the dilaton «coupling breaks Weyl invariance

( unless D(¥) be a constant 3. From the identity

( which gives the classical equations of motion):

S Sthntinl = Ay Key ¢ =Z— Rt VD) -
J Xuss 2l o
. & -1‘-\)

Moo KM 3 £ -
- C’?/?,(f/” ![:p (X)~ 7 10 o) Px X 2 Xl

Hupacx) = 2 (2w Bopit) + P Buy )+ % ’SWWJ

it's obtained the expression

) i Y- vL/ % / 7 ] "L~
v /\\«7@6/&/ = ;—?—;——7 s Kz (0 VD) b Dok CZ'?]

, oy A/(ﬁ“’f’,,,l'/l/"‘ Ny
+ C 7//7 ‘VQ/DC;{) .2//\//) .T‘.. /J_/,L{‘]V PC,)('/ {%}D(k/ g / AX /( VL/S /( ~

- 5 Sf‘-' y—&'w‘z
_ ; ‘/!7/0 . ) pei R nga/!/’f
(7 (/</ 5")(/4

Taking 1its expectation value we get

(&N}
[&]
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’ (z9-2 )
-+ ’i-—‘ P.13 < Tubix/ ) L) > F
+ O
which can be expressed ( with (1631 )
{ T !Ap "7 '7 . 10§. "
(Ve <'A7@[X)> = Sd/( (Z s D x) 2 + )
I GupiX) €£§~_€/

+ ZHux {DM/ % Dix) 2

5 Bup ()

= D) Tk )WD’/W

By combining (253, (24) and (29) we obtain

N~ )

’9’(o-< Cr")) .y §4/1( [/)51} 5— %Lw‘fﬁé@/_]} _ £ /ﬁLﬁ‘]" /lf’[?" 7
3 thed  Lys-y 5% 15

. D —
2SI (2 i Diwo2 BDw) 2 + |
Sa/)r (z Unll et fo,u,wf) ) 2 5 0)

| T S ~
1 ';(j @é{/-———-——» /[‘ _"‘é.
z.ZMD(//U gDM/)M >,

In order to arrive to our main result, two remarks are in
order

i) The renormalization theory states that ¢ functionally
differentiating a finite Green's function respect a finlte
parameter gives another finite quantity. From (10) we 3ee
that T(e and 1ts insertions dinto any finite Green's

function are finite. This is also true for hﬁyi,,' T 50
> Hhix)
<= )y '/ —
£ Shhirt] =2
s




as 1t was used fo get (22).But this is generally not true
of derivatives respect to the local couplings functions.
Precisely, these divergences cancel those coming from the
dilaton term in (3¢) ¢ if there are 3 to render finite the
trace anomaly ;

ii) The derivatives in (29) and (30) must be reexpressed in

terms of those which involve the 1local renormalized
couplings . (o). Then, since the trace anomaly is
guaranteed to be finite, we know that all terms which
involve explicit poles must cancel. We therefore can

rewrite (30) as follows

‘ oy _gm/ﬂzr,%c‘r/‘ij +
T < T > = F‘F{ - < }/X % S V() M) =M

+ Sc/)( (ﬂm + Z W VMDLX)) { +
€y (o (3//]

+ ( 55 T r/ﬂmx) V?D[/U)

£

i 4 o t {7/;}.,1 ("'4"”“
+ (/3’ + 7// LX/ / (AN Wa 7 %67
5 D {,6‘./
) =

where f.p. stands for "finite paft". From this equation we

can assert that sufficient conditions for the vanishing of

the trace anomaly are : -

~

&

S wE
P+ 2 VP =0

. (32~3)

R R
Puy T T My VX =0

g R, 4R, —
Y t Vy ) VD zo
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tf the counterterms are choosing such that the Green's

functions

’ Q ! ” o 7t ‘__‘- i
Sc/X y% - S Whlr T are finite.
3 TRl Lok (32~4)

But, if (32-b) doesn't hold, it is not difficult to see
( using (21) and (31) ) that such divergence must be a

total derivative, of the general form [9]

g

e Y R/ 1 -
= (7 i iopkier Vuix) = €7 3Kt W ) 33
Votey

for some fixed vectors ;% and Wy . With (27) we c¢an

reexpress (33) as

— - , AP Mo
{:Z Ve w Viry Tﬁ] * ( Z ffui(/{] 7 Z Vzﬂ W )Em‘ ];%Xﬁfﬁ/@‘/‘ T

e R Vb - 2L VA ES 27
Vars

z (-] /= Sx?
By taking the expectation value of (34, and reexpressing
it as derivatives of MR , wWe get a general set of

suffictent conditions for absence of the trace anomaly

By 2 Vew Vo1 = o

g
G

4/3 , 5
Buy + ZHu oo Vo =z Vg Wod
/3 + VT e =

. 4 A 1 I;{
V/{/ { - L/‘ //f T @{ D



and Q@ y W, are defined in (33).

These equations display the subtle relation between the
o-model f-functions and the conditions for vanishing of the
Weyl anomaly. An analog result was obtained by Tseytlin,
but following a method different to the functional one
sketched here [10].

Let's remark that the pfB-functions are not uniquely
determined, but they present ambiguities associated with
the SP diffeomorphisms [8,9,10,11] ; however the

conditions (35) aren't [5,10].
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PART B : COMPUTATION OF THE TRACE ANOMALY.

As we saw at the beginning ( eq.(7) 3, the Polyakov path
integral on the sphere ( without moduli ) can be written in
the form

) ~ (W71 + Wy ?J/l (56-2)
Zrvlf L - g Il £

- STyl

o~ W SLtox1 / J e

L’ —

—

Yo 1,71

Sroxl g-

. ) (36-<)

by

W

EaN
—
R
AN
.

-0
[exla 7 ( Baxé’f/-(/écm-ff , G

6 E Mz

where So is the free action and W [@] 1is given in Chapter I,
eq.(35). It's our purpose in this section to <calculate
W [, 1. We start writting the field X as the sum of a
"classical™ background &* and a quantum fluctuation m¥
ey = 4o + 4 o) (37)
where £* satisfies the equatid@;of motion (27).
The problem with this splitting ié that, not being Lt a
vector in a general reference sy%ﬁem, but a difference of
coordiﬁates, the expansion of & f@ill not be manifestaly
covariant. However, there is ani special reference frame
known as Riemann normal coardinafes ¢ RNC 3 [8] in which it
is. In order to define it, 1et's:§onsider two peoints X and
X' belonging to some D—dimensionél manifold Mp with
metric Guy (X3, with coordinates ZQ” and (  ®* S 2 )
respectively. Assuming they are iquite .near ( reasonable
TR

hypothesis thinking about perturbation theory around ¥ 1,

there exist and it's unique the geocdesic which joins them.
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Parametrizing it by Kﬂ(t), we have

.n . ;
U — P 2
ATe) *~ Fe- (i) Hw;? = 0 (35-3)
M —
ANre) = X )
(35“5]
R v 4
Aea) = kT
(e
where L e is the Christoffel conextion for Gy
If Eﬂ = X0y is the tangent wector to the geodesic line
in X ¢ t=0 ), in virtue of (38) it will be related to a4

Indeed, by sucessively differentiation of (38-a) we get

the solution in power series

v : = 7 ™ (313
A= XY e £ T L oy (7) 7T 7%)
N2 /
that at t=1 gives
i A e =} 4 o
g _omd = [y (R) T (40-3)
- n=z 'AE
illﬁau"»’v""

' A nasess
r}*M Y2 Xa = V{ (—//4/-/ JLX/

. . S . P .
Now, let's consider the RNC in X p in this coordinate
—_ M —

system holds : (1 = 7

it b ified P

. e veri : ‘ .
80, 1t must verifies SR VA O
Due to fﬁ is a vector, we hope the expansion in RNC of
any tensor may be expressed covartantly. Indeed, if occurs

For example, we get [8]
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We are going to compute W [y,w]l at leading order iIn

derivatives of background fields, considering terms with nre

more than two derivatives of the backgrounds ¢( being they

adimensional in string theory, we shall obtain an expansion

5

in a"as we'll @e ). The expansion of (13) in RNC gives

the following relevants terms [8,12]

