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Quickly, as if she were recalled by some-
thing over there, she turned to her canvas.
There it was — her picture. Yes, with all
its green and blues, its lines running up
and across, its attempt at something. It
would be hung in the attics, she thought;
it would be destroyed. But what did that
matter? she asked hersef, taking up her
brush again. She looked at the steps; they
were empty; she looked at her canvas; it
was blurred. With a sudden intensity, as
if she saw it clear for a second, she drew
a line there, in the centre. It was done;
it was finished. Yes, she thought, laying
down her brush in extreme fatigue, I have
had my vision.

Virginia Woolf
To the lighthouse
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Introduction

Clean single-crystal metal surfaces usually possess a well-defined two-dimensional
periodicity closely resembling the atomic ordering in the bulk. In some cases,
however, the surface lattice reconstructs into a phase with a new symmetry: this
can occur spontaneously or it can be induced by small coverages of adsorbed atoms
or molecules. In this respect, the (110) surfaces of noble and near-noble metals
belong to two different classes. The first class includes the lighter metals (Cu,
Ag, Ni, Pd), whose (110) surface remains unreconstructed when clean (although a
suitable coverage of alkali adatoms causes their reconstruction[l.’z’?”‘*]), but shows,
at least according to X-ray scattering experiments!® | a roughening transition at
relatively low temperatures. The second class includes the heavier metals (Au, Pt,
Ir), whose ground state is a reconstructed (2 x 1) phase properly described by the
“missing row” model, as experimental evidence clearly indicates!®7:8:9:10,11,12,13]
By raising temperature, the surface undergoes a deconstruction transition from
the (2 x 1) phase to a disordered phase with no particular long-range structure,
the precise nature of which is still controversial. The motivation of the present
work arises from the suggestion that two phenomena which thus far have been
studied as separate — missing row in-plane reconstruction and off-plane roughening
— may instead have a very intimate connection. Theoretical studies by Villain and

Vilfan*4l| Trayanov et al. 1528 Jug and Tosattil!™1%1°] and Levi and Touzanil?®l

(which will be reviewed in sections 3.1-3.4) indeed seem to indicate this possibility

1




quite clearly. A direct confirmation of this suggestion comes from the recent X-ray

scattering experiments performed by Robinson, Vlieg and Kern on Pt(110) 21,

The present thesis is organized as follows.

In chapter 1 we will review some recent key experiments carried out on the
noble and near-noble (110) metal surfaces, providing evidence for the deconstruc-
tion transition (mainly on the noble metals) and for the roughening transition (on
the near-noble metals). In the second part, theoretical approaches to reconstruc-
tion problems will be discussed, both from a statistical (symmetry-based) and an
empirical point of view (“effective medium” and “glue” models for a treatment of

many body interactions in these systems).

Chapter 2 is dedicated to the roughening fransition in all its various aspects.
Particular attention is reserved to the statistical models which have been proposed
so far to characterize and describe the transition. The universal features of these
models are stressed, and a detailed description of the BCSOS model is given, as
the main Hamiltonian studied in the present work starts from the same lattice
structure and adopts the same six—verfex constraint on the height variables. We
also review the phenomenological studies of the roughening transition which lead
to look at the equilibrium shape of crystals in terms of the free energy function, and
the experimental evidence confirming the main theoretical predictions (especially

for He crystals).

In chapter 3, after a review of the few models which try to account for both
transitions, the model of Kohanoff, Jug and Tosatti (KJT) is presented. Particular
emphasis is given to the physical motivations underlying the model as well as to
a description of the ground state in terms of its energy parameters, which assume

values suited to characterize the Au(110) surface. In the second part of this chapter
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we discuss a list of quantities which are worth studying for the understanding of
the physics embodied by the model. This includes the definition of a possible
order parameter which denotes the occurrence of a deconstruction transition and
the introduction of the coherent and incoherent scattering intensities, also related
to ways of experimentally observing the roughening transition.

Chapter 4 present's a short account of the Monte Carlo algorithm set up in or-
der to investigate the properties of the KJT Hamiltonian, and the results obtained
for the BCSOS model (examined for test purposes) are shown. An interesting
feature arising in this test is the discovery of finite-size effects in the quasi-Bragg
incoherent scattering intensity, implying that these effects require more accurate
study than hitherto believed.

Finally, chapter 5 reports the results obtained for the KJT model. It provides
evidence for two separate transitions, a deconstruction followed by a roughening
transition. The former appears to be a second-order transition while the latter is
of a higher, possibly infinite (Kosterlitz-Thouless), order. In the conclusive paft of
the thesis these results are discussed and compared with the conclusions reached
by other authors through model calculations or experiments. Here, a brief outlgok

of some of the possible developments of the present preliminary study is also given.




Chapter 1

The reconstruction of the (110)
surfaces of noble metals

1.1 Experimental aspects

The outermost layer of a (110) surface of an fcc crystal has an anisotropic structure
which can be described as made up by atomic rows a distance a apart in the
(001) direction (a being the fcc lattice parameter), with the atoms separated by
a distance a/+/2 in the (110) direction of each row. The (2 x 1) reconstruction
leads to a structure in which half of these rows are missing, the missing ones
periodically alternating with the those present. The unit cell is doubled in the (001)
direction, and the resulting surface structure is thus made up by a sequence of local
(111) facets which form a 35° angle with the surface plane (excluding relaxation
effects). For this reason, the occurrence of reconstruction depends on the relative
value of the energy densities of the surfaces involved, i.e. on the quantity A =
O(110) \/23)750( 111) (the numerical factor arising from geometrical considerations).
However, the sign of A, though determining the true phase, is not sufficient to give
a physical picture of the process. As in the A > 0 case the (110) surface would
relax towards the more stable (111) structure, some stabilizing interaction has to
be considered in order to reproduce the observed low temperature (2 x 1) phase.

It is worth saying that, although the missing-row nature of the heavy noble

metal (2 x 1) reconstruction has been finally recognised by a considerable num-
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ber of experiments, the subject has been a controversial topic for several years.
In the case of Au(110) , for instance, the missing row structure has been cor-
roborated by low energy electron diffraction (LEED) analysis(®!, low energy atom
scatteringl®], scanning tunneling microscopy (STM){ZZ’S], X-ray diffraction(!?] elec-
tron microscopy!*?], high!*!! and medium energy('®! ion backscattering. Nonethe-
less, there have been doubts about the kinetics of the (1 x 1) — (2 x 1) transition
because, as pointed out by Bonzel and Ferrer(23:24] if the (2 x 1) phase develops
from an initially flat surface, it would require mass motion in excess of that con-
sistent with measured diffusion constants. Therefore the above mentioned authors
considered a saw-tooth model of the surface, in which every second row is not
missing but is simply shifted upwards to form a separate layer. In contrast with
this model, perhaps the most direct indication of the true nature of the (2 x 1)
phase has come from the STM experiments performed by Binning, Rohrer and
collaboratorsl?2:¢] which uhambiguously demonstrated the (111) faceted nature of
the Au(110) surfaces. Faceting is believed to be the basic mechanism for the re-
construction into the missing row structure, the weak disorder being present on
the surface in the form of (3 x 1) and rare (4 x 1) corrugations over the ordered
(2 x 1) phase, while wider portions of (111) facets are never observed. Although
the mass transport problem, as posed by Bonzel and Ferrer, still stands, it seems
very probable that more complex mass transport mechanisms (e.g. anisotropic,

across the channels extending parallel to the rows) should be advocated.

In conclusion, in view of the results of this and other quoted studies, the saw-
tooth model can be safely ruled out. Furthermore, careful investigations of the
detailed structure of the missing row phase show many relaxation effects of the
outer atoms, like a (debated) top row contraction, a second layer pairing and a

third layer buckling, features some of which have been confirmed by first principle
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calculations for the Au(110) surface?3:2%), as well as by molecular dynamics studies

[27,28] (

of gold surfaces see section 1.2).

When the temperature of the system is increased, the completely ordered in-plane
structure begins to develop defects due to excited states now thermally available.
These thermal effects may be responsible for a phase transition from the ordered
structure to some other phase, the nature of which can be investigated by scattering
experiments, e.g. through the measurement of some critical exponent. The most
experimentally accessible ones are: 3, related to the behaviour of a suitably-defined
order parameter < near the transition temperature T, (¢ ~ |T — T.|%); 7,
related to the divergence of the susceptibility x of that order parameter at 7.
(x ~ [T —T.7"); and v, related to the divergence of the correlation length
¢ of the system at T. (¢ ~ |T' — T.|7%). For the (2 x 1) phase transition, the
critical exponents can be determined in a LEED experiment, from the temperature

dependence of the structure factor

S(Q,T) = I(T)6(Q — Qo) + x(Q — Qo,T)

where Qg is a superstructure (or half-order) wave vector (a reciprocal lattice vector
with a fractional sum of indices, e.g. (1/2,1/2,1/2), (3/2,0,0), etc ...in the
surface reference frame), thus sensitive to the doubling of the unit cell, and Q =
Qo + q is the usual momentum transfer(29:3%,

The first term gives a delta function at Q = Qg, with an intensity that
depends on the square of the long range order parameter : I(T) ~ %(T)? ~
(T — T¢)*%. This term is dominant for T < T., so that 3 can be determined

after correcting for the Debye-Waller factor temperature dependence and after
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assuming a broadening of the delta function into a Gaussian of finite width due
to surface imperfections. The second term, while present at 7' < T, is the only
one present at T' > T, and describes the long-range fluctuations at and near the
critical temperature. Very close to T, ( ¢t = (T'— T¢.)/T. < 0.005), { — oo, so that
x(q,T) = const - g7 % (n being the critical exponent related to the correlation
function). For relatively small ¢ and g, so that ¢ is of the same order of magnitude

as 1/€, the second term may be approximated by a Lorentzian of the form

0,7
X(q7 ) = %:(!_—?q)?

with half width 1/£ and height x(0,7), x(0,T) being the susceptibility associated
with the order parameter 1. In this way, a measure of the diffraction profile leads
in principle to the determination of the other two critical exponents ~ and v.
In practice, however, surface imperfection and experimental resolution must be
carefully taken into account, in order to obtain reliable data.

By fitting the temperature variations of the half-order Au(110) (2 x 1) LEED
diffraction profile with the three parameters of the Gaussian height, Lorentzian
height and width, Campuzano et al. [3!] were able to derive for the critical ex-
ponents the values § = 0.13 £ 0.02, v = 1.75 £ 0.10 and v = 0.93 £ 0.09, which
are in fairly good agreement with those of the two-dimensional Ising model, i.e.
B =1/8,v="T/4 and v = 1. Therefore, this experiment would indicate that at a
temperature of about 660 K the (110) surface of Au undergoes a phase transition
from an ordered (2 x 1) phase to a disordered phase (deconstruction), which falls
into the same universality class of the Ising model.

Possible theoretical explanations for this apparently well-defined behaviour

will be given in section 1.2. Nonetheless, the question about the nature of the
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transition has re-opened again after very recent X-ray diffraction experiments
performed by Robinson, Vlieg and Kern on the (2 x 1) reconstructed (110) face
of Ptl21l, They, in fact, provide data in favour of a deconstruction transition
which seems to coincide, however, with the roughening one at a temperature
Tc ~ 1080K. Although the critical exponents yielded by the usual procedure
are in accordance with a two dimensional Ising transition, a new feature (not
present in the experiment on Au by Campuzano et al. ) is represented by a shift
in the half-order peak position above T, which is also temperature dependent,
strongly indicating, in their view, a spontaneous proliferation of steps above T¢
and hence that the phase transition is also a roughening transition (see chapter

2).

For the lighter metals, the experimental situation seems clearer. In the case of
Ag(110) , Held et al. [5] show that an X-ray scattering study performed at glancing
angle can provide direct information about thermal variations of the surface height-
height correlation function, the behaviour of which is closely connected to the the
existence of a roughening transition. These authors look at the surface in anti-
Bragg conditions (i.e. for values of the momentum transfer which should give exact
cancellation of intensity for a smooth surface but not for a disordered one, thus
probing the occurrence of steps on it), and show clearly that the peaks evolve from
a delta function to a power law line-shape with an exponent 7. This experiment is a
direct measure of the logarithmic divergence of the correlation function, and hence
of the surface roughness: their results give evidence for a roughening transition on
the Ag(110) surface at temperature Ty = 4504+ 25°C, well below the bulk melting

point.

For Cu(110) two experiments have been performed, an X-ray diffraction study

by Mochriel®?, and a helium atom scattering experiment by Zeppenfeld et al. [33].
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Mochrie scans in temperature between 200°C and 700°C, finding a very fast decay
with temperature of the integrated intensity of the (110) Bragg peak. The peak
intensity, approximately constant between 7' = 200°C and 350°C', decreases with
increasing temperature till, by 77 = 600°C, it has fallen essentially to zero. It
diminishes more rapidly than it can be accounted for by a simple Debye-Waller
factor, thus suggesting the presence on the surface of thermally generated steps.
The behaviour of the intensity in this experiment, as well as in the previous one
by Held et al., is completely reversible, thus cannot be ascribed to an irreversible
faceting transition, providing instead evidence for a roughening phase transition

for which the value of T' ~ 600°C' can be considered a lower bound.

The scattering experiments by Zeppenfeld et al. show a dramatic change in
the slope of the specular diffracted peak intensity at 7' ~ 550K (=~ 280°C ), in-
consistent with a Debye-Waller behaviour. After this, they perform a momentum
resolved experiment which shows a decrease of the specular peak height, while no
appreciable broadening of the peak is observed up to 900K (=~ 630°C). Finally
they analyze the diffuse elastic scattering intensity finding a decrease with in-
creasing temperature (this quantity is a measure of the density of scatterers in the
surface, and should increase in the case of truly rough surfaces). They interpret
their result in terms of an anomalous Debye-Waller effect due to increased anhar-
monicity of the surface vibrations, concluding that no phase transition occurs for

T < 900K.

These two experiments actually point in two different directions: it is thus
worth saying that the first evidence has been somehow reconsidered by its author,
due to a miscut of the sample used, so that the more reliable information on the Cu

(110) roughening transition is to be found rather in Zeppenfeld et al. experiment.
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1.2 Theoretical models

This wealth of experimental evidence presented above has found its theoretical
counterpart in a number of studies carried out to elucidate from different points
of view the nature of the (2 x 1) structure of heavy noble metals and of its phase

transition.
1.2.1 Statistical approaches

A statistical mechanics approach is the way through which Bak®* recognizes
in the (2 x 1) deconstruction transition a simple physical realization of the two-
dimensional Ising model. He begins with the observation of the gradual vanishing
of the half-order diffraction peaks as the temperature is raised, and sees in this
phenomenon a clear indication of a second order transition to the non reconstructed
(1 x 1) "ideal” surface. The wave vector characterizing the ordered phase is k =

%T"(%,O), and the corresponding distortion pattern is given by

u(r) = pécos(k - r) (1.1)

where & is a unit vector which may be parallel or perpendicular to k. Now the
symmetry operations of the (110) surface are applied to (1.1), ¥ — %%, and ¥
therefore results in a one-component Ising order parameter, leading one to expect
two-dimensional Ising critical behaviour for the transition.

