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INTRODUCTION

The aim of this thesis is the study of the asymptotic behaviour of Dirichlet problems
in a Riemannain manifold.

More precisely, we are in a Riemannian manifold (M,g), g is the metric tensor; let
(E1r)n be a sequence of closed sets in M assuming (for simplicity) that they have smooth
boundary. We study the Dirichlet problem

—Agup+ Aup = f in M\ Ep
(01 un=0 ond(M\E),
and it is known that it has a solution u, for every A > 0.

Now we let h tends to +oco and we find what happens to the solutions. The limit
problem could have an "extra” term pu, where p is a Borel measure satisfying certain
suitable conditions that will be discussed later§ so we may have

—Agu+pu+Au=f in M
(0.2)
u=20 on 8M R

that has to be interpreted in an appropriate way; it was proposed the following definition:

We sdy that u is a weak solution to the problem (0.2), if

/ (Vu',Vz)ngé—}-/ uzdp +/\/U’2 % =/ fzdV,
M M M M
for every z € Hy (M) N L*( M, p).

Associates to (0,1) and (0.2), we have two functionals, respectively:
(0.3) Fi(v) = / (| Vo | +307]dV, + / v2dp — / fodV,.
: M M M

and the p—energy functional

(0.4) Flu) = /M [ Vu |2+ a?]dV, + /Muzdp—— /M fudv,.

Since it is possible to prove, by variational method, that the solutions u; and w of (0.1)

and (0.2) are the minimum point of Fj and F respectively, we will focus on the functional
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of the py—energy for which we prove some results in I'- convergence and we shall go
back to (0.2) only in the fourth chapter.

We study the I'-limit of F} and give an integral representation for the I'-limit (The-
orem 2.2), adapting a Daniell’s type argument to our scope; more in general we can study
the I'-limit of functionals of the p—energy of type (0.4) and Theorem 2.2 gives in turn, a
compactness result for a suitable class of measures. The Daniell’s type argument was used
in a paper of Buttazzo-Dal Maso-Mosco [1] for a similar purpose. Then we prove a result
(Theorem 3.19) which concerns with the continuity property of the restriction oi)erator I
of a measure p belonging to the class of all Borel measures which are a.bsolutély continuous
w.r.t. the capacity on M. (Definition 1.19). This class is indicated by Mo(M). In the case
of RV, such a continuity property was proved in Dal Maso [2]|. Finally, using an abstract
result about the I' convergence in Attouch [1] (Theorem 3.26), we can give first a result
on the strongly convergence of the resolvent operator associated to our functionals, and
consequently the convergence of the eigenva.lués.

The same problem (0.1), under more restrictive conditions, was treated in Chavel [1],

using Brownian motion methods.
When we have an involutive map on the Riemannian manifold, the problems (0.1) and

(0.2) were investigated by Dal Maso-Gulliver-Mosco [1] using the methods of I' convergence.

In the case that M = Q C IR™, problems similar to (0.1) were studied by Rauca [1],
Rauch and Taylor [1], using scattering methods; a compactness result was given by Dal
Maso-Mosco [1] using methods of the I'—convergence. See also the Bibliography for more

references.

The first chapter is a collection of preliminaries, in which we present, in the first
section, some classical facts of the Riemannian geometry; in the second we define the
capacity of a Borel subset of M and in the third some definitions about the quasi-topology.

The second chapter is devoted to an abstract method, which allows us to construct the
measure g that will give the required representation of the limit functional. This method
is a specialization to the bilinear form of the construction of the Daniell’s integral; the

abstract part of the theory is clearly spotted for possible future use.
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In the third chapter we introduce the notion of y—convergence for measures belonging
to the class Mo(M), defiined in term of the I'-convergence of the p—energy functionals.
The main result is the equivalence between the y—convergence and the continuity of the
restriction operator under the y—convergence. in this chapter we make an extensive use of
a series of general results in Dal Maso [2].

The main result in the fourth chapter is the convergence of the resolvent operators if
and only if the corrispective functionals I'-converge. From this equivalence, by a general

result in Functional Analysis, we get the convergence of the spectrum.
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CHAPTER 1
Let M be a differentiable manifold. We say that M is a Riemannian manifold if there
exists a (0,2) tensor g, i.e. a section of T*(X) @ T*(X), symmetric and positively definite.
Such a tensor g is called metric tensor. With this tensor we can define a scalar product
on T, M, the tangent space at p € M.
In fact, let (52-;)1 <i<n Dbe the coordinate vector fields in a local chart (U, () around
p € M and let u,v € Tp(M)

_ 0 _ 0
u—uamih, v=vol
then
9(u,v)lp = gijlpu'v?,
where

0 0
gijlp = 9(“6‘;‘,-“'19’ @lp)'

Here and after we use the Einstein convention over repeated indeces and we shall suppress
the index p in order to avoid heavy notations, if no confusion will arise.

Let f : M — IR be a smooth function; we now recall that the gradient of fis the
unique element of the tangent space T, M, for all p € M such that (Vf,,v)y = dfp(v), for
every vector field v. Let (3%«')19'37& be the coordinate vector field in a local chart (U, ()

around a point p € M; the gradient of f reads then
of 0

dzi Bzt

V=g

We can define another differential operator, the divergence of a smooth vector field Y,

as

divY = trDY

where D is the Levi-Civita connection.

In local coordinates (5(?—7)1<,-<n we have
A

. Y .
(Vi¥) = ——+ ThY*

where V; is the covariant derivation along the direction %;, I‘fk is the Christoffel symbol,
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defined as y ;
1,09 dg"  dg**
3 (ot * a7~ e

J o
sz

SO

BY’
divY = t1DY = (V;V) = —— + ThY".

Taking into account the formula

zk - a ak log \/— g,
where |g| = det g;j, we have
. )& Blog \/—
(1.1). divy = 3&:" 5
REMARK 1.1
In the Euclidean case (or more generally, in the flat case) div ¥ = 7, since in this case

the Christoffel symbols vanish and so the second member of the right hand side of the
formula above reduces to zero. |

DEFINITION 1.2

Let M be a differential manifold; we say that M is compact if for every open covering there

exists a finite sub—covering.

MANIFOLD WITH BOUNDARY
A smooth manifold with boundary is a Hausdorff topological space equipped with
coordinate charts (U;, ¢;i)ier such that:
i) the U; gives an open covering of M;
ii) ; is an homeomorphism of U; onto an open subset of IR} = {ze R™:2' >0}
iii) for every pair of indeces (i,j) such that U; N U; # 0, the coordinate changes

piow; 1 p;i(U;) — @il(Us)

is a smooth diffeomorphism.
For the sake of precision we say that a function F : V — W for V,W € IR} is a
diffeomorphism if




a) F induces a diffeomorphism between V' \ 8V onto W \ W, where 8V = V N ORY.

b) Any partial derivatives D(®F)F' of F extends to a continuous function on 9V, the
boundary of V.

c) The boundary value of any partial derivative is smooth on 8V and

D®(Flay) = (DPF)oy, 2<k<n.

d) Flov : OV — OW is a smooth diffeomorphism of V onto OW.

Therefore if ¢;(p) € 0IR} for p € M and p € U; NUj, then ¢;(p) € OIR}. The
boundary of M, denoted by M, is the set of points which have the above property. A
manifold with boundary will be denoted by M. M \ M is an n-dimensional manifold
(without boundary) and it is called the interior of M and it will be denoted by M.

REMARK 1.3

A closed manifold is a compact manifold without boundary, such as S2.

We need to introduce i xw, where X is a vector field and w is a form in order to give
a meaning to the n—1 volume form of M.

DEFINITION 1.4
Let X be a vector field and S be a (0,p) tensor (a p—form); ix.S is the (0,p—1) tensor
defined as

(iXS)(:Bl,...,(l:p_.l) = S(X,:Bl,... ,:Bp..l).