B Sﬁ] o~ 5—"3/7- S;&_lf 3[3,7/ (4’42—2)
S[;'?‘/‘f/ 7, Uil = SIRIT 20 T ™ ) +J<:a“¢)
/ 2 Y e & Ji 7
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where we have introduced a "vielbein™

Wy

(+

J

Finally, we must consider the expression of the X-measure

, " , a
in the new variables &

!
> 4D ’ c 2 —
Z-JUX ‘E = 77— C 34}” 1165")(]) T ( )d/}cg’tjé(){r?] =

ﬂ

- D SIS
= 7 CNdrm) L (47

£

In the last step we used eg.(41-b), and introduced a

"&-function™ in the form of-the Theat-kernel™ (

w
]
]

ot
=3
D

appendix ) because we are going .- to regularize using

proper-time cutoff method, and according it [13]
PR R s e
B F 4 V/ 7 < Va4 =7 P’ R ?(L‘ = v/
&é A / 2 7 .
7/ é & - ,é’ - 6_'—’ /<(/<’2(,/{/ { ?
ﬂ‘éM,:, — (@ .

P 7 I P
“~ . -
. \K.d/(“ % L{‘,/ﬁ;;'u;l 64!‘/':/ /(.],;cg' (/1'/,7 ‘ / d

n

- O R IRD o . e 2%
_6__ )/c‘(‘ b /{/’f"“ ‘j// ﬁwé (//,\///’ ’? “/

— L F ~ (s e
From (363, (42) and (44) we can write W [y,w] as follouws

.
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N RS = A L,

Wirvl = Stow gl + <575, + <% 2+ <55 s F

4 P -~ s ~ ,_“/41"/' (37 ]

-+ : 4 —~7 N~

7 X om S ‘4‘ < D) >r> ma —_ ( ) // >
“n

Carrying out the computation ( see appendix for the
necessary coincidence limits of heat-kernel, propagator and

its derivatives ) we finish with the result
7 ] Sr =7 7 - Sl T oy P
Wiv,vl = <riov il + So[r [+ 2o X700 Rup= u " e,
- VﬁD O ¢ ‘{‘%f— 2,(/’;2/7/?/47/{%}/ VPD way] -
~ 72 I ,
- F §MOY Rirl <+ S-a/o* DY) fq/é‘/ 0] 6cocr) ﬁ(r/ el
(46 )

By using the egquation of motion isf’z'ri?'?]:vo (eq. (27) ),

we can express S [%,y,w] in the: form
il = - 2 (4R Yl TP DT TP -
~ Vebor) 11 il E’”j/ 9/«)(“" XY ) F
+~ =z ):’Z 2 Wy D%’f Db VD cx)

(4%F)

Finally, by imposing the trace atfiomaly cancelation

m '(7-(:07"):_ }‘(/L/ — &
5 W)

we get from egs. (12, (133, and (36) of

(]
o
m
o
ot
0]
in
]
ot
juy
)

final result
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where we ha
to (12). Th
in Ref.[14]

be derived

Iry

AL Ruw = Faee e 5 = Va o D] + O(A?)

: - — P W = N i 7 ) (%ng
Buv = o<’ [ VﬁH?’)jA,‘/ + U teuwr 17 Ocx "/

: 7. o 7 27 ] < 7
p-26 + x'[ R~ZL 7 ~ 207D - (0D J;O(/rp

ve came back to T"string notation™ according
ese "famous"™ equations have been obtained first
. A remarkable property of them is that they can

from a 5P action ( D=26 )

» R
1 = gw@f ép”[ﬁ-ug-ﬁ - (7p) -tV ®] (43)

It's guessed this effective action generates the tree level

string &S-matrisx elements, that 1is, it represents the

"classical

effective action "™ for the massless modes of the

string. An argument for this holds is given in Ref.[15],

and suscint

in conventi

ly is as follows ( s5ee also Refs.[14,17]1 )

onal QAFT, given the effective action ff@] , We

get a vacuum solution by imposing the gquantum egquations of

motion

Some soluti
TTyvacuum exp
amplitudes
that to ass
equél to

expectation

Srisl _ g

S P
on @, of these equations corresponds to
ecktation values ( VEV ) of the fields. and tlre
must be evaluated in this vacuum solution, so0
ure the guantum fileld & , ¢ = @, + & , has VEV

Zero ( the amplitudes must be defined as

values of &-products 1 3
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< o = 0 (50)
The analog object 1in string theory to the field £
associated with some particle state A iz the wvertex
operator for absorbing ( or emitting ) the state A ( see
Chapter III 3. So, given the o-model action 1 3, the

condition analog to (503 would be
< \4A >, - o (52&

Now, let's consider the tree level case, which corresponds
to world-sheets with the topology of the sphere 8§ . It has
a conformal group isomorphic to SL(2,C) [18]1, which

includes the scalings and traslations ( z & s% )

zZ —> a z o
(&.Z]
zZ —a2 + b
for arbitrary a,b &€ € . Under a scaling, a physical vertex
operator transforms with conformal weigth J = 1 [181, that
is
Votz) —> a V,(a.z) (53)

Now, let's suposse the eo-model ( ghost included 1 ) is
conformal invariant. Then, it inmediately follows from (52)
and (53) that

< VL > = 0 (54)
From here, we conclude that the conformal invariance of the
o-model implies the equations of motion for the
backgrounds.
Let's stress this argument is valid only at tree level. At
higher striné—loop orders doesn’'t hold, because of the
absence of a "nice™ conformal group ( for example, the

torus presents only traslations as conformal group,
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isomorphic to UCC1) * U1} ). An  ansatz for including
string-loop corrections to the effective action ( 4931 will

be explored in Chapter ITII.
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APPENDIX :The proper-time cutoff regqgularization.

Let's consider the action

~ ;T y —d :
STE,73 = \‘“‘ﬁﬁ; Z% AW???' (A=)

M

which define the propagator on a Riemann surface with

metric ?kﬁ , diven as usual by

A =l
5-[&77\ £ 7 ?Cdﬂ (/4_2)
S{QD?] ﬁv Se X, 7

N
(766'/7&:«‘//)-—‘

In order to regularize
i) The short-distance ( "ultraviolet™ )} behavior ;
ii) The "infrared"™ divergence due to the presence of the

"zero mode™

we replace the action (A-1) by

- b ST —— Lq
rég : PR 2 a P2 o 4 B i de %6 7 o
So [7; A = .—-z 5 5 (| Tee 7oy /A'y Jir ) T -g— et ¢ J R

£ A
/’;;:A—f(ﬁ 7

s, p e R

Now, let s tak an  orthonormal basis in the space of

[

scalar functions on M, provided by the eigenfunctions of

the Laplace-Beltrami operator

P 1 47 o]
Ay y = An T (A-¢-1)
N TR TTITTT A e My i = A
Cin i) = (e o Tl lpie) I
' Ay

Therefore, the regularized laplacian satisfies
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r ~
A;_y Uy = Jin e S
(A-4-8)
By defining
& - =& e
?fﬁj_: %F jn ﬂ%cfj
(A -5)

straigthforward to get

; aé _ :
i) > = 00 & (e

< 7 i)

it's

@LG‘, (;,-"'/ - = 4/’7 Cé\/" {/77 (:Fj
v 71 ~
A

(A= Fms Vs S7e e )

In other hand, we define the "heat kernel™ as

~ S 7 -
g Py CAi*.t)

KC(J\ . Gaf - E j — % ‘{/)1 CF/ {/77 (;6\// L

Coincidence limits.

i) Heat kernel

By taking into aétount

o e Tl —z .
‘("— s ) SE— ,.:’./_:. < + = Cj (-6
i’ E) o e © = .
’ dap = A
' ‘ A
i J

Ay e rlis) = =

possible to prove [19]