This first attempt to describe the intermediate temperature behaviour of re-
constructed surfaces was generalized to all types of two dimensional crystal lattices
by Schick[®®). A general approach will be given below, successively particularized

to rectangular lattices with the symmetry of the space group p2mm, as is the
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case of the (110) surface of fcc crystals. The framework of Schick’s classification
is the possibility to model the systems under consideration as well as those in-
cluding adsorbed atoms by a two dimensional lattice gas, where the statistical
variables are the site occupation numbers n; which have the value 0 or 1 according
to whether the site ¢ on the lattice is empty or occupied. One can now employ the
well-known isomorphism between lattice gas models and spin 1/2 models, given

by the mapping

__1—]—07;
2

L2

to reduce all the different situations to corresponding spin Hamiltonians. On the
other hand, for classification purposes it is perhaps more convenient to remain in
a lattice gas language, introducing the density p; which is the ensemble average of

n;, and writing the Hamiltonian, consisting only of pairwise interactions, as
1 I
H = —E Vi3T5
2 4
ij

where the prime on the sum ensures that terms with 7 = j are excluded from the

summation. Introduce now the Fourier transforms of p; and of V3j

pi=p+ Y plq)e’t™

q
vij = ) o(q)e’T
q

where the sums are over the first Brillouin zone of the reciprocal lattice, r;j; = r;—rj

and p is the average density p = % > ;piy N being the number of sites. With this
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definition, p(q = 0) vanishes, so that henceforth terms with q = 0 will be ignored.

The inverse of the above relations are

p(a) = 5 D pie 0 (1.2)

1 —iqeri
v(q) = szije aTij (1.3)

ryy

In a disordered phase, p; will be uniform, so that p(q) will vanish for all q’s.
However, in the ordered phase, the density will vary with some wave vector Q for
which p(Q) # 0. Therefore, p(Q) is a quantity which goes to zero at the phase
transition from an ordered to a disordered phase and hence can be identified with
the order parameter field. The value of Q in the ordered phase is that one which

minimizes v(Q). Then

dv(q)
9q |q

=0 (1.4)

defines @, and conditions on the second derivatives of v(q) will ensure Q is indeed
a minimum. Now, if eq. (1.4) is satisfied for a particular value Q, then it will be so
also for all other wave vectors obtained by operations belonging to the symmetry
group of the lattice, i.e. those leaving the lattice invariant. In general, there will
be [ such vectors, labeled Q;, Q2, ..., Q; (including Q itself), which are not
related to one another by a reciprocal lattice vector: this set of vectors form what
is called the ”star” of Q. All the density components p(Q1),0(Q2); .., p(Qu)
will be nonzero below the critical temperature, so that the density will have the

expression
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pi=p+ > p(Qy)e™ (1.5)

It may be noted that in this case the [ functions cos(Q, - r;) constitute a basis of
a real [-dimensional irreducible representation of the space group of the lattice.
The general expansion (1.2) is simply an expansion of the density in terms of
the complete set of irreducible representations of the space group, that is, the
expansion contains all q’s. The fact that (1.4) is satisfied for only one Q (and the
other vectors in its star) indicates that below T, the phase is ordered, then the
density has the more restricted form of (1.5), i.e. it can be written in terms of a
single irreducible representation of the space group.

For the fcc rectangular lattice, given a vector Q satisfying (1.4), its star is
generated by applying to Q the point group operations of the rectangle, but all
vectors so generated are related to the original one by reciprocal lattice vectors,
hence the star of Q consists of the single vector Q. In the case of nearest-neighbour

interactions only, (1.3) is rewritten in the form
v(Q) = 2v, cos(g-a) + 2vy cos(gya/V'2)

the minima of which provide the possible values of Q. The 3 possible stars obtained

with this procedure are 21(%,O), -\%’;(O, %), and -\27-;5;(—‘?, 2). Each one of them

a

is related to a particular reconstruction of the ordered phase, the first to the
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(2 x 1) , the second to the (1 x 2) and the third to the ¢(2 x 2). These symmetry
considerations are now to be confronted with real physical systems which, as shown
in the preceeding section, recognize in the (110) surface of fcc noble metals the
first type of reconstruction. The Landau expansion for the free energy in terms of

the one-component order parameter p(Q) is of the form

f = ap*(Q) +bp*(Q) + -

which, although it cannot be extended up to the transition, permits to predict
that the universality class is the Ising one.

A different approach due to Guillopé and Legrand(®®! reduces the problem
to an Ising model with effective pair, triplet and quadruplet interactions fitted
from tight-binding calculations, which is then solved by a molecular dynamics
calculation. Reducing the number of interactions to two new eflective ones only,
the model becomes solvable and the result is the existence of an Ising-like phase
transition for Au, but also for the Cu, Ag and Pd unrecostructed (1 X 1) (110)
surfaces, which is not consistent with currently available experimental data.

To conclude this section, it seems important to mention the point recently
made by Kohanoff, Jug and Tosattil!®l, which seems to invalidate the details of
much of the symmetry-based analysis outlined above. They have pointed out
essentially the following:

1) There is an Ising-like parameter even in the 7' = 0 (1x 1) (110) surface, which
corresponds to specifying to what sublattice the outermost layer belongs. The
two sublattices are equivalent but not identical (i.e., not related by a space

group symmetry operation), and are therefore completely distinct.

2) In the presence of the BOSOS constraint (see section 2.1.2), the Ising-like
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symmetry of the problem does not necessarily imply a phase transition of the
Ising universality class. The BCSOS case (where there is only a Kosterlitz-
Thouless type of transition) is an explicit example of this, once the existence

of a T' = 0 order parameter, defined as above, is pointed out.

3) The (1 x 2) missing row reconstructed (110) surface does not have two de-
generate states, but four, corresponding to two possible phases of the missing
row, and two possible outermost sublattices. Hence, implications that this
problem should belong to the Ising universality classl®*1:1% are, at least in

principle, incorrect.

The detailed consequences of these points need clarification. Although the results
presented here are not properly pertinent to this question, the answer is contained
in principle in our Hamiltonian (section 3.5) which does embody the symmetry

requirements specified by Kohanoff, Jug and Tosatti.
1.2.2 First principles and empirical approaches

A completely different theoretical approach in order to understand the nature
of (110) surfaces is a computational one, either via first principle calculations or
many body effective interaction models.

Although the missing-row structure has now gathered general consensus, the
detailed geometry of the reconstruction as well as the basic mechanism stabilizing
such geometry has not been clear at all up to the first principle calculations per-
formed by Ho and Bohnen(?5:26], Their pseudopotential approach within the local
- density functional formalism was successful in providing accurate information on
the atomic positions at the surface and in elucidating the driving mechanism of

reconstruction. The fact that missing row roughening is stable on the (110) face of
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the fcc 5d metals Au, Pt and Ir, but unstable for the corresponding 4 d metals Rh,
Pd and Ag, suggests the importance of the d-electrons in such process. The §d
electronic wave functions are more delocalized than the 4d ones, leading to larger
hybridization for the 5d band. This results in a stronger contribution of the d elec-
trons to the bonding of the crystal, which shows up also in the bulk properties:
the 5d metals have substantially bigger cohesive energies. By carefully examin-
ing the different contributions to the surface energies of the (1 x1) and (2 x 1)
structures (kinetic, exchange correlation and electrostatic potential energy) it is
apparent that the missing row surface is stabilized over the bulk-truncated surface
by having a smaller electronic kinetic energy. In this regard, two opposite factors
are mainly contributing: one is the breaking of the surface d-bonds, which leads
to an increase in the surface kinetic energy, the second (and most important) is
the lowering of that energy by the s- and p-electrons near the Fermi level, whose
wave functions become more spread out at the surface. The total surface energy is
kept positive by the breaking of the d-bonds; however, if the system can increase
its area without breaking extra d- bonds it would do so, with a lowering of the
total surface energy. The missing row geometry provides a solution to the problem
of minimizing the kinetic energy of the s-electrons while retaining as much of the
bulk cohesion as possible; the (2 x 1) surface has the same number of broken bonds
as the (1 x 1) surface but provides more room for the electrons to spread out and
lower their kinetic energy. The difference in behaviour between the 5d and the 4d
metals comes from the stronger d-bonding in the 5d metals (as mentioned above),
leading to a bigger contraction of the lattice and causing a stronger compression
of the sp-electrons in the bulk. Therefore it is possible to sta.biiize the missing-row
reconstruction by increasing the surface s-electron concentration, for example by

deposition of submonolayers of alkali metals, as experimentalists have donelt:2:3:4],
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From the structural point of view, results from glancing incidence X-ray
diffraction!!® and high resolution microscopy!'? indicate an outward relaxation
of the top half filled surface layer of atoms by ~ 40% of the interlayer spacing, in
direct contradiction with the conclusions of low-energy electron diffraction!®, jon
scattering(!?] and helium diffraction(®] experiments, which indicate a contraction
of the top interlayer spaéing. Distortions of the inner layers were also reported, in-
cluding lateral displacements of second layer atoms(!?8] and a buckling of the third
atomic layer(®1%], For the relaxed (110) missing row surface, Ho and Bohnen find
a contraction of the top interlayer spacing, a lateral displacement for the atoms
in the second and fourth layer, and a buckling of the third layer atoms in the di-
rection of the surface normal, in accordance with the majority of the experiments

reported above.

Parallel to a first principle approach, which copes with the full complexity of
electronic effects, there can also be more empirical approaches, reviewed by
Nieminen[*"], where the atoms are treated as points interacting through some po-
tential energy function V(ry,...,r,): this attitude has generated, among the oth-

ers, the so-called "glue” modell?"?8] and the "embedded atom method”(38:39,40.41],

All the past empirical schemes based on pair-wise potentials, which work
reasonably well to describe rare gas solids, badly fail when attempting to model
other kinds of materials, owing to many-body effects of electronic origin. As seen
previously, electronic cohesion in noble and near noble metals is largely caused by
the d-electrons, which form very broad filled d- bands. Thus the main problem of an
empirical approach is the way to express the forces acting on an ion in terms of the
positions of the other ions: the non-directional nature of the filled d-bands, which

have no possibility to re-hybridize to form directional bonds, strongly suggests that
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the key ingredient is the concept of coordination, i.e. roughly speaking, the number
of neighbours of a given ion, which should represent in some way the amount of
local electronic density: the energy should lower once an atom is surrounded by
many other identical atoms.

These concepts can be expressed in mathematical form by writing the poten-

tial energy of a system of IV atoms as
1 N N
V=g ST @(ry) + Y Ulni) (1.6)
i,j=1(i#7) i=1

where a standard two-body part is still present, together with the new many
body term, U. Here, n; is the coordination of the atom ¢, and the function
U(n) associates an energy value to this coordination: for this reason, U(n) has
been nicknamed the “glue” and eq. (1.6) the “glue Hamiltonian”. The simplest
choice for n; consists in building it as a superposition of contributions from the

neighbouring atoms

N

ni= Y p(rij) (1.7)

j=1(j#9)

where p(r) is a short-ranged monotonically decreasing function of distance. Eq.
(1.7) can be seen as a generalization of the usual idea of coordination. The glue
Hamiltonian (1.6) has been introduced from a purely empirical point of view, and
the three functions ®(r), U(n) and p(r) are built empirically and clearly depend
on the metal chosen for the study. In the case of Au, for example, they have been
determined by fitting exactly the T' = 0 lattice parameter, the cohesive energy, the
bulk modulus and the transverse phonon frequency at the X point. This procedure

however, does not definitely fix ®, U and p, but just provides some fitting points,
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so that a large arbitrariness remains in the shape of these functions, and it is in
this freedom that lie both the strength and the weakness of the glue Hamiltonian,
because the more careful will be the fitting of ®, U and p with other properties of
the systems under consideration (e.g. thermal properties like thermal expansion
coeflicients, melting temperature, etc ...), the more appropriate and conclusive

will be the results thus obtained.

When applied to a molecular dynamics procedure to study the Au(110) T =0
structure, the model has given interesting results, also providing useful insights in
the physical mechanism underlying reconstruction. First of all, the (2 x 1) missing
row structure turns out correctly to be the optimal structure (i.e. that of the
lowest energy). Other (2 x 1) models, such as the saw-tooth model, are found to
be unstable. The resulting structure furthermore presents a large inward relaxation
of the top row, a somewhat unexpected slight inward pairing of the second layer
rows, and a third layer buckling. All in accordance (with the exception of the
second layer relaxation) with Ho and Bohnen and experimental results[*?:12:8:13:%],
Since there is some arbitrariness in the choice of the triplet ®, U and p, the glue
term U(n) can be chosen so as to be minimal at some optimal coordination number
no (for example ng = 12, the bulk coordination number), so that it will increase
for both insufficient and excessive coordination. In this way, for the missing row
reconstruction, the close packing which is locally achieved by this geometry keeps
the glue energy small, so that the surface energy decreases in spite of the larger
exposed microscopic area. So, while (2 x 1) is the preferred cell, the (3 x 1),
(4 x 1), ... missing-row structures are found to be very close in surface energy:
[22,6]

these structures have been also observed in STM experiments , as reviewed in

section 1.1, and confirm the (111) faceting tendency of the (110) surface.

As a conclusion, the driving force for surface reconstruction in noble metals,
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as it arises from the glue model, is the tendency of surface atoms to increase
their coordination, induced in turn by electronic effects. While in most metals
this tendency is weak, so that the first layer contraction suffices, in noble metals
it is so strong so as to favour extensive first layer rearrangements. Complicated
geometries arising from these rearrangements are simply a consequence of the
packing tendency, and angular forces (not included in the glue) play no important
role.

Another effective-medium theory involving many-body potentials is the “em-
bedded atom method”, introduced within the framework of density functional
theory by Daw and Baskes(®3:39:4%:%1 Tt is well known that the total electronic
energy for an arbitrary arrangement of nuclei can be written as a unique functional
of the total electron density. The starting point of the “embedded atom method”
is the observation that such density in a metal is reasonably approximated by the
linear superposition of contributions from the individual atoms. The energy of
each atom is so written as the energy associated with the electron density of the
atom plus a contribution from all the surrounding atoms, which can be approx-
imated as constant, being a slowly-varying function of position. This procedure
defines an embedding energy as a function of the background electron density and
of the atomic species considered; in addition, there is an electrostatic energy con-

tribution due to core-core overlap. These ideas lead to an approximation for the

total energy of the form
1
E =) Filpns)+ 5 >~ @4(Ry) - (1.8)
i 1,7 (i77)

where py, ; is the host electron density at atom 7 due to the remaining atoms of the

system, F(p) is the energy to embed atom ¢ in this background electron density
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p, and ®;;(R;;) is the core-core pair repulsion between atoms i and j separated
by the distance R;;. The electron density is approximated by the superposition of

atomic densities

pri= > pi(Rij) (1.9)
J(#1)

where p}‘(R) is the electron density contributed by atom 7, which is taken from
Hartree-Fock calculations. Hamiltonian (1.8) together with (1.9) leads to a scheme
similar to that of the glue model, even in the fitting required to obtain the shape
of the “universal” (i.e. just depending on the atomic species considered) function

F(p) (F; = F, in that all atoms are equivalent).
Applied to surfaces, the “embedded atom method” predicts, for example, the
(2 x 1) reconstruction of Pt (110). Very recent studies!*®*!] using an extension
of the original method in order to prove the accuracy of treatment in regions of
large density gradients, provide new informations on both the energetics and the
kinetics of the Au (2 x 1) missing row reconstruction. It has been found that
steps whose edges lie parallel to the close-packed rows on the (110) surface have
extraordinarily low energies, so low indeed that it should be difficult to prepare
a surface not having a substantial number of steps by ordinary means. If the
surface starts in disordered form, (2 x 1) order can thus develop without long
range movements of individual atoms, and the mass motion problem pointed out
by Bonzel and Ferrer2®:24! is no more present. Even so, diffusion clearly remains of
interest, and in this regard complex processes like concerted (multi-atom) moves

have been found relevant on that as well as on other metal surfaces.
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Chapter 2

The roughening transition

2.1 Statistical models

2.1.1 From Burton, Cabrera and Frank to the Discrete Gaussian

model

In 1949 Burton and Cabreral*?! first put forward the idea (further developed in a
now classical article by Burton, Cabrera and Frank(*®]) that a phase transition may
occur in the equilibrium structure of crystal surfaces. They conjectured that low
index crystal faces in equilibrium with vapor, melt or solution, would become rough
above a certain transition temperature Tr: this can have important consequences
for the speed of growth and the equilibrium shape of the crystal. The idea was to
divide the three-dimensional (3D) space into building blocks containing one atom
each (lattice cells), and to map the resulting 3D lattice-gas model onto the 3D
Ising model, where solid regions are described by occupied cells (e.g. up spins)
and vapor ones by empty cells (down spins). The transition is characterized by
the interface becoming infinitely “rough” in the sense of a divergent interfacial
width. The argument used by Burton, Cabrera and Frank for the existence of
such transition was partly based on a mapping of the interface problem onto the
2D Ising model, which had just recently been solved by Onsager!**! and which

could lead to large fluctuations in the surface structure at the critical temperature
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T2P. The idea is undoubtedly valid at low temperatures, but breaks down near
the transition temperature, when the interface tends to delocalize before becoming
infinite in width and any mapping onto a model which takes into account one layer
of atoms only is no longer valid. This failure ends up in a wrong prediction about
the universality class to which a correct roughening model should belong, which

is not of the 2D Ising type.

