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Chapter 1

Introduction

A few years ago, the main interest of specialists in fundamental physics had concentrated on
the theory of strings and superstrings[1]. This theory was considered as a good candidate
for unified theory of all interactions of nature. Many works had been done on this subject.
Its perturbation theory was successful, however, further investigations met some difficulties.
The efforts to overcome these difficulties lead to the flourishing of the several subjects in
this years, which are conformal field theory (CFT)[2-7] and quantum gravity[8-11], as well
as integrable system[12-15]. One of their common features which is of great importance is
the underlying KdV structure, due to this property, one can identify some of these theories.

On the one hand, it is well-known that the vacua of the string theory corre§pond
to conformally—invariant field theories. The clasification of CFT (particularly, Ré%ional
Conformal Field Theory(RCFT)) is one of the outstanding problems in string theory as
well as statistic physics. A promising approach to this problem is provided by the so—
called W-algebra, which is a richer symmetry than conformal invariance, and includes
the Virasoro algebra as subalgebra, and therefore, is also called the extended Virasoro
algebra[13,16-25]. The classical version of the W-algebra is deeply related to Integrable
model[13], and it seems to be the symmetry of matrix model and the theory of CFT
coupled to quantum gravity.

On the other hand, after successful study of the string theroy in critical dimension, a
natural and physically more important problem is the string theory in non—critical dimen-
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sion, which is in fact a theory of some matter fields coupled to 2d—quantum gravity[8,26,27].
Its discretization][28-32] is believed to be equivalent to a cértain matrix model in double
scaling limit[33-37], in which the specific heat satifies the string equation that is noth-
ing but the initial condition of the generalized KdV equation. So, the three subjects,
W-algebra and 2d—quantum gravity, as well as integrable system (the generalized KdV
equations) are closely related, which are the topics of This thesis.

In chapter 2, we will consider the classical W—algebra. We at first introduce Drinf’eld-
Sokholov linear system, analyze its symmetries:gauge symmetry and W-symmetry, then,
we introduce the Gelfand-Dickii Poisson brackets[13,38] and W-algebra, as well as KdV
equation. In order to simplify the expression of W-algebra, we give two new sets of
independent coordinates which are conformal tensors. Then, we present explicit formulae
for gauge invariant functions and the covariant operators in these gauges.

In chapter 3, we will show that the classical version of null vector equation in CFT is
equivalent to a certain DS—sytem, therefore, there exists a KdV structure in semi-classical
conformal field theory.

In chapter 4, we mainly give a short introduction of 2d-quantum gravity. There
are three ways to attach the problem. The first one is the so—called Matrix Model ap-
proach. The second one is path integral method. The third one is the topological field
theory[39,40,41]. Utill now, we only can calculate the critical exponents of the specific
heat, which is determined by the string equation. What is the exact relation to KdV

equation, therefore, to Drinf’eld—Sokholov linear system, is still lack of clear explanations.



Chapter 2
W-Algebra

W-algebra becomes more and more important in theoretical physics due to the following
four reasons, firstly, it serves as a useful tool in the investigation of Integrable systems,
secondly, it provides a promising approach to classify all rational conformal field theo-
ries, thirdly, it is of mathematical interest itself, finally, it seems to be the fundamental
symmetry of matrix model and some other theories.

Historically, the classical version of W-algebra stems from the study of Integrable
System which has the infinite number of the conserved quantities. It is well-known that
the above Integrable System admits a Lax pair representation, whose linearized form we
will call the Drinf’eld-Sokholov([13,42] linear system. As such a system, Gelfand-Dickii
constructed one Poisson bracket[43], which is called now the first Gelfand-Dickii Poisson
bracket. Then, Alder[44] conjetured and constructed another different Poisson bracket,
but the proof of its associativity was given by Gelfand-Dickii(unpublished, see[45]). This
Poisson bracket is usually called the second Gelfand-Dickii Poisson bracket. With respect
to the second Gelfand-Dickii Poisson bracket, the functions on phase space form a closed
algebra, which is W-algebra. It is also called the extended Virasoro algebra, since it
contains the Virasoro algebra as a subalgebra, in addition, it also contains a set of higher

spin conserved currents. Its quantized version was cosidered by Zamolochikov at rank-
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3[16], then it was generalized by several people[17,18]. In this thesis, we will only consider
the classical case. We at first introduce the Drinf’eld—Sokholov linear system, then, define
the Poisson brackets, deduce the generalized KdV equation, furthermore, we discuss DS~

system in sl(2) and sl(n+1) cases in detail and give some comments on their relations.