7 == k71T OC2) (A-3]

it's

K6, G*/'E] =

49



ii) Propagator

24
. . Co _ “
By considering the metric : Yap = L Vx5
and the scaling property : Ay = C—' Az . it's not

difficult to prove using the definitions (A-3) and (A-4)

- 2.6 3 o
j&Céqﬁ’/gﬁ, C,c/ — A

5 Wes) 2 (A-"0)
; - =~
& (s, c e/ Jvfxpzﬂzé;f - T [/ + & a;Z/‘('%m

Finally, we take : ;%3: Sxr ( sphere ) and write down the
coincidence limits we are interested in, which follows from

(A-9) and (A-10)

N_Zéﬂ ‘ _
' . - , 7 . oy
Ko, 8) = - i__ LT ady + 0w (77-2)
= _ ; (71-£
~— - J -~ r
Gioope) =~ dve 2 U]
Coene,e) | .= —FpeE
N\ 7 (79 D
9x§(f67€§'£jj: -—f}—% 2 ) (77—=< )
s
7z
7 o Q'ZLQO] g e ‘_,_.z__ ) ﬂv ’
°, -/ e g T g U L (s
7%{2_/ D Py €0 z.,/J = | o7 E0 (e T / '
({_:()' ~ )
B O/‘t‘:q . 7
- < =4
2 J X
7 2 -] / . (/j 2 r/{ . i //,l/‘ A 5";
Cax = , GG e e ;= ;Z:-iIL ! (qHTd y‘)ﬁ* 7 Cj[//
AK oK ;e g < 7
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1 - INTRODUCTION.

As we saw in Chapter I, a free string can be described in
terms of an infinite number of 1ts Toscilation modes™

{ tachyon, graviton, gauge vectorial boson, etc ). It was
observed time ago that the zero "string size” limit

( a' -0 ) of scattering amplitudes of different
string modes coincides with on-shell scattering
amplitudes in a theory of fields associated with the
elementary string modes [20]. There is, however, a number
of conceptual as well as technical problems in a
string theory din this approach:
i} Indirect and not straightforward way ( go to a'->0 limit
on-shell scattering amplitudes and then to guess a
covariant action from which it could be derived 1.
ii) ®pansions near a flat space-time ( "trivial vacuum™ ).
All this made 1t difficult to understand how a c¢urved
space-time could be built of the graviton string mode and
thus how a spontaneous compactification from 26 ¢ or 10 in
the more "realistic™ superstring models ) to 4 space-time
dimensions could be take place.
Recently, Fradkin and Tseytlin [21]1 have presented a
covariant effective action for the infinite number of
fields ceorresponding to string "excitations", with the hope
that it helps to formulate the ground state problem for the

string and therefore to look for solutions which solve th

D

compactification problem and also the unitarity probleam

(tachyoni.



2 - THE EFFECTIVE ACTION.

Using euclidean notation, we start with the Bose string
action
7 A 4 % )
B ~ -/ -’“”{{’ N 770 /Y "/
Te (K9] = 2= gd/r Voe) 2=V es) K () 9/% 5/—/ 1)

-2’7_

3

The quantum theory is defined by the Polyakov integral:

~ Z;ZX>73 o
T > = Tyl Lox1 £ .. [z)

Jvrgacks
Let"s look at how scattering amplitudes ( in D-dimensional
space~-time 1 ) are usually defined.
Consider the "vertex operator™ Ve (X assoclated with the
(tree level ) [A> state of the string

Closed string

5 (- Keei) WhcXewl — (3-3]

—

« BRI
Wk = ) de V)
VTP

Open string
o D i y e

Vhen) = 5 dt VImey o (%= Kesw ] Wh D] (376

Mz = fecwt

where W, [X] is some ( covariant -

polyunomial expression in
derivatives of ¥4( to assure Poiﬁcare invariance from the
starting J. The difference betweén closed and open strings
rests on the well-known fact ;that the emission ( or
absorption ) of =ome state of the string can be wade from
all the world-sheet or from its boundary respectively [22].

For example ( in closed strings

Tachyon LV}[ACI :_7

1
[£X)



L
s, =~ N ! b
Graviton %% (X ] = ( ﬁ(A%?/ A '
, , Ay A 4
Antisymmetric tensor ﬁ@% A7 = gﬁl; :%thﬂjzﬂKfF)

Gauge boson ( open str. )

A ° M Co
Wi cxey] = Xime) = 44X (Z’»f'avz

P
The Fourier transforms of (3} = are .
’ 4. ,/’f)ﬂ"(ffj -, j
Vecp) = EM IJE Ve 20T Wtk ] (3 -¢)

i f A7)

Vﬂ-[/”] = a/f‘ | ey ) g W L/Y[mcyjj (5’~q]/

b

which coincides with the usual expression of a vertex
operator. The definition of scattering amplitudes in string

theory is [22]
, - N i ) r g o)
A{V (//)"f/ ~ =y /%/ - < _L://t,, (./)1‘/.- -~ - ‘\//.,(/ [,0/(// > (¢ ‘}J
which in space-time reads :
L) o , . ) - ({l"“[g/
Ay (Fry e F) = < Vaatry ool Vae (w2 Fi

( the ewxpectation values are taken according to (23 .
Let's define a "source action™ with the help of source

fields @ (¥) ( orne for each mode 3

{

. - ()0 YA -
[e (4,97 Gl = = 4% @ cx) Vi (5-2)

or using (3)

a1
s



- Pz S VN 0 5~z
C.5. -[F CX, 8/ (2'3, 1. = S a4 t‘r’f’ar) O (X)) (/'v/',ﬂ_. (K ) ¢ /
’ ”L ,’{'Z
0 cva bl - =\ e VTG Pulhw) Walke) (5-s)
[iﬁL)(/?/ ’?AJ = 4/,— . ‘ L - /
So, it's straightforward to see that
(1) vtV S ;
- i ] o
Ap (Hapweep X) = ) o TG ' (6-a)
J@Af/ (%r] « oo g@/wa,é//] f/@l:o“}
~( Lotk 71+ LrT X7 Gnl)
M@= | twritex1 £
Svrfacas C(" é}

The last expression is the effective action proposed in
Ref.[21] ( g_ is a coupling constant ). With it we can
obtain the amplitudes in a analogous fashion as in QFT.

A crucial point in (é) is that it's not quite correct. The
reason 1is that, like in QFT, the esvaluction must be in the

vacuum of the theory, defined by some solution of :

B
S
st

g-ifﬁ. 575) ) [@/., : Eis‘aﬁ; }

¥ ST oY - . a ,[%bg)

which is the same thing to imposze

Yo <Viiw> = < (/(f)> = 0 c2-E)

The expression (6) corresponds to take the trivial vacuum
iA(X) =0, ¥A ; in principle it is5 not assured that this
"vacuum”™ to be the true vacuum of the theory. Then, we are

led to define:
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. ] —N [~ .

A/f/;h/l/"’v/' e, Ww) = (- 9e.) Vo2 [Z@‘H %)
S Nl s e

S Pt om0 Pan ) [ Fp= s}

where {%04 } corresponds to some "good” solution of (7).

wé hope this wvacuum to solve the compactification

( associlated with A = graviton ) and tachyon problems.

Let's rewrite the effective action in a more familiar way,

like a string-loop expansion

_{; . .
(g1 = = € (7 [ &1 (3-2)
X=12,%2---
PR T ] ,ﬂ (6QD\]
M i)
where g, = @,o iz the dimensionless coupling constant of
the theory and x is the Euler characteristic of M,
domy) s 2 (dE0Tg Ry | de Koz (1c)

7T M-v/ - 2 41_

= 2~-279 -6

where g is the genus ( or number.of handles ), b the number

of boundaries and k the extrinsi& curvature defined by [6]

AL o (1)

being t% and n* the tangent and normal vector

( respect to ¥,4 ) to DMz,respeéfively.

3 - THE OPEN STRING AND THE BORN-INFELD ACTION.