Since 1949, a wealth of theoretical work (reviewed in refs. [45,46] ) was pro-
duced, especially after a certain class of models was introduced, imposing the
Solid-on-Solid (SOS) restriction on the Hamiltonian. This is the further require-
ment that every occupied site is directly above another occupied site (thus ex-
cluding “overhangs” in the surface shape, as well as voids in the solid phase or
“bubbles” in the vapor phase). A SOS model can thus be thought of as an array of
interacting columns of variable integer heights. The surface configuration is repre-
sented by the 2D array of integers specifying the number of atoms in each column
perpendicular to the chosen low index face or, equivalently, by the heights of the
columns relative to a flat reference surface. Growth or evaporation of the crystal
involves just the “surface atoms” on the top of their columns. In this way, the
SOS Hamiltonian is expressed in terms of a set of height variables {hi;} defined
at each site ¢j of a two dimensional lattice, and the surface energy is a function of
the number of broken bonds due to the existence of surface fluctuations. A wide
variety of SOS models can be considered, in which the interaction energy between
neighbouring columns is some increasing function V of their height difference,
which is proportional to the number of broken bonds, so that the Hamiltonian can

be written as follows:
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Hsos = »_, V(hij— huj) (2.1)

ij <y’
It is worth noting that the number of vertical broken bonds is conserved in the
excitations permitted by the SOS model, hence one can arrive at (2.1) formally
by considering the interface in an anisotropic lattice gas with a vertical bond
strength J, and then letting J, — co. If in (2.1) the interaction energy is taken
of quadratic form, one arrives at the so-called Discrete Gaussian model (DG), first

studied by Chui and Weeks(*7]:

Hpg = Z J(hi; — hi’j')z (2.2)
i<’ j’

The partition function of Hamiltonian (2.2) was rewritten, via a duality transfor-
mation, into the partition function of a neutral 2D Coulomb gas, but with the ratio
J/T inverted. In this way the existence of a transition was established between a
smooth, low-temperature phase, and a rough, high- temperature one and, what 1s
more, it was placed in the Kosterlitz-Thouless universality class(*®%®] (believed to
be the correct one). Different forms of the interaction energy V will not change
the universality class because the roughening transition involves long-wavelength
fluctuations in the position of different parts of the interface, thus changes in the
interaction energy between columns that affect only short-wavelength properties

should be irrelevant at the roughening point[#%].

It is now useful to present some of the results of the Renormalization Group
calculations on the SOS model*S).

The singular part of the free energy is not analytic at Tg, its form being
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for T'in the neighbouring of T (B and C are non-universal constants), but the
singularity is a very weak one as all the derivatives of Fs with respect to T are
smooth functions of T vanishing at Tg. In particular, there is no specific heat
anomaly at Tg, in contrast with the Ising model: the transition is said to be of
infinite order.

The correlation length, which is the characteristic length for correlations be-
tween thermal excitations of the crystal surface, is finite well below Tg, while it

diverges at Tg like

A
£~ ¢Pexp <\/T‘R—_T> , T'<Tr (2.4)
0o, T>Tgr

with £° and A again non-universal constants.
But the most striking result concerns the behaviour of the height-height cor-

relation function,
G(R) = ([A(Ri;) — h(Roo)]*) (2.5)

where R = |R;; — Ryo|, and the angular brackets denote an ensemble average in the
SOS system; this function gives a measure of the diffusiveness of the interface due
to fluctuations in height between different regions of the surface. Its full expression
is

G(R) = K(T)e% In [aﬁ (-}% + gl*z“)} - (2.6)
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where a and a, respectively, are the lattice constants in the direction orthogonal
and parallel to the plane of the surface under consideration (where it is implicitely
assumed that | is the same for different principal directions in this plane). £ is
the correlation length introduced in (2.4), hence for T'> Tr one has (™! =0 and a
logarithmic divergence of G(R). The coefficient K(T') is an increasing function of
temperature, whose behaviour is specifically predicted by Renormalization Group
calculations. At the roughening temperature, K (T') assumes the universal value

K(Tg) = ;r-lg (2.7)

approached from above in the following way:

K(T) = — + 0+/(T — Tx) (2.8)

where the power % is universal, but the constant C is not. The correlation function
is clearly related to the fluctuations in height of a point of the interface about its
average value (h(Rogo)), being

(852) = (R2(Bao) - (h(Boo))? = Tim_ S{[(Rig) = h(Rao)')  (29)

;j—roo 2
so that

K(T)ln(f/a”), T <Tr

(8h7) { K(T)n (L/ay), T>Tr (2:10)

thus saturating at a constant value for temperatures below Tr (smooth phase),

instead logarithmically diverging with the size L of the system for T' > Tp: this
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delocalization of the interface is the concept more closely related to the statistical
mechanics idea of roughening. It should also be remarked that (2.6) and subse-
quent formulae should hold for anisotropic surfaces as well, at least in the limit of

large R.
2.1.2 The BCSOS model (and the six vertex model)

Another type of, SOS model presenting a roughening transition and, what is more,

exactly solvable, is the BCSOS (Body Centered Solid-on-Solid) model introduced
by van Beijeren!®® in 1977. The system under consideration is the (100) face of a
bee crystal, in which both the atoms at the corner of the cube and those at the
center are taken into account. At T' = 0, nearest neighbour columns differ by one
atom since half the columns terminate in the layer directly below the outermost
surface layer. Now the system is constrained such that at all temperatures these
nearest neighbour columns can differ by at most &1 atom. Thus the higher-energy
multiple jumps between neighbouring columns are completely suppressed but, as
argued before, this should have no effect on the critical behaviour: the BCSOS
model is expected to be (and actually is) in the same universality class as the other
SOS models.

In practice, the system is composed of two standard SOS models defined on
two interpenetrating square sublattices, where on one of the sublattices the height
variables may assume only odd values (+1,£3,...) and on the other sublattice
only even values (0,+2,%4,...). Also, the additional (and very relevant, as it will
be seen later) restriction is imposed that the height jumps between neighbouring
sites (belonging to different sublattices) may be just £1. Van Beijeren showed with
a simple argument that the allowed configurations in the BCSOS model can be

placed in exact correspondence with the vertex configurations of Lieb’s six vertex
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Fig. 2.1: The six vertices.

modell®152:53] which is the 2D version of the ice model, introduced by Pauling®4

and Slater(33] in order to study the residual entropy of ice at T' = 0, as well as the
ferroelectric phase transition. Hence the two models are isomorphic.

Van Beijeren’s construction proceeds by assigning arrows to the bonds of
the dual lattice, fixing their direction in such a way that the higher of the two
neighbouring height variables always lies to the right of an up-pointing arrow. It
is easy to see that at the sites of the dual lattice, where four arrows meet, just six
of the sixteen possible combinations of four arrows are realised. They are precisely
the vertices allowed by the six vertex model (shown in fig. 2.1), satisfying the so
called “ice rule” (at each node of the dual lattice two arrows point inwards and
two outwards) which is an immediate consequence of the uniqueness of the height
variables of the surface system. This also makes one-to-one the correspondence
between vertex configurations and BCSOS height configurations (up to an overall
vertical shift of the height variables, a symmetry which can be removed by fixing

the value of a simple height variable).

The six vertex model, which was exactly solved by Lieb and Wul®2!| can be divided
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into different classes according to the values of the energies ¢; assigned to each
vertex. If the system is invariant under arrow reversal, the energies satisfy ¢; = ¢»,
€3 = €4 and €5 = ¢¢. The exact solution is available for general €1, €5 and €5, and
is given in terms of the quantity
a? +b% — 2
A= g (2.11)
where a, b and ¢ are the Boltzmann factors associated with €1, €3 and €5 respec-
tively. This quantity has a great relevance in the analytic solution, because most
properties of the six vertex model do not depend on a, b and ¢ separately, but on
their combination A. Three cases are of special interest:
1) The Ice model: ¢y =¢3 = &5 =0
The ice rule, according to which the arrows are arranged around the sites, is
nothing but a topological constraint imposed to model the effective structure
of the solid phase of water (hence its name). In all ice phases, in fact, each
oxygen atom is tetrahedrically surrounded by four other identical atoms, and
the hydrogen can randomly choose the oxygen to which to bound with, the
only limitation being the fact that each oxygen can be bound only to two hy-
drogens (the water molecule is H,O). Since all the six vertices are equivalent,
only entropy, not energy, is involved in this particular realization of the six
vertex model, so that it allows to calculate, for example, the residual entropy
of ice at T' = 0, which is not zero because of the amount of disorder resulting

from the structure described above.

2) The KDP model: ¢; = 0,63 =e5 =¢ > 0
KH;PQO, (potassium dihydrogenphosphate, in jargon KDP), a hydrogen-

bonded crystal whose structure contains easily recognizable electric dipoles,
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undergoes a ferroelectric phase transition at 7' = 122K. KH,POy, is tetrag-
onal with every phosphate group tetrahedrically surrounded by four other
phosphate groups, where the hydrogens (that is, the protons) are located be-
tween each pair of phosphate groups, near one or the other, so that all the
resulting structure is very similar to ice. But not all the vertices are equiva-
lent now, since the lower temperature phase is ferroelectric, so that an easy
suggestion by Slater!®®! was to energetically encourage the ’ferroelectric’ ver-
tices 1 and 2, and to discourage all the others by raising their energies with
respect to the first ones. In this case, the six vertex model presents a low
temperature phase with complete ferroelectric order and correlation length
¢ = 0, and a high temperature one with { = co. The transition from one
phase to the other turns out to be first order, and occurs at A = 1, that is

whena=0b+¢c — kpTec =¢/In2.

The F model: e1 =e3=¢>0,e5 =0

Rysl®%] suggested to discourage vertices 1 to 4 in favour of 5 and 6, if one
wanted to get an antiferroelectric order for the low-temperature phase. The
high-temperature phase is the same as in the KDP model, however the
transition becomes of infinite order, occurring for A = —1, that is when

a+b=c — kgTc =¢/ln2.

The BCSOS model corresponds to the six vertex model in its F version, where ¢

equals the interaction energy J between atoms in each sublattice (isotropic in the

x and y directions), while, as said before, interaction between the two sublattices

are taken of infinite strength, thus allowing just for a height difference of £1. As

shown by van Beijeren®®| this model can be thought of as the limit of a lattice
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gas model on a bcc crystal lattice with strong nearest-neighbour interactions and

much weaker next-nearest- neighbour interactions.

From the physical point of view, the complete low T antiferroelectric order
of the F model corresponds here to the presence of vertices 5 and 6 only, thus,
according to van Beijeren’s construction, to a flat surface (one sublattice, for ex-
ample, with all sites at height 1, the other all at 0). The rise in temperature is
accompanied by the comparison as excitations of all the other vertices, that is of

steps and adatoms on the surface, leading to the rough phase.

Being exactly solvable, all the properties of this Kosterlitz-Thouless phase
transition are known. All the Renormalization Group predictions discussed in the
preceeding section for the Discrete Gaussian model (which is in the same univer-
sality class as the BCSOS model), are confirmed, in particular the non-analytic
behaviour of the free energy at the transition temperature, and the resulting ab-
sence of a heat capacity peak at Tr. However, a rounded anomaly is predicted to
occur below Tg, due to a rapid continuous change in the surface disorder. In fact,
roughening corresponds to an inverted XY model transition (i.e. with an inverted
ratio J/T'), where the appearance of defects which break short range order occurs
above the critical point; the specific heat thus shows a maximum not at Tx but
for T'~ 0.817%.

Further developments of van Beijeren’s idea are due to Jayaprakash and

57:58,5%] and by Trayanov et al. [ who specialize to an anisotropic ver-

Saaml
sion of the BUSOS model in order to account for the roughening of the (110) face
of fcc crystals. This model is again exactly solvable when mapped onto the six ver-
tex model. The details are left to chapter 3, when the Kohanoff-Jug-Tosatti model

is introduced and studied, since the initial underlying physical considerations are

the same for all these models.
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2.2 Phenomenological studies and experimental evidence

2.2.1 Wulff’s construction and the equilibrium shape of crystals

If from the statistical point of view one can characterize the roughening transitién
by the divergence of the height-height correlation function, from the phenomeno-
logical point of view one can associate it with the disappearance of a cusp in the
so-called y-plot, microscopically corresponding to the vanishing of the step free

energy of the roughening surface.

The v-plot is nothing but the polar plot of y(f), i.e. the surface free energy
~ as a function of the surface orientation fi. Since the crystal, at a fixed volume,
tends to achieve minimum total energy by suitably distorting its shape, thereis a
clear relation between v(1) and the equilibrium crystal shape, first mathematically
expressed by Wulffl®% in 1901 and completed by Herring!®! 50 years later. Wulff’s
construction permits to draw the equilibrium shape of the crystal starting from
the knowledge of its free energy, or to reconstruct the latter from measurements of
the formerl82]. In particular, cusps at certain orientations of the y-plot correspond

to facets in the crystal shape, i.e. regions with zero curvature.

In general, the surface of a crystal in equilibrium consists of these facets,
which are macroscopically flat and, at T # 0, of rounded parts between them. The
facets are crystal faces in a smooth phase, i.e. below their roughening temperature
and the rounded parts may be considered as constructed from infinitesimal pieces
of rough faces. So, if the temperature is raised through Tr(f) (the roughening
temperature of a face of orientation n), the facet size shrinks to zero and the
orientation n becomes part of a rounded area. Therefore, for the relation between

the ~-plot and crystal shape, the roughening transition can be characterized by
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the disappearance of a cusp from the ~-plot.

