ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

Thesis submitted for the degree of
“Magister Philosophiae”

On One-Dimensional

Dynamical Systems

CANDIDATE SUPERVISOR
WU He Prof. Giulio PTANIGIANI

Academic Year 1989/90

' TRIESTE







Contents

Acknowledgements
1 Introduction

2 Sarkovskii’s Theorem

2.1 Introduction ... ............
2.2 Sarkovskii’s Theorem of the interval . .
2.3 Sarkovskii-like Results . ... .. ...
2.31 Thecase S ...........
232 mnod................

-----------

...........

2.4 The stability of periodic orbits in the Sarkovskii’s Theorem

3 Topological Entropy
3.1 Introduction . ... ... ........
3.2 The extension of Bowen’s Theorem . .

3.3 Qflagy)=P(f) - -« - oo
3.4 Some relations between P(f) and ent(f)

4 Chaos

...........

...........

...........

14
14
16
20

25
25
28
32

40




4.1 Introduction . ... ...

4.2 Li-Yorke Chaos . ... ..

4.3 No division implies chaos

4.4 Chaos almost everywhere

References

...................
...................
-------------------

11



Acknowledgements

I wish to express my deep gratitude to my supervisor Professor Giulio
PIANIGIANTI for his constant help , tireless guidence and carefully reading
this manuscript. I am also very grateful to Professor Arrigo CELLINA {for
his generous and helpful encouragements. My sincere thanks to Professor
Yunmei CHEN and Dr. Giovanni COLOMBO for their many kind helps.
At last, I wish to say thanks to every staff and student at SISSA for their

collaboration and helps.




Chapter 1

Introduction

One-dimensional dynamical systems has been an interesting subject of re-
search for the last twenty five years. Mathematicians, physicists, ecologists
and many others have all made important contributions to this field. In
this thesis we will study one-dimensional dynamical systems in a topolog-
ical view. First of all, we give some simple examples to explain what is a
dynamical system. Take a scientific calculator and start striking one of the
function keys over and over again. This iterative procedure is an example of
a discrete dynamical system. For example, if we repeatedly strike the “sin”

key, given an initial input z, we are computing the sequence of numbers of

sinz, sin(sinz), sin(sin(sin z)), ...

we will see that any initial zo leads to a sequence of iterate which tends to
0.

As another example, consider the so-called “tend” mapping f(z) =



1 — |2z — 1| on the unit interval. This example looks like very simple, but
its iterative properties is very complicated. The “tend” mapping has much
to do with symbolic dynamics. As we known, symbolic dynamics is an
important tool in the studying of dynamical systems. In this thesis, we will
use symbolic dynamics to present several simple proofs for some well-known
results in the dynamical systems.

The basic goal of the theory of dynamical systems is to understand the
eventual or asymptotic behavior of an iterative process. For a continuous
mapping f from the unit intervai into itself, the set of periodic point, the
nonwandering set, the topological entropy and the chaotic set of f are
the most important subjects. In this thesis, our interest is to study those
subjects. | Y

For the convenience, now we introduce some notations and definitions.

Throughout this thesis I stands for the unit interval [0,1], N stands for
the set of all positive integers, C°(I) stands for the space of all continuous
mappings f : [ — I, [a,b] stands for the closed interval and fla,b] stands
for the set {f(z) | = € [a,b]}. Suppose that f € C°I) and zo€ I. The
orbit of zo under f is defined as the set {z | ¢ = f*(z0),n € N} ( we often
denote it by Orb(zo, f)), where, for every positive integer n, f is the n-th
iterate of f, f' = f and f° = identity mapping. A point z¢ is said to be
a periodic point of period p > 1 ( p € N ) if fP(zo)=z¢ and f*(z¢)#z, for
1 <k <p. A point z¢ is said to be a periodic point of 1 ( more generally,
To is said to be a fixed point of f) if f(z¢) = zo. Clearly, if z, is a periodic
point of period p, then its orbit consists of p points.

We denote by P(f) the set of all periodic points of f , and denote by



pp(f) the set of n € N such that f has a periodic point of period n.

This thesis included four chapters. In chapter 1, we give an introduction
and outline of this thesis. In chapter 2, we give a new and simple proof
for the well-known Sarkovskii’s theorem, state two typical Sarkovskii-like
results in the cases circle and the so-called n-od (see 2.3 for the definitions),
and give a proof [Bl4] for the stability of periodic orbits in the Sarkovskii’s
theorem. In chapter 4, we extend the Bowen’s theorem [Bo] to the compact
topological space, give a proof [Xil] of that Q(fla(s)) = P(f) where Q() is

the nonwandering set of f, f|q(y) is the restriction of f to the nonwandering

set, P(f) is the closure of the set of periodic points of f, and in the last
section of chapter 3 we state some connections between the set of periodic
points and the topological entropy of f. In chapter 4, we introduce the
concept of chaos in the sense of Li- Yorke [LY], give a new proof about
“period 3 implies chaos” , give a easy way to check if a mapping is chaotic
due to [LMPY 2|, and in the last part of chapter 3 we construct an example

of a mapping with a chaotic set of full Lebesgue measure.



Chapter 2

Sarkovskii’s Theorem

2.1 Introduction

The continuous mappings of the interval have been studied for many
years. However some important and beautiful results have been found only
in the last thirty years. For example, Sarkovskii’s Theorem [Sa.] is amazing
for its lack of hypotheses ( the mapping is only assumed continuo‘us) and
its strong conclusion. It was proven by Sarkovskii [Sa] in 1964 but it was
unknown in the English speaking world until Stefen [Ste] reproved it in

1977. Before this, in 1975 Li and Yorke [LY] proved a special case of the
Sarkovskii’s Theorem . In the early 1980’s, Osikawa and Oono [OQ], Block,




Gukenheimer, Misiurewicz and Young [BGMY], Ho and Morris [HM], and
Gawel [Ga] proposed a series of different proofs of the Sarkovskii’s theorem.

Sarkovskii’s Theorem and Sarkovskii ordering ( see next section for the
definition) is so remarkable that mathematicians try to generalize them to
other spaces than the interval or the real line. The spaces with the most
interesting Sarkovskii-like results seem to be the one-dimensional connected
space. Block,Gukenheimer,Misiurewicz and Young [BGMY], Alseda [Al],
Misisurewicz [Mi3] got such a result for the circle; Alseda ,Llibre,and Mis-
iurewicz [ALM] gave such a result for the triod; Baldwin [Ba3] discovered
such a result for the more general space: n-od. The n-od is the subspace of
the plane which is most easily described as the set of all complex numbers
z such that 2" is in the unit interval I, i.e. a central point 0 with n copies
of I attached.

In this chapter we will propose a new and simple proof of Sarkovskii’s
Theorem in 2.2, state some related Sarkovskii-like results without proof in
2.3, and give a proof for the stability of periodic orbits in the Sarkovskii’s
Theorem in 2.4 due to Block [Bl4].

2.2  Sarkovskii’s Theorem of the interval

Consider the following ordering of the natural number:



357D
P2X3PD2X5D2XT7D>..
>22x3p22Xx5p22%xT7 ...

BP2"x3 D2"X5D2"X T > ...

D22l 22221

That is, first list all odd numbers (except one) in the increasing order,
followed by 2 times the odds, 2? times the odds, etc. This exhausts all
the natural numbers with exception of the power of 2 which we list last in
decreasing order. Such a ordering is called the Sarkovskii ordering of the

natural numbers.

Theorem 2.2.1 Let f : I — I be a continuous mapping, which has
a periodic point of period n, if n >k in the Sarkovskii ordering, then [ also
has a periodic point of period k.

Before proving this theorem, we note several consequences:

(i) If f has a periodic point whose period is not a power of two, then f
necessarily has infinitely many periodic points with infinitely many periods.
Conversely, if f has only finitely many periodic points, then all of them have
periods which are powers of two.