Let's consider now the bosonic ( oriented 3 open string

effective action for the massless mode, the gauge boson Ay
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{ ignoring in this way the other wmodes, including the
closed string modes ). For simplicity we also take U(1) as
the gauge group. So, the effective action to calculate is

- Tikrs Al

(Ta7 = = e w1t &

K701 Mz x) (12

Zaz

) 7/ LM L S i ’/_J‘ 4 ﬁ’g‘
I= g Lo Fruy ')"%/ ZxKee) 75 )\"é(rj + 4 /;/Lé X o) /@_11 Cecs)
Mg 7z

The metric on M, is : e®(t) = g, (oct)) &%) &fe)
As it's well-known, the Weyl mode decouples from the
Polyakov integral when D=26 and in flat space. The proposal
by Fradkin and Tseytlin [21, 221 is to forget the UWeyl
mode integration, T posfulating that a "critical™ string
theory must be Weyl invariant in a true vacuum " [23], and
define the effective action by

\,6';;( 0‘ . .
"\‘: {\1" 5 3
fral= % Z ] d//a,(”;f hrom € “2)

where Qkﬁ(T) is a "standard metﬁic on M, and {7} stands
for the Teichmuller parameters; ﬂL:y(T)] is the measure of

integration in the moduli space»w s5ee Chapter II, Part -

A, Section 1 ) to be properly defined

In order to compute (13}, we st&ft splitting pid in a
constant and non-constant part
K Y T L
X)) = /) ()

Then, (13) c¢an be written as an integral over space-time

coordinates in the following way
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o S ,
-2 N 15 -3/
r%ﬁl = {; & ﬁi[ﬂl (157-3)

Coral= (dy §roet € [(15-4)
— W5 A7 ~ oyt -y Ao .
é v, — g[@?u] é (15-¢)

where [ D EA ] goes over non-constant functions on M,
which satisfy Neumann boundary conditions. Now, we make a
central assumption
Fuy = QuBhy - JyAy = constant. (163
Thus our result will have to be considered as the
leading order in derivatives of the strenght tensor F

With this assumption we have ({ 3%=2 7 x!= 7):

- = AP e PPy BT
[13,v,F1 = [ +1+ = f— Bf;/,jg z (‘7’*) 7‘-_:;_5;(_}//5;/&7;/(: Fulfty

FF1 (1%]

~WoraFl T
£ = w1 €

Now, let's integrate over fﬁia)nin all internal points of

M. , that iz, reducing (17) to a- path integral over the
boundary ( note that (17) 1is quaﬁratic in SM and then we
"Thope™ to be possible Calculatiﬂé it y. To do this, let's
consider the boundary as an unioﬁ of p simply connected

2., the two circunferences of an

components Ca ( i.
P bl
annulus ¥ : M, = U Ca ( p = 1 for a disk, 2 for an
Jdz f’ ) )
annulus, etc.); s50 ¢ - T T ! g ).
JQM 3z Za

In each Ca we introduce a (non-constant) field nf(ta),
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a=1,...,p , and insert [

y i
’ o de w0 - %)
- 2 Ca i
d= Ty

where we used the &-representation

oA vE (7Y -7
-l = (oo € =y

By inserting (18) in (17) Wé get

~ i 7
4 T‘/t: LG - e — 7 - ixd ST { . 7 ¢ E i b >
/,'“ ‘1/1. ;'/S‘:] - ‘)-:v.l(] ,’ﬁ ~/[7/7/ J‘,( [é;v)/i/.l(][/)/}‘:l]& M ~-/7/(4’
- = Ld7 T oo =

i

O fe R
, *[n + i ., , L (C/boug (/?Z/ (4
(oo ¢ 2a G R L = ")
a =
(13)
l273,7] < Pt g {5 Vg 7 “‘/”’/‘””77‘5"/
Fatzsdl= ¢ J8 7477 sy
2
By using the & inserted with (18), we can replace &¥4 -» n*
in I [¥,&,A]. Then
P -~ T 4,/“7 - 17'{/
e BV EN AV & R EY L PN P A
éﬂ/mr?% Crorel j [ov*] [/74] & C eery
- e = %%

= A /-htf
I» Ly - u(??xjﬂﬁ aZJ?]‘#tfﬁf 7
laﬂﬁ‘j( [ p4 ] (j Sazs 2t j'[ 741 a3

’af”l" ”//'Z Flz -
. 4 .,«(é77‘1/ ~— _ A
- “Fzé% A ] <0 )BT ~Fr7,27] o
S, Tl ¢ [zo07 g o ¢ T (e
o Py
where
A - s~ . , =~ A ‘#;
f‘ Fro.ws - y ‘z”'] p L2 73] + & L,’}/ & J;m..z
—_— PN L
- Her =



3 - b P/ i 5
5*‘ /5 2 U Sdfl/u?,d/
( e = 7 D/'/f :
= L+~ 4 L,,
/M-p
'S Z {'“«“" Al ;’—J 7 7/4( . = A ,
ﬂ\‘ ;- )6/( ‘(’J T L‘;’ t ¢ 3 \3(.' fB ~ 3 (j{;/’ 7 (5iad)
= S [P7el 2 3 ,
M (25-¢ )
For doing the integral, let's rewyrite
? -2 M
' o /44/( ,L{ - ;.-Z r a’./{ " -4 i
= S 4t (¢a) T(7es1) = SQ“T Voo 7 (6] O ()
G Ca Mo
y Y SUIE < S (24)
J/"a‘) . = [ d& /< s (¢) 2 (T=Galdl)
= ST\,
Then
F..\" - /T U%d KUA ?’U +g4{r‘/§:;750/70~
S rly M -
¢ Ll _
G/d [/ AA - 2 =Ty
- .%- .{”\ P o = < J A'j J >

G2-a)

A e Mo
PR SR Sdb T ik 5L ot -
< J7 A > ,
4 Mz 3¢
) & ,(/ " v //, bl (/’Z',_ -~ H
= \/7&-] j er "f /) 4‘ g a(é ja/&}, i (& lnz/,’« (i) D (5~ (.//‘//z
— - ‘—"7, ) 1]
M C R oees w0 Geyr)) T
4 8 & g Ve (22-2)
o é (4/ 2 d (6% ,]/3 (,éﬂj dé(fé?/ 6/ / “~ et
@4 v
where Gge (Ez,tz) 13 the restriction on the components of
2 M., of ;me = N (o, = Neumann function for the
laplacian Ay , that is

&0



ad - [ -2 ! N
Gap (e le) = NI{T=ma, oz o)

Coming back to (20) we find another gaussian integral

_ . , Li T A o o= (e et Ry o ) )
~ 5,01 o S betTAs - f F T4 D) Qulses i,

C =

50 Nrea © -/ fﬁfﬁj el G- i KPED
2 W["/‘. ] C | 1t LY
TR Tt & i et 2

- M= : <D

r ”/”# C': 7?41>

-\ - Tal7 1Al = Z <7 A
L7 R 2 - LAl 7y A , G'D""
= (et BT (e g : NG
24
[zs-j

Now, with the assumption (16), and (17)

— -~ ! . ,'M /]4‘ /“{ il
F./x;/ > o € Ne) 7ce)

I, [y ,7;,Ad = A4
1 .

4
Z

Foo = 3% Tuy = zm<!