If now one wants to obtain an expression for the surface free energy v (or f)
as a function of orientation from a simple model, one is lead to study a vicinal
surface, which is a surface under a tiny angle from a low index one. Adopting an
SOS model on a square lattice to describe the situation, one can build at 7' = 0 the
vicinal surface of orientation (p,0,1), with |p| < 1, by creating p straight steps per
unit length in the x direction on the (001) flat _facet[%]. At non zero temperature
the straight steps will develop kinks, and the terraces between them will develop
thermal excitations in form of small bumps (adatoms) and pits (vacancies). The

surface free energy of the surface per unit area is expressed as

f(p,0,1) = £(0,0,1) + f2(0)|p| + ... (2.12)

where f5(p) is the free energy associated to a step forming an angle ¢ with the
¥ direction per unit length and unit step height, and the dots stand for entropic
contributions (ignored because of no interest in what follows), and interaction
terms between steps (neglected in the limit [p| — 0 because of order p? or greater).

If £5(0) > 0, one sees from (2.12) that f(p,0,1) exhibits a cusp as a function
of pat p = 0. According to the preceeding discussion, this implies that the
equilibrium crystal shape exhibits a facet in the (001) direction; furthermore it
can be proved that the diameter of this facet in the y direction is proportional to
£(0). More generally, f(\cos e, Asin ©,1) as a function of A exhibits a cusp at
A = 0 under a slope given by

of

N —a = fs(ﬂo) (2.13)

But, since the roughening transition macroscopically corresponds to a facet in the
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equilibrium crystal shape shrinking to zero at T, that is to the disappearance
of a cusp in the Wulff’s plot, one can conclude from (2.13) that the roughening
transition can be characterized microscopically by the vanishing of the step free
energy for steps on the facet that roughens up. Once this happens, steps of
arbitrary length will form spontaneously on this face, so that the height h(7oo)
of a chosen point on the interface will fluctuate more and more about its average
value, thus causing the divergence of the height-height correlation function, as
results from the statistical mechanics definition of roughening of formulee (2.5)-

(2.10).

Experimental observations of roughening are generally difficult, since the transi-
tion is an infinite order one, with no specific heat peak at Tg, for example, and
no characteristic line in the diffusion spectrum, just a characteristic shape which
can be observed only if inelastic scattering is carefully subtracted. Certain groups
of researchers have thus directed their attention to the measure of the equilibrium
shape of crystals, bun even in this case difﬁculfies arise since, as pointed out by
Lipson!®®!, none of thé well known symmetric shapes of natural minerals repre-
sents what the crystal would look like were it in thermodynamic equilibrium with
its surroundings. They are all growth shapes, “frozen” because their relaxation
rates increased so much with size that only in geological times they could achieve
their final form. For these reasons, the roughening transition was experimentally
observed only in the early 1980s, more or less 30 years after the first theoretical

developments, on the surface of helium crystals[64’65’66].

Solid ¢ He is the only material known whose macroscopic crystals can achieve
a thermodynamic equilibrium shape within an experimentally convenient scale of

time, due to two main features: the large effective thermal conductivity together
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with the near absence of latent heat at the solid-liquid cohexistence line.

Various roughening transitions where so observed on the different faces of
hep helium crystals just by looking at the sample (either via light filtering or
interferographic techniques[63’67’6s]) and detecting the disappearance of a facet as
Tr is reached. The three transitions so far observed are at 1.28K on a c-facet

(0001), 0.95K on a (1100) and 0.35K on s (1101).

A property of the crystal which is strongly affected by the state (smooth
or rough) of the interface, is the growth rate. It can be shown, for a model
of a surface square lattice of spacing a, that this quantity is proportional to
exp{—4a®[f5(T))? /kpT6u}, where f3(T) is the step free energy and &u is the
chemical potential difference per atom between the solid and the fluid phase. By
measuring the growth rate of the c-facet as a function of §u in a small temperature
region just below T, Wolf et al. [?] and Gallet et al. [7% were able to investigate
the critical behaviour of f%(T) near Tg. The result of these experiments was the
definite confirmation of the prediction of the SOS models, i.e. of eq. (2.3), as kwell

as the most accurate determination of the value of T for this orientation, 1.28K.

Other experimental evidence on the equilibrium shape of crystals is provided
by Heyraud et Métois®?) on small lead crystallites. For the above-mentioned
equilibration difficulties, their sizes are 3 orders of magnitude smaller than those
of helium crystals ( ~ pm instead of ~ mm), and the equilibration times are about
2 orders of magnitude greater (~ 10 hours instead of few minutes). Nonetheless,
the crystallites were visualized by scanning electron microscopy, 3 facets at least
were recognized, the (100) , (110) and the (111) , and employing the Wulff theorem,
the surface free energy as function of the orientation was obtained from the clear
photographs of crystal shapes for four temperatures confirming, for example, the

decrease of this quantity with temperature.
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2.2.2 Universal behaviour of crystal shapes

As pointed out by Rottmann et al. ("] the equilibrium crystal shape is nothing
but a geometrical expression of interfacial thermodynamics. From the knowledge
of the free energy per unit area f(7T, 1) on the interfacial orientation 1, Wulft’s con-
struction permits to determine the equilibrium shape (7, 1h), where r is the radius
to the interface from the center of the crystal in the direction 1. Andreevl made
explicit the sense in which Wulff’s construction is simply a Legendre transform,
so that f, n and r, 1M are thermodynanﬁcaﬂy conjugate pairs and the relation
A(T,1h) defined by the Wulff’s construction is an equation of state. From this
perspective, (T, 1h) is a free energy as well as f, and its singularities define an
interfacial phase diagram. But at fixed T, the singularities in r are simply the crys-
tal edges. In the intermediate temperature regime, where both facets and curved
interfacial regions are present, the two meet at edges which may be either sharp
(with a slope discontinuity) or smooth (no slope discontinuity). Near a smooth

edge the shape of the curved interface varies as

z=A(z —zc)® + higher order terms (2.14)

where z = 0 for z extending up to z¢, the edge position, represents the flat facet,
and the rounded regions start at z¢. For what was just observed, the behaviour
near a smooth edge is critical behaviour, and 8 is a critical exponent. While mean
field calculations!™! provide the value § = 2, Renormalization Group calculations

including fluctuations!™ and exact solutions [°® lead to the universal prediction

3
o=3 (2.15)
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universal in the sense that it is independent of temperature and facet orientation.

Careful analysis of crystal shape data near a smooth edge for Pb crystallites
performed by Heyraud and Métois!"! lead to the value § = 1.60 + 0.15, while
other experiments by Carmi et al. (" on helium crystals provided a best fit value
of § = 1.55, both in accordance with the Renormalization Group prediction (2.15),
and inconsistent with the mean field result.

It is worth noting that the value 6§ = % is reached also from another way:
a simple model of step-step interaction leads to a |p|* term in addition to those
already present in (2.12), so that the expression of the free energy per unit area,

for small p, becomes

f(p:0,1) = £(0,0,1) + £(0)lpl + Clpf + ... (2.16)
Performing a Wulff’s construction from (2.16), one obtains the behaviour

(z —z¢) = ——z-C"kB — :ccf%

NI

where again the result shows 6 =

Another striking property of the Renormalization Group theoryl®®:%9] also
connected with the interface shape, is that the radius of curvature for the surface
element with the orientation of the roughening facet jumps from oo (the flat facet

for T' < Tg) to the universal value

EZO(kBTR)

Re =
2 ya?

(2.17)

where z is the distance of the crystal center from the tangent plane at the surface,

and 7o is the surface tension per unit area (for an anisotropic surface Ro has to
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be replaced by (RLR%)!/?, RL and R% being the principal radii of curvaturel™).
A well-known analog of the result (2.17) is the universal jump in superfluid areal
density at superfluid onset in * He films, but it is not at all an unexpected connec-
tion between two systems which apparently have nothing in common. In fact the
XY model describing the transition in *He films is dual, as seen, to SOS models
exhibiting roughening. Experimental confirmation of (2.17) has been obtained, for

example, by Wolf et al. [6%),
2.2.3 Other experiments

Other experimental evidence on the roughening transition is provided by atom
beam diffraction experiments, mainly performed on metal surfaces by the Saclay
groupl™ 778 and by the Seattle group!7®#%:81, Both groups chose to investigate
the roughening of stepped metal surfaces. The first focused on Cu(113), (115) and
(117), all vicinals of (100), and found that while for close packed faces like (111)
and (100) the data were consistent with a Debye-Waller factor for the decrease
of the anti-phase peak intensity with temperature, it was not so for the vicinal
surfaces where, from a certain threshold temperature up, a sudden decrease from
the expected behaviour in the direction of a greater decrease of intensity was
observed. This was interpreted as an occurrence of roughening on the surface,
and the threshold temperature was considered a lower bound for Tr. Such data
have clarified, as a general feature, that Tr(117) < Tgr(115) < Tgr(113). The
less close packed the surface is, the lower its roughening temperature will be,
because roughening on stepped surfaces is mainly due to formation of defects
(kinks, adatoms and vacancies) on the preexisting steps, and their creation is
easier on more open surfaces than on more compact ones. Successive refinements

of the method!"® together with an empirical model of a stepped surface, provided
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a definite value for the roughening temperature of the (115) face of Cu, for example
(Tr = 380K), and for the step-step interaction energy.

Similar considerations were made by the other group, who measured the
roughening temperature on Ni stepped surfaces, obtaining Tr(113) = 750 £ 50K,
Tr(115) = 4504+ 50K, Tr(117) = 400£50K (and a lower bound for the roughening
temperature of the (100) face, 1400K, but no real evidence of its actual occur-
rence). The decrease in T with the increase of the Miller indices of the vicinal
is interpreted also in terms of the step-step interaction energy, so that the small
reduction in Tg in correspondence with a further increase in the terrace widths
(i.e. from (115) to (117)) is an indication of the short range of the step-step
repulsive interaction, which falls off rapidly with distance and does not change
considerably any more between 6 and 9 A (the mean terrace width of (115) and

(117) respectively).
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Chapter 3

Models for surface reconstruction

and roughening

A number of models have been proposed so far in order to describe the roughening
of reconstructed noble heavy metal (110) surfaces, that is, to study the link be-
tween two phenomena which have a priori no reason to be thought of as separate.
One of these models is the object of our study, and will be described in detail in

section 3.5, while the others will be briefly reviewed here.

3.1 The model of Levi and Touzani

The starting point of Levi and Touzanil?? is the six vertex model in its anisotropic
version, as already proposed by Jayaprakash and Saaml®7:38:%% for the study of
the (110) face of fcc crystals. The antiferroelectric phase (i.e. the unreconstructed
surface) corresponds to the inequality €5 < €1 < €3 for the vertex energies, whereas
the missing-row structure appearing in the heavier metals, translated into a vertex
language, is made of an ordered array of rows of vertices 1, 5, 2 and 6, where
vertices 1 form the ascending slopes, 5 the ridges, 2 the descending slopes and 6
the valleys, so that no two adjacent vertices belong to the same type. Thus, it
would look natural at first to increase the density of vertices 1 and 2 by changing

the order of the inequality to e; < €5 < €3. Unfortunately, this change brings the
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six vertex model to the ferroelectric phase, the structure of which is disappointingly
simple: up to the transition all vertices are type 2 (or 1, which is the same). This
situation does not correspond to reconstruction but to a constant descent in the
surface with a slope a = arccos \/2% = 35°16', i.e. to an effective replacement
of the (110) surface by a (111) surface. In order to really obtain a missing row
ground state, the six vertex model has to be modified, and it can be done mainly
in three ways: 1) by introducing, along with the energy inequality €1 < €5 < €3, a
repulsive interaction 11 between adjacent vertices of the same type, to discourage
the creation of a (111) facet; 2) by still considering e5 < 61. < g3, which favours
the unreconstructed (110) surface, but encouraging reconstruction by introducing
a repulsive energy £5¢ between adjacent vertices of type 5 and 6; 3) by introducing

both €11 and €56 (e.g. of the same strength).

However, in order to perform a transfer matrix finite-size scaling, a drastic
simplification must be employed, that is to consider the interactions between ver-
tices in a direction only, and to put them to zero in the other. All the three models
give qualitatively the same results, in terms of the parameter v = (g1 — €5)/€int
(where it = €11 in model 1, gt = €56 in models 2 and 3). They find thatﬂ for
very low values of 4 the ground state forms a faceted (111)-like phase (a “macro-
scopic sawtooth”), then for increasing v a (2 x 1) reconstructed phase, and finally
a (1 X 1) unreconstructed phase. They are able to locate the roughening transi-
tion temperature of their models by looking at the vanishing of a quantity strictly
connected to the step free energy, drawing in the end a phase diagram where a
smooth phase (of one of the three forms listed above, according to the value of v)

occurs at low temperature a rough one at higher temperature.

The results obtained contrast the existence of other phase transitions, as

suggested by some authors, like a possible order-disorder transition (for example
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of Ising character) occurring at intermediate temperatures from the (2 x 1) phase
to a floating one with presence of higher order reconstructions or directly to a
rough phase. In the model of Levi and Touzani, the roughening transition remains

in the Kosterlitz-Thouless universality class.

3.2 The model of Villain and Vilfan

Villain and Vilfan(!#2] subsequent to the LEED experiments of Campuzano et
al. 1] suggesting an Ising behaviour of the Au(110) deconstruction transition,
proposed a model to investigate this system.

The (110) surface is anisotropic, the “hard” direction being the missing-row
direction (hereafter denoted by y), the “weak” one being that perpendicular to it
(x). If defects are introduced on the (2 x 1) reconstructed surface at T > 0, they
will show up as line defects in the y direction (that is, breaking weak bonds rather
than strong ones) resulting in chains of nearest neighbour atoms. The structure
is thus simply characterized by a cross section of the sample perpendicular to the
y direction, as in figure 3.1.

The reconstructed ground state has a two-fold degeneracy, since the missing
rows can be chosen in two possible ways, odd rows or even rows, therefore Villain
and Vilfan expect the transition to be in the Ising universality class, just as in
Bakl®¥. On the (2 x 1) surface, the Ising variable may be thought of as the parity
of the missing row, and a domain wall may be defined as a defect dividing two
regions of the surface with opposite Ising order parameter. That is, if even rows
are missing on the left hand side of the wall, odd rows are missing on the right

hand side, and conversely.
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Fig. 3.1: Side view of the (2x1) reconstructed (110) surface. a) Ideal surface
without defects; f,g) elementary excitations characteristic of a roughening transition;

h,i) Ising excitations; d,e k) higher energy roughening excitations; b,c,j) higher energy
Ising excitations.
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In an ordinary Ising model, order is destroyed by these domain walls, while in
the SOS models roughness is created by steps. Villain and Vilfan noticed that in
the case of Au(110), both domain walls (fig. 3.1-b,c) and steps (fig. 3.1-d,j) might
be expected to be relevant, and assigned different energies, 77 to domain walls and
¢ to steps, with the simplifying assumption that all domains of the same type (all
kind of walls as well as all kind of steps) have the same energy. Moreover, since a

domain wall is made of two steps, they considered n = 2¢.

When the temperature is raised, the only change in this picture is that these
line defects are no more straight, but develop kinks which break the hard bonds,
so that a very high contribution Wj in energy is required, with Wy > e. All other

structures of fig. 3.1 were considered to be higher in energy, thus neglected.