(2) Li-Yorke’s Theorem[LY] Period 3 is the “greatest” period in

~J




the Sarkovskii ordering and therefore it implies the existence of all other
periods.

(iii) There are mappings which have periodic point's of period p and no
periodic points of k if & > p in the Sarkovskii ordering. For example, let
f:I — I be defined such that

F(0) = 2/4,7(1/4) = 1, f(2/4) = 3/4, f(3/4) = 1/4, f(1) = 0

and on each interval [;;, ’.'FTl](i = 0,1,2,3) , assume that f is linear. It is

easy to check that 3 € pp(f) but 5 & pp(f).

To prove the Sarkovskii’s Theorem, we need some lemmas. The follow-
ing Lemma 2.2.2, Lemma 2.2.3 and Lemma 2.2.4 are very easy and very
useful in the proof of Sarkovskii’s Theorem. We just state them without

proofs.

Lemma 2.2.2 Let J be a closed subinterval of I. If f(J) D J, then there
exists ©g € J such that f(zo) = zo.

Lemma 2.2.3 Let J; and J, be closed subintervals of I. If f(J1) D Jy,
then there exists a closed interval J C Jy such that f(J) = J, and for any
closed subinterval K C J, f(K) # Ja.

Lemma 2.2.4 Let Jo, J1,..., Jn1 be closed subintervals of I, if f(J;) D
Jiyw fori=0,1,...,n—2 and f(Jn-1) D Jo.



Then there exists ©o € Jo such that f*(zo) = zo and f*(zo) € Ji for
k=0,1,...,n—1.

Theorem 2.2.5 [Ste] Let f € C%I) and let p > 3 be an odd in-

teger. If o 1s a pertodic point of period p , then there exists a point

y € {zo, f(%0), ..., fP7H(z0)} such that either

(4)
P2 y) < YY) << FPly) < fly) <y
< Fy) < fy) < < (),
(B)
P2 y) > F7Ny) > > FPly) > fly) >y
> fAy) > A y) > > )
holds.

PROOF: See [St] or [Gal.

Lemma 2.2.6 Let f € C°I) and pp(f) is not the whole N. Then for
every ¢ € I, we have

(i) if f(z) <z, and a = max{f(y) | y € [f(z),z]}> =, then f(z) <=z
for every z € [z, al;

(11) if f(z) >z, and b = min{f(y) | y € [z, f(z)]}< z, then f(z2) >z
for every z € [b,z].



PROOF: (i) Assume that there exists a point = € [z, a] such that f(z) > .

Let w € [f(x),z] such thatf(u) = a, then

/7(_/\\4

f(x) u X z f(z) a

Figure 2.2.1

F([=:=]) D 2]
and
F([u,z]) D [u,z] U [z, z].
By Lemma 2.2.2, there exists a fixed point of f in [u,z]. By Lemma 2.2.4,
for every integer k > 1, there exists a fixed point y € [z,z] such that
fi(y) € [u,z], for i = 0,1,...,k — 1. Clearly, the period of y is k. It follows
that pp(f) = N. A contradiction to pp(f) # IN.
The proof of (ii) is the same .#

Lemma 2.2.7 Let f € C°I) and let pp(f) be not the whole N. Suppose
that there exists a periodic orbit {z, < z3 < ... < T} with pertod n, then
(1) if n is even, we have
f(J1) D J2 and  f(J2) D Ju.

10



where Jy = [z1,z2] and J; = [z241, 2]

(2) if n is odd, we have

f(/1) D J; and f(J3) D Ji.

where J, = [a:l,a:g%l] and J, = [:231-2(-_1,(3“].
Proor: Case 1: n even. Let f(z;) = z1, and a = maz{f(y) | v € [z1,z:]}.
Then there exists a point y € [z, z;] such that f(y) > z;. If not,

{f(w1)7 = f(wl)} C {wla '--,331'——1};

this is impossible. By Lemma 2.2.6, we know that f(y) < a for every
y € f([z1,a]). Clearly, fi(z;) < a for j = 0,1,...,n — 1. In particular
T, < a.lt follows that
f([z1,2:]) D [21, za]. (2.1)
If : <n/2, then
Card{Orb(z1, f)N[z;, zx]} >Card{Orb(z1, f)N[z1,z;]} ( where Card{A}

stands for the number of the elements of set A),then
F(Ord(z1, f)) N [z, 2] # 0,
and since f(z;) = z;, we have
f([ziyzn]) D [21, . (2.2)

Therefore from (2.1) , (2.2) and Lemma 2.2.4, it follows pp(f) = N. A
contradiction . Hence ¢ > n/2.

Since Card{Orb(z1,f) N J1} = n/2 = Card{Orb(z1, f) N J;}, then

11




(i) if f(Orb(z1, f) N J2)= Orb(z1, f) N J1), then f(J3) D Ji.

(i) if f(Orb(zy1, f) N J2)# Orb(zi, f) N J1), then f(Orb(zi, f) N J2)
NOtb(zy, f) N J5) # 0. This together with f(z:) = =1 implies £(J2) O Ji.

Let f(z;) = z, and b = min{f(y) | y € [z;,z,]} and note that the
conclusion in Lemma 2.2.4, By a similar arguments as in above, we can
prove that f(J1) D J,.

Case 2: n odd. The proof is same as that in Case 1. #

" Lemma 2.2.8 Let f € C%I) and n € pp(f). Then

(i) if n > 2, then 2 € pp(f);

(i1) if n > 3 is odd, then 3 € pp(f?);

(111) if n > 3 is odd, then n + 2k € pp(f), for every k € N.

ProoF: (i) Let n € pp(f) and n > 2. Assume that 2 ¢ pp(f), by Lemma
2.2.7, it follows 2 € pp(f), a contradiction.

(ii) Let n € pp(f) ,n > 3 odd and let z be a periodic point of period
n. Assume that 3 & pp(f?), then 3 & pp(f). Since n is odd, the period of
z under f? is also n. By using Lemma 2.2.7 for both f and f2, it follows
that f%(J;) D J, and f(Jz) D J1. Hence 3 € pp(f), a contradiction.

(iii) Let » € pp(f) and n > 3 odd. Without loss of the generality, we
may assume that n is the minimal number in pp(f). Let z; be a periodic
point of period n. By Lemma 2.2.7 we have f(J1) D J;, and f(J3) D Ji,and
from Orb(zy, f) is a periodic orbit of period n, we have f*(J;) D J,, Hence,
for every k € N there exists a point zo € I such that

fn+2k(:130) =z

12



with the following propertiesﬁ
zo € J1, (o) € Jo, f3(x0) € J1, f3(z0) € Joyeers fP* o) € Jo, fH*(z0) €
Ji, R (z0) € Jh.
Let m be the period of zy, then m must be an odd number. Therefore
m > n (since n in the minimal number in the set pp(f)).
Ifi <k, f%*'(zq) € Jo, hence m > (2(k—1)+1) +1 = 2k, so m > 2k,
As we know that m is a factor of n + 2k and n + 2k is odd, therefore
m = n + 2k. The proof for this Lemma is finished.  #

PROOF OF THEOREM 2.2.1: Obviously, 1 € pp(f). In the following we
assume that & > 1.
(1) If n = 2™, then n € pp(f) implies 2™~ "1 € pp(f2" ) for 0 < r < m.
By Lemma 2.2.8, 2 € pp(f2 ™). Hence 2" € pp(f).
(2) In the following, we assume that n = 2™ - p where p > 3 is odd.
(i) k = 2™. ¢ where ¢ > p is odd. Then n € pp(f) implies p € pp(F*").
By Lemma 2.2.8, ¢ € pp(f2"), hence k € pp(f).
(i) k = 2° - g where s > m and ¢ > 3 is odd. Then n € pp(f) implies
p € pp(f*™). Since p is odd and s > m, clearly p € pp(f> ). By Lemma
2.2.8(ii), 3 € pp(f?"), by Lemma 2.2.8(iii), ¢ € pp(f*"). Hence k € pp(f).
(iii) k& = 2°. If s > m, then n € pp(f) implies p € pp(f2); If
1 < s < m, then n € pp(f) implies 2"~**1 . p € pp(f*'). By Lemma
2.2.8(1), 2 € pp(F*'™"). Therefore k € pp(f).
This completes the proof. #

13




2.3 Sarkovskii-like Results

We will introduce two typical Sarkovskii-like results here. One is for the
continuous mapping of the circle, the other is for the continuous mapping

of the n-od.