In (25 we have : w

A . ”
~ WLy F S ST ST - by
= /d,ﬁg ;_/J-;' QCT/élf U‘) Ve
w
—n -7 i :T C I- L’ e ; :;
S 2 “‘:z/\'? & }>"":,z’*./d—vxd‘7zmzbf/ f’«
, M

Eeing guadratic, we hope it can be so0lved. As we will see,

it is5. Then let's consider
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o -

ZrF1 = 3 [o1#1
2

For computing it, let's make a 0(D)- rotation (remember
are in euclidean space-time T ) , Putting EL& in

standard block diagonal form

o g’
—_ - o _ C?
E ] _ o A =
My ) = ) )

»"?‘L __("

- \

we

a

£ fw;«/()’] ) dEN) ] = ,:—-4 "‘Z—gﬂ{- M TR
= 9///‘3 5 stz
\!1 z -t /m‘ - - J} -
i z’/?”é" 7S = = ~;—‘“7"/¢ & T > 30j
7 Al ~
e
o Nk
Then (28) may be expressed as follows
71 .
ZrF1 = /T Ze(F) (371~3)
/‘(J‘"( 7
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(374 )
//7 fac, ﬂ/l = ' - &)

. -

1= L 6 (1T = ety

By interchanging n, and 7,

in (31-b) we get

AP — L 7T b e T s
— <7 e > = & T S A3
= (o771 & 277 L j@ﬂm “ =
A d = 2 N =
L L oane > ~ZL GT<NE D =T
= S Lp ( 4 f C [C/yé G/
(32)
The last integral is made to give

. “lz/.n'“A/. 7
2 (P11 = (4‘15&'@) SU’W] Pt

= ({et's ). ([{det'Ae) T

Cs;’j

=,
SK é;g &

Returning to (27) with this resuLt

4“ p\z/[ ’é"/; F\l

e
e

;7 \ = D/'Z‘ L/ [ 2 - .'1/;' ; —_—
o, 2 . + g 1 L / v 2 /
< = (dec 43) T (de L) 3o )
- Kx7
From (15) the final expression ¢ exact under the



assumption (14) I ) is

=G - 2 E£_ 3
(167 = %2£ [ [F 1 &

‘ D - -0 o e 0
1rl = gfly g@aﬁmﬂ ZL5:0) T F] (36-4/

.
i2rep

20707 = (det'Bg) h Bt (Rt c36mc)

v

0/ 17 ,
é—[%‘/F] = 77/_ CJIQ&AKJ / C?('g//

K=9

3]

Ax=7 + & G-6 , 41~ 23:5Ch-6) (3%-2)

and 6 and Ax are defined over non-constant functions ).

The next step is to carry out the computation over the
Teichmuller space. For doing‘ﬁfhis we must obtain the
Neumann function on M, , from which we can compute det(Ag)

and also we must get det(Az ) ..Finally we must integrate

over the {7} using the proper measure [JJu(T)].

The tree approximation.

In this case, we can take M, as the wunit disk on the
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complex plane with the ftrivial metric §ﬂ3 = é%ﬁ . Of

course, there are no moduli. The only boundary 1s the

circunference of unit radius , then we parametrize it by

¥
oS,
T
Nt
1

e, 8 e teer) - (33)

The corresponding Neumann function is [24]

)

Verr2) = -2 fu Ja-zi] 2]
277

o
A
o

With the definition (23) we have

§co,67) = /V’Cﬁ/b,'-&ﬁ@/]: w2y (2-zcm7) , 3z6-9" (33,

By using the idéntity [25]

S 0 »
z = ¢ 25T s (#o
o i s3] = =2 = Z_ cespy , &7 7o
]’r) (47 6= 74 cos 7/ B
we obtain ;
27 _
= <cosp7 c47-3)
o7 .
EREY . /9 - [¢/7-:’/~
G, 6') = 2L = pcosny )/
R By
5. 6c,8) = 2 E zospi = (7 (41-5)
’ 7 om=s

where & is defined on non-constant functions ( remember we

are on the circunference, and 50 we can use Fourier

expansions; 1in particular

&5



A

S(8-67)= L + L = cosyle-e)

7 T hze

-

is the Fourier representation of the &-function; in & the

constant part goes out ).

From (38)

S—

"Z/ ~ oy T ) P, N
ZZ.-F] - /i [Jdgé ('/:’T’JEK’// é.‘él = 77’ (CJ/J//"‘C&;’%C/"&/?-(‘(’\(

p/

Kra K=xq -
Ple 2 > .
_ -~ - 2/2 — o

where we have ( carefully step ! ) used the

£-function

#27 _
7 C
AT

Riamann
reqularization [25]
e
_ ‘% 7;.0 Cm's: éh§ ,,,Z’C: "fc’ej}"i
s—p 257 -
= 7 T e L Tee) ==/ (43/

With this result we finally get -from (38&)

([ F1

This i3 the
It has also
f3-function

at least in

. Y o | N
= 9, 2, x"%’ (47 {Jgé@wﬁm’ﬁ%ﬂk

zZ, = QJ}f] Aqg)%%%. 4fo(?:“€7 faﬂkk’

(#4

"

{‘}o = g 'f'.

so-called "Born-Infeld action”
been obtained in Ref.[24]1 by calculating the
associated with the coupling A

, showing that,

this case, the two methods coincide.
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CHAPTER IV

STRING - LOOP CORRECTIONS
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1 - INTRODUCTION

The <close connection between conformally invariant
two-dimensional o-models and classical ( tree level )
string physics is by now well understood : the <coupling
constant functions of the e-model may be identified with
space-fime expectation values of the massless string modes;
the conformal invariance condition amounts to a set of
space-time equations of motion for these modes, all of these
equations may be derived from a single space-time effective
action and , finally , this action 15 the one-particle
irreducible generating functional for the massless particle
string tree S-matrix [16,17].

The natural question at this stage is : how do string-loop
effects modify the effective field theory action 7 In other

words, which procedure we must fellow to take into account

quantum corrections to the S-matrix generating functional ?

s

As we saw in Chapter II, there - a well-defined string

loop expansion parameter,‘expt—E}X)), where D(X) is the
background dilaton field, and i%%s plausible both that thé

background field equations of m%?ion should have a power

series expansion in exp(-D(X¥)) %%d that thev be derivable

from a space-time effective actign, itself having a power

series expansion in exp(—D(X)).v 

We will follow here the approac&;pionereed by Lovelace [27]

and Fischler and Susskind [Qél, and best settled and

extended by Callan et Al. [29]1. We remark this is a subject

under current research.
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2 - BOSONIC CLOSED STRING THEORY.

That string loops must modify the effective action 1is
obvious. The suggestion mentioned above is as follows : The
idea is that the divergences associated with string—loop
perturbation theory may be eliminated by new counterterm in
the «eo-model action, over and above those needed to
renormalize the usual perturbative divergences, and that
the new counterterms can be thought of as generating
corrections to the usual renormalization group [3-functions
(and therefore to the conformal invariance conditions 3. In
other words, the approach 1s based 1in letting the
renormalization group flow be defined by the sum of the
standard and non-standard counterterms; this strategy leads

us to "loop-corrected fB-functions”. By imposing the

conditions for vanishing of the conformal anomaly including

this corrections, we shall getiya set of loop-corrected
equations ( which wmaybe corét
invariance conditions of some gégeralized o-model ).
Hopefully, we will be able to fiﬁd some space-time action
we may derive them from. If E%his field +theory action
generates the appropiated lOOF@O?FECted S-matrix elements
of the string theory is somethi&é to be demonstrated.

To start with, let's consider thé closed bosonic string in

metric and dilaton background fields G,, (¥) and D(X); the

corresponding action is

- . ) Y ‘oo ] A o M 9
S = Sc/of =2 ( 75 Gun (ker) FaKisy 2p Kl ] =
#s 7 PR
~ 4 R (7] P ) 1

&9

esponds to the conformal

1)



As we saw in Chapter II, the conformal invariance

conditions are ( in D =26 )

Ruy = Vulbd =0

‘N,
o

~ R+ 207D + (D) = 5

Remarkably, this equations are equivalent to the equations

of motions for the space-time action

C'B’Sy’a/ 74 DZ - z
Swee = (d2 V@ ¢ D R- (o) 2701 (2]

The results (2) correspond to the leading order in a' ( or
field derivatives ). In general we'll have a counterterm of

the form

Mo .