This is the rigorous definition of the contraction operation on the indeces of a tensor.
With the Definition 1.4 we can define the n—1 volume form of the Riemannian sub-
manifold (9M, gjanr) as

Wn—1 = 1,Wn

where wy, is the n—volume form of M \ 8M; v is the normal vector field pointing inside
(that is v, for p € M is the unit normal vector to T,0M). This notion will be used below,
when we define the integral over the boundary of M. A



INTEGRATION ON M
DEFINITION 1.5
Let M be a Riemannian manifold and (U,¢) be a local chart, with (z*)%, the associated

coordinate system. Define

(1.2) ffdvg :=/ (v/detgf) o ¢da,
M ¢(U)

for the continuous function f on M, with supp(f) C U. If (U',(') is another chart and if
supp(f) C U' U, then by a change of coordinates we have

[sav,= [ ililewtae= [ p/lglow s,
U ¢(U) ¢'(U")

since, denoting by A% = g—f,— and B} = %%}-, AB = Id. and /det g = |B|*+/det g’, where

g' is the metric tensor of M expressed in the chart (U',(').
If the support of f is not contained in a single chart, by a partition of the unity («a;);
subordinate to the atlas (Uj, (;);, we define

z:,-/ a:fdv, =2,—/ ;i fdv,.
M M

If (7:): is a partition of the unity subordinate to another atlas (U}, (});, we have

Ei/ a,-degzﬁ,-,j/ aiv; fdVy =Ej/ v; fdVg.
M M M

In this way f — [,  f dV, defines a positive, continuous and linear functional on
Cc(M); thus dV, defines a positive Radon measure on M. We refer to dV, as the volume

measure (or Lebesgue measure) on M.

REMARK 1.6
Let (U, () be a local chart and let 2 = ((U). For every f : U — IR we still indicate, with

an abuse of notation, by f the function f o (~!. With this notation, we have

/;]deg = /n f(z)b(z)dz,
where b(z) = 4/|g| o ¢ 1.




DEFINITION 1.7
‘We define

L}(M) = {f : / f?dV, < +oo,f Borel function onM} .
M

PROPOSITION 1.8 (Green’s formula).
Let M be a Riemannian manifold and let f : M — IR a smooth function (say C?!); for

every v € I'(T'M), i.e. a section of the tangent bundle, the following equality holds

(1.3) /M div(fv) = /M (V,v), + /M fdivv.

PROQF.

In local coordinates, it follows that

) - Of vl .
: I — od : .
(Vi)Y =i 5L 4 o4 g7,
so
. i 6f B'Ui i
le(fV) =v axi + fﬁz" + frik'
Since
979k = 6; (Kroneker’s symbol),
we have
0f + _  wmOf i_
Ba:"v = Girg 62:,'7) - (Vf7v>9'

The formula (1.2) is the first step in order to prove the Green’s formula:
(GF) / fARAV, -l~/ (Vf,Vh),dV, = / (FVR,v)gdVgon
M M oM

The second step consists in proving the following equality:
(1.4) [ avrvmav, = [ (5Vh)avy.
M &M

To get (1.4) we need the Stokes’ theorem and the following result.
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PROPOSITION 1.9

(1.5) (divX ), = d(ix(vy))-

STOKES’ THEOREM

For an oriented manifold M and for every n—1 form «, then

/daz/ a
M oM

holds true. If M is a manifold without boundary, then the right hand side is zero.

For a proof of this two results, we refer to [see Gallot-Hulin-Lafontaine, Lemma 4.8,
pag 157].

From the formula (1.5), we get the following one

(1.6). / divX v, =/ (X)V)glamvlgau
M 8M

In fact, using the Stokes’ theorem we have

/ dijvng d(ixvg):/ iX Vg
M M oM

and if (v,e,...,€,) is an orthonormal base in T},(M), then
(ixvg)(ez,. . en) =vg(X, €2,...,6n) = (X,)v4(v,€2,...,6n) = (X,V)4iv,,

and the formula (1.4) is proven; (1.3) and (1.4) together give (GF).

PROPOSITION 1.10
Let be u € C'(M); then the following formula holds true:

(1.7) /M (Vu,p)gdV, = — /M (udivy)dVy,

Vo € I'(TM) with compact support.




PROOF. The formula (1.7) follows from (1.3) and (1.6).

The formula (1.7) is the Riemannian analogous of the integration by part formula in
(the flat case of) IRN.

We say that a vector field is measurable if X 0 (™! : § — IR is a measurable function
for every local chart (U, (), where Q = ¢(U).

Define now
LE(M) = {X : / | X |§ dVy < 400, XBorel function on M} .
M
Given any continuous vector field X and Y, we define the inner product on £L%(M) by

(X V)ean = [ (X,Y),d7,
M
inducing the norm
| X |2£’(M)=/ | X |3 dVy.
M

With this notation, formula (1.7) reads

(V’LL, ‘P)E’(M) = _(uy diVSD)Lz(M):

where the subscripts indicate in which space the scalar product is performed. However,
since it is clear what are the spaces involved, we shall suppress these subscripts.

Formula (1.6) can be generalized as follows: we say that f € L?*(M) has a weak
derivative Y € L*(M) if

(Y)(p)Lz(M) = _(f7 divW)Lz(M),

for every vector field ¢ with compact support.

DEFINITION 1.11

The Sobolev space H'(M) consists of those measurable functions f € L?(M) having weak

derivative in L£*(M). Since there exists at most one weak derivative Y that belongs to
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in local coordinates, the functional in (1.8) is read as
Fr(u) = / (g'.jD,-uDju + uz) dv,.
M

We define the notion of capacity, as the infimum of (1.8) under constraints, i.e. let A a

subset of M,
capA = inf {Fp(u) :w € H'(M), v >1 in an open neighbourhood of 4, }

REMARK 1.17

The notion of capacity is intrinsic, that is, it does not depend on the choice of the coordi-
nates.
Since H'(IRY) functions are defined up to a set of capacity zero, by the uniform

ellipticity of the metric tensor g this property holds true for the functions of H!(M).

REMARK 1.18
By B(M) we mean the class of the Borel subsets of M.

DEFINITION 1.19
We define Mo(M) as the family of all Borel measures that vanish on all set of capacity

Z€ro.

EXAMPLE 1.20
Let A and B two subsets of Q, B C B(M), where {2 is a coordinate chart of M. where

is a coordinate chart of M. Define

_fo, if cap(AN B) = 0;
04(B) = {—l—oo, if cap(4 N B) > 0.

Then co4(-) belongs to Mo(M).
EXAMPLE 1.21

Let A a Borel subset of 2, where § is as above; let V,; be the Lebesgue measure on M (also
called the Riemannian volume of M), that is

Vo) = [ 1aav,,
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then V, belongs to My(M).
DEFINITION 1.22
Let p € Mo(M) be given and let

f:M—R

be a function which is measurable with respect to the o—algebra B(M) of the Borel sets of

M; we define
/ fdp
M

as an (abstract) Lebesgue integral on the measure space (M, B(M), u).

The notion of capacity of a subset E of a Riemannian manifold M is given in an
invariant way, see Definition above, in particular we can say that a property P(z) holds
quasi everywhere if this property holds for all z in M except for a set Z, with cap(Z) = 0.

DEFINITION 1.23

We say that a set A, contained in M, is quasi open (resp. quas: closed,quasi compact) if for

every ¢ > 0, there exists an open set (resp. closed, compact) U, such that
cap(UAA) < g,

where A is the symmetric difference between two sets. A set A is quasi open if and only if
A° is quasi closed, where A€ is the complementation w.r.t. M; moreover countable union

(or finite intersection) is still quasi open.

DEFINITION 1.24

A function

f:M— R

is said to be quasi continuous in M if, for every € > 0 there exists a set E in M, with

cap(M \ E) < ¢, such that the restriction
f|E :F— IR

is continuous.
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From the Remark 1.17, we have seen that every function in H*(M) is defined up to a
set of capacity zero; actually a more striking property holds: every function vhas a quasi
continuous representative u in H(M). This fact permits us to say that the following

functional
Dp(u) = / u?dp, Yu € HY(M)
M
is well defined. In the Riemannian case, we point out that this functional is non-local,

that is, no chart is needed for its definition, as it has been done for the Lebesgue integral.