Within this approach, they calculated the partial partition function Zj of
states with one domain wall, and located the Ising transition temperature To at
the point when Z; equals Z, the partition function of the ground state. The same
procedure was used to locate the roughening transition temperature Tg, taking
into account only step-like defects. Only the lowest between To and Tr makes
sense, and determines the nature of the (2 x 1) deconstruction transition. They
established that To < TR, so that the deconstruction transition belongs to the
Ising universality class, in full agreement with Campuzano’s results. Then the
roughening transition should occur at a reasonably higher temperature, so that
Ising exponents are not blurred with roughening effects, but it might belong to

the Ising universality class as well.

82,83] reconsid-

In a very recent version of their study, however, Villain et al. |
ered the energetics of their model, recognizing in type 3.1-f,g the lowest energy
steps, and in 3.1-h,i the lowest-energy domain walls, in accordance with Ercolessi

et al. 2728 whose calculations showed that the (3 x 1) phase was only slightly
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shifted upwards in energy with respect to the (2 x 1). With this change, the
answer to the question of the nature of the transition is not so clear as before,
especially in the absence of reliable estimates for the energy parameters associated
with each defect.

Nonetheless, they presented a new model for a roughening transition which
lies outside the Kosterlitz-Thouless universality class, just by considering Ising
order on fhe surface and the behaviour of domain walls, i.e. of steps. Up (fig. 3.1-
e,g) and down (fig. 3.1-d,f) steps can be represented by lines and distinguished by
arrows, but for topological reasons two steps of identical sign cannot cross, while
two steps of different sign can cross and a free energy U may be assigned to each
crossing (i.e. to each lattice site common to two steps). The surface is so traversed
by lines which oscillate around the y direction due to the presence of kinks on them,
but which present no overhangs, for topological reasons too: it is thus natural to
replace the y coordinate with time, and to think of them a,sAthe trajectories of spin
% fermions, subject to a two dimensional Hubbard Hamiltonian. The Hubbard
model was exacty solved by Lieb84] in 1968, but only some special cases are taken
into account (U = 0, U = oo) by Villain et al.: in the latter case, they get very
unusual exponents for the transition driven by steps, a = v =x = %, which pléées
it outside the Kosterlitz-Thouless (but also outside the Ising) universality class.

With their model, they do not expect to account directly for the Au(110)
phase transition, but simply to show that roughening can occur with an upper
critical dimension (4 instead of 3) and critical exponents which are not those of

the SOS model.
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3.3 The model of den Nijs

Den Nijs[®%#¢] has recently introduced in the field a new concept, that of a pre-
roughening transition between an ordered flat (OF) phase and a disordered flat
(DOF) phase. The difference between the DOF phase and the rough one is that the
former contains an array of steps with positional disorder but long range up-down
order (i.e. up and down steps strictly alternate), so that the surface remains flat
on average, while the latter shows the usual height fluctuations. The preroughen-
ing transition is so identified by the vanishing of the free energy for the creation
of steps, although the energy associated with the tilting of the surface does not
vanish. Its vanishing will instead locate the true roughening transition which lies

in the Kosterlitz-Thouless universality class as usual.

A fairly complex phase diagram is then proposed, with four different possi-
bilities for the transitions of the (110) surface of noble metals, the discriminating
parameter being the energy difference AE between the ordered flat and recon-
structed surfaces. For AE > J, as it is supposed to be the case for Cu and Ni,
there is a direct transition (of the Kosterlitz-Thouless type) from the OF phase to
the rough one. For AF still positive, but small, den Nijs proposes a preroughening
transition from OF to DOF, and successively for higher temperatures the usual
roughening one, choosing Ag and Pd as candidates for this type of path. The third
possibility is similar to that conceived by Villain and Vilfan!'*!, and should hold
for Ag and Pt: an Ising deconstruction transition, followed by a roughening tran-
sition (still in the Kosterlitz-Thouless universality class). The fourth possibility is
an interchange in the order of these two transitions, which ends first in roughening
simultaneously inducing deconstruction. Further analysis led den Nijs to propose

a “four state chiral clock-step model” in order to account for the behaviour of the
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system near the multicritical point in which the Ising and the roughening transi-
tion lines meet. The missing row structure is in fact characterized by four possible
locations of the top rows, while arrows can be assigned to domain walls of the
resulting four state clock model, in a way similar to that of Villain and Vilfan.
The intersections of these arrows suggest to define on them a six vertex model,
so that the resulting partition function is weighted by a six vertex one, and addi-
tional chirality A is imposed in order to account for differences in energies between
“clockwise” walls (like those of fig. 3.1-d) and “anti-clockwise” ones (like those of

fig. 3.1-f).

The model is quite complex, and up to now just the A = 0 case has been
examined via a finite-size transfer-matrix method: the result seems to be a simul-
taneous coexistence of Ising and roughening critical behaviour, not only at the
multicritical point but all along the roughening driven deconstruction line too.
Further work is needed also to clarify the role that supersymmetry and conformal

invariance considerations may play in the game.

3.4 The model of Jug and Tosatti

The model proposed by Jug and Tosatti[17'87*18'19] is described in terms of an
anisotropic SOS Hamiltonian of discrete column height variables {h;} and {li},
each set of heights being defined on one of two interpenetrating sublattices cor-
responding to the first two inequivalent surface layers, like in van Beijeren’s con-

struction. The Hamiltonian is, then
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H/J =a Z[(hi L)l = Rigs) + (5 = higs)(higs — Ligs)]+
+ Z[(hz' ) = higg) + (= hiag)(hivy — Las)l+ (39

=B (ki — hiyz)* + AH(a)/J
where

AH(@)/T = (1+e) Y the = L + (1 — hiya)?

13

is an ordinary nearest neighbours SOS contribution needed in order to fix J as the
effective step energy cost in the y direction. Here, as usual, x and y are respectively
the soft and hard (missing-row) directions and % and ¥ their unit vectors. The first
two terms in eq. (3.1) induce at sufficiently low temperatures (so that the height
jumps between two nearest neighbour sites h; — I; = s; are constrained to be +1),
a ferromagnetic ordering in the “spins” si, corresponding to the ordered (1 x 1)
structure. The parameter o (0 < a < 1) measures the local anisotropy in the x vs
y directions. The next term corresponds to next-nearest-neighbour interactions,
inducing a more stable missing row profile in the x direction for 8 > 0.

Ground state energy considerations show that in this model E("lxl) < E(OZXI)

for § < %a. Hence, at zero temperature it behaves like an Anisotropic Next
Nearest Neighbour Ising (ANNNI) model in terms of the spins s;, in that there is
a switch from the ferromagnetic (1 x 1) phase to the (+ + ——) (2 x 1) phase as
a function of the parameter x = 48 — 2c. On the other hand, the true symmetry

of the model is that of an SOS model, so it is likely to exhibit a roughening

transition. The model so has all the needed properties to properly describe the
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noble metal (110) surfaces, together with the presence of higher energy, higher

order reconstructions.

Two possible solutions can be attempted: the first is an analytic low-
temperature investigation!!”] of the properties of the model near the multiphase
point at £ = T = 0, where both (2 x 1) and (1 x 1) phases cohexist, together with
all the reconstructed (n x 1) phases, with » = 3,4, ..., which are all degenerate
ground states provided only the first-layer n —1 rows are missing (these structures
are called “shallow reconstructions”). The different (actually co) domain walls be-
tween all these structures are then considered within a free-fermion approximation,

as done by Villain and Bakl®®] for the 2D ANNNI model.

[87,18,19] performed

The second possibility is a transfer-matrix finite-size scaling
on Hamiltonian (3.1) with the additional (six vertex) constraint of 1 height jumps
only between nearest neighbours heights (restricted Jug-Tosatti model), which

should not affect the main conclusions of the investigation, at low and intermediate

temperatures at least.

Both the approaches agree in predicting To < Tr, Tc being the deconstruc-
tion temperature, Tr the roughening one. However, Tc now strictly denotes a
pseudo-transition, characterised by a non-divergent peak in the heat capacity,
while Txr denotes a transition with, possibly, variable critical exponents, so that
its universality class is not necessarily Kosterlitz-Thouless any more. Between the
two transitions a sequence of disordered incommensurate phases, arising from the
presence of the shallow reconstruction states degenerate at T = 0, is present as a
precursor to roughening. Physically, the lower transition at Tc should correspond
to a proliferation of defects in the missing-row structure, while it is only at T'r
that these defects become unbound. The model also predicts two transitions, one

of order-disorder character and a roughening transition at a higher temperature
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for fcc (110) surfaces which do not reconstruct. Then, precisely at the point where
reconstruction sets in (x = 0) the disordering temperature appears to vanish, un-
like the roughening one, so that not only the physics of, say, Au(110) , but also
that of Cu(110) may be accounted for by the Jug-Tosatti model, by employing
for the latter a small negative value of s, which ensures a (1 x 1) phase at low

temperature.

3.5 The model of Kohanoff, Jug and Tosatti

3.5.1 A description of the model

The Jug-Tosatti model, unlike real pure (110) surfaces, contains an inevitable
intrinsic asymmetry between the h and [ sites, so that its physical realization
would be obtained, e.g., in an ordered alloy (e.g. CuAg) or in a pure metal
surface with an adsorbed overlayer, rather then in pure metal surfaces. However,
the authors expect the main physics to carry over also to pure surfaces, as the
h — | asymmetry can be thought of as a weak external field added to a fully
symmetric Hamiltonian, the main effect of which should be a mere rounding of
any otherwise sharp transition. Nonetheless, this asymmetry is an additional and
unwanted feature of the model, and its elimination leads us to write the following
Hamiltonian

H/J = Z(hi ~hiry)’ — K, Z(hz ~ hiyz)’+

7 7

K

i

(3.2)

where the two sublattices are treated exactly in the same way, i.e. with the same
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Fig. 3.2: The scheme of the couplings between sites in the KIT model. The parameters
are expressed in units of J. e

couplings between sites belonging to one or the other of them: h; is the height
variable, and the index i runs on both the two sublattices. The y direction in, as

usual, the hard one (that of the missing rows), X and y are the unit vectors.

The interaction Jo between nearest neighbours sites is taken to be infinitely
strong, which means that the additional six vertex constraint is imposed on Hamil-
tonian (3.2), while the interactions in the rectangular unit mesh of each sublattice,
J and JK, = J, are anisotropic, with the relation J > J». This description is
meaningful only because of inward relaxation of the top layer: without that relax-
ation, the assumption Jo = co would be inappropriate, because for an fcc crystal,
in the absence of relaxation and for pairwise potentials, Jo = Jz (or even Jy < Ja

if outward relaxation takes place !).
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An additional third-neighbour interaction JK; = J3, the relevance of which
will be described below, is included in the model. The geometry of the coupling
1s described in figure 3.2, where for the sake of simplicity the lattices are taken
to be squared instead of rectangular, the anisotropy being introduced through the
coupling strengths in one and in the other direction. If on one sublattice (say, the
white one) the heights can assume only odd values, on the other (the black one)
they can assume only even values, due to the presence of the constraint. The height
jumps between nearest neighbour sites are so restricted to be +1, which permits
to associate to each bond connecting the two sublattices a spin variable s;. This is
done as follows: the spin is always defined as the height difference between white
and black sublattices, i.e. if the site on the white sublattice is above the black one,
the spin takes the value +1, and viceversa. The spin analogy makes Hamiltonian
(3.2) similar to an ANNNI modell®*, but the equivalence is only apparent, because
excitations in KJT model involve the flipping of spins in groups of four, while in the
ANNNI model any single spin can be reversed. The height conservation constraint
is actually stronger than it seems at a first glance, causing the universality class
of the model to shift from an Ising one to a Kosterlitz-Thouless one, at least for

some values of the energy parameters.
3.5.2 Ground state considerations

It is easy to understand the main features which have led to Hamiltonian (3.2) by
examining it at 7' = 0 and determining which different ground state configurations
show up by varying the value of the energy parameters. At T = 0, the first
term }_,(h; — hi15)® assigns an energy penalty to neighbouring sites willing to

be at different heights on each sublattice in the hard y direction, encouraging

in this way the formation of uninterrupted rows in this direction. The second
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term —K3 3;(hi — hir)? has either a similar or opposite effect on the surface
configurations in the x direction, according to whether Ky < 0 or K > 0. A
negative value for K, induces the formation of rows also in this direction, thus
of an overall flat (1 x 1) surface. A positive value would encourage the surface
to perform a constant descent (or rise) in the x direction instead, so that the
(110) starting surface is effectively replaced by a (111) system, which can also be

described in terms of a (oo x 1) reconstruction.

But since the model has been concocted to fit (110) noble metal surfaces and
their reconstructions, a (2 x 1) stabilizing term is needed: this is represented by
9 [Zi(hi — by asrag) + Dl —hﬂ_%ﬁ,%y)Z], which, with K3 > 0, acts to
interrupt the descent of the surface induced by a negative K, by raising third
neighbour sites in the x direction to height values as near as possible (hereaﬁer,

unless otherwise stated, it will always be considered K3 > 0).

A ground state phase diagram is easy to draw, provided the energies of all
the possible (n x 1) reconstructions are calculated and compared. The (n x 1)
reconstruction is intended to be a structure showing a periodicity of n sublattice
sites in the x direction, but no broken bonds in the y direction, so that the y rows
are preserved in their lengths. Its side view along the y direction is of a sawtooth

configuration.

If N =2N,N, is the total number of sites (the factor two arising due to the
presence of the two sublattices), the result is, apart from a constant contribution

E, which can be neglected by suitably fixing the zero of energies,
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Elxl/JN: K3
Eox1/IN = —sz + K3

(3.3)

n—1 9n + 16

Enxi/JN = -4 Ks + K;

Eooxi/IN = —4K, + 9K,

It is easy to show that three distinct cases are possible for the ground state,

just depending on the value of a new parameter K = %:

1) K <0 : the ground state is (1 x 1)
2) 0<K<4 : the ground state is (2 x 1)
3) K >4 : the ground state is (co x 1)

and the points K = 0 and K = 4 are points of coexistence of two difference phases.
As noted before, the sign of K, has a primary influence in deciding if the surface
will remain flat (1 x 1) or will be replaced by a sloping (oo x 1). A value of Kj
greater than K, is sufficient to stabilize the (2 X 1) missing row reconstructed
phase at the expenses of the (co x 1) phase.

It is worth noting that, at fixed K, the model assigns higher energies to all
possible “shallow reconstructions”, which instead play a significant role in the Jug-
Tosatti model (see section 3.4). This rules out the possibility of these phases to be
degenerate with the actual ground state, which has instead a simpler structure.

It is also possible to enrich Hamiltonian (3.2) by enlarging the number of
interactions, in order to include the fourth, fifth,..., neighbours too. For example,

by adding a term of the form

Hy = K¢ Y (hi = higaz)®

(2
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which represents a fourth neighbours interaction, one gets for the ground state a

bidimensional phase diagram in terms of the variables f.gz and !K% which, in addi-

tion to (1 x 1), (2 x 1) and (0o x 1) phases, also contains a (3 X 1) region. It is
probable, moreover, that by adding a fifth neighbours interaction, a (4 X 1) region
in a three dimensional phase diagram would appear, and so on (sixth neighbours
interaction — (5 x 1) phase, etc ...). The additional terms have not been con-
sidered in what follows, but may turn out to be relevant if the object of study goes
beyond the (2 x 1) deconstruction transition. A more detailed description of the
reconstructed phase would result, as some (3 x 1) facets have been experimentally
observed(22:6] and the energy of the (3 x 1) phase obtained in the “glue” model
appears to be only slightly higher than that of the (2 x 1) phase.