. _,,({‘ . /Z/ .7 o ; =~

YSom = Loaf fd/; (% [ 7 BGuw 2 X9 X = &= et 0]
2

' : (4

where A is an ultraviolet cut-offAs it's sketched in the

Appendix, considering the divergences coming from the

Teichmuller space when we consider loops ( torus, etc ), we

might construct a counterterm to cancel them. In flat

space, this counterterm resulis proportional to the
insertion of a simple local operator in a surface of lower
genus. Not coincidently, this isithe vertex operator for
the emision of a zero-momentum dilaton: this divergence has
to do with the existence of an amplitud for emitting such a
dilaton into the vacuum. S0, the divergences on the torus

7

may be eliminated { and the string loop calculation

v

70



renormalized 1 by adding a new counterterm of the form

oS foof = legh ga/f C 'ﬂ,azﬁ,«%%?‘%%’z/ (5)
277

to the free action , where C i3s3 the one-loop cosmological
constant as calculated in Ref.[30] and [31] Let's guote
that there exists another divergence associated with the
tachyon, but being it a non physical feature of the theory
will not be considered in what follows [29]

Since this is a dimension two operator, it's a perfectly
legal counterterm from the point of view of two-dimensional
field theory. When is evaluated on the sphere, it gives a
divergent contribution which precisaly cancels the

divergence of the torus. Explicitily, for any operator . (? :

B - - ‘D_ , Kgf /'acl/D n - (‘% 1~ ff;)‘ /’3‘:7/,!))‘ |
<O>= | Twrexld e jc; = [ terpx1¢ + oEY
s* T
_ _s i =S O e g el
b T L g Iy S + Crpxinlf 55
= trrrd e o F L el 2o r T
s st . oot =
- » , - Y- /eop 7 7 ey
. T ~ D, e
— ) <O> - -+ < (-2~ O > _J 7 (ﬁ/
- < C>JS¢ ~ K L f_/__z ‘(f,_ ‘.J
(&)

leo

The insertion of (~je> cancels the divergence on

the torus ( k 1is the coupling cdhstant ).

of the

o

Now, we would like to generalizé%(S) to the cas
string coupled to the backgroundg. This is wmade more easily
taken into account ftwo things

i) In a general coordinatizationlof the space-time we wnust
replace the flat metric by Gup

ii) As it's well-known, in the presence of a constant
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o Dox)

dilaton field, we must include a factor — to
take into account the topologically determinated dependence
of the path integral on the dilaton =zero-mode ( the
k-factor in (¢) ) ; locality requieres the inclusion of a
factor for a general dilaton background D(X) [32].

So, the counterterm to be considered will be

3
, —Dix) oy w4
< Jo ”/D 7 F ~ z - Y. BV St 2 A
S < = leg i \ e Ve L Gy K) 7 FAf aeA
- (#)
Indeed, we must think it as the leading order in

derivatives of the fields @f,the complete counterterm [29].

By combining (4) and (7), as it was explained before, we
get the following "loop{oorrected" ' equation for the

background metric

g
S~

; =D
gl =Rup— WD -cl v =0 (

[~=

This equation resembles the Einstein equation for non-zero
cosmological constant C.

There is alsoc a string loop-corrected dilaton egquation, in
principle, but it's not clear which is the counterterm that
generates 1it. We will determine what it must be by an
indirect procedure, that it may be used alsoc at tree level
for obtaining the B{)-equation [29], probably to all orders
in e-models perturbation theory [32].

The point is that eq.(8) cannot be compatible with any
equation for D ; taking its divergence, and using the
equation itself plus the Bianchi identities, it's possible

to show that



VBE|, - W (TR V-G0S

which means

BP - L r- VD= 2 (VD)= corstant (3)

“

Putting the constant in (9) equal to zero , the system of
equations (8) and (9) results equivalent to that obtained

by varying the space-time action

Se = \dx Vs | eP (R -] 20 ) + 2]
(40]

This action is the obvious one-loop, cosmological constant
generalization of (3) ; the relative powers 1in exp(D)

distinguish terms arising at different string-loop
orders. The up-shot of all this.is that the loop-corrected
f-function  for the metric i’;;TE‘»;%EMDIies a loop-corrected

f3-function for the dilaton ¢ Whiéh indeed 1s not corrected

according to this method, compare (2) and (9) ' ), and the

mutual consistency of the two eguations 13 guaranteed by

the fact that both can be derivea from a single space-time

action (107).
In the following, we will extendithe above construction for
the much demanding case of intéracting open and closed
strings in a non-trivial gauge field background, and point

out a remarkable relation.



3 - OPEN STRING-LOOP CORRECTIONS TO (3-FUNCTIONS.

Following the strategy of the previous 3section, we will
consider now the effect of open string-loop diverdgences on
the same fB-functions. The action corresponding to
interacting open and closed strings coupled to all massless
backgrounds is given by

. AN g/ oyl v
5()(/' &, 5, D//&\] = 1 g Q/f 7 [ ek 6,19/ r"/’.'/( 9//3/11/ T
IRy

o8 T K HY Bup = A Re(7) DO+
(77)

oA 7
¢ '« T 7 ;ZAL* - X Kzs) KDé{J
2 ey aﬁ-’jJ K A (Xs) - Z_ fte ]

where k(t) is the extrinsic curvature of the boundary, and
Ay has been rescaled to include a (2ma’) factor. The
coupling of the dilaton field D to the boundary curvature
iz needed because exp(-D) 1s the coupling constant of the
theory, and then it must multiply the entire Euler density.
Now, let's take M, = annulus, with inner radius @ and outer
radius one. We want to know the proper counterterm o
cancel possible'diverqences coming from the integration on
the a-parameter f which 15 the Teichmuller parameter for the
annulus y. In order to identify the ( local operatodwhose
insertion on the disk reproduce this divergences, we mnust
study the annulus partition function for the action (11)

( it*s worthwhile to say that this is the formal route to
follow ; in the case of the closed string theory analyzed

in the past section, we were able to conjecture the
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counterterm (7) generalizing the corresponding one to flat
space, egq. (5} ).

In Ref. [25] and [26] was calculated the partition function
on the annulus for a constant strenght tensor. We gquote the

result

, s : - a0 s ]
257 r1 = (420 et (++Fw) Z°° (12

an o, .- . R - . .
where Z; is the zero-field partition <function for the
annulus ( without considering the D-dimensional volume
factor given by the zero mode, which is taken into account

in the ¥X-integration ), given by

o (A e a1 a1 Ot
» a7 At & O

-

[43/
It's possible to show with a little bit of algebra that the

divergent part of (13) is reproduced by [29]

E:MJ,' - g“ia/&
iy 7

¢ 13

< (a-2a%) (|LEEFE 2 4 sk T

. 1 ((’i . 1 . Y oA a o -t N "‘ﬁ‘ ) /27 "
v (1 < zel e (TED ) 2HGXY >

do X G- JUpy
e - S-
where 2z = T + ie , and < O >Ulisp = )JUWZ#%A] f: O

for any operator O
Now, if we cutoff the a-integration at a short distance A,
we see fThat the counterterm action needed to compensate for

all this divergences is
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/J/,J

9_3,7@@,9 } gq/; [% /99/1 m /4f-r

Fo(AF = 2 feg k) [eecrE) T 15)

The second term is a counterterm for dimension =zero
operators, which generates loop-corrections to the tachyon
fs-function, that it wonld renormalize the tachyon
background field. For reasons explained before, we will
disreéard this type of terms, and concentrate ourselves in
the renormalization of "realistic™ fields.

Our final task is to include the efféct of c¢losed string
background fields Gup + By and D. This 1is made as
follows:

i) Being exp¢D/2) the coupling constant of the open string
theory, a factor exp(-D/2) arises frowm the relative
"weight™ between the disk and the annulus ( exp(D/2) and 1
respectivaly , because x(dlsk)'§ 1, xtannulus) = 0 J;

ii) The flat metric é;y must bé#replaced by Guy ;

iii) By noting that»in the presgnce of a boundary, the

"gauge™ symmetry : B, -> By, + 22;4 %07 is

replaced by the generalized symmetry [23]

By Bup = 2 Fra tor ,
# & @)

g%/%/ = — ’é

X7, o6

-

the F-dependence must be in the combination
F/'f/'-‘ + B,&//’/ (18

{ also it's possible to show this by expanding in ERiemann
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normal coordinates the action (11) : the F-dependence
appearsin the way given by (18) [29] .

0f course, there are also B-dependence in the form of the
strenght tensor Hy,, = 3F Iu Breg , and G-dependence 1in
curvatures and its covariant derivatives. So, the result we
will write down must be thought as a leading order 1in
derivatives of the background fields.