DEFINITION 1.25
Let £ be a family of subsets in M; we say that £ is dense in P(M) if for every pair (K, V),
K compact, 14 open, K C V, there exists F € £, such that

KcECYV.
We say that £ is rich in P(M) if for every chain (Ey)ier in P(M), the set
{t € T H Et ¢ g}

is at most countable.
By chain we mean a family of subsets of M such that T is a non-empty open interval
of IR, E; is compact for every t € T and E, C int(E;) for every s < t,t,s €T
PROPOSITION 1.26

Every rich family is dense.

PROOF
For the proof, we refer to [Dal Maso,Proposition 4.8]. This proof depends essentially
on the Urysohn’s Lemma, which holds true in any normal topological space, such as a

differentiable manifold.

LEMMA 1.27

Let a : P(M) — IR be an increasing ‘function, such that a(F;) = «(F;) whenever
cap(E1AE;) = 0. Let £(a) be the family of all subsets of M such that E is compact in M
and a(intE) = a(E). Then‘S(a) is rich in P(M).

PROOF
For the proof we address to [Dal Maso, Lemma 4.10].
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CHAPTER 2

DEFINITION OF I'-CONVERGENCE

We shall use the notion of I'-convergence in the sequel; to this purpose we give below

the definition and a result of I'-convergence that we will use hereafter.

DEFINITION 2.1

Let be X a metric space, (F3)n a sequence of functionals, such that
F,:X — R,

and let
F:X — R.

We say that the sequence (F}j)p I'-converge to F' in X if and only if the following
conditions (a) and (b) hold true:

(a) for every sequence (up); in X converging to some u € X as h — +oco, we have
F(u) < liminf Fj(un);
h—+o0
(b) for every u € X there exists a sequence (ux)s such that

F(u) > lim sup Fi(u4).
h—-4oco

The following compactness theorem holds (see [DG-F], Prop. 3.1)
THEOREM 2.1

Assume that X is a separable metric space. For every sequence (F} ) of functionals there
exists a subsequence (F}, ), which I'-converges in X to a lower—semicontinuous functional

as k — +oo.
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A COMPACTNESS RESULT

Let (ux)r be a sequence of measures belonging to Mo(M) and for every h € N, let
us consider the functional F} : L*(M) — [0, +oo], defined by

_ U (u) + Ba(u), ue Hj(M),
Fi(u) = { +o0 otherwise in L%(M),

where
B (u) = / Pdun
M

and

W) = [ (| Vult tatlav;.

By the previous theorem, a subsequence of (F} ), ['—converges in L?(M) to a functional
F : L*(M) — [0,4+oc]. The following theorem provides an integral representation of the
limit functional F.

THEOREM 2.2

Suppose that

I(L*(M))
—

Fy F as h — 4oo;

then there exists a measure p € Mo(M), such that
Flu) = / (| Vu 2 +u]dV, + / Wy, Vue H(M),
M M

while F(uv) = +o0 if u &€ Hy (M).
REMARK 2.3
To prove the theorem we define the functional & : Hy (M) — [0, +o00] by

(2.1) ®(u) = F(u) — ¥(u), if u€ Hy(M);
we have to show that
P(u) = / w'dp  VYu € Hy(M)
M
for a suitable measure p € Mo(M). This will be performed through various steps.

16



REMARK 2.4

Before giving the properties of the limit functional ®, we want to precise what we mean

for a extended valued quadratic functional F : X — [0, +o0], acting on any real vector

space X. We say that Fis a quadratic functional if it satisfies the following conditions
F(0)=0, F(u)>0, F(tu)=t"F(uv),Vie R

F(u+v)+ F(u —v) = 2[F(u) + F(v)]

Since the functional F' admits the value +oo, we shall follow hereafter the following (usual)
convention: 0+ +o0o0 = 0, 400 + t = +oco for every t € IR.

THEOREM 2.5
Let u,v € H3(M) and let ® be the functional defined by (2.1). Then
(i) IKo0<wu<wva.. on M, then ®(u) < ®(v);
() ®(ul) < B(u) |
(iii) P(u+v) < ®(u)+ ®(v),if uAv=0 a.e. on M;

(iv) ®(u) = limy, ®(up), for every increasing sequence (up)n
such that up — % q.e. on M;

(v) ®(-) is a real extended quadratic functional.

PROOF.
(1) Let (uh)n, (vn)r be two sequences in Hj (M) converging to v and v respectively,
such that
Y(u) + (u) = Tm [¥(un)+ Bn(un)l,
and

(o) + B(0) = lim [¥(on) + @a(on)]

Since v > 0 and v > 0, it is not restrictive to take vs,up > 0; from the relations

below, that can be proven very easily,

\Il(uh A vh) + ‘I’(uh \% vh) = ‘I’(uh) + ‘I’(’Uh)

17




Pp(un Avn) < n(vn),

we have that uj A vy, tends to u, while up V v; tends to v; by I'-convergence we have
Y(u)+ &(u) < limhinf [Psi(un Ava) + @(un Avp)l,
and by the lower semicontinuity of ¥
¥(v) < limhinf [T(un Vvn)l;

this two relatioﬁs together give
Y(u)+ ¥(v)+ (u) < limhinf [P(un Avn)+ Br(ur Avn)]+
+ ]imhinf U(up Vop) <
< ]jmhinf[‘I’(yh) + ®p(vn) + ¥(vn)] =
= ¥(u) + &(v) + ¥(v).
(i1) To this aim, let u be a function in Hj(M) and let (ux)sr be a sequence in
H; (M) converging to v in L%(M), such that

() + B(u) = bm([¥(us) + Bn(un)}

since ug| — |u| in L?(M) and &4 (|ju|) = &4(u) ,
¥(lul) + ®(lul) < Liminf[¥([unl) + Sa(lunl) <
< liminf[¥(un) + Sa(us)] =
=U(u)+ ®(u) < +oo

This yields that ®(|u]) < &(u), since ¥(|u|) = ¥(u) for every u € Hg(M).
(iii) By definition of I'-convergence, there exist two sequence (ux)x and (vi)n of

non-negative functions converging in L?(M) respectively to u and v, such that
¥(u) + () = Lm[¥(up) + Sn(un)]

¥(v) 4+ @(v) = ]ihm[‘I’('vh) + ®p(vp))].

18



Since up V vp, converges in L?(M) to u Vv =u +v as h — 400, we have
U(u+v)+ S(u+v) < h'mhin'f[‘Il(uh Vop)+ @a(ur Vo) <
< ]jmhinf[‘ll(uh) + U(vg) + Pr(un) + Bnl(vn)] =
= U(u)+ ¥(v) + ®(u) + (v).
Since ¥(u +v) = ¥(u)+ ¥(v) for u A v = 0, we have proved that &(u +v) < &(u) + ¥(v).
(iv) By lemma 1.6 [Dal Maso] there exists a sequence (v;)s in H} (M) such that
0 < vp < up a.e. and v, converges to u strongly in H}(M). Since the functional &, by
definition, is the difference between the limit functional F, which is lower semicontinuous,
and the functional ¥, which is continuous w.r.t. the weak topology of H} (M), we get that
& is lower semicontinuous on the weak topology of H} (M), hence we have, using also item
(i),
P(u) < limhinf B(vp) < limhinf D(up).
On the other hand, for every h we have by (:) ®(ux) < ®(u), hence lim sup;, $(up) < ®(u),
and the conclusion fo]low;vs. '
(v) Proposition V in [Sbordone] says that for every u,v € H}(M), t € IR, the
limit functional F satisfies the conditions of Remark 2.4, that is the limit functional is
quadratic, hence we get that the functional @ itself satisfies the same conditions above,

since the functional ¥ is quadratic. The proof of Theorem 2.4 is now complete.