2.3.1 The case S!

Let f: S* — S! be a continuous mapping of a circle S* into itself. To
study the dynamics of a circle mapping, it is helpful to lift the mapping to
R. That is, we define the covering mapping 7 : R — S! by

m(z) = e*™® = cos(2mz) + isin(2nz).
F:R — R is called a lift of f: 5! — St if
moF = fom.

Note that the lift F' of f is not unique, but if F and F; are two lifts
of the same mapping f, then F' = F; + k for some integer k. Hence there
exists an integer m such that F(z + 1) = F(z) + m for all z. We call this
m the degree of f and denote it by deg(f).

14



For n € N, we denote that

S(n)y={keN| n >kyor k=n}.
and

S@2=)={2*| k=0,1,2,..}.

Theorem 2.3.1[Bl4] Let f be a continuous mapping from S* into itself.
If 1€ pp(f), then either
(a) there exists positive integers m and k such that

pp(f) ={neN| n2>m}US(k)

or

(b) there exists a positive integer k such that

pp(f) = S(k) or pp(f) = S(2%).

Theorem 2.3.2 - Let f be a continuous mapping from S* into itself, then
(1) If |deg(f)| > 2 then pp(f) = N with one ezception: if deg(f) = —2
it is posstble also that pp(f) = N\ {2}. (see [BGMY] and [J].])

(11)If deg(f) = O then either pp(f) = S(n) for some n € N or pp(f) =
S§(2%).(see [BGMY] and [].])

15




(i) If deg(f) = —1 then either pp(f) = S(n) for some n € N or pp(f) =
S§(2%).(see [BGMY] and [J.])

(v) If deg(f) =1, there ezist a,b € R and I, € N U{2®} with a < b such
that

pp(f) = M(a,b) U S(a,l)U S(b,r), (2.3)
where

M(a,b) ={n € N | there ezists k € NU{0} such that a<t<b};

S(a,1) = { 0 if a is irrational (2.4)

{n-s|seS)} ifa==~ fork and n coprime
and S(b,r) analogously.
Moreover, for every set A C N of the form (2.3), there exists a C
mapping f : S* — ST of degree one, with pp(f) = A.(see [M.])

2.3.2 n-od

Let I be the unit interval [0,1] and R be the set of real numbers. The
n-od is the subspace of the plane which is easily described as the set of
all complex numbers {z | z" € I}, i.e. a central point 0 with n copies of
I attached. The 3-od is generally refered to as the triod. We denote by
X, the n-od. A branch of the n-od will be any component of X,, — {0}.

16



A graph is any subset of R™ which is the union of finitely many compact
straight line segments and a tree is any connected graph which contains

no homeomorphic copy of the circle.

Definition 2.3.3 We define partial orderings <, for all positive integers
n.The ordering <, is defined in the following way (Sarkovskit ordering):

20 <y 201y 27 (2m + 1)<, 29(2k 4+ 3)<y 29(2k + 1)

for all integers 1,7 > 0 and k,m > 0.

If n > 1, we define the partial ordering <, is defined as follows: let
m,k € N.

Case 1 k=1. Thenm <, k iff m = 1.

Case 2 k is divisible by n. Then m <, k iff either m = 1 or m 1s
k

.
n

divisible by n and =<,
Case 8 k > 1, k is not divisible by n. Then m <, k iff either m =

1,m =k or m =ik + jn for some integers 1 > 0,7 > 1.

We give diagrams of some typical cases to illuminate the description given
above. See Figures 2.3.1 and 2.3.2 for diagrams of the <3 and <, order-
ings. One can easy check that the ordering <, is the same as the ordering
<iji.e.,the Sarkovskii ordering.

In the case n = 3, the <3 partial ordering combines the information
contained in two linear ordering developed in [ALM], and called there the
“red” and “green” orderings.

A set Z of positive integers is an initial segment of <,, if whenever £ is

a member of Z and m <, k then m is also a member of Z, i.e. Z is closed

17




under <,-predecessors. We can now state the Sarkovskii-like result in the

case n-od:

Theorem 2.3.4 Let f be a continuous mapping on the n-od. Then pp(f) is
a nonempty finite union of initial segments {Z, | 1 <p<n}of{<, | 1<
p < n}. Conversely, if A is a nonempty finite unton of initial segments
{Z,] 1<p<n}of{<, | 1< p<n}, then there is a continuous
mapping f on the n-od which fizes the central point 0 such that P(f) = A.

18
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I |
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Figure 2.3.1 Figure 2.3.2
The ordering < 3 The ordering < 4
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2.4 The stability of periodic orbits in the

Sarkovskii’s Theorem

A property of a mapping f € C°I) is said to be stable in the space
C%(I), if there exists a € > 0 such that for every g € C°(I) and ||f —
gll =maz.er|f(z) — g(z)|< €, g also has the given property. Studying the
stability of some properties of a mapping is important from a physical point
of view, because when one uses a mapping as a model of some phenomena
there will normally be some possibility for error. Butler and Pianigiani
[BP] discussed the stability of periodic orbits in the Sarkovskii’s Theorem.
They proved that if f € C°(I) has a periodic point of period 3, then there
exists a neighborhood U of f in C°(I) such that for every g € U and every
positive integer k with 3 > k in the Sarkovskii ordering, k € pp(f). Later,
Block [Bl4] got a general result for the stability of periodic orbits in the

Sarkovskii’s Theorem. In this section, we will prove that results.

Theorem 2.4.1 Let f be a continuous mapping from I into itself, and
suppose that n € pp(f). Then there is a neighborhood U of f in C%I) such
that k € pp(g) for every g € U and k € N with n > k in the Sarkovskii

ordering.

For proving this Theorem, we will use a Theorem of Stefan ( see Theorem

20



2.2.5) and Sarkovskii’s Theorem. We present a few technical Lemmas.

Lemma 2.4.2 Let f € C%I) and let k be an odd positive integer with k >
3. Suppose that there is a point y € I such that the following inequalities
hold:

(1)
F2 ) < Y << P) < fly) <y
< ) < ) < <),

(i) y < F().

Then k € pp(f).
PROOF: Let k > 3 be any odd number, and let y satisfies (i) and (ii).
Since f(y) < y and f(£(y)) > f(y), we have f[f(3),4] D [f(v),s]. Hence
f has a fixed point e € (f(y),y). Set I = [e,y], Iz = [y, f*(v)], ..., and
Lo = [f*7(y), F*7 (y)]. Also, set I, = [f(y),e,ls = [f*(y), f(¥)], ..., and
Iy = [f*%(y), f*=*(y)]. From (i) and (ii), we have f(IL;) D Iy, for i =
1,k =1, and f(Iz) = I1.

Hence, by Lemma 2.2.3, there are closed intervals J, ..., J, with J; C I;
for ¢ = 1,...,k such that f(Ji) =1I; and f(J;) = Jiyy fors =1,...,k—1. It
follows that

fk(J1) =1 D Ji.

By Lemma 2.2.4, f* has a fixed point z € J;. Suppose that fi(z) = z for
somei < k. Since f*(z) € J;11, we have fi(z) # zfori =1,...,k—1.Thus, =

is a periodic point of f of period k.The proof of this lemma is completed.#
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Lemma 2.4.3 Let f € C°I) and suppose that n € pp(f) where n is odd
and n > 3. Then there is a neighborhood U of f in C°(I) with the property
that if g € U then (n + 2) € pp(g).