Taking into account the above remarks, the counterterm that
generalize (16) to include closed string background fields

will ke

1 e "D/i 7 . —_ /| ‘,/L,
2 fogt (43 Vasterprm € (EXE2E) 2 0% X
x ! - f-F J U2
[13)

By following the approach sketched at the beggining, we

treat it as a new counterterm for the eo-model. By
separating the symmetric and antisymmetric parts we read

from (19) the following open stﬁing loop corrections to the

f-functions of Gy and Bﬁﬂ

hﬁ/?’ = " . ” oy .1:?/
Abuy = 2m C 7 ElertD (ﬁ___,_éfi._j
T 7 . & - (BFE T Iy
(2¢)
Ly R S
Aﬂﬂ? — -4 £ / \ 4%%6— LB _,_,F__.ZL———

X7 ) ~CEFE® 4L

77



The effec

o

iv tion.

D

a

(o]

First, let's note that, since we have not kept track of the
world-sheet curvature (we didn't consider the metric, or
better, the conformal factor, as a dynamical variable )
dependence of the counterterms, we cannot directly identify
the loop correction to ﬁo . We can, however, infer what it
must be by a consistency ( compatibility ) argument of the
type which led us from (8) to (92). Instead, with some of
magic, we will define an effective action that it will
reproduce (20), and also will give us the missing dilaton
part. The construction is as follows

i) The effective action at tree level ( sphere ) for all
the massless closed _string background fields is ( see

Chapter II 3

clospd 0= Do)
g}f_‘é‘f ‘ = ga/% Cx g‘ [ /e -

wF$

ii) Furthermore, the effective action for the gauge field Ay

at tree level ( disk ) coupled to the boundary of the
world-sheet corresponding to the open string theory is the

Born-Infeld action ( see Chapter III, Section 3 )

BN

< 1}'/’
_)oﬁ

1’ 4D B i . -0 ,ﬁ;vﬁ'
er gq/)c o (4 TF) 22 )
¢

M

If we consider now the open string coupled to open and
closed string backgrounds ( eq. (113 ), using the arguments
that led us from (14) to (19) ( an explicit computation 1is

also available in Ref. [232] and [29] ) we obtain the
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Jenaeralizasd Rorn-Infeld action

ur’fﬁ - oA ID//;} /‘ — N -
| ~ - V bl &+8+7) '

o
N
(‘\

[NKY

4
S~

which is exact for G,, , By, and F4y <onstants.
Now, although the closed and open string /3-7unctions are

logically independent each other ¢ after al they arise

f—

from differant o-models evaluated aon different worl-sheets,
sphere and disk respectively), it seems "natural”™ to Juess
that the "right” way of describing interacting closed and

open strings is simply fto add the associated effective

w

actions (21) and (23) together, with an as-vet undetermined
relative coefficient e. Thus the proposed full effective

action is :

WA D L sn it e

’ ' -~ i - = 7 - - L 7

iy’f-c-’ = XC/;& Vo) o [ /‘ﬁ 3 ! v A
2 - A

o Der) - - (2% )

L o (4 £PUR [TeteisiE "

This affective action don't exactly reproducs the equations for
the «closed boszonic sector, beczuse the generalized

i
fe)
3
-
I
(2l
fond
!
D
-
ol
[vi)
@]
In
}—l -
o
=
]
]
e
o]
—
T
5
I_J
o
furt
ot
D

@3 to them. Zpecifically,

rd
) ~ (73
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N
uy and BJ were calculated in Chapter II

(7 & /

A 1) — A /
BJJ’J/ = %_ V /6/7;‘/,(// + Z ('7/D H?f/(/ﬂ/

Now, from (25) we can observe that the c-dependent factors
may be considered as loop-corrections to the Told™
B~-functions. Indeed, if we take

o = - 8w/ ar ' (273

then we reproduce the equations

z - , > )
Bup |.. = Bus + ARy =o )
(18
b s
By J i

/-G

i

g P B _
19/42/ r ,A /3_4/,,4/ =0

< G ‘ s
with A@@p and Aﬁﬂy given by (20) !

Not only that, we can read‘;from (25) the ™missing”

correction to A : o

“‘0/2'
Apf = 41 L

X

3

ot i(srerr) (23 )

Summarizing, the action (24) wit; € given by (27) provides
a set of equations of motion'Jfor the massless closed
string backgrounds which is equi&alent to that one obtained
by equating to zero the B-functions corrected by open

string=loop effects given by eqs. (20) and (28).
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4 - DISCUSSION AND CONCLUSIONS.

Let"™s now try to display some physical consecuences from
the results obtained, and remark some troubles and

uncertanties in the approach.

First, let's expand A@Ji and m@; in powers of F,, for
vanishing D and Buy ; from (20)
_ & S o 1 L E ”«72_ ] (36~3
A/iﬂz/ = ~——7(G‘ﬂ;/“ C':JJJ/_E,-— 7 T Tur T
X 7
A /‘{a;‘, = —ZZ—-,;',, F}J}’ 71‘ s o

The first term in Aﬁj; corresponds to a Finlte
contribution to the cosmological constant in the equation

of motion for gravity, coming from the open string-loop

divergences. This result contrasts with the contribution
coming from the closed string-lo;ps { torus 1, eq. (81,

which is divergent (‘see Append§§ ).

The second term in ﬁﬁ;i; corf?sponds to the classical

contribution of the gauge field to the energy-momentum

Lensor of matter.

. . . B
Finally, the leading term in Af,; expresses the well-known

mixing' of an 'abelian gauqﬁ field with the

antisymmetric tensor field. E

For ending, three remarks i

i) It's expected that the a;tion (24) generates the
appropiately loop-corrected st;ing S-matrix, but it's
worthwhile to stress that a prove of this is lacking

ii) A wmajor deffect din this treatment of string-loop
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renormalization is the lack of a systematic requlation and

renormalization procedure; in particular, the
identification of both cut-off ( that for regularizing
o-model divergences and that for handling modular
divergences ) 1is completaly ad-hoc ;

iii) If we think this procedure must work, how to explain
the loop-corrections to the effective actions for
Superstrings, which are presumibly free of modular

divergences ?




- APPENDIX : One loop amplitudes and modular divergences.

We shall give here a brief review about one-loop amplitudes
in the bosonic closed string theory, mainly interested in
the divergences coming from the modular integrations. For a
complete treatment, see Ref.[31], where the operatorial
formalism is used, as in this appendix. For a discussion
following the Polyakov approach, see Ref.[30].

In QFT, a one-loop diagram may be built by "sewing™ a
propagator with the external legs attached, and summing
over the states which circulate into it. By making the
analogy with QFT we are led to define the one-loop amplitud

in string theory according to

N
\t\

i PN , A
/qM( éf‘] = KM E?"( A V/L«_(/(U?ﬂ/* . A W‘w (K ;77

+ (Nom-eyelie

where g is the T"propagator™ Qé the string, &k 1is the
coupling constant of the theory and Vo (k;1,12 iz the
Qe:tex op;rator for absorbing a gphysical state A with
momentum k ( we use for conveniénce coordinates =z, Z )
where z = T - io and T is thegiéeuclidean proper-time™),
The trace is taken over the states which c¢irculate around
the loop, which must be the phys;cal ones ( if we work in
the "o0ld" covariant formalism described in Chapter I, then
we must used projectors on the physical subespace; in the

"Mmew” covariant formalism this fact is taken into account

by considering the ( Fadeev-Popov ! )} ghost contribution ),



and also includes a

momentum integration. Eq. (A-1) is
depicted in Fig.Al
a.
Fra. A
Following the analogqy with QFT, the inverse of the
propagator should be the ™mass-shell”™ condition. S0, we
postulate for the string
A -7 ( (',a+é‘,-p} = _:;'f.. 3 ? F 64 Z“’J)
z 2

~ . L . .
Lo = Lo ., Wwe introduce a "&-fumction”™ in (A-2-a)