In the remainder of this Chapter, we give an integral representation of the limit
functional ®, occurring in the Theorem 2.2, by means of a measure p belonging to the class
Mo(M). The methods we use do not depend mostly on the ”concrete” spaces which enter
in Theorem 2.2, rather on the structure of such spaces [see Butt-DM-M]. So we suppose
that a real valued quadratic functional G is given on a Riesz space £ and we assume
that G satisfies the properties (i),...,(v) of the Definition below. Beside this functional,
we consider its associated bilinear form £; by means of a Daniell’s type extension result
adapted to our situation, the bilinear form 3 is extended to L x L, where L is the monotone
class generated by £, and the measure y is characterized by this extension. At this point,

we turn to our "concrete” functional ® and we give the required representation.
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DEFINITION 2.6

Let £ be a (real) vector space of (real) functions defined on an arbitrary set 1 We say that
L is a Riesz space whenever |f| € Lfor all f € L.

REMARK 2.7
Since ft = |f| — f, we have that £ is a Riesz space if and only if it contains f+ (or f7)

for any f € £. This implies that a Riesz space is closed under the V and A operations.
DEFINITION 2.8

Let G : £ — [0, 400 be a quadratic functional, according to Remark 2.4, which satisfies
the following properties:

(1) If0<u<w,u,v €L, then G(u) < G(v);

(i)  G(lul) <G(w);

(1) G(u +v) < G(u) + G(v), if u,v € L such that u Av =10

(iv) G(u) = limp, G(u4), for every increasing sequence (up)p converging to u.

(v) ®(-) is a real quadratic functional with finite values.

DEFINITION 2.9

A monotone class S on a set  is a class of real valued functions defined on 2 such that:

(1) if (up)p is an increasing sequence in § having a majorant in S, then u =
sup, up € S.
(i)  if (un)s is a decreasing sequence having a minorant in S, then u = infp up € S.

Let £ be a Riesz space; the monotone class generated by £ (i.e. the smallest monotone

class generated by L) is still a Riesz space which will be denoted by L.

Let us define for f,g € L

87,5) = 31G(f +9) ~ G(f) - G(a)]

It is possible to prove that g is a bilinear form: the functional G is homogeneus of
degree two, that satisfies a ”parallelogram identity”, so the proof that g is bilinear is
similar to the proof that any norm that satisfies the parallelogram identity comes from a

scalar product [see Yosida, Chapter I,pag. 39]
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Since B(f, f) = G(f), B is the bilinear form associated to the quadratic functional G.

Observe that § is symmetric.

DEFINITION 2.10
Let £ be a Riesz space. We say that a bilinear form  defined on £ X L is :

-positive if _ .
B(u,v) > 0, for every ¥,v >0, u,v € L;

-local if, given u,v € L with |u| A |v| = 0, we have ﬂ(u,‘v) = 0;

-continuous on monotone sequences if, given u,v € L, we have

ﬁ(u7v) = hETQQﬁ(“a”h))

where (v4)s is an increasing sequence in £ with v = supjep V.
The following three propositions show that the functional G enjoys of the three prop-
erties listed in Definition 2.9.

PROPOSITION 2.11
Let us suppose that u,v > 0; then B(u,v) > 0.

Proof. Since f(-,-) is the bilinear form associated to G, we have

G(u + tv) — G(u)
t b

= Ii
A(u,v) = lim_

since u + tv > u; then the proof follows from the property (%) of Definition 2.9.

PROPOSITION 2.12
Iff,ge L, |f|A|gl=0,then B(f,g)=0.

Proof. It is not restrictive to assume that both f,g > 0; from the positiveness of 3,

we have the inequality 8(f,g) > 0. To prove the opposite inequality, by definition of S,

we have to prove that

G(u 4+ v) < G(u) + G(v);
this follows from the property (i) of Definition 2.9.

PROPOSITION 2.13
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Let f,g € £, f > 0 and let (gx)x be an increasing sequence in £ such that g = suppen ga-
Then

ﬁ(f)g) = hEI-Ew'B(f’gh)-

Proof. It is not restrictive to assume g > 0 and g5 > 0. By the Schwarz’s inequality

| B(f,9n — 9) 2< B(F, F)B(gh — 9,91 — 9) = G(F)G(gn — 9)-

From the property (v) of Definition 2.9, we have

G(gn — 9) = 2G(g) + 2G(gn) — G(gn + 9);

taking into account Theorem 1-(iv), if we pass to the limit

Jim Glgn —g) =4G(g) — G(29) =0

and the conclusion follows.

DEFINITION 2.14 ( Condition (D;))

Suppose we are given a functional
I:L— IR
satisfying the following properties:
(1) Iis linear,ie. I(af + bg) = aI(f) + bI(g), Va,b € R and Vf,g € L ;
(2) Iisincreasing,ie. I(f)>0,V0< feCL;
(3) Iis continuous on monotone sequences, i.e.
if 0< fn €L, fn(z)\\0t as n — +oo,then lim, I(f) = 0.

We refer to the set of conditions in the Definition 2.14 above as (D;) conditions.

REMARK 2.15
A functional satisfying the (D;) conditions is called the Daniell integral; the set of condi-

tions (D;) are known as the Daniell’s conditions.
We say that the bilinear form J associated to G satisfies the Daniell’s conditions (D)
below if for every fixed u,v € L, our bilinear form S(u,-) and S(-,v) satisfies conditions

(D1), that is
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Conditions (D3)
(1) B(-,v) and B(u,-) are linear, i.e.

B(:; avy + bva) = af(:,v1) + bB (-, v2)
and
Blaus + buz, ) = aB(u1,-) + bB(u2,-),
Va,b € IR and Yu,v € L ;
(2) B(-,v) and B(u,-) are increasing, i.e.
B(-,v)>0,VO0<veL
and
B(u,-) >0, V0<LueLl;

(3) B(-,v) and B(u,-) are continuous on monotone sequences, i.e.
if 0< up,vn € Lyun(z) \, 0 and v, \, 0 as n — o0, then ]i};nﬂ(-,'vn) = 0 and
1i111n,8(un,-) = 0.

The following result is a classical one [see e.g. C~W-S, Chapter III].

THEOREM 2.16

Let £ be a Riesz space and let L be the monotone class generated by £. Let I, be a linear
form satisfying the Daniell’s condition (D;) above; then there exists an unique positive
linear form |

~

I:L— R
still satisfying the conditions (D;), such that I = I on L.

It is possible to prove a similar extension result for bilinear form

PROPOSITION 2.17

Suppose that § is a bilinear form satisfying the conditions (D,) above; then there exists
an unique bilinear form
,§ :LxL— R
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which still satisfies (D;) and extends S.
PROOF. For every v € LT, B(-,v) may be extended to a form B(-,v), defined on z,
which still satisfies (D;). Set for every v € £, v =vt —v™,

B(yv) = B(-yoF) = B(-,v7).

Hence we have

E:EXE—-—LR.

For every u € L, u > 0, E(u,) still continues to satisfy (1) and (2) of (D). In order
to prove condition (3), we first remark that, as a consequence of the definition of the
monotone class, each element of L is between two elements of £; with this remark, it is
easy to realize that the continuity of E(u, -) holds true.

For every u € L* the form ,g(u, -) satisfies (D;); again by Theorem 2.16 there exists

an unique form

~

B LtxL— R
that extends 3 and such that E(-,v) satisfies (D) (see above). For every u € L we define
Blu,) = B(u*,) = Blu™, ).