Proor: By the Sarkovskii’s Theorem it is sufficient to prove this Lemma
in the case that j & pp(f) for all j € {3,5,...,n — 2}.

Since n € pp(f), there is a periodic point = € I such that Ord(f,z) =
{z1,...,za} with #; < z; < ... < T,. By Stefan’s Theorem ( Theorem 2.2.5)
we may assume that (A) in Theorem 2.2.5 holds. Then by setting m = 242

and z = z,,, we have

(i)

2 2) < ) < < FR(2) < fl2) < 2
< fi2) < fH2) < .o < fFY(2),

(i) = = ().

Since f(z) < z and f(f(z)) > z, there is a point b € (f(z),z) with
f(b) = z. Also, since f(b) = z > b and f(z) < b, there is a y € (b,2)
with f(y) = b. Thus f%(y) = z. It follows that y satisfies the condition of
Lemma 2.4.2 with & = n+ 2. Since each inequality in Lemma 2.4.2 is strict

, there is a neighborhood U of f satisfies the condition of Lemma 2.4.2 with
k=mn+2forall g€ U. Therefore n+ 2 € pp(g) for all g € U. #

Lemma 2.4.4 Let f € C°I). Suppose n € pp(f) and n = 2 - p where
1 > 0 is an integer, and p 1s an odd integer with p > 3. Then there is a
neighborhood U of f in C°(I) such that k € pp(g) for every g € U and

22



every positive integer k with n > k in the Sarkovskir ordering.

ProoF: Note that n € pp(f) implies p € pp(f?). By Lemma 2.4.3, there
is a neighborhood U; of fzi with the property that if g € U; then (p+2) €
pp(g). Since the mapping ¢ to g% is continuous, there is a neighborhood
U of f such that if ¢ € U then g2 € U;. Hence, (p +2) € pp(g®). This
implies that (p + 2) - 2/ € pp(g), where j is some integer with 0 < j < 1.
From the Sarkovskii’s Theorem, it follows that k& € pp(g) for every positive
integer k with n > k. #

Lemma 2.4.5 Let f € C%I) and suppose 4 € pp(f). Then there is a
netghborhood U of f in C°(I) such that if g € U then 2 € pp(g).

PRrOOF: Since 4 € pp(f), f has a periodic point {z1, s, 3,24} of period 4
withe) <zo <zz3<24. I3 € pp(f) then the conclusion of this Lemma fol-
lows from Lemma 2.4.3. Hence we assume that 3 & pp(f). From Block [BI3]
we know that if f({z1,z2}) #{zs,za}, then 3 € pp(f)(it is easy to check this
result).It implies that f({z1,z2})= {z3,z4}. Clearly f({z3,zs) ={z1,z2}.

Set Iy = [z1,%3], and I, =[z3,z4]. Thus f(I1) D I, and f(I2)D Ii.
By Lemma 2.2.3, there is a closed interval J C I, with f(J) = I,. Let
z € {@1, 22} with f(z) = z4. Therefore thereis a z € J such that f(z) = 2.
Clearly, © # z4 and f?(z) > z. Similarly, there is a point y € J such that
f*(y) < y. Hence, there is a neighborhood U of f such that if g € U, then
g*(z) >z, g*(y) <y and g(z) < z3 for all z € J. Then 2 € pp(g) for all
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geU#

Lemma 2.4.6 Let f € C°(I) and let 2* € pp(f) for some positive integer
k. Then there is a neighborhood U of f in C°(I,I) such that if g € U then
2 € pp(g) for every integer « with 0 <4 <k —1.

ProoOF: We may assume that k£ > 2. Clearly, 4 € pp(fzk_z). By Lemma
2.4.5, 2 € pp(g) for every g in some neighborhood U; of 27 There is a
neighborhood U of f such that if g € U then 92'c~2 € U; by the continuity of
the mapping from g to g> . Let g € U. Since 2 € pp(gzsz),we have 21 ¢
pp(g).By the Sarkovskii’s Theorem, it follows that 2° € pp(g) for every
integer ¢ with 0 <: <k — 1.4 |

The Theorem 2.4.1 follows now immediately from Lemma 2.4.4 and

Lemma 2.4.6.
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Chapter 3

Topological Entropy

3.1 Introduction

The concept of topological entropy was originally introduced by Adler, Kon-
heim and McAndrew [AKM] in 1965. We recall the definition of topological
entropy.(for details see [AKM])

Suppose that X is a compact topological space and f : X — X is a
continuous mapping from X into itself.

For a an open covering of X let N(a) denotes the minimum number
of members of a subcovering of o, and let H(a) = logN(a) and f~}(a) =
{fY(4)| A € a}. For @ and  two open coverings of X let aV = {4AN
B | A € o, B € B}. By elementary analysis one can find that the limit
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ent(f,a) = lim }—H(n\_—/ ) (3.1)

n—oo n,

exists and is nonnegative. Define the topological entropy of f by

ent(f) = sup ent(f,a) (3.2)

where the superemum is over all open coverings & of X. If o and 8 are
open coverings of X, and « is a refinement of § (i.e., every member of « is
a subset of some member of ), then we write that a > S or f < a. It is

easy to show that if a > G, then ent(f) > ent(f,0).

The main properties of topological entropy are in the following two theo-

rems:

Theorem 3.1.2 Ifn is a positive integer, and f is a continuous mapping

from X into itself, then ent(f")=n - ent(f)

Theorem 3.1.3 Suppose that X, Y are two compact topological spaces , f
s a continuous mapping from X into itself and g is a continuous mapping
from Y into itself. If there exists a continuous mapping h : X — Y with
h(X) =Y and goh = hof, then ent(f) > ent(g). if h is a homeomorphism
, then ent(f) = ent(g).

See Adler, Konheim,and McAndrew [AKM] for the proofs of Theorems
3.1.2 and 3.1.3.

A subset Y of X is called to be invariant ( in respect to f), if f(¥) C Y.

26



The following lemma comes from [AKM].

Lemma 3.1.4 Let X be a compact topological space and let f € C°(X).If
Y C X is invariant, then ent(f) > ent(f|y).

The calculation of topological entropy is generally very difficult, the
following famous result is due to Bowen [Bo|. Before stating this result, we
give the definition of nonwandering set of a continuous mapping f.

A point z € X is said to be nonwandering, if for any neighborhood U
of z there exists some n > 0 such that U N f*(U) # 0. Denote by Q(f) the
set of all nonwandering points of f. Obviously, Q(f) is closed ,nonempty,
and invariant subset, and Q(f*) C Q(f) for any integer n > 1. Since
P(f) C Q(f), it follows that P(f) C Q(f).

Theorem 3.1.5 Let X be a compact metric space and let f € C°(X) .
Then

ent(f) = ent(flacs))
where Q(f) is the nonwandering set of f.(see [Bo])

This result is very useful for calculating and estimating topological en-
tropy. Ones obtained a series results for some special kinds of mappings
by Theorem 3.1.5. Recently this result was extended to the compact topo-
logical space with a proof simpler than the one given by Bowen [Bo]. We

will give the proof in 3.2, and in 3.3 we introduce an important result

about the nonwandering set due to [Xil] which said that Q(f|a(s)) = P(f),
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where (f) is the nonwandering set of f, flacs) is the restriction of f to

the set Q(f), P(f) is the closure of P(f) of the periodic points set of f. In
3.4 we will state some connections between the periodic set P(f) and the

topological entropy ent(f) due to [BF], [Ste], [BGMY] and [Mi3].

3.2 The extension of Bowen’s Theorem

In the following of this section X will be a compact topological space and

f:X — X is a continuous mapping.