3.5.3 Energy parameters

If one wishes to describe a real physical situation, e.g. Au(110), it is of course
necessary to assign specific values to the energy parameters of the KJT model.
The best way to do so is to consider numerical data for the energies of the various
phases at T' = 0 and to compare them with expressions like the (3.3), extracting
in this way values for J, K, and Kj.

At first sight, one may think of obtaining the needed energies from experi-
ments. However, the experimental data, even if available and free from accuracy
problems, are generally taken at relatively high temperature. They are, in fact,
surface free energies including entropic contributions not present in expressions
like (3.3). For the purpose of the present study, 7' = 0 values are needed, and it
is necessary to obtain the relevant surface energies from theory. The solution is
provided by the calculations of Ercolessi et al. (27] for Au, which are based on the

“glue” model reviewed in section 1.2.2.
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The values represent energies per unit surface area, and are as follows:

£100 = 128.5 meV/A”

5110 = 122.5 meV/Az

, (3.4)
5111 = 96.6 meV/A
Erx1 = 107.4 meV/A’
All these energies refer to relaxed 7' = 0 configurations, so that the resulting

energy parameters will be “effective” values. Thus relaxation effects are taken
into account in this way, the only possible for a two dimensional rigid lattice
model.

The corresponding expressions obtained from Hamiltonian (3.2), under the

form of energies per site, are

Ei90/N =4J + Js + E

Ello/N =5 J3 +E0
(3.5)
Ei111/N = —4J; + 9J3 + Eq

Ey1 /N = =2J5 + J3 + Ey

where the additional energy constant Fy is added, becoming another unknown
variable to be fitted together with the others. A direct comparisonA between (3.4)
and (3.5) is not yet possible, owing to the tilting of the (111) and (100) surfaces
with respect to the reference (110) plane. The tilting angle is ;17 = arccos \/5—/—3— ~
35° in the first case and 6199 = 45° in the second. Since, as observed, the energies
provided by “glue” calculations are measured per unit area, a geometric factor
A/cos 8 must be inserted to multiply each value of (3.4). Here A = %%a - ais

the area per atom of the (110) surface (for Au, the lattice parameter a equals

56



a=40TA - A=585 Az) and cos @ arises from the projection of the (111) and

(100) surfaces onto the (110) face. In this way, the values (3.4) transform into

ElOO/N = 1064.3 meV

Eq10/N = 717.4 meV

(3.6)
E111/N: 6929 meV
E2><1/./\/: 6290 meV
The comparison of (3.5) with (3.6) finally gives
Ey = 698.4 meV
J = 86.7T meV
(3.7)
Jy = 44.2 meV
Js = 19.0 meV
and the values
Ky = %]Z = 0.51 "
7 (3.8)
Ky =22 =022
T

for the relevant parameters of Hamiltonian (3.2) (J in fact just fixes the temper-
ature scale and Fj is a constant).

Two aspects are worth noticing here. The first is the fact that the coupling in
the hard direction is twice that in the soft one, so that the anisotropy expected from
preliminary considerations is actually confirmed by the numerical values (3.8) and,
moreover, the next-nearest-neighbour interaction strength Ks is approximately

half the nearest neighbour one K,. In this way, K = K,/K3 = 2.3, which places
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the ground state of the system in the (2 x 1) phase, as it was predicted for the
Au(110) surface.

A self-consistency test for the parameters (3.7) is the calculation of the energy
of the T' = 0 (3 x 1) reconstructed phase, and its comparison with the “glue”
values. The first procedure gives 111.0 meV/Az, the second 109.8 meV/.f&z, very
similar values and, what is more, showing that the model reproduces the correct
behaviour of the energies of the reconstructed phase, yielding a value for Ejy;
which is slightly greater than E3x1, as previously observed with the “glue” data.

From now on, temperatures will be expressed in reduced adimensional units,

each unit corresponding to

86.7 meV 1.6-107%% J/meV

=1005.2 K 3.9
1.38-10733 J/K (3.9)

J_
kg

For future convenience, we provide values for the parameters K, and K; which
make Hamiltonian (3.2) equivalent to the BCSOS Hamiltonian. It is easy to see

that the requirements are

(3.10)

Moreover, one can express the parameter J in terms of the energy ¢ of vertices 1,
2, 3 and 4 of the F model (the six vertex realization of the BCSOS model) in the
following way. The energy per site corresponding to a (111) surface is, from (3.5)

and (3.10)

E111/N = Eooxl/N =4J
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but a (111) surface is represented by an ordered array of vertices of type 1, so that

the total energy of the surface per vertex is e. One obtains the relation
e =4J (3.11)

As seen in section 2.1.2, the roughening transition of the BCSOS model occurs at
kgTr = ¢/In2, so that in terms of J it will result
4J

kgTp = — =5.77J (3.12)
In2

while the peak of the specific heat will be located at
kgTp = 0.81kpTr = 4.67J. (3.13)

3.5.4 Order parameters

Since one of the objectives of this thesis is the study of the (2 x 1) reconstruc‘ffion
transition, it would seem useful to define some appropriate order parameter and
to look at its behaviour with temperature. One of the possible ways to do so 1s
to make use of the mapping of the surface into a spin configuration, as mentioned
in section 3.5.1, and then construct an order parameter for the spins, following
Landau and Binder(8%:90:91,92,93] " While the spin configuration corresponding to
the (1 x 1) phase is a simple ferromagnetic arrangement (fig. 3.3-a), that cor-
responding to the (2 x 1) phase is similar to the ANNNI modell®® ground state,

and has a four-fold degeneracy, being equally described by the repeated sequences
(++ —=), (+ ——+), (= = ++) and (- + +-) (fig. 3.3-b).
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Fig. 3.3—a,b: The surface configurations (left) and the corresponding spin configura-
tions (right) for the (1x1) (a) and (2x1) (b) phases. The numbers indicate the heights
of the sites.

The idea is to divide the lattice into rows along the y direction, and then to
group together rows whose distance is four lattice units, obtaining in this way four
different groups of rows. It is possible now to define four “row magnetizations” by

summing over all spins in each group of rows, as follows:



where A represents the index for the group of rows and A is the total number of
spins , that is A" = 4N, N,. The four components corresponding to the structures

listed above are

M(.{_.*_._._) - - [M] + .A/[g - M3 - .ZVL;}

— ] et

M(+__+> - [M4 + ]V[l - Mg - ]‘/.[3] ‘
(3.14)

M—yy = = [Ms + My — My — M)

=]

M<_+_|__.> - Z [A/_[z + .ZVI;), e A/Ll bt ]VII]

and the overall (2 x 1) order parameter may be obtained by introducing a root-

mean-square magnetization from (3.14),

1

P(le) == \/5 [M?++__> + M%+__+> + M?"“‘*“l’) ‘I‘ M%_++_):I (315)

This parameter is well defined in the sense that, as it may be verified, its value is

1 in the (2 x 1) ordered phase, and 0 in the (1 x 1) ordered phase.
3.5.3 Scattering intensities

Scattering problems have already been discussed in chapter 1 in connection with
the analysis and interpretation of experimental data. In this section more details
will be given, especially about the consequences of the roughening transition on
scattering intensities and in conjunction with a treatment suited to the particular
situation of the (110) surface. The discussion follows closely the presentation in
ref. [15].

What follows applies to scattering from non-penetrative probes (e.g. helium

atoms), but many of the results are suited also to other probes, e.g. grazing X-rays.
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In the corrugated hard wall model for He-surface interaction and in the eikonal
(or Kirchhoff, or kinematic) approximation(®¥, the elastic scattering probability

per unit solid angle may be written as follows(®®]

dP k(k; - q)? [Q-(R2—R1)] [ ig: [C(R2)—C(R1)]\ 42 2p
—— 2 2 1 19z 2 1 d P ‘16
dQ  8n2Alki|q? _/e (e )" Ry 2 (3.16)

Here Ak; and hiky are the initial and final wavevectors, q = k; — k¢, and |k;| =
|ks| = k. The components of q parallel and perpendicular to the surface are
denoted by Q and ¢, and those of k; as K; and k;,.

The surface area is 4 and ((R) is the surface corrugation at R, which may
approximately be taken as the envelope of corrugations due to simple ions, which

in turn may be written as
((R) = max;[hjas + Z(R — Ry)] (3.17)

where Z(R) is an ionic shape function, and j labels surface ions of height hja,
h; being an integer, and a) (= a/2+/2 for the (110) surface) is the perpendicular
lattice spacing.

Using approximation (3.17), the scattering integral (3.16) (apart from the

96]

trivial prefactors) factorizes!?%), as in the Born approximation, into an ionic form

factor |F(Q)|? and a structure factor S(Q), defined respectively by

F(Q) = / i@ R+in. 2R g2 f (3.18)
Q

S(Q) = 2 Pr(p)e'd™ (3.19)
R
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In (3.18-19), Q is the volume of the surface unit cell, p = —a_1¢., R runs over the

2D-lattice, and Egr(p) is the correlation function given by
Er(p) = (7 PR =MONa*(p, 0)a(p, R)) (3.20)

where the surface level at R is A(R)h, and a(p,R) is a shadowing factor given by

fS(L) QliQR+ig. Z(R) g2 R

- - = 21
fQ eliQ-R+ig: ZR)42 R (3 )

a(p, R)

S(R) being the surface region, where h(R)h + Z(R — R) is the largest term in
(3.17), displaced back towards the origin by R. The shadowing factor « is larger
or smaller than 1 for a very exposed or poorly exposed surface ion respectively.
The exact expression (3.21) depends on the heights of the ion at R and of its

neighbors. A reasonable approximation is(7)

a(R) =2 - —;—n(R), (3.22)

where n(R) is the number of surface neighbors to site R that are higher than
the ion at R. Second-layer atoms are completely shadowed at 7' = 0, but become
gradually visible as 7' increases.

The structure factor (3.19) splits into a coherent part (arising from the limit
of Er(p) for |R| — co) and an incoherent part. Above the transition, however,

the coherent part vanishes and only incoherent scattering is left.
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Coherent scattering

Below the transition both coherent and incoherent scattering occur, which makes
the treatment somewhat involved. Coherent, i.e. Bragg scattering, however, is
simple enough. The coherent contribution is obtained from eq. (3.20) by let-
ting |R| go to infinity. In this way the heights at the points R and O loose any

correlation, so that (3.20) becomes

Ex(p) = (- "M Ma(R))(e?"Va(0)) (3.23)

Since the averages in (3.23) do not depend on the lattice point in which they are
evaluated, due to the translational invariance, a substitution of (3.23) into (3.19)

leads to the following formula for the coherent scattering intensity:

5°NQ) = 6(Q — G)|(e™""a)? (3.24)

where G is a Bragg peak, and the § function originates from the ) 5 QR The
calculation is straightforward and the resulting behaviour of coherent scattering is

a steady decrease from its zero-temperature value to zero at the transition.

Incoherent scattering

Incoherent scattering below T’y is much more difficult to evaluate, while the scat-
tering from a rough surface is simpler and experimentally more straightforward.

Since the (110) surface is formed of two sublattices, the reciprocal lattice vectors

= 2%(n,,+/2n,) split into two classes, according to whether the sum n, +ny is
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even (the class will be referred to as even or principal peaks) or odd (odd or super-
lattice peaks). At low temperatures where the shadowing factors are completely
effective (the second layer atoms are invisible) both types of peaks are similar, but
when the surface roughens the even and the odd peaks behave very differently.

The shadowing factor, given by eq. (3.22) can also be written as

o(R) = ; Y[~ h(R + D) + h(R)]
D

where D runs over the nearest neighbors. Substituting this expression into (3.20)
and rearranging the sums one gets different results for the principal and the super-
lattice peaks. In formula (3.19) the correlation function Egr(p) may be replaced
by an effective correlation function Eg(p), which for the principal peaks is given

by

1 —1 — !
Ef(p) = o Z(e P[1(R,D)=u(0,D")]) (3.25)
D,D’

and for the superlattice peaks by
B () = 35 Z MR- uOD LR + D) - h(R)|A(D') - h(0))
DD/

In the above formulee p(R,D) indicates the higher level between the atom at R

and its neighbor at R + D:

#(R,D) = max [h(R), h(R + D)]
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It is important to notice that for any distance R, the heights u, in contrast to A,
span both even and odd integers.

For the particular relevance it has in connection with the roughening transi-
tion, the structure factor S, given by (3.19), will be analytically evaluated for the
principal peaks and for small |Q| = |Q — G| values (where G is a two dimensional
reciprocal lattice vector). Although a rigorous derivation is provided in ref. [15],
here a greatly simplified version will be given, starting from the consideration that
for small |Q| the main contributions to the scattering functions come from the
long distance correlations, and therefore only these will be considered.

For long distances, short range features of the surface may be neglected, so
it is not relevant if u is replaced by h(R) or by A(R + D) in formula (3.25), for
example, since they just differ by £1. It is thus possible to rewrite (3.25) in the

simple form

Eﬁﬁ(p) — <e—'iP[h(R)“h(0)]> (3.26)

Moreover, at long distances, it is natural to assume that the probability P(h|R)
of finding a height difference ha,; between two surface sites a distance R apart
will tend towards a discrete Gaussian distribution. As a consequence, average in

(3.26) may be substituted with

(3.27)

There is a periodicity in the variable p simply arising from eq. (3.26), since [A(R)—
h(0)] is an integer: two values of p differing of 2wk, with k integer, are thus

completely equivalent. It is so possible to restrict the range of variation of p, that
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is to define a variable p = p — 27k, k integer and |p| < m: with this substitution

the right formula reads

P (h(R) - h(O)])

Efi(p)=e 2 (3.28)

But, as already seen in section 2.1.1, the quantity ([A(R) — k(0)]?) is nothing but
the G(r) defined in eq. (2.5); its divergence as the logarithm of the size of the
system for T' > T'r must be studied in more detail here, and it can be done, since
the analytic solution of the BCSOS model for roughening is known. Above the

roughening transition G(R) increases to infinity!®®°9] as
G(R)~2KInp(R) (3.29)

where K is a universal function of A, independent of distance and of anisotropy

Ke— Y (3.30)

T arccos A

where A, the six vertex parameter, is given by expression (2.11). The function K

increases with temperature: three important values assumed by K are

K(T =Tg)=1/x*
K(T = 2Tg) = 2/7* (3.31)
K(T = ) = 3/7*
(note that the first of (3.31) is actually (2.7)). The distance parameter p in eq.