As before, it is possible to prove that B still satifies the Daniell’s conditions (D;). Let us
prove the uniqueness of the bilinear form ,5 Suppose that there exist two extensions of
bilinear form S, let us call them B; and f;, both satisfying the Daniell’s conditions (D;);
let us consider for a fixed v € £,

A={ve L:pi(u,v) = B2(u,v)}-

Since f1|¢ = B2|c = B, A contains £; moreover A is a monotone class, since f; and
both satisfy conditions (D). So A is a monotone class containing £, hence 4 = E, by
definition of monotone class. This shows that 8;(u,v) = B2(u,v) for every u € £ and for
every v € E

Now fix v € £ and consider

B= {u € L: pi(u,v) = ﬂz(u,v)} ;
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by an analogous argument, it may be proved that B coincides with L and 3 (u,v) = B2(u,v)
for every u € L and for every v € L. Since every element of L is between two elements of
L, we can conclude the proof.
REMARK 2.18
We want to stress that the above extension ,g of B3, is local and symmetric, if such is .
THEOREM 2.19
Let £ be the monotone class generated by £ and let 8 : £L x L — IR which is local,

positive, symmetric and continuous on monotone sequences; let us suppose that £ satisfies

the Stone condition:
(5) fAlelL, if feL.

Denote by £ the class
E={EcCQ:1g e L}

and by p the set function
p:€&— Rt

defined by
;L(E) = B(lE,lg).

Then £ is a §-ring, 4 is a measure on &, L is a subset of L*(Q,&,p) and

(2.2) B(f,9) = /ﬂ fodp,

for every f,g € L.

PROOF. The proof of the theorem is achieved through six steps.

Step 1.
uEE,t>0=> {u >t} C £. In fact for every ¢t > 0 we have

(u—t) =u—unt el
by the Stone condition. Then
Liussy =sup(h(u —t)T Al) € L
h
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-
as supremum of an increasing sequence of £ majorized by ¥.

Step 2.

Eel ue L= ulg € L. Tt is not restrictive to assume u > 0; in this case,
ulg = h}lln[u A hlg];
this is a monotone sequence whose limit is in the monotone class generated by L.

Step 3.
E,F €&, EC F implies

(2.3). B(1g,1r) = B(1E,1E) = W(E)

This is a consequence of ‘the local property of B, see Proposition 2.12. Moreover this
property implies also
B(le,1mg) =0, VE,F € €.

Step 4.

4 is a measure on the é-ring £. £ is a é-ring because L is a monotone Riesz space. The
fact that p is a measure, follows from conditions (D;) and from the local property of 5:
in fact, taking into account the local property of B, we have that

e the finite additivity of p comes from the linearity of B;

e the countable additivity follows from the continuity of B along monotone sequences.

Step 5.
Let u € E, E € &; then

B(u,lE):/ulEdy,:/ud,u.
9] E

Assume, for a moment, that u is a positive step function

n

Uu = EailA";

i=1
then, by the local property of B, we can also suppose that A; C E. By the linearity,
n

B(u,1g) = ZaiB(lA.-,lE) = Za,-,u(A,-) = Z a;u(4; N E).

=1 =1
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Ifue E, u > 0, there exists a sequence of step function 0 < ¢, /" u; so the conclusion

follows from the continuity of B along monotone sequences.

Step 6.
fu,ve E, then

B(u,v) = / uodp.
2
We may assume that both u,v > 0. The equality above is true for every v which is a step

function. The proof is then achieved by a monotone argument, as above.

Now we take up again to our concrete functional @ defined by (2.1). In order to apply
the abstract part of this Chapter, we introduce Hs as the class of all quasi—continuous
Borel functions f : M — IR for which there exists a function v € H}(M) such that
u = f g.e. on M and ®(u) < +oo; with & we mean the quasi—continuous representative
of u € Hy(M). Since for every u € H(M) the quasi—continuous representative is unique,
up to a set of capacity zero, we can define ® on Hs by setting ®(f) = &(u). Wll:il this
definition, ® is a finite real valued quadratic functional on Hs.

REMARK 2.20

We want to stress that ®(u) = ®(v) if u = v up to a set of capacity zero.
REMARK 2.21

From Theorem 2.5-(v), we have that Hs is a vector space of real functions defined on M.

REMARK 2.22

From Theorem 2.5-(ii), we find that Hs is a Riesz space.
We define the bilinear form
1

(2.3) B(u,0) = 5[8(u +2) — (u) — 2(v)]

which results to be local, positive and continuous on monotone sequences, as it has been
proved in the Propositions 2.11, 2.12, 2.13 above. Now we apply Proposition 2.17, which
assures the existence of the extension, E, enjoying of the same properties of B on the
monotone class, ﬁ;, generated by Hg. By means of B , using Theorem 2.19, the measure

K, which gives the required representation of the limit functional @, is given by the formula
(2.4) below. We sum up all these in the following
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PROPOSITION 2.23
Let ® : H}(M) — [0,+0c0] be a functional satisfying conditions (i),...,(v) of Theorem

2.5. Then there exists a measure p € Mg such that

(2.4) P(u) = /M u?dp

for every u € Hy (M). ‘

PROOF. Let &, be the o-ring generated by £5. The measure pu of theorem 3 can
be extended to a measure defined on the Borel o—field on M, which we still denote by g,
such that g(A) = +oco whenever A4 is not in &,; from Remark 2.24 below, it follows that p
is in M.

From (1) we have that

(2.5) 5(1)= [ fau

for every f € Hs. To complete the proof we have to extend @ to all functions in Hg(M).
Let u be a function in Hj (M), being supposed fixed. If ®(u) < +oo, then there exists
f € Hs and so (2.4) follows from (2.5). Now suppose that ®(uz) = +oo and, in order to

get a contradiction, let us suppose that

/ Ezd,u < +o0.
M

For every € > 0
W({El > ep <7 [ Tap <,
M

so A = {|g] > €} € &,; hence let (gn)r be an increasing sequence in Hs, such that
gn — +oo on A and let
fu = kA (71— )

then f, € Hs and limy, f5 = (|g| — ¢)*, so that

8(17| — e = lim8(f) =t [ fiau= [ |(7@- e [ o

Since (|| — €)%, as € goes to zero, converges to [i|, by Theorem 1-(iv) we have

8(17) = [ [7dn < oo,
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So by theorem 1-(i) and (v)
B(u) < 2[8(u’) + B(u7)] < 49(Ju]) < +oo
and we get the contradiction.

REMARK 2.24

The measure y is absolutely continuous with respect to capacity, that is p(E) = 0if F is
a Borel set of capacity zero. In fact, by definition, E € £ if and only if 15 € ﬁ;; if F has

capacity zero, then 1g coincides q. e. with the function identically zero. Hence
u(E) = B(lg,1g) = 0.

REMARK 2.25

We wish to underline that a §-ring is not assumed to be closed under the complement

operation, hence in general A° does not belong to £ if 4 € £, as the following

_example

shows.

EXAMPLE 2.26
Let us consider £ a bounded open set of IRYY and let C be a closed subset of {; let

p = oo¢

[cfr. DM-M]. In this situation Hs consists of H} () functions that are zero on C, up
to a set of capacity zero and this property still continues to hold for functions in Hs.
By definition, £ € £ if and only if 1g € Hs; so the property to be zero on C is true if
E C Q\ C, then there is no hope to have E€ € £. '

PROOF OF THE THEOREM 2.5

Now the proof is straightforward; it follows from theorem 2.5 and proposition 2.23.
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CHAPTER 3
With the notations of Chapter 2, we say that the sequence (u4)n of measures in M,
y—converge to p € M, if the sequence of the corresponding functionals (F),, )5 I'- converges
in L?(M) to the functional F,.
DEFINITION 3.1

For every open submanifold D in M and for every v € M, we shall denote by FD the

following functional

oy _ ) Jp|Vul2dV, + [y u?dv, if w € Hy(D);
Fo(w) = { e 00, ? otherwise in LZ(D)

We have the following result

PROPOSITION 3.2

Let (pr)rbe a sequence in M, and let u € My. The following are equivalent:

(a) (1 )n y—converges to p.
(b)  (F\D)n T—converges to F° in L*(D), for every open submanifold D in M.