5(”2@"‘2‘;)3 g f://(@ /V> a“'bd/

£ .7
L~ 4"«‘”‘-.&/
2 (/‘T 4

and redefine the propagator as (g Z = o oexplu@ )

G 7

>y ’:’4
A p ; ; _ .
4= 2 (4 L =n =T (A=3)
™ . -

Using the property ( which follows from the fact that
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H

Ar
Lo + Lo , is the 2-d hamiltonian, and therefore gives

the T-evolution )

Soop A A . |
=27 2% Wwwl)2 T F 0 2 k2 E) (A-1)
eqg.(A-1) can be writen as follows
) : - ' L S Y/
A;M[/f): lf—)'u g W _ G [B i‘{lz. GLI0 =16t ) T Dy rop
\(/’77’ Jw|< 7 jl«{//"f e e {?&”/1 )
(e <4

4 Cﬂéﬂ-§7@42 fﬁr%yéié@ﬂ<j

ﬁ’f = ... Zx P /(:7/~~-/-/"'//—7

-~

(A-5)
W :'%L = 2%_002%4 //

hp
0/

C’/z’l 1 ) N A ] ‘4 ’ .. il Z«‘NZ’
Tk, s br (el 82/ . .. U (b 20,8, ) 0% D

Now, we'll consider the case of scattering of M tachyons,

although the relevant?'conClusiéﬁs can be applied to a

general processes. The tachyonicivertex operator is

Kekimy) . :
IR K ee)  (A-g)

A Y

Vo (R, 22)= 2 & y

A,M - : ‘
where ¥®7(z,2) 15 given in Chapter I, eq.(15),
With some oscillator algebra we .can compute (A-7), being
the result ( in D=24) : e

e 43 = Lo s b
fecn [T (SpL T g @
ITntowl= ' In jief - (AL -a ]
A=)

where
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= b j VN )/ ;-
FCLL/] = 77 (1~ (X/)?] ) Dﬁ' iKind s Ve 67477;
n>

-~

/ /Z'I*"' 1 1 % 0o i 1B
f Iw*el S i, / 1-:/:7/ 74‘) (1-wite ) (7= ”/C
<= Y= . -

/ C// - j(/ J

Yrs = X (/e , W) (A-10)
It's convenient to make another change of variables

N Y TES Vo .
| (#-1)

T = 24% = véway/éﬁ?“: G f-Z?

In terms of them, we obtain from (A-5) and (A-9)

/4‘,“/} (k)= 4/75 C(g/ 'F'(;/‘j (A-12 )

F z,*
) 1z N2 . e, [T
cex) = (%3) =L ject )]

Lo AXFLSE W

. ' /4—7 2 7
Fa) = eriln e [l I P

where e ‘
J ' ’ ; 2, & [6,3]
b= e rnpl s el !
S J : ) ( A,v '/ 3)
/’/41‘6 = /?-/('Ufi‘/ Z/ / Ysr = Vs - Mp
- /—r.x/‘L/ : o]
) ; &z B (213
Y, T) = 2 L ( e /
Cile 3/
and 5& Ci//Z,) are the Jacobi theta functions and

indicates derivative respect to the w-variable.
At this stage, two remarks are in order
i) The sum over non-cyclic permutations in (A-5) is

automatically taken into account considering the region of
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integration of the g -variables to be : 0 < jwi ikl 1
without any other restriction
1i) It's possible to show that (A-12-a) is invariant under

the change of wvariables

. s - -
P 7 < J;
cZE + A
This is the so-called T™modular invariance® : indeed T

represents the usual Teichmuller parameter which labels the
conformally non-equivalent metric structures of the torus.
This invariance is fundamental for the geometric
interpretation of the string theory, because the modular
transformation group ( SL(2,Z) in this case ) is the part
of the diffeomorphisms group no connected with the
identity, that is, no generated by exponenting
infinitesimal reparametrizations.
If we write : T = T, +iT, th%n (A-11) tells us that the
region of inteérétion of T wouléébe

0 & 7T,¢<00 mfﬁé [-1/2,1/2]
But modular invariance prevent Qﬁ us of considering the
infinite strip, because we moul&é get an infinite factor
associated with the ¢ infinitgw 3 volume of thé modular
group. Therefore, we are enforcéﬁ Lo restrict "by hand™ the
integration region to a "fundaméntal one, denoted F in
{A-12), so that it has only oné; copy of each "T-class"

defined by (A-14). In Fig.A2 is depicted the standard T

ng, A Z

(A~1%)



Analysis of divergences.

There exist several possible 1limits 1in the region of
integration‘of (A-12) which may lead to diverdgences.

One possibility is when all w».-variables minus one are very
near among them. This corresponds to isolate the loop on an
external state legqg ( tachyon in our case ). This kind of
divergence may be interpreted as associated with a mass
renormalization of the external state. Although there still
are technical problems in computing the appropiated
renormalized theory ( maybe it will be possible in some
framework of "loop-corrected™ effective actions, as that we
discussed before ), there is no conceptual problem ( see
Ref.[17, 34] for some advances in the treatment of it ).
The divergences we are really interested in coming from the
region where all the particles approach each other on the

3

torus, that is, w».,— 0 , r,s ( w.s = ¥ - wo ).

To examine this region in a preéise mathematical way 1it's

convenient another change of variables

( U/!,.,.,L’ﬂ_";'f) > ( 77,!,“7;;77?‘“_2»3,'{?5;?) » &, ¢ & R
given by ;

Py El -

r o= M= My R Y

( Note the & — 0 limit coincides with the region we
want to study 1. By rewritting (A-12) in terms of this new
variables, and expanding the integrand in powers of &, we

get the "dilaton" divergent part [31]
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AM (k] { = L 50 Li::‘ sﬁ 3 /4/\/’ [/{/ Zfar!/g

\
..:d,-"i/, = J'/;T
(A-7%/

-t
aaruj = 3 i Z C
E A

S

(3
Q}

Here Ai1(k) is an M-point function on the sphere and Ziprys
is the vacuum-to-vacuum amplitud on the torus [30,31]1. This
divergence comes from the WS configurations of the kind
depicted in Fig.A3, where the factorized form of (A-17-a)
is explicit. It can bhe interpreted as due to the absortion
for the vacuum of a zero-momentum dilaton ; Lhe integration
along the "long-neck”™ in Fig.A3 corresponds to a propagator
of dilaton evaluated a zero-momentum, which of course 1is

divergent [28].

Fi? - A3
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Now, with the relation

v R
o R AP

i p- - s ’ - 4””"/ - - ]2 N A
<Aral Vo o, = S Ipxpr1 & Ayl = L?frﬂf"_‘i_</4[/(3 Su,
‘ ’d 9,‘,;\’/'
(A-13
ol e AL y
where Vf = }Jf“w§‘?’" QrAﬂgﬁKﬁ is the vertex operator

for emitting a zero-momentum dilaton, we get

| e ] - :

{ {/‘op(ﬂ(z >-/-—Z — §£ z X/ 1____25‘&7'(/5 O/\: 26‘0]’(/’5 OC C C[z}"7‘ﬁ)
P
50, we can write (A-17) as
N i 5‘6?4./5 ‘ ) ; gf/’,(“}lf?‘{ / /."/
fim CKJJ = consf. g L C A () (A-Zo
4y

Finally, let's consider a v/ -insertion on the sphere

( thinking about (6) ) ; using (A-18) again

. ! D A/Z ’ . 2 ! 2/ -
< Plicp) lead € V' > = BT 2 < T lliip) >l pyhe=
¥ i : A ; =7

4 27 s A ’

loes

‘ e , st Lo71
— (/}7“ L}W (/Ij XS' 4 79':""'4': cons b, /l@a? L C As""( (f/ (/4' L//

pu—

from where we see, comparinéL with (A-18), that the

"couﬁterterm" &8 given by (55 can cancel the dilaton
divergence on the torus.

As a final remark, we can obsefﬁe from (A-12) that the

cosmological constant C is inff%red ( T, - ® ) divergent,

due to the presence of the exponential factor ¢ associated

with the tachyon circulating into the loop [31] ).
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