Theorem 3.2.1 Suppose f : X — X 1is a continuous map, where X is a

compact topological space. Then

ent(f) = ent(fla(s)) (3.3)

where Q(f) is the nonwandering set of f.
If a is an open covering of X and k > 0 is an integer. We define let
ka={4, U4, U..UA| A € a,1 <i<k}. Itis easy to see that ko is

also an open covering of X. It is obvious that:

(1) N(e) < kN (k)
(2) £ (ha) = kF~*(;

(3) Vizg ko = k™ VPoy oy provided aq, ..., an—1 are open coverings of X.
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Before proving Theorem 3.2.1, we need some lemmas.

Lemma 3.2.2

Proor:

ent(f, ka)

Y

v

ent(f,ka) > ent(f,a) —logk. (3.4)

lim }—H(n\“/ (k) (by definition)

n—oo n =0
=

im LE(V @) (by (2))

n—00 7, 0
2=

im CHGRV S@) (b (3)
lim L log NVl f¥(e)

R g kn

lim 2H(\ £(a)) —logh

n—co 0
1=

ent(f,a) —logk. #

(by (1))

Lemma 3.2.3 If the open covering o of X satisfies the condition Q(f) C A

for some A € o, then ent(f,a) = 0.

ProOF: Foreachz € X\Q(f), thereis aopen set A, € e suchthatz € A,.

Now take an open neighborhood B, C Asuch that B.N (U2, f(B,)) =
0. Then o = {A}U{B, | z € X\ Q(f)} is an open covering of X

which is a refinement of a. Choose an arbitrary finite subcovering 8 =
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{4,Bgz,,...; Bz, } of &'. Obviously, B > « and hence it is sufficient to prove
that ent(f,8) = 0.

For an integer n > 0 define a mapping ¢ : B — V24 f~%(8) such
that £(Co, ..., Cn1)=Nl0 fH(C;) for every (Co,...,Cn1)€B™.It is easy to
see that £ is surjective. If for (Cy,...,Cpr1)EQB™ the number of the com-
ponents C; different from A is greater than l,then there exist j and j
with j < j' such that C; = Cy = Bg, for some g. In this case we have
E(Coy ey Cnor) = Ny F7H(Cs) = 0, because z € N F74(C;) would imply
fj(a:),fj’(:c) € B, and hence B,, N fj;‘j’(qu) # 0, a contradiction with
the choosing of B, . Therefore, in Vs f'(a) the number of nonempty
members is not greater than the cardinality of the set I' consisting of the
points (Co, ..., Cru1) € 8", which has at most [ components different from
A. By the inductive method and using the basic properties of permutation
we can prove that .

NV F8) < (1) (3.5)
and hence -

ent(f,f) = lim lIlf(n\_/lf"'(ﬁ))

n—0o 7, i=0
1=

= lim 1 log .N(n\—/1 F78))

n—co N,

1=0
< lim —l—(llog(n+1)—|—”0€l)
n—oo
= 0

The lemma is proved.#
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Suppose « is an open covering of X. For an invariant closed subset ¥

of f, denote by aly = {ANY | A € a}.It is obvious that:

(@) FHa)ly=(flv) (aly);
(ii) If B is also an open covering of X, then (aV 8)|y=(aly) V (Bly);
(ili) If ¥; is also an invariant closed subset of f and ¥; C Y, then N(aly, )<

N(C\{!y).

Lemma 3.2.4 Let o be an open covering of X, then

ent(f,a) < H(alay))-

Proor:  Let k = N(a|qy) and let {4:NQ(f),..., AxNQ(f)} is a sub-
covering of alq(y), where A;, ..., A are in o. Then 4;U...U4,€ ko and
Q(f)C A1U..U4,. By Lemma 3.2.2 and Lemma 3.2.3 we have that

0 = ent(f,ka) > ent(f,a) — log k. (3.6)
‘The proof is completed. #

Proor oF THEOREM 3.2.1 : Let o be any open covering of X and let

m > 0 be any integer, we have that

. 1 n-—1 . ) 1 mn-—1 »
ent(f,a) = lim ~H(\ f7(a)) = lim —( \/ f7(a))
) 1 _ —(mn—
- I\]/'l—irio %H({AU n f 1AL?& Nn...n f (- 1)Amn—l | Aj € a})
= lim ——1—~H({(A0 NF A N0 fFm=b)

N—oo mn

NF ™ (Am N F A N an fm0)
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N...

mf~(n-1>"‘(A<n_1) M...n f‘(’"‘”Anm—l) | 4; € a})

= 1m 2V (™) \/ Fia)) = ent(™, V£ (a)

By Lemma 3.2.4, we have that

ent(f,a) < —H( V F(@))lagmy) < H( V 7 (@))la)

= 28V (o) elaco)
Therefore,
ent(f,a) < ent(flacs), @lacs))- (3.7)
It follows that
ent(f) < ent(flagn). (38)

Then the Theorem follows from Lemma 3.1.3.

3.3 Q(flag)=P(f)

Let f € C°X) where X is a compact metric space. Suppose that
Q(f) is the nonwandering set of f, flacs) is the restriction of f to the

nonwandering set )(f), and P(f) is the closure of the set of periodic points
of f. If we put Q:(f) = Q(f), then we can define Qn(f) = Q(fla._.(5)
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inductively. So clearly Q:(f) D Q2(f) D ... is a decreasing sequence of
closed subsets of X and the intersection N, ,(f) is denoted by Qo (f) and
called the center of f. It is easy to find an example such that Q,(f) # Q(f)
(cf.[Wa] or [Ni]). If X = I, Nitecki [Ni] proved that Q,(f) = P(f) for f
piecewise monotone, Zhou [Zh] proved the same result holds if ent(f) = 0.
Xiong [Xil] proved this result for any continuous mapping on the closed

interval. From Q,(f) = P(f) , it is easy to see that for all j > 2, we have

Q,(f) = Qu(f) = P(f). Hence Quo(F) = P(f).

Theorem 3.3.1[Xi1] Let f be a continuous mapping from I into itself.
Then

Q(fla)=P(f)

To prove Theorem 3.3.1, we need some notations and lemmas. Let f €

C°(I). For every positive integer n, we denote

by A(+, f,n) the set of subintervals of I satisfying the following conditions:
J e A(+, f,n) iff f*(z) >z forall z € J;

by A(—, f,n) the set of subintervals of I satisfying the following conditions:
J e A(—, f,n)iff f*(z) <z forall ze J;

by SA(+, f) the set of subintervals of I satisfying the following conditions:
J e SA(+,f)iff f*(z) > z for all z € J and for all positive integer n;

by SA(—, f) the set of subintervals of I satisfying the following conditions:
Je SA(—,f)iff f*(z) < z for all z € J and for all positive integer n.
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Lemma 3.3.2 Let f € C°%I) and J C I be an interval. Then the
following statements are equivalent:

(1) I P(f) = 0;

(2) J € L1 (A(+, fm) U A=, f,n));

(3) J € SA(+,f)USA(—, f)- |

Proor: It is immediately seen that “(3)=- (1)” and “(1) =(2)” by the
related definitions. In the following, we shall prove that “(2) = (3)”.

Let J € N (A(+, f,n) U A(—, f,n)) but J & SA(+,f) U SA(—, f).
Since J ¢ SA(+, f), there exist z; € J and ny > 0 such that f™(z,) € J
and f™(z;) < z1. Hence J € A(—,f,n1), for some positive integer k,
J € A(—, f,k - ny), then from fri(z;) € J, frat(zy) =fm*(f(2))
< fM(z1)< z; follows that J € A(—, f,ni1(k +1)). Hence

Je HZZ:IA(—',]E) knl)

Similarly, there exists a positive integer n, such that

J € HZLA(‘F: 5 an)'

Hence

J C A(‘I‘,f, n1n2) N A(—afanlnz) = ®7

but from the definitions of A(+, f,.) and A(—, f,.), clearly we have
A(+7 f) 'I’L17‘L2) N A(_a f) n1n2) - @

A contradiction. #
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Lemma 3.3.3 Let f € C°(I). If an interval J C I is open and JNP(f) =
0, then for every positive integer n, J N AJINQ(f)=10.