REMARK 3.3

For every open submanifold D in M, let us define

(3.1) FP(u) = inf {]im sup Fﬁ (up) rup — uin LZ(D)}
h

(3.2) FP(u) = inf {limhinf F,ﬁ (vn) :up — win LZ(D)} ;

If D = M we denote the corresponding functionals by F. and F_. By definition we
have Ff‘(u) > FP(u) for every u € L?(D). By a diagonal argument, it is easy to see that
the infima in (3.1) and (3.2) are achieved by suitable sequences; moreover F' and F? are
lower semicontinuous on L?(D) (see [De Giorgi-Franzoni]).

It is easy to realize that Ff is the I'-limit in L%(D) of F‘ﬁ if and only if FE = Ff =
FP on L?(D); since these functionals are equal to +oco outside HI(M) [see Chapter 2],

the I'- convergence of Fﬁ to F“D is equivalent to the inequalities

FP<FP<FP on Hy(D).
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REMARK 3.4
Let D be an open submanifold of M. If u € H}(D), we can extend it to the whole manifold

M by putting v = 0 outside D; so we get u € Hy(M) and this extension is still denoted
by u.

Proof of the proposition.
(b) = (a) is trivial, since we can always take D = M.
(a) = (b) Let us assume (a), which is equivalent to suppose Fy = F, = F_ on
L*(M). Let us prove that
Ff < FP on H;(D).
Let uw € Hj (D) with FP(u) < +o0o. By (3.2) there exists a sequence (u3)p converging to
u in L?(D) such that
]imhinf F,ﬁ (up) = FP(u);
since FP(u) is finite, we may assume that, up to a subsequence, up € H(D); hence

up, € Hy (M) and F‘ﬂ(uh) = F,, (un), so that
F2(u) = liminf F,2 (ua) = liminf Fy, (u) > F-(u) = Fu(v) = F,(u).

It remains to prove that

FP <FP.
Let v € H}(D) and such that F,P(u) < +o0; it is not restrictive to assume that v €
C(M). In fact, since the functional F;P is continuous w.r.t. the strong topology of
Hg (D), while F'P is lower semi-continuous w.r.t. the strong topology of L?(D), we obtain
the desired result by the density of C>°(D) in Hj (D).

Now extend the function u by putting u = 0 outside D, so that v € Hj(M) and
Fy(u) = Fy(u) = F_(u). By (3.1) there exists a sequence (up); converging to v in L*(M)
such that

Fi(4) = FP(s) = lim sup Fy () < oo,

This yields that us € H} (M) for h large enough and

h'msup/ |Vup|?dV, < limsup Fy, (ur) < 400
h M h
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so that (up)n converges weakly to u in H}(M). Let ¢ be a smooth function, compactely
supported in D such that ( =1 on supp(u); then {uj belongs to H} (D) and (u converges
strongly in L?(D) to (u; hence

FP(u) < limsup F,) (Cun) =

= limhsup{/l; [IVuhl;‘;Cz + 2Cunr(Vup, V()4 + ui|VC|§] dv, + L Culdus} <

< ]imhsup F,, (ug) + 2/ [(u(Vu, V), + u2|VC|3] dV, = F,(u),
D
and so the proof of the proposition is complete.
THE p—-CAPACITY

With the notations of Chapter 2, let E be a Borel set in M and let p € My. The
p—capacity of E in M is defined by

(3.3) cap,(E) = inf {‘Il(u) + /E (u—1)%dy, u € H(}(M)} .

The infimum in (3.3) is attained by the lower semi-continuity of the functional in the
weak topology of Hg(M) and if cap,(E) is finite, then the minimum point is unique by

the strict convexity.

REMARK 3.5

It is possible to extend the notion of u— capacity to every subset of M; in order to do this
, first of all we have to extend the measure from B(M) to P(M) by

p(E) =inf {u(B): B € B(M), E C B};

then define
cap,(E) = inf {‘I’(u) —{—/ (u—1)2du®, u e H&(M)}
M

where u is the restriction of the measure p to E, that is

pZ(A) = W(ANE), VA € B(M).
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REMARK 3.6
Note that

‘/faﬁ=hﬂ{/ftheBMQ,EcB}
M B

fis any Borel, positive valued function.

PROPERTIES OF THE p—-CAPACITY

In the remainder of this Chapter we face the problem of the continuity of the restriction
operator uF [see Remark 3.5] w.r.t. the y—convergence. This kind of result was firstly
tackled in the "flat” case in [Dal Maso: 4—convergence and p—capacity]. Since the methods
used in [Dal Maso] apply to our case, except for Propositions 3.12 and 3.13 below, we will
address to the above quoted paper for the proofs, when it is required. Our scheme is now
the following: first of all we give a result about the asymptotic behaviour of the cap,, when
the sequence (ux)n y—converges to a measure g € Mo(M). We use such a result in order
to give a characterization of the y—convergence; this characterization is then used to get
an equivalence between the y—convergence of the sequence (pp),r and the y- convergence

of the restriction operators (uZ)s, E € B(M).

PROPOSITION 3.7
For every p € Mo(M), the set function

cap, : P(M) — [0, +c0]

satisfies the following properties:

(a)  cap,(0)=0
(b) if By CEz,then

cap,(E1) < cap,(E2)
(c) if (E})p is an increasing sequence in M and
E =|JE,
h

then

cap,(E) = sup cap, (E4)

33




(d) if (Ex)s is a sequence in M and E = UE’” then
h

cap,(E) < 3 cap,(En)
h

cap,(E; U Ep) + cap“(El NE;) < capP(El) + cap,(Ez)

(f)  cap,(E) < cap(E), for every E C M
(9)  cap,(E) < p(E), for every E C M
(r) | .
cap,(E) =inf {cap,(B) : B € B(M), E C B}
(1)
cap,(A) = sup {cap,(K) : K compact, K C A}
for every quasi open set 4 in M
(i)
cap,(A4) = inf {cap”(U) : U open, ACU}
for every quasi open set 4 in M

For the proof of this result, we refer to [Dal Maso, Theorem 2.9].

REMARK 3.8

The proposition above tells us that cap, is increasing (item (b)) and continuous on in-
creasing sequence (item (c)); cap,,however, is not a Choquet capacity, since, in general,
the property

cap,(K) = inf cap, (K1)

for every decreasing sequence (Kj)n of compact sets in M, with K = ﬂK h, does not

h
holds true [see DM-M,, J. Appl. Math. Opt.].

We now introduce a class of measures, denoted by M (M), whose interest lies in the

fact that they lead to p—capacities that are Choquet capacities.

DEFINITION 3.9
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With MG(M) we denote the class of measuresin p € My(M) such that
(3.3) | p(E) =inf { u(A) : E C 4, A quasi open }

for every E C M. By Remark 3.5, it is sufficient to verify (3.3) for E Borel set.

REMARK 3.10
For every pu € Mo(M) define

p*(E) =inf{u(A) : A quasi open, E C A}.

It has been proved [see DM,theorem 3.5] that p* is equivalent to p, according the equivalent
relation given in Chapter 1, and cap,(A) = cap,.(4) for every 4 quasi open subset of M.
PROPOSITION 3.11

Let p € Mg(M). Then cap, is a Choquet capacity,

cap,(E) = sup {capP(K) : Kcompact, K C E}
for every E in M and
cap,(E) = inf {cap“(U) : Uopen, EC U}

for every E in M
We refer to [Dal Maso | for the proof of this result; we want to underline that a
consequence of these results on the cap, is the possibility to reconstruct a measure p €

MG (M) from the corresponding p- -capacity (see theorem 4.5 in the above quoted work)

In order to tackle the problem of the continuity of the restriction operator uf, we
need the following two results.