(3.29) can be expressed in terms of R = 1 [mya,% + mya,§] (where a, and a, are

the lengths of the unit cell sides), with (m, + m,) even, by
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where the anisotropy parameter A is given by

A:1+sinz

cOos z

and z = 7¢y/(2p), with u and ¢o respectively given by

p = arccos (—A)

¢o = arccos [(2ab — Aa® — Ab®) /], 0<¢o <

where the above formulz hold for —1 < A < 3, and a, b and ¢ are the Boltzmann
weigths of the vertex energies €;, €3 and €5 respectively. A direct substitution of

(3.29) into (3.28) leads to a fairly simple expression for Eg (p),

Eg(p) = p(R)™" (3.32)
where
7(T,5) = K(T) §* (3.33)

For small Q = |Q — G|, if G corresponds to a principal peak, only the
long distance correlations are important, and therefore eq. (3.32) can be used
to calculate the scattering structure factor. The sum (3.19) may be replaced by

integrals, so
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Sinc ~ ZeiQ-RP(R)——T ~

R
. = = 2 -7
2 Z ez[mmaa:@z +myayQy] (T—”— +Am§) ’ ~

>y . (3.34)
_ - - 2 z
~ //ez[mzazQz + myay Qy] (T"Zx + Am§> dmgdm, =

_ 242\ 1TT e
=2 (Aaﬁéi + ﬁ%) / Jo(t) t177de
0

The integral occurring in (3.34) equals

but is well behaved only for —;— < 1 < 2. However, it was shown by Villain et al.
[""] how the range can be extended down to 7 = 0. For 0 < 7 < 2, eq. (3.34)
shows that there is a power-law divergence in the scattering factor 5 as Q| — 0;

if Q, is set to 0, (3.34) simplifies into
Sinc —~ Q;Z-i—-r (335)

where the power-law divergence is clearly visible.

Although defined for every temperature, 7 is meaningful only for T' > T,
and has a characteristic behaviour. From (3.33), 7 results an increasing func-
tion of temperature, and assumes the peculiar value 1 exactly at the roughening

temperature and for p = , that is

~(Tn,m) = (3.36)
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For this reason, many experimentalists, after measuring the behaviour of S(Q)
as a function of Q, locate the roughening temperature precisely where the value
of T obtained by fitting their data with eq. (3.34) equals 1, for p = m or, more

generally, when
7(Tr,p) = §° /7" (3.37)

This procedure will be discussed in section 4.3.2, and a comparison of Monte Carlo

simulation and experimental data will be attempted.
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Chapter 4

The Monte Carlo simulation
and the results

In order to elucidate the phase structure of the interface system described by the
Hamiltonian introduced in the preceeding chapter, a Monte Carlo simulation has

been carried out.

4.1 The Monte Carlo method

The Monte Carlo méthod[wo] is a well-established technique of computer simu-
lation of a system with many degrees of freedom. It allows to simulate statistical
fluctuations in order to numerically generate the equilibrium probability distri-
bution of complex systems. It provides an efficient method of calculating, in a
conceptually simple way, the statistical averages of relevant quantities.

If the system is described by a Hamiltonian H(x) (omitting kinetic energy
terms), where the set of variables x = {zi,...2zx} specifies one of its possible
configurations (N = number of degrees of freedom), we are concerned with the

statistical average of a generic physical quantity Q(x), defined as

B Ja Q(x)e PH(=)dx

(@) = e (41)

in the canonical ensemble, where {2 is the volume of the phase space and
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B =1/kpT.

A simple random sampling method for the numerical calculation of the inte-
grals in eq. (4.1) is not useful, since the integrand e PH(x) is sharply peaked in a
small region of the phase space centered around the equilibrium distribution. To
overcome this difficulty, Metropolis et al. 1?1 introduced a sampling algorithm
based on the idea of “importance sampling”. Starting from a given initial con-
figuration, {x}, successive configurations are generated by random changes of the
variables {x} — {x'}, but each change is not accepted a priori. The decision of
acceptance of a new configuration is taken so as to ensure, for a large enough
number of configurations, that the phase space is sampled in accordance with the
probability distribution suited for the particular statistical ensemble chosen. In
the case of the canonical ensemble the Metropolis criterion prescribes to accept
the new configuration if, being AE = H(x') — H(x), it results AE < 0 or (even
if AE > 0), e PAF < R, R being a random number in the interval 0 < R < 1.
After a (large) number of such Monte Carlo steps, a sampling of the equilibrium
configurations will be obtained. In this way, averages like (4.1) simplify in the

form
(@) = "'11\7 > 9 (4.2)

where Q; is the quantity Q(x) evaluated in the i-th configuration, and N is the
number of configurations taken into accouht. Every configuration contributing to
(4.2) in fact results already weighted by the Boltzmann factor e PH(=) due to the
very acceptance criterion described above.

One of the main problems in this procedure is that thé (Q; appearing in eq.

(4.2) are supposed to be all independent “measures” of the quantity @, while in
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reality they are strongly correlated with each other if they are considered at every
Monte Carlo step. To avoid this excessive correlation between a value and the
successive one, the Q; are not calculated at each step, but every 2N steps, where
N = 2N, N, is the total number of sites, so as to leave the system enough “time”
to change its configurations and to acquire less correlated values.

Nevertheless, some correlation remains in the procedure: this will not affect
the averages, but will contribute to their statistical error, which can be calculated
as follows. It is well known that the variance Var(@) of a set of N measures of
a quantity @, supposed to be distributed according to a Gaussian probability, is
defined as

Var(Q) = 1

7 2@ (@) =~

NE

(4.3)

Il
—

i

Q%) - (@)

1

where the last equality holds if NV 3> 1. The statistical error associated with the

measure of () is

co = Xﬂ]\@ﬁ (4.4)

where T¢ is the so called “correlation length”, and may be estimated by the method

[192], For a set of independent quantities, 7g = 1,

outlined by Jacucci and Rahman
but in general 7g > 1. As it is clear in eq. (4.4), the correlation length has the
effect of enlarging the statistical error relative to the quantity Q. This effect is
very important near the critical points of a statistical system (7 > 1), where some

other problems arise too, like a critical slowing down in the convergence of the

Monte Carlo procedure. No special prescription has been adopted to cure such
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problems near the critical point: a greater number of configurations has simply

been taken into account in these regions.

4.2 The algorithm

The Monte Carlo algorithm for the KJT Hamiltonian has been constructed as
follows. A configuration is represented by the ordered array of height variables
divided in two sublattices of N, x N, sites each, and with the overall six vertex
constraint. Periodic boundary conditions are imposed in order to simulate with
a finite size the behaviour of an infinite system. At fixed temperature, starting
from a given initial configuration, a site is chosen randomly and its height is
changed of either +2 or —2 (another random choice is needed to decide the sign),
preserving the parity of its value which is fixed by the symmetry of the system
and, moreover, making sure that the six vertex constraint is verified in the new
configuration. If it cannot be verified due to the height values assumed by its
neighbouring sites, another site is randomly chosen. Omnce the new configuration
is generated, the usual Monte Carlo acceptance criterion is adopted, and the whole
procedure is iterated for a sufficient number of steps. Meanwhile, summations of
relevant quantities are accumulated for their final averages, according to expression

(4.2).

Several values of the temperature have been examined, and the initial config-
uration is chosen to be equal to the known ground state of the system for the first
temperature, while it coincides with the configuration appropriate to the preceed-

ing temperature for the other cases.
The quantities @Q; calculated in the program have been normalized per site in
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order to permit an easier finite-size scaling analysis, and are the following (N is
the number of Monte Carlo configurations, A is the number of sites):

1) the energy (FE), defined as

N
- 4.
N = g (4.5)
2) the specific heat C,, defined as
_ 1 2 2
Co= [(E ) — N'(E) ] (4.6)

3) the order parameter (P;x1), defined as in formulee (3.13)—(3.15):

N
Prxy = %-]% Z |/ MEMS (4.7)
i=1 |

where MBMS js the quantity in the square root in eq. (3.15)

4) the susceptibility of the order parameter, which is

. Eﬁr‘ [(P2y) — N (Poa)] (4.8)

5) the height fluctuations (§h%), relevant for the roughening transition, defined

as[108,104]

1 X1 &
(61%) = 57 > 77 D Alhsi - - (49)

s=1 i=1

where h, ; represents the height of site s of the lattice in the i-th configuration,

and
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7)

1 N
=+ Z_:l B (4.10)

is the average height of the whole surface in the i-th configuration. At first
sight, one may think that the substitution in eq. (4.9) of (Rh); by (h), that
is by the surface height in the global Monte Carlo run (averaged both over
all sites and over the ensamble) would be more appropriate. However, the
Hamiltonian (3.2) is invariant for global vertical translations of the interface
and a Goldstone mode arises (capillary waves). As a consequence of this
mode, there are global fluctuations in height (contained in (h)) that do not
strictly contribute to roughening; by employing (h); (averaged over all sites in
one Monte Carlo configurations) as reference interfacial height we keep only

those fluctuations that give rise to the roughening transition.

the coherent scattering intensity I°°®; this is just the proportionality factor of
the ¢ function of equation (3.24), which depends only on ¢, the perpendicular

momentum component of the transfer, and is calculated as follows

N 2
Icoh z _ 1 Z 1 Z‘ —iplh <h>]as,i> (411)

s:l =1

where p = -—ﬁqz and oy ; is the shadowing factor of site s in the -th con-
figuration. Moreover, from the height variable h,; the term (h); has been
subtracted, for the reasons explained above for the height fluctuations (all
quantities containing h,; are meaningless if they are not referred to the in-

stantaneous average reference level represented by (h).).

the incoherent scattering intensity S'™¢. A very simple form of the scattering

intensity can be obtained from formulee (3.16)—(3.22), and reads
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Z !QR—iPh(R) o(R)
R

> (4.12)

which, with the usual 1/NM normalization and with the conventions of the

s

preceeding formulee, transforms into

N
inc 1 1 1Q- ; —1 P — . 2
57(Q) = N > N Z o' FRrigilhei= il (4.13)

s=1 =1

where R, ; is the position of site s in the configuration 1.

Another observation is in order here: while there is no constraint on the possible
values of g, due to the discrete structure of the lattice and to the presence of the
periodic boundary conditions, not all the values of Q. and @, are allowed. Any
physical quantity dependent on the position R on the lattice must be invariant
under the transformation R — R + Nya,X + Nya,¥. Thus the exponential factor
appearing in formula (4.13) must be invariant under the same transformation, so

that

Q - [Nzaz%x + Nya,y] = 2mn

with n integer. The above equation may be rewritten as

- 2N, 2Ty
Q (Nfca;c ’ Nyay) ( )

and provides the allowed values which can be assumed by the parallel momentum

transfer in a simulation adopting periodic boundary conditions.
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4.3 Results obtained

4.3.1 The BCSOS model

In order to test the algorithm to be applied to the KJT model, a study of the
BCSOS model has been carried out to compare the results of the simulation with
the known properties of the model which is exactly solved. The energy parameters

for this case are those presented at the end of section 3.5.3.

A finite-size scaling procedure has also been adopted to characterize the be-
haviour of the quantities under examination. For this purpose, square (N, = Vy)

systems have been considered, for sizes N, = 10, 16 and 24.

In order to ensure that equilibration is achieved, the number of Monte Carlo
steps has beevn taken, after some tests, to be of the order of N = 2 -10*/N, except
in the critical region where up to 4 - 10* A/ Monte Carlo steps are considered. In
general, it is well known that these effects have greater relevance for larger systems,

and this is observed in the present study too.

The results of the test are presented in figures 4.1 to 4.10. No error bar is
reported if smaller than the size of a measured point. Fig. 4.1 shows the mean
energy per site of the surface which, as expected, increases with temperature. More
information can be extracted from the specific heat (fig. 4.2), with its peculiar
behaviour: no singularity of any kind is present at the transition temperature I'r =
5.77, while a rounded peak appears around Tp =~ 4.67, as theoretically predicted.
Thus, the main feature of the specific heat is the absence of any divergence as seen

in the small dependence on the system size.

The height fluctuation (§h?), defined in eq. (4.8), is shown in fig. 4.3 as a

function of temperature for the three different sizes, and in fig. 4.4 as a function of
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the logarithm of the size for various temperatures. The first graph shows a marked
size effect in the intermediate and high temperature regions, which is reflected
in the second graph where it is clear that for low temperatures the quantity is
independent of the size, while the élope of (6h?) vs. In N increases for higher
temperatures. This behaviour is not only consistent with what expected for the
BCSOS model, but provides a method of establishing if a roughening transition
takes place in the system, allowing for the estimate of Tg. In fact, from equations
(2.7) to (2.10) it is known that the height fluctuations of an infinite system remain
finite for T < Tg, diverging instead logarithmically with the size for T > Tg.
In a finite system, the divergence of the correlation length ¢ (which causes this
behaviour) saturates to the value of the linear size of the system. Nonetheless
relevant information may be extracted from the universal properties of the quantity

K(T) of formula (2.6), which for T' — T# behaves like (see formula (2.8))

K(T) = % +C+/T—Tr (4.15)

The quantity K (T') is the slope of (§h*) vs. In N, and is shown in fig. 45.
At first sight, K(T') behaves as expected, since it increases with tempéfature
and assumes the critical value 1/71'2 at the transition temperature T = 5.77. A
more quantitative analysis is performed by plotting the quantity [K (T) - ;12—] % ys.
T, since, from eq. (4.15)
112
‘:K(T) - ——} ~ C'(T —Tr) (4.16)

T2

This behaviour is confirmed (fig. 4.6) and may even lead to an estimate of the
roughening transition temperature. The data of fig. 4.6 provide the value Tp =~

5.68 + 0.42, which is consistent with the exact value of T = 5.77.
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Figures 4.7 and 4.8 show the behaviour of the coherent scattering intensity as
a function of temperature, for two values of the momentum transfer, ¢, = 37 /4
and 7 respectively. The behaviour coincides with theoretical calculations, since
a drop in I°°" with temperature is observed. This drop should end at T = Tg,
where I¢°" should vanish, but here finite-size effects clearly give rounding of an
otherwise sharp behaviour. This is confirmed by the fact that an increase in the
size of the system leads to a more pronounced drop and a faster approach to zero
for T' > Thg. |

By comparing figs. 4.7 and 4.8, one may observe that the above features are
more transparent for g, = , as this value corresponds to the antiphase scattering

condition (the most sensitive to the surface structure).

4.3.2 Size effects on the apparent power law behaviour

of the quasi-Bragg peak above roughening

A rather common method used by experimentalists in order to detect the rough-
ening temperature Tx of a given surface, is to fit $"°(Q— G) with the quasi-Bragg
power-law decay (Q— G)™2%7, and extract Tr by the request expressed in formula
(3.37).

We have therefore calculated the incoherent scattering intensities in order to
extract the exponent 7 in our Monte Carlo simulation. The values of momentum
transfer adopted are @, = 0, ¢ = 37/4 and =, with @, as small as possible
(according to formula (4.14), we have employed the values n, = 1,2,3 and 4).

In principle, 5'¢ should contribute a term ~ (Q — G)~2F7 to the total struc-
ture factor § = S%¢ 4 §°°" The coherent part S°°" is expected to decay like a
Gaussian away from Q = G, and its amplitude should vanish above Tr. Owing

to the finite size of the system, a small non-zero value of S°°" remains, but here,
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somewhat unrigorously, we neglect S¢°* and identify for practical purposes S'"¢

with Stot,

The values of §1*¢ thus calculated can be fitted by a straight line only for T' >
T, since the procedure acquires sense only in this temperature range. Nonetheless
a least-squares fit may be applied to the whole set of data, and leads to the curves

shown in figs. 4.9 and 4.10, for the different system sizes.

This method is analogous to that followed by experimentalists, for example
by Held et al. ¥l in an X-ray scattering experiment on Ag(110) , carried out near
the bulk-forbidden (110) peak, or by Zeppenfeld et al. [*%, who provide evidence
for the absence of thermal roughening of Cu(110) up to 900X also by examining
the slope of In $'¢ vs. In Q. They in fact note that above Tg the power-law line
shape is the theoretically expected form for the scattering inteﬁsity (and thus 7 is
a measure of the decay of spatial order), whereas below T, T represents only an

effective parametrization of the peak-to-tail ratio of the line shape.