PrROOF:  Assume that this lemma is false. Then there exists a point
z € JNQ(f) and a positive integer n such that f*(z) € Jand for 0 < k < =,
f*(z) ¢ J. Clearly fi(z) # fi(z) for 0 <i#j < n.

Without loss of the generality, we can assume that z < f*(z). By
Lemma 3.3.2 which implies J € SA(+, f). We can now choose the neighbor-
hood U; of fi(z) for each s = 0,1,...,n such that U; # U; for 0 < i # j < n,
and U, C J. Set Vo = N%,f*(U;), then V; is an neighborhood of z. Since
z € Q(f), there exists [ > 0 such that Vo N fY(V5)# 0. Obviously [ > n.
Since f*(Vo) C U, and f="(U,) NV, # 0, there exists z € U, such that
f="(z) € V,. Hence z > f""(z). Since J € SA(+, f) we have a contradic-
fion.

Lemma 3.3.4 Let f € C°I). Then for every = € Q(f) and every con-

nected component C of I \ P(f), there is at most one nonnegative integer

n such that f*(z) € C.

PROOF: Assume that there exists a positive integer [ such that {f"(z), /' (z)} C

C. Set y = f*(z). By the definition of nonwandering set, we have that
y € Q(f). But
f'ly) e Cn FCNQUS)).

This is a contradiction. #£
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PROOF OF THEOREM 3.3.1: By the definitions of P(f) and §2(f), we have
P(f)C Qflacs)) - From Lemma 3.3.3 it follows that for every connected

component C of I\ P(f), and for every nonnegative integer n,we have

¢ N (N af) = 0.

which implies
C N (flagy)™"(C) = 0.

Hence

O N Q(f!n(f)) —_ 0

By the definition of Q(f), we have

Qflagn) € P(f)-

This completes the proof. #

From Theorem 3.3.1 and Theorem 3.1.4[Bo], we can easily obtain the
following Corollary:

Corollary 3.3.5 Let f and I be the same as Theorem 3.3.1, then
ent(f) = ent(f 5777)-
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3.4 Some relations between P(f) and ent(f)

Bowen and Franks[BF] estimated the topological entropy of f € C°(I).
Theorem 3.4.1 [BF] Let f € C%I) and let f have a periodic point of
period n = 2% . p, where d is an nonnegative integer and p > 3 is an odd

integer, then

ent(f) > E log 2.
m

Under the same assumptions of Theorem 3.4.1, Stefan [Ste] got the

following stronger result:

Theorem 3.4.2 [Ste] If f satisfies the assumptions of Theorem 3.4.1,

then
1
9d+1

ent(f) > log 2.

One may ask: can we get the best lower bound for the topological en-

tropy of mappings in C°(I)? The best possible lower bound for topological
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entropy of f in C°(I) is the following Theorem given by Block, Guckheimer,
Misiurewicz and Yorke [BGMY]:

Theorem 3.4.3[BGMY] Let f € C%I) and let f have a periodic point
of period 2™ - p, where n is a nonnegative integer and p > 3 is is an odd

integer , then
ent(f)> 2% logA,

where X, s the largest positive root of the polynominal =¥ — 2zP~% — 1.

Misiurewicz [Mi] proved the following well-known result:

Theorem 3.4.4 [Mil] If f € C%I) and the period of every periodic point
of f is a power of 2, then ent(f) = 0.

From Theorem 3.4.1 [BF] and Theorem 3.4.4 [Mil], it follows immediately
that

Theorem 3.4.5 Let f € C°I), then ent(f) = 0 iff the period of every

periodic point of f is a power of 2.

In fact, before [BGMY] and [Mil] Jonker and Rand [JR] proved the
same results as in Theorem 3.4.2 and Theorem 3.4.3 hold for the smooth

mappings on the interval.

The history of Theorem 3.4.4 is in the following: In 1978, Block [BI2]
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considered this problem; In 1979, Misiurewicz [Mil] gave an outline of
a proof of this theorem; In 1982, Bloch declared that this result is one
corollary of his theorem in [Blo], but his theorem included some serious
mistakes (see a counterexample in [CX]); In 1985, Zhou got a new complete
proof but it’s complicated ;In 1989, Xiong [Xi2] gave a new and simple proof

for it.
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Chapter 4

Chaos

4.1 Introduction

The simplest non-trivial dynamical system that exhibits a“chaotic behav-
ior” is the one governed by an continuous mapping f : I — I where [
is a closed interval. Li and Yorke introduced the concept of “chaos”in
[LY]. Following them, there are many papers on the “chaotic behavior”.
The definition of “chaos” is not unique. In this thesis we only consider
Li-Yorke chaos. In 4.2 we give a new proof of that positive topological
entropy implies chaos; In 4.3 we will give some characterizations of chaos
due to [LMPY?2],in 4.4 we will give an example [Mi2] of a mapping which is
chaotic everywhere, i.e., the chaotic set with full Lebesgue measure . How-

ever, there are examples ( see [CX], [Sm3] and [MiS]) which are chaotic but
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their topological entropy is 0.These examples show that positive entropy
(or the existence of a periodic point whose period is not a power of 2) is

not equivalent to the chaocity of a mapping f.

4.2 Li-Yorke Chaos

The following definition of chaos was introduced by Li and Yorke [LY]: a
continuous mapping f : I — I of a closed interval I is said to be chaotic
if, there are points in P(f) of arbitrarily large period and, there is an
uncountable set S C I such that no point in 5 is even asymptotically

periodic. More generally we define the Li-Yorke chaos as follows:

Definition 4.2.1 A continuous mapping f : I — I of a closed interval I
is chaotic , if there is an uncountable set S C I\ P(f) such that:

(i) for every z,y € S with ¢ # y,

lim sup | f*(z) — f"(y)| > 0, (4.1)
liminf |f*(2) - f"(y)| = 0; (4.2)

and

(11) for every z € S and every p € P(f),

limsup [f*(z) — f*(p)| > 0, (4.3)
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Such an S is called a chaotic set of f .

In their well-known paper “ Period 3 implies chaos”, Li and Yorke[LY]

proved the following result:

Theorem 4.2.2: Let f € C°(I). If f has a periodic point of period 3, then

f 1s chaotic .

We will give a simple proof by using the method of symbolic dynamics
(cf. [W]). Before giving the proof, we give a new proof of a theorem in [BI2]
which will be used in the proof of Theorem 4.2.2.

Theorem 4.2.3 [B12] Let f € C°(I). The following statements are equiv-
alent:
(1) f has a periodic point whose period is not a power of 2;

(2) There are disjoint closed intervals Iy and Iy, and a positive integer

n, such that
ML) N (1) D LU L.

ProoF: We claim that: If p € pp(f) and p > 3 is odd, then there
exists two closed intervals Iy and I such that f3(Io) N f*(L1) D Lo U I; and
Io N Il —_ Q)
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Now we prove above claim. By Stefan’s Theorem ( Theorem 1.2.5),

without loss of the generality we may assume that there is a point z € [

such that
P z) < ffHz) <. < FP) < flz) <z <
< fHz) < fHz) < .. < f77H(=)
and fP(z) = .
f2 £2
2 £2
{2 (x) f(x) a x b f*(x) fP3(0) ¢ d  fri

Figure 4.2.1

It is easy to see that
FA([f(=),z]) D [F*(=), f*(=)]

Hence from the continuity of f2, there exists a € (f(z),z) such that

a > f*(a).From the figure 4.2.1, clearly

P2 ), 770 (@)]) D (£ (=), 77 (=)

Hence there exists d € (f7~%(z), f7~!(z)) such that f%(d) < a.
Clearly

FAP (=), d)) O [a, f77H(2)]
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So that there exists ¢ € (fP~%(z), d) such that f(c) > d.

Hence |
F(la, £77%(2)]) 2 [a, F77(2)]-
So that there exists b € (a, fF~3(z)) such that f2(b) > d.