PROPOSITION 3.12
Let (prn)n be a sequence in Mo(M) which converges to p € Mo(M). Let A be an open

set in M and N an open submanifold of M such that

ACNCM.
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Then

(3.4) U(u)+ Luzdu S lim inf [‘I’(uh) +/‘;uid#h} :

for every u € H*(N) and for every up € H'(N) converging to u weakly in L(N).
PROOF

First of all we remark that it is not restrictive to assume that the liminf in the right hand
side of (3.4) is a finite limit; hence u} is a bounded sequence in H*(N) converging to u
weakly in H!(N). Now let us prove first the case of A contained in a single chart (U,w)
with coordinate system (z1,...,zn). Let K be a compact set, K C A, and consider
T € CXPA),0<7<1,7=1o0n K. Since vy, € H}(N), rv, € H(N), supp(rvs) is
in A and v, converges to Tv strongly in L*(IN), so by condition (a) of I'-convergence

[Definition 2.1] we have

U as(rv) +/ ru*dp < liminf [‘IIM(th) +/ (thdph] ,
M h M

~ that in local coordinates it reads

/ﬂ gi;Dj(rv)Di(Tv)bdz + /M (rv)?dy <

< limhinf [/ 9ij Dj(tvp)D;(Tvp)bdz +/ (th)zd;t}
9] M

where b(z) = 1/|g(z)]| is a function in L*(Q), = w(U) is a bounded open set in IRY and
D; are the distributional derivatives (in IR™). We have, expliciting the calculations,

/[giijTDiT]uzbdz+/ [9:jDjTDiu] urbde+
Q 9]
+/ [giijuD,-u]'rzbd:c-i—/ riuldp <
Q M
S]imhinf [/ (g,-ijuhD;uh)TZbdm-’r/ (9:jDjTDyup)uprbdz+
Q Q

—I—/ (g,-,-Dj'rD,-'r)uibdz—F/ (uhT)zd,u}.
Y] M
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Since uj converges weakly to u in H 1(M ) the first and the second term on the left

hand side tends to the third and to the second on the right hand side, hence

/[giijuDiu]‘rzbdz—l—/ w?ridp <
(3.5) @ M

< lim inf [/ [g:;DjunDiug) bdz +/ ‘rzuidy,]
h Q M

By the lower semicontinuity of the functional ¥ w.r.t. the weak topology of H H(M),

we have also

/ (9i;DjuDiu)(l — 7%)bdz <

(3.6) N

< limhinf/ (9i;DjuDiu)(1 — Tz)bd:z:;
N

adding (3.5) and (3.6), we obtain

[ 1vupavy+ [ wiau<
N K

< liminf [/ |V |*dV, +/ uid,uhjl
h N A
and taking K / A, we have the desidered result.

If we have not A contained in a single local chart, then we may consider
ANU;

where U = (U;); is the family of open set given in Lemma A.l in Appendix. We apply the

above argument to A N U; and we get the assertion of the proposition, since

/ |Vu|2dVg+/u2dp,=
N A

= Z [/ |Vu]2dVg +/ uzdu} ,
; U; ANU;
and

Z []jminf/ |Vuh|2dVg+/ u%duh] <
; h U; ANU;

13
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< liminf / Vu|?dV, +/ uidps| =
h [21: U.~| hl g AN 3

%

= lim inf [/ |Vu|?dV, +/ uidph] .
h N A

PROPOSITION 3.13
Let (un)n be a sequence in Mo(M) which y—converges to u € M;(M). Let N be an open

submanifold of M, K a compact set and A an open set such that
KCACN.

Then for every u € H'(N) there exists a sequence (u)s in H*(N) such that us converges

strongly in L2(N) to u and

(3.7) U (u) +/ u?dp > lim sup [\I’N(uh) +/ uiduh] .
A h K

PROOF
We may assume that u € L?*(N,p); by a diagonal argument it is enough to show that for

every ¢ > 0 there exists a sequence (u3), in H'(N) such that us converges to u strongly

in L?(N) and
Un(u) +/ u?dp + ¢ > lim sup [\I’N(uh) +/ uidph} .
A h K
Let ¢ be given and let W be an open set of IV such that
KCWcWcA

and ‘I’W\K < €. We suppose, at first, that A4 is contained in a local chart (U,w). Let ¢ €
C&(A),(=10on W and 0 < ¢ < 1 on 4; define v = u( that belongs to H}(N)NL2(N, ).
By condition (b) of the definition 2.1, there exists a sequence (vj)s in Hi (N) converging
to u strongly in L?*(N) and such that

Uar(v) +/ vzdp > lim sup [\IJM(vh) —l—/ v,zld,uh] .
M h M
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Set E = M \ W; then we have

\Ifw—(u)+/~u2du+‘IlE(v)+/ vidp >
w E

> hmhsup [ w7 (vn) +/ vidph] +]imhinf [\I’E(vh) + /Evidyh] .
By the Proposition 3.9 we have that
Yg(v)+ /;Jvzdp < ]imhinf [‘I’E(vh) + /I:Jvidph}
and, by definition, v € L?(E, p), so

(3.8) To(u) + /Wuzd,u > lim sup [‘I:W(v,,) + /_v,idph] .

w

Let £ € C(W), ¢ =1 on a neighbourhood of K, 0 < ¢ < 1. Define
up = €vp + (1 = u;

then

Up = Vp in a neighbourhood of K

and converges strongly in L2(N) to u. We have, for every ¢ € (0,1)

: gijDjupDiup < [1 ¢ ] lgi; DjvnDivp] +
(3.9)

1-— VR — U
[1—_—5] lg:jDjuDiu] + [ hs ] lgi; D;€D;€] .

Since v, converges to u strongly in L2(W), from the (3.8) and (3.9) we get

lim sup l‘I’N(uh)—I—/ uidphjl <
h K

1 1
< ——limsup —(vh) +/ 'th}ih + o W\K(u) <
l—¢ & 1-

< 7 [ewtn + [ waus ‘I’W\K(U)] <

< —I——i— {‘I’N(u) + /W w?dp + 6] -
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The proof is then achieved in the case that A is contained in a single chart. If this does

not happen, we may consider, for a given ¢ strictly positive,
ANU;,

where U = (U;)ier is the family of open sets given in Lemma A.2 in Appendix, I is a finite

set of indeces. The measure ¢ in Lemma A.2 is

a(E)z/Euzdu

We apply to A N U; the above arguments and after a summation , we get the proof of the

) [\IanU.. W+ [

ANU;

proposition. In fact,

uzdp,] =

1

= zi:]imhsup {‘I’NHU; (un) + /

KnU;

> lim sup [Z (‘I’NnU,-(Uh) +/ uii“h)] >
h KnU;

i

uiduh] >

> lim sup [\IIN(uh) +/ uid,uh] ,
3 K

while
Z [\IanUi(u) +/ uzdy,] = Un(u)+ /Auzdu +e

i Nt

by property (2) in Lemma A.2.

The Propositions 3.10 and 3.11 allow us to prove the following result.
PROPOSITION 3.14

Let (1)n be a sequence in Mo(M) which y—converges to p € Mo(M). Then

(3.10) cap,(4) < limhinf cap,, (4),

(3.11) cap,(4) > ]imhsup cap,, (K),
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for every K compact set and for every A open set in M such that K C A.

PROOF
We suppose that in the right hand side the liminf is a limit and it is finite; this implies
that there exists a sequence (vy)s bounded in H(M) such that

cap,, (A) = [WM(%) + /A (on — 1)2d,u.h] .

By passing to a subsequence, we may assume that v, converges to v weakly in Hl(M).

Therefore the inequalities

cap,(4) < [‘I’M(v) +/A(v - l)zdp] <

< limhinf [‘I’M(vh) + / (va — 1)2d#h] = cap,, (4)
A

follows from Proposition 3.9 with up = vs — ¢, where ( € CP(M), (=1 on U.
Let us prove (3.11). Let w be a function contained in Hj(M) such that

cop(4) = [#aulo) + [ (- 1P d].

By Proposition 3.11, with N=M and u = w — (, where ( is as above, we know thatj there

exists a sequence (wy)p in H} (M) such that it converges to w and

cap,(4) = [\IIM(w)—%— /A (w—1)2d4 <

< cap,, (A) = lim sup [‘I’M(wh) 4 / (wp — l)zd,uh] <
h A
< lim sup cap,(K),
h
and the (3.11) follows.
First of all, the results given in Proposition 3.14 may be improved in

PROPOSITION 3.15
Let (us)n be a sequence in My(M) which y—converges to p in Mo(M). Then

cap,(4) = sup {]jmhinf cap,, (K): K CA, K compact}
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for every quasi open 4 in M.
PROOF
The proof is in ([DM] theorem 5.10).