A fit of §¢(Q) according to a power law at all temperatﬁ;‘es gives a peculiar
behaviour for 7, represented by a monotonically increasing curve climbing up quite
rapidly near the transition temperature, which is located approxjmately in the
region where 7 coincides with the value of formula (3.37). This monotonic increase
is not reproduced by the simulation data reported in figs. 4.9 and 4.10, and
the reason is probably the fact that no subtraction of the coherent scattering
intensity is done, so that the graphs actually show a fit of the total scattering
intensity, and not only of its incoherent part. Nonetheless, a very interesting
feature is represented by the strong size effects, clearly visible in the graphs. In
fact, although it has been recognized that the problem of the finite size of the
coherent surface domains may affect the fitting procedure and should somehow be

taken into account, it is still not clear how to do that and, more generally, how
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the procedure is sensitive to size.

The results of figs. 4.9 and 4.10 seem to reveal another effect, that is a
non trivial dependence of the behaviour of 7 as a function of the perpendicular
momentum transfer ¢,. Formula (3.33) applied to the antiphase condition ¢, =1
leads to the value of eq. (3.36), 7 = 1, assumed at the roughening temperature,
and the corresponding behaviour shows that the curves of graph 4.9 are distinctly
below this value for T' = Ty = 5.77. This has the important consequence that if
one attempts to extract T from these data, the procedure will systematically lead
to an overestimate of the roughening temperature. This can happen also in the
interpretation of experimental data, if the finite domain size problem is neglected
or not precisely accounted for.

Size effects can be found in graph 4.10 too, relating to g, = 37 /4, for which
formula (3.37) predicts a value of 7 = 9/16 = 0.5625. Here a roughly correct
estimate of T can be obtained from data referring to the largest (N = 24) size
available, as if some compensating effect has arisen in order to suppress or diminish
the overestimation error of the ¢, =1 data.

Naturally, these are only preliminary results; before coming to any conclusion
more work is needed, particularly in two directions. First, an increase in the
system size, together with the prediction of some systematic trend in the results
(like a possible scaling of 7 extracted from formule (3.25) to (3.35)). Second,
an investigation of rectangular system shapes in order to simulate non isotropic
domains, and to extract information on the dependance of 7 not only on the global
size, but also on possible anisotropy of the scaling lengths in the two directions on
the surface. Last, but not least, the coherent part has to be subtracted from the
total scattering intensity, in order to perform a closer comparison with experiments

and to attempt to say something conclusive about these size effects.
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Fig. 4.1: Energy vs. temperature in the BCSOS model. Here as in the successive
graphs, the asterisks refer to the size N=24, the stars to N=16 and the hexagons to
N=10. No error bar is reported if smaller than the size of a measured point. The lines
plotted are only a guide for the eye.
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Fig. 4.2: Specific heat vs. temperature in the BCSOS model. The arrow indicates the
position of the roughening temperature Tr=5.77.
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Fig. 4.3: Height fluctuations vs. temperature in the BCSOS model.
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of the universal value 1/72.
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Fig. 4.7: Coherent scattering intensity vs. temperature of the BCSOS surface,

perpendicular momentum transfer ¢,=3n/4.
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Fig. 4.8: Coherent scattering intensity vs. temperature of the BCSOS surface, for

perpendicular momentum transfer ¢,=m.
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Fig. 4.9: Exponent = of the power law behaviour of the quasi-Bragg peak vs. tem-
perature, for perpendicular momentum transfer ¢.=m. The line indicates the value
should assume at the roughening temperature.
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Chapter 5

The KJT model

of surface reconstruction

and roughening

In this section, the results obtained for the KJT model through the Monte Carlo

simulation will be presented.

The procedure adopted in section 4.3.1 is followed here too, the only change
being the greater number of configurations which need be considered to overcome
equilibration problems. The presence of third-neighbour interactions enhances the
spatial correlation between successive configurations, and Monte Carlo runs of up
to 8 - 10/ configurations are adopted in order to obtain meaningful data (with
no widely fluctuating averages) and to overcome the large correlation times. The

three system sizes are N, = 12,16 and 24.

Fig. 5.1 shows the energy of the system as a function of T for the three
system sizes. A comparison with fig. 4.1 (referring to the BCSOS model) reveals
the steeper slope of the curves in the temperature region near T' ~ 3.0, which
reflects the anomalous specific heat behaviour (fig. 5.2). The specific heat data are
very different from those obtained for the BCSOS model and strongly suggest the
occurrence of a phase transition with some kind of critical point around Tp =~ 2.87.
Three main features indicate such a possibility: the presence of a well-defined peak

at Tp, the rapid rise in the peak height as the system size increases (suggesting
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a divergent behaviour for N, — o), and the concomitant narrowing of the peak

half-height width.

The presence of a transition at Tp, which is apparently critical, is corroborated
by the behaviour of the (2 x 1) order parameter and of its related susceptibility,
shown in figs. 5.3 and 5.4. The order parameter Ppx; has a value of 1 at low
temperatures (where the surface is actually in the missing row phase, except for
the appearance of rare defects in the ordered structure), then shows a sudden
decrease around Tp and a drop to zero for higher temperatures may be observed
in fig. 5.3. Finite size effects, as usual, tend to smooth down an otherwise sharp
behaviour. Nonetheless they indicate that the above picture is correct since for
larger system sizes the order parameter drops more sharply at Tp and approaches

zero more rapidly for T' > T'p.

The susceptibility x(2x1) (fig. 5.4) shows similar features as the specific heat at
the same temperature T'p, that is a peak diverging rapidly with size. The evidence
presented here is therefore suggestive of a second order transition occurring at

Tp >~ 2.87.

The indication for a second phase transition of infinite order at a slightly
higher temperature comes from the analysis of the height fluctuations. The proce-
dure is the same adopted to determine the occurrence of a roughening transition
and to localize T in the BCSOS model. This begins by considering the plot of
(§R?) vs. T for different sizes (fig. 5.5) and vs. In N for different temperatures (fig
5.6). The data for (6h%) vs. T show a clear size effect, not only for T' sufficiently
high (T > 3), but also for lower temperatures, where the size eflect appears to be

reversed.

This implies a peculiar behaviour of the slope K(T') of the straight lines (§A?)

vs. In N, as shown in fig. 5.7. Starting from zero slope (no size effect), negative
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values are first seen (“reversed” size effect), followed by positive ones, which seem
to saturate for higher temperatures. Assuming the transition to be infinite-order
(Kosterlitz-Thouless) it is then be possible to estimate the roughening transition
temperature at the value where the quantity K(7T') takes the universal KT value
1/m2. From our data, this seems to occur at a temperature value slightly greater
than T' = 3.0.

By plotting [K(T') — -7;17]2 vs. T, the assumption of a KT roughening transi-
tion for T' > 3.0 is corroborated by two main features: the linear behaviour of the
data shown in fig. 5.8 for ' — 3.0" and the estimate of the roughening transition
temperature obtained by extrapolaiing the linear behaviour. This analysis pro-
~ vides a value of Tp = 3.1 +0.4. Although the error bar (possibly overestimated) is
large enough so as to permit the temperatures Tp and Tr to coincide, we believe
this is not the case as for T' = 2.87 (T'p for the first transition) K(T') is significa-
tively different from the universal KT roughening value 1/7?, assuming a valué
very close to zero.

From the evidence provided its seems thus quite possible' that two successive
transitions take place in the system described by the KJT Hamiltonian, first a
possibly second-order deconstruction transition followed by a second transition of

the infinite-order roughening type.
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Energy

Fig. 5.1: Energy vs. temperature in the KJT model. Here as in the successive graphs,
the asterisks refer to the size N=24, the stars to N=16 and the hexagons to N=12. No
error bar is reported if smaller than the size of a measured point. The lines plotted are
only a guide for the eye.
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Fig. 5.2: Specific heat vs. temperature in the KJT model. The arrows indicate the
position of the peaks for the three different sizes of the system.
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- Conclusions and outlook

A recent approach to the problem of reconstruction and roughening of the (110)
clean noble metal surfaces suggesting a possible (and in some cases very intimate)
connection between these two surface phenomena, and ever more recent exper-
imental data supporting this attitude, had lead to the formulation of the KJT
Hamiltonian.

This SOS Hamiltonian is defined on the lattice of surface sites, and treats
exactly in the same way (with the same coupling strengths) the atoms in the two
equivalent anisotropic sublattices which make up the lattice. The structure of
the Hamiltonian thus contains essential features for the description of both the
above mentioned aspects. Indeed its energy parameters can be chosen so as to
reproduce a (2 x 1) missing-row reconstructed ground state (as is the case for Au
and Pt at low temperatures), while its six-vertex constraint on the height variables
is particularly suited for the study of a roughening transition.

Second- and third-neighbour interactions must be considered, although the
presence of the strong six-vertex constraint does not allow to identify the KJT
Hamiltonian (in its spin version) with a kind of ANNNI model, and possibly even
changes the universality class of the transitions.

The richness of the model is the primary reason for its complexity, which
turns out compelling in the choice of a numerical approach for an investigation of

its properties. For this reasons, a Monte Carlo simulation has been carried out.
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Since one can adjust the energy parameters of the Hamiltonian so as to fit
those of the exactly solved BCSOS model, a test study has been carried out on
this system model and interesting information have been extracted. In particular,
some features deserve particular consideration, such as the finite-size effects on
the power law behaviour of the quasi-Bragg scattering peaks. The test demon-
strates the correctness of the Monte Carlo algorithm, since many of the known
results of the BCSOS model are reproduced, like the rounded anomaly in the
specific heat preceeding the transition temperature and the absence of singulari-
ties. Furthermore we have proven the possibility of extracting an estimate of the
roughening tranéition temperature by examining the behaviour of the height fluc-
tuations as a function of both temperature and system size. In this way, the value

Tr = 5.68 4+ 0.42 has been obtained, which agrees with the exact value T = 5.77.

In addition, coherent and total scattering intensities have been calculated,
both confirming the BCSOS predictions. From the power-law behaviour of the
total scattering intensity as a function of parallel momentum transfer, valid for
T > Tr, the exponent T has been extracted. The results show strong finite-size
effects which should apply to experimental systems too, owing to the presence on a
real surface of finite coherent scattering domains (mosaic structure). These eﬁécts
seem also to depend on the perpendicular momentum transfer ¢, in a non-trivial

way.

Since universality arguments predict a specific value of 7 exactly at the rough-
ening transition temperature, and since it is an experimental practice to exploit
this behavior in order to extract Tr from data, a more careful analysis of these
effects is required. In the present study this can be achieved both through an
enlargement of the maximum system size (which up to now has been made up of

2 x 24 x 24 surface sites), and a study of anisotropic box shapes and their conse-
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quences in the values of 7. Also, the subtraction of the coherent part from the total
scattering intensity should be performed, for a more accurate comparison with ex-
periments. In essence, however, the pronounced finite-size effects themselves are

still to be understood and quantified.

The above procedure, applied to the KJT model, has provided rather inter-
esting results. Two different phase transitions have been found in the system.
A critical deconstruction transition at 7' ~ 2.87, revealed by the presence of a
pronounced peak in both the specific heat and the “2 x 1 susceptibility” clearly
diverging with size, followed by a roughening transition at T' ~ 3.1. The latter
transition appears to be in the Kosterlitz-Thouless universality class like all the

other roughening transition observed in SOS models, hence of infinite order.

These findings are in good overall agreement with the previous study of Ko-
hanoff et al. B7:19:18] who started with a slightly different model and, using the
strip transfer-matrix method, found deconstruction and roughening at two differ-

ent temperatures.

There is also a fairly good agreement with the complex model of den Nijs
(section 3.3) which, among others, contemplates the possibility of an Ising decon-
struction transition followed by an infinite order roughening transition for Au and
Pt. The concept of disordered flat phase has been created precisely to describe
the nature of the surface between the two transitions, where no more missing row
order is present but the surface remains flat on the whole. The difference is found
mainly within the unification attempted by den Nijs, who tries to describe all no-
ble and near-noble metal surfaces in one model, but identifies as “preroughening”

what for systems like Au or Pt is actually a deconstruction transition.
A comparison between the KJT model and the model of Villain an Vilfan

(section 3.2) can be attempted, and the conclusion is that in both the two tran-
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sitions are separate and deconstruction comes first, although in the latter model
the roughening transition may not necessarily belong the the Kosterlitz-Thouless
universality class. This is possibly because the Villain-Vilfan model is not strictly
of the SOS type, but rather an empirical model based on symmetry considerations,
the results of which are subject (as the same authors have successively recognized)

to the choice of different energy parameters for the formation of steps.

We now come to a discussion of the relevance of our model and calculations
to the missing-row reconstructed (110) surfaces of Au, Pt and Ir.

[105,31]while

For Au(110), deconstruction has been shown to occur near 700K
roughening has not yet been investigated. The parameters chosen in our calcula-
tion of chapter 5 were aimed at describing precisely Au (110) . However, that choice
of parameters implies a reduced temperature unit of ~ 1000K, which means a de-
construction temperature of ~ 2900K and a roughening temperature of ~ 3100K.
This is clearly wrong, since Au melts at 1336 K. In our view, this does not in-
validate the results obtained. The physics contained in the KJT Hamiltonian is
still valid in the sense that the model embodies all the main symmetry aspects
(both for the in-plane and the off-plane degrees of freedom) connected with the
reconstruction and roughening of real (110) metal surfaces. Only a more care-

ful reconsideration of its parametrization from microscopic quantities is therefore

needed.

For Pt(110) , deconstruction has been studied by X-ray scattering by Robinson
et al., who found it to be near 1080K 1. In spite of the suggestion made in that
work that roughening probably occurs at the same temperature, the evidence is
not compelling, and T is uncertain there too. For example, Villain and Vilfan!®?!

show that the disordered Au(110) surface would exhibit a shifted diffuse scattering

peak (which is the main evidence Robinson et al. provide to support the occurrence
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of a roughening transition) even if it were flat, provided certain conditions are
satisfied. Similarly, Jug and Tosatti'™ discussed a phase diagram which exhibits
an incommensurate region between deconstruction and roughening. In such region
the Bragg peak would of course shiftv, without any implications of roughening.

For Ir(110) , where a (2x 1) recostruction has also been reported(*06:107,108,109]
the situation appears less clear, and recent studies failed even to detect the (2 x 1)
statel110],

It should be rather interesting if calculations of scattering intensities through
our Monte Carlo approach for the KJT model would reveal features in the peak
position above the deconstruction transition similar to those found by Robinson
et al. This is a direction to be pursued in future developments of this work. An
optimization of the algorithm will also lead to the possibility of investigating larger
system sizes and of performing more accurate finite-size scaling analyses, in order
to extract the critical exponents of the lower transition and to clearly identify its
universality class.

Moreover, it is worth noting that the energy parameters chosen in the present
study correspond to a point located exactly in the middle of the (2 x 1) region
of the ground state phase diagram. As a possible test of the model, a different
parametrization shifting this point nearer to the (2 x 1) - (1 x 1) coexistence may
show an increase in the separation between the two transition temperatures as the

disordered flat phase enlarges its stability range.
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