Set Iy = [a,b] and I; = [¢,d]. From above inequalities we have that
FPI)N (L) D LUl

and I[N I; = 0. The proof of the claim is completed.
If f has a periodic point of period 2" - p , where n is a positive integer
and p > 3 is an odd integer, then f?" has a periodic point with period p.

By the above claim there exist closed intervals Iy and I; such that
I (L) D LU L

and IpN I; = (. Therefore ,the proof of “(1) = (2)” is finished.
By Lemmas 2.2.2, 2.2.3 and 2.2.4, the proof of “(2) =(1)” is imme-
diate. #

For proving Theorem 4.2.2, we use the method of symbolic dynamics.
Y, is called the sequence space on the two symbols 0 and 1, i.e., Ly = {w =
(w;)2y | w; =0 or1}. We may make ¥, into a metric space as follows. For
any two sequences (w;)2, and (v;)32,, define the distance between them by

. |w; — vl
d(w,v)=>_ —

1=0

44



Obviously, this infinite series is convergence, and d is a metric of the space
¥,. The shift mapping o : By — I, is defined by o((wi)2,) = ((wi)2,)-
We denote by P(c) the set of periodic points of o. It is easy to check that:

(1) o : ¥y — X, is continuous;

(i) P(c) is dense in Xs;

(iii) There exists a dense orbit of o which is dense in Y.

If f € C°I) has a periodic point of period 3, by Theorem 4.2.3 there

exists disjoint closed intervals Iy and I;, and a positive integer n such that
(L) N (L) D LU Lh.
For any w = (wo, w1, w2, ...) € X2, we define

Iwgwl...wk = {17 el [ T € Iwo,fn(m) € le,.--,(fn)k(m) € Iw;,.}
= Ly N ()7 (L) N (F7) 7 (T

Note that the Lyyw,..w, form a nested sequence of nonempty closed in-

tervals as n — oo. It follows that

ﬂkZOIwowl LW # ®'

Therefore Ni>olwyw;..w, 18 a closed interval or a single point. Note that
if 2 € NMisolwgw,..wn, then @ € Iy, f*(z) € Ly, ,etc. Hence the mapping
¢: Iy UL — Ty given by ¢(z) = (wo,wr,ws,...) is surjective.

Note that w # v implies that (NMk>0lwgws..we ) (Mez0Loy,..0,) = 0. and
¥, is uncountable, hence there is a w € X, such that Mi>olwyw,..w, 15 2
single point. If not, there are uncountable pairwise disjoint intervals in I,

this is impossible (because the set of rational numbers is countable).
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Another easy and useful fact is that ¢ o f* = o 0 ¢. That is to say that
¢ is a semi-conjugacy between f™ and o.

Now we can give the proof of Theorem 4.2.2.

PROOF OF THEOREM 4.2.2 [W]:  Let u = (u;)2, € £ such that

Nik>0lugus ..y, 15 @ single point. For any w = (wo, w1, ws,...) € Za, we define
Ww = UoWoloUqWoW1 Ul Uz WoW1W2... UgUy .+ URWoWT e Weeres

For every w € I, we pick only one point (W) € Mi>olwyw;..w, and set
X ={z(Ww) | weX\P(o)}

We claim that X is a chaotic set of f.

For any two w,v € X3 and w # v. Then there exists r € IN such that

w, # v,.. Therefore for any m > r, we have
| o FrlrCHD-1(2(Wy ) — ¢ o frIrCHD-1 (2(Wy))| > s
It follows
lim sup,_, . |FEED-U(g(Wy ) — frEED-1 (W) > 0

Hence (4.1) in Definition 4.2.1 is satisfied.
Since Ng>0lugu;...u, is only one point, and ¢o () (2(Wy ) converges

to u for every w € X, it follows that
limg— oo lfnk(k+1)(m(Ww)) - fnk(k+1) (w(WV)N =0.

Hence (4.2) in Definition 4.2.1 is satisfied.
If p € P(f), then ¢(p) € P(c). Clearly, for every w € X; \ P(o),
lim sup_,o |¢ 0 F™*(2(Ww)) — ¢ o f**(p)| > 0.
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Hence the (4.3) in Definition 4.2.1 is satisfied. #

By Sarkovskii’s theorem and Theorem 4.2.1, it is easy to get the follow-
ing theorem which was proved firstly by Oono[O.].

Theorem 4.2.4 Let I and f be as above. If f has a periodic point whose

period 15 not a power of 2, then f is chaotic.

PROOF: Since f has a periodic point z with period n # 2° for every
i =1,2,..., then there exists a positive integer [ and an odd integer p > 1
such that 2!p is the period of z. By Sarkovskii’s theorem we have that f21+1
has a period point of period 3. By Theorem 4.2.2, 2" is chaotic in the
sense of Li-Yorke. It is easy to check that the chaotic set of f"’l+1 is a,ls;yo
a chaotic set of f in the sense of Li-Yorke.The proof of Theorem 4.2.4 is
finished. #

4.3 No division implies chaos

From section 4.1, we know that if f € C'°(I) has a periodic point whose

period is not the power of 2, then f is chaotic in the sense of Li-Yorke. In
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general, it is not easy to see if f has such a periodic point. Li, Misiurewicz,
Pianigiani, and Yorke [LMPY 2] introduced the notation of “ no division”
to give a easy way to check the chaotic behavior of f.In the following we
recall the definition of “ no division” and sketch the main results in [LMPY

2.

Definition 4.3.1: Let f € C%I) and zo € I. (@0, 1,...,T,) is called a
trajectory if z;41 = f(z;) fori=0,1,...,n—1.

For such a trajectory (o, ®1,...,T,) we say that there is no division if
there is no a € I such that either

z; < a for all 7 even and z; > a for all j odd ,

or

z; > a for all j even and z; < a for all j odd.

By the definition, we have the following examples:
Example 4.3.2 Let f € C°(I),and let (zo, 1, ..., ) be a trajectory such
that 2o < z; < ... < z,. If n > 2, then there is no division for the trajectory

(To, @1y .y T)-

Example 4.3.3 Let f € C°I),and let (zo,%1,...,z,) be a trajectory. If

n > 11is odd and z, < zg < z; or &, > Ty > T, then there is no division

for the trajectory (zo,@1,...,Tn)-

Theorem 4.3.4 Let (zo,z1,...,2,) be a trajectory . If z, < zq < z1 or

T, >xg > x1 for some integer n > 3, and there is no division for trajectory

48



Tg,T1,...,Tn). Then there exists a periodic point of period
p
(i) n if n is odd;
(i) n — 1 if n is even.

PROOF: We only consider the case z, < zy < z;. The proof of the other
case is similar -to it. Let X =(zo,z1,..,z,) and S = {z € X | = >
zo, f(z) < z}. From z,, < =g < 1, it is easy to see that f(maxX) < maxX
and zo < f(zo). So S is non-empty. Let z; = minS and z; = max{z €
X | = <z;}. Clearly j # 1 # 0. By the definition of z; and z;, we have that
f(z:) < =i, f(z;) > z; and (z;,z;) N X = 0. Set J = [z;,z;], we have J C
f(J) implies f*(J)C f#*(J) for any k € N, hence Up_Z f*(J)=f""%(J).

Since z, = " (X;)e f(J),z; € J C f~I(J) and z, < o < T;, We
have that zo € f*~9(J). Hence, every element of X except perhaps z;_;(or
Tn_q if 7 = 0)is in URZZFR(J)=f""2(J). .

By similar arguments for z;, we get that every element of X except
perhaps @;_; is in f2(J). Since j # 4, we have X C f*2(J).

Since there is no division, there exists an closed interval K = [c, d] such
that ¢,d € X , (¢,d) N X=0 and ¢ and d lie on the same side of J but f(c)
and f(d) lie on the opposite sides of J. Therefore J C f(K) and K NJ
contains at most one point . Hence we have

(1) J C f(J),

(2) 7 C (),

(3) K C f~*(J).
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From the above relations, the proof follows easily.