PROPOSITION 3.16
Let (un)n be a sequence in Mo(M) which y—converges to p in Mo(M) and let Ebe the
family of all subsets of Msuch that E is compact and cap,,.(E) = cap,.(intE). Then £ is
a rich family and

(3.12) cap,u(F) = ]i’im cappr(E)

for every E € £.

PROOF
The fact that £ is a rich family follows from Lemma 1. in Chapter 1. Since intF is open
we have, by Remark 3.10,

cap,. (int E) = cap,(intE) < cap,(E) < cap,(E) < cap,.(E).

Hence cap,(intE) = cap,,u(E); now the conclusion follows from Proposition 3.14.

The next caracterization of the 7—-convérgence holds true which can be proved as in

([DM] theorem 6.3).
PROPOSITION 3.17

The following are equivalent:
(a)  (pa)a is a sequence in Mo(M) which y— converges to p in My(M).
(b)  The inequalities

cap,(K) < ]imhinf cap,, (U)

cap,(U) > ]imhsup cap,, (K)

hold true for every K,U compact and open sets in M.

(¢) For every openset U C M
cap,(U) = sup {limhinf cap,, (K): K CU, K compa.ct} =
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= sup {limhsup cap, (K): K CA, K compact} .

(d) The family of all E € M such that
cap,(E) = li’in cap,, (E)
is dense in P(M).

Using the same methods in [DM], the above characterization is can be used to prove

the
PROPOSITION 3.18
For every p € Mgo(M) let H be the family of all subsets of M such that

cap,.(V NintE) = cap,.(V N E)

for every open set V C M. Then H is rich in P(M) and (p¥)s y—converges to u® for
every E € ‘H and for every (us)n 7—converging to p in Mo(M).

Now we are in condition to give the desired result of this Chapter

THEOREM 3.19
Let (n)n be a sequence in Mo(M) and let H be the rich family introduced in the Propo-

sition 3.18; then the following are equivalent:

(a) (i )n y—converges to p € Mo(M).

(b) The sequence of functionals (¥ D+‘§fh) I'-converges in L?(D) to the functional
(Yp + @f for every open submanifold D of M and for every E € ‘H with E C D.
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CHAPTER 4

First of all we recall the functionals defined in Chapter 2. Let

(4.1) Fy(u) = { ;1:_(0:) + o) o:hirﬁs(eﬂilrz,LZ(M )s

where
n(u) = / w2dps
M
and
W) = [ (1Vuf +lla,

where p, € Mo(M) and let

Fw)= [ [1Vu P +ijav, + [ uan
M M

if u € H}(M), and F(u) = +oo if u € H} (M) be the T-limit in L?(M) of (Fi)s (theorem
2.2).

Let us consider the following problem,

—Agu + pu = Au in M
(4.2)
u=20 ondM,
where A, is the Laplace-Beltrami operator. In analogy with the case of an open set in R™

(see e.g. Dal Maso-Mosco [1,2,3]), we say that (4.2) is a Relaxed Dirichlet Problem.
DEFINITION 4.1

We say that u is a weak solution to the problem (4.2), if

/ (Vuh,Vz)ngg—}—/ uzdph+/\/ vde5,=/ fzdV,
M M M M

for every z € Hy (M) N L*(M, p).
REMARK 4.2
It can be proved, see Dal Maso-Mosco [3, proposition 2.1] that for any u € My(M) and for

every A > 0 there exists an unique weak solution u to (4.2) belonging to Hy (M)NL? (M, pn);
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moreover it can be proved by variational methods that uj is the unique solution of the

minimization problem

Let u € Mo(M); then the Resolvent Operator for Relaxed Dirichlet Problem (4.2) is
defined as

(4.3) R4 : L3 (M) — L*(M)

that associates to every f € L%(M) the weak solution u to (4.2).
Let (ur)n be a sequence in Mo(M); consider the problems
—Agu+ pru = Au in M
(4.4)
u=20 on OM.

The result of this chapter is the following
THEOREM 4.4

Let (p1)y, be a sequence in Mo(M); if (up),, y-converges to a measure p € M;(M) then

(4.5) L as h — +oo

where A}; is the i-th eigenvalue of the problem (4.4) and A’ is the i-th eigenvalue of the
problem (4.2) (counted according their multiplicity).

PROOQOF
By a general result in Attouch [1] (theorem 3.26), we get from the I'-convergence of the
functional F} to F, that the resolvent operator R}" converges strongly to the resolvent

operator Ry in L?(M). The strong convergence of the resolvent operators is sufficient to

give the convergence of the eigenvalues [Dunford-Schwarz‘%{{L lB\MW a /H ; Q 5‘ /
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APPENDIX
LEMMA A1l

Let (W;);e 1 be a finite or countable open cover of a compact Riemannian manifold with
boundary M; then there exists a family of open sets in M, U = (U;);es such that U; C W;
for every i € I, U; N U; = 0 for every i # j and

U vi= 3\ [Uau,.] .

iel el
PROOF For every W;, there exists an open set V,, such that (V;); is an open cover

of M,
-VT:CW,;.

Now define
Ur=W

Uy =Vo \U;

U,-:V,-\{Ulu...uU,-..l ]

It is a matter of fact that the U;’s are open and pairwise disjoint.

As regard the union, a first fact is that, being the (u;) disjoint, the boundary of
U; must have empty intersection with every Uj, for any i,k € I. On one hand, we get
immediately from the above fact, that Uier Ui C M\ Uie70Ui. To prove the opposite
inclusion, let z € M \ Uier 9Us; since (Vi)ier is an open cover of M, then z € V4, for some
k € I. By definition, either z € Uy or ¢ € U; U...U Ug_1; in the first case the proof is
done, in the second one we have to consider that, by hypothesis, z does not belong to dU;,

for every i € I, hence x is in Uj, for some j € I. The proof is then achieved.

Under the same assumptions of Lemma A.1,We know that for every W;, there exists

an open set V;, such that (V;); is an open cover of M,
V. c W,
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Let ¢; € C2°(W;) such that
¢i=1onV;
0<¢ <1on Wi
Now set
Ui(p)={zeWi: (i(z)>p }
for all ¢ € I and for every p € (0,1); we have
Vi c Ui(p) C W, Viel

(actually U;(p) C W3).
LEMMA A.2
Under the same assumptions of the Lemma A.1, for every ¢ > 0 and for every Borel
measure o, there exists an open cover (U,-); of M such that
(4.1) o(U;NU;)<e, Vi,j€l,i#7.

PROOF

Let Ui(p) as in the construction above. Let us consider the real function, defined on (0,1),

f(p) = o (Ui(p))

for every 0 < p < 1. This function f is positive and increasing on (0,1), so it has a
countable set of discontinuity points (pn)s in (0,p1). From now on ,we consider p; as a

point of continuity to f. For a given £ > 0, if p is sufficiently close to py,p < p1, we have

o (U \ Tilpr)) <o (Uilp)) — o (Uslp)) < e,
hence o(8U;(p)) = 0.

Let us define, for 0 < p, < py,
Uy = Ui(p2)

Uz = Uz(p2) \ Ui (p1)

Ui = Ui(p2) \ [Ux(pr) U--- U Uia(p)| -
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So the U; are open set in M; now prove that

Juvi=m.

i€l
Let z € M, hence = € Ui(p2), for some k € I. If = € Uy, the proof is done; otherwise let
us suppose that z ¢ Uy, hence z € Uj(p;) for some j < k — 1. Since U;{p1) C U;(p2), we
have, as before, two excluding alternatives: either z € U; or = ¢ U;. We have that the set
of the indices I is finite, so in a finite number of steps we find that either z € U;, for some

lel,orzeUyi(p) C U,y (p2) = Uy; the proof is then achieved.
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