4.4 Chaos almost everywhere

In recent years, the “size” of the chaotic set has been studied in the
one-dimensional dynamical systems. Smital gave an example of a chaotic
set of full outer Lebesgue measure[Sml] and an example of a chaotic set
of positive Lebesgue measure [Sm2]. Kan [K] gave a example of a chaotic
set with Lebesgue measure 1. It is surprised that Misiurewicz [Mi2] and
Bruckner and Hu [BH] discovered the examples of chaotic sets with full
Lebesgue measure. Here we will construct one example of chaotic set of
full Lebesgue measure due to above two examples.

It is reasonable to conjecture that there exists a chaotic set of full
Lebesgue measure for some smooth mappings on the interval. But up to
now, no such examples are constructed for C* mappings.

Based on the idea of [Mi2] and [BH] we will give an example in C°(I)

with a chaotic set of full Lebesgue measure.

Theorem 4.4.1 There exists a continuous mapping of the unit interval

I =[0,1] onto itself for which there exists a chaotic set of Lebesgue measure
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The idea of the construction is as follows. For a standard “tend” map-
ping we construct (using symbolic dynamics) a sequence of chaotic sets.
Their union is also a chaotic set and is dense. Each of them supports a
non-atomic measure.A weighted average of these measuresis a probabolistic
non-atomic measure, positive on nonempty open sets. Then we transport
everything (the mapping and the chaotic set) by an homeomorphism which
sends this measure to the Lebesgue measure.

We denote by I the unit interval [0,1], by J the right-open interval
[0,1).

Define the “tend”mapping f : I — I as follows:

flz)=1-|2z¢ —1].

Recall that ¥, is the space of all 0-1 sequences, ¢ is the shift on X,

lego(m;) = ¢ipr i x = (2:)2,.

It is clear that for every x = (z,)32, € X, there exists a unique point

p(z) € I such that for all n € N,
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[0,1/2] if z, =0,

ﬂ@wnz{ [1/2,1] if z, = 1.

(4.4)

The mapping p : ¥, — I defined in such a way is continuous and

poo = fop.

For x = (2o, %1,%2,...)€ 5y and A C N such that N\ 4 is infinite, we

define F(A,x)= (yY0,¥1,¥2,---) € X2 as follows: we take the unique bijection

b: N\ A— N such that b is order preserving and set

1, ifned
In = .
Tyny fn g A
where a,= (an,@n,...,a,) is a block with n same elements a,.

Fix an irrational number a. For t € J and n € N we define

alt,n) = 0 if {t +na}€[0,1/2)
’ 1 if {t+na} €[1/2,1)

(4.5)

(4.6)

where {s} is the fractional part of s. Then define the mapping a : J — X,

by a(t) = (a(t,n))s2y € Z;. In other words, a(t) is the code of the point ¢,

corresponding to the mapping Ry :t — t + a(mod 1) and the partition of

J into the intervals [0,1) and [$,1).

’2
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The following fact is simple and well-known.

Lemma 4.4.2 Ift,s € J and t # s then a(t) # a(s).

For each finite sequence w = (w;)i5; € {0,1}" and ¢ € J we define ayw(?)
€ X, by setting aw(t) = (v:)2y, where y; = w; for 1 = 0,1,...,n — 1 and
i = a(tys — ) for i = n,n + 1,.... For w as above and a set A subsetN
such that IN'\ 4 is infinite, we define a mapping Gaw :J — I by G4 w(t)=
D(P(A, aw (£))-#

Lemma 4.4.3 The mapping Gaw s a Borel mapping.

Proor: The mappings p, F(4,.) and the mapping which sends a(t) to
aw(t), are continuous. Therefore G4+ is continuous. Since the inverse
image of a cylinder is an intersection of intervals, it is easy to see that the

mapping G4 w is Borel. #

For each positive integer n, define 4, ={n?+1,n*+2,..., n®* + n} and
B, =U2, A;n-1. Clearly, the set N \ B, is infinite.

Lemma 4.4.4 For each finite 0-1 sequence w and each positive integer n,

the set Gp, w(J) is a chaotic set of f.




Proor: Foreveryt € I, denote that F(B,,aw(t))= (£)2,. From Lemma
4.4.2 and the definition of F(B,,aw(t)), it follows that if 5,2 € I and s #
t, then F(Bn,aw(s))#F(Byn,aw(t)). However there exist arbitrarily long
finite sequences of consecutive integers k,k+1,...,k+ K and [,[+1,...,(+ L
such that s; =t; =1forit=k,k+1,...,k+ K and s; = 1 with t; = 0 (or
s; =0with t; = 1) for ¢ = [,1+1,...,l + L, and such that s;_q, t;_; are
either both 0 or 1. It implies fhat |F*(GBw(t)— F*(GB,w(s))| < 5% and
F(Gaum(t)— F(Crum(o))] 21— r.

It follows that G4 w is a chaotic set of f.#

As we know that the set of all finite 0-1 sequences is countable, so we
can write a sequence (w(n))S2; consisting of all of the finite 0—1 sequences.
Set Fi.(t)=F(Bn, aw(n)(t)), Gn=GpB, w(n), Sn=Gn(J) and § = U2, 5.

By the same arguments as in the proof of Lemma 4.4.4, we have the

following:

Lemma 4.4.5 The set S is a chaotic set of f.

Denote the Lebesgue measure on the unit interval I by A\. By Lemma
4.4, the image of A under G,, is a Borel measure. Call this measure y,,. Since
G, is Borel and S, = G,(J), we have that pu,(I)= pn(S,)= 1. Because
G, is injective and ) is non-atomic, p, is also non-atomic. Therefore the
measure g = y oo, 27"u, is a non-atomic Borel measure and p(l) =32,

2 pn(I)= Ean 277 pa(50) = 205, 277= 1
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Lemma 4.4.6 If U is an open non-empty set , then u(U) > 0.

Proor: If U is open and non-empty, so is the set p~*(U). Hence it
contains some cylinder ¢ = {(%:), € Xy | v = w; for 7 = 0,1,...,5},
where w = (w;)2, is some 0-1 sequence. If m is large enough then the
smallest element of B,, is large than j. Therefore there exists n such that
w(n) begins by w [and consequently, {(v:)2, € T2 | v = wi, for i =
0,1,...,1} C C, where w(n) = (w;,)2,] and the smallest element of B, is
large than j. Then we have F,,(J) C p~}(U), and consequently S, C U.
Hence p(U) > 27™. #

Define a mapping ¢ : I — I by ¢(t)=p([0.t]). By the Lemma 4.4.6, ¢ is a
strictly increasing mapping. Since p is non-atomic, ¢ is continuous. From
the definition of ¢, we have that ¢(0) = 0 and ¢(1) = u(I) = 1. Therefore

the following lemma holds.
Lemma 4.4.7 The mapping q is a homeomorphism from I to itself.

If 0 <ec <d<1andvis the image of u under ¢, then v([g(c), ¢(d)])=
p([e, d])=p([0, d]) — pn([0,¢]) =q(d) — g(c). From the above Lemma, we have
that ¢ maps I onto itself, so it follows that v = A. Hence The image of u

under ¢q is A.

Now we define a mapping g: I — I by g = go fog*. Since the mappings

q,f, and ¢7' are continuous, g is continuous. By Lemma 4.4.7, ¢ is a
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conjugacy between f and g. Therefore pp(f) = pp(g). By Lemma 4.4.8
and p(S) =1, we obtain that A(¢(5)) = 1.
By Lemma 4.4.5 and Lemma 4.4.7, it follows that the set ¢(5) is a

chaotic set of g.

Remark 4.4.8: We have in fact proved that for every z,y € ¢(5) with

T # 9,

limsup, ,.|g"(z) — g"(y)| = 1.

which is stronger than (i) in Definition 4.1.1.
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