§2.1 the DS—System
Let G be a simple finite dimensional Lie algebra with rank n, equipped with an
invariant scalar product < , > .H denotes Cartan sub-algebra, Ny denote the sets of

elements with positive (negative) roots. We have the following Cartan decomposition
G=N_eHON,

Choosing the Cartan-Weyl basis, we have the following standard commutation relations
(H;, H;] =0,

[HiyEto] = +a;F1q,

H,, a+pB=0
[Eaa Eﬁ] = NaﬁEa+ﬁ7 a +:8 er
0, a+pB¢rl

Here we adopt the normalization < Ey, E_o >=1

The Drinf’eld-Sokholov system has the following form
(O+L—-11)=0 (2.1a)

LeHoN_- . (2.1b)

where ¢ is a (n+1)-dimensional column vector
31
€n+1
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If we eliminate out all the components of the £ but ¢;, then we obtain a higher order

differential equation for &;
A.£1 = O (2.2)
where the operator A has the form

A=t L N WLy (2.3)
=1

This equation has (n+1)-independent solutions, and by using these independent solutions

(é1,€2,..+,€(n+1)), We can re—express the Drinf’eld-Sokholov system as[13]

¢ S I S S
AE = det 5 5,1 o 5",“ ~0 (2.4)
o g e
here
A& =0, i=1,2,...,(n+1)

So, all the functions W(L) can be expressed in terms of ¢;’s, therefore, the differential
equation(2.2) is equivalent to the DS—system (2.1).

The DS—system (2.1) has a large symmetry, i.e. there exists a transformation group
formed by some matrix g, such that the form of the linear system (2.1) is invariant under

the following transformation

§— =g

] (2.5)
L—L=gY(L-g+1I1)9- I+
At first, it is easy to check that L € H@® N_ , if
1 0 0
* 1 oo 0
g=1 | € exp(N-) (2.6)




Furthermore, due to the equivalence of the systems (2.1) and (2.2), we can show that the
functions W(L) and &; are also invariant under this transformation, therefore, it preserves
the W-algebra. We will call the transformation given by the eq.(2.5) and (2.6) as gauge
symmetry. Obviously, its degree of freedom is %n(n +1). Generally speaking, the elements
of the lower triangular marix L can be considered as the coordinates of the system, their
total number is (Q—w — 1). So, when we make a complete gauge fixing, only n-
coordinates will survive, which is equal to the number of the degree of the freedom of the
the system. Therefore, with the help of the gauge symmetry, we can choose appropriate
gauge transformation such that the transformed matrix L just has the desired form.
There are two ordinary gauges, one is the diagonal gauge in which the matrix L lies

on the Cartan subalgebra.

hi O 0
0 hy ... 0
L=1| . . . . (2.7a)
0 0 Prt1
where
n+1

> hi=0 (2.7b)
i=1
The operator A can be easily written as

A=(0+hnt1)...(0+h2)(0+ h1) (2.8)

The other is the the DS—-gauge, in which the matrix takes the following form

0 ... 0 0 ©

p=| & ot s 2.9
0 ... 0 0 0 ' (29)
Wn ... Wy Wi 0

Then, the operator A has the simple form shown in equation(2.3).
Now, let us consider another kind of symmetry. In order to see it explicitly, let us

choose the sl(2) case as an example . The most general form of L is

L= (Z; _%1> (2.10)
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with some gauge condition (since the degree of freedom of this system is 1, so, h; and h;

are not independent). Now, we define

hy -1
JEL——I+==(h; _h1>, (2.11)

One can show that there exists an infintesimal transformation

g=1+R :
(2.12)
R=aH +bE, +eE_
Such that the form of J remains unchanged, i.e.
§J = R' +[J,R] EHON-
(2.13)
=(a' — e — bhy)H + (b' + 2a + 2bh;)E4 + (' — 2eh; + 2ahy)E—
Provided
b' + 2bh; +2a =0 (2.14)
So,
1
R=0b(hiH—E;)— §b'H +eE_ (2.15)
and _
f1 — & = (14 bhy — )& — b,
hy — hy = hy +(=21b" — (bh1) — e — bhy), (2.16)

hy — hy = hy + (&' — 2ehy — b hy — 2bhyhs).
Generally, the field b depends on hj, hy, and relates to the field e (due to the gauge con-

dition). The transformation (2.5) and (2.12) is not the same as the gauge transformation
we showed before, since it doesn’t preserve W(L) and ¢y, therefore, it doesn’t preserve the
W-algebraic structure. However, it keeps the gauge unchanged. thus, it is the residual
symmetry in the physical phase space spanned by the n—independent coordinates after
complete gauge fixing. We will call it as W-symmetry.

As a example, let us consider the following system in the DS-gauge

<8+ <0 j) ) C) =" 2.7
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It is easy to prove that the transformation

L —e
= 27 ' 2.18
R (eu + %e ——%e ) ( )
keeps the gauge unchanged, since
0 0
= ! ! e 2.
57 <2ue +u e—i—%e 0) (2:19)

This is exactly the infinitesimal conformal transformatiom

w— i =ut2ue +u et —2-6’” (2.20)

For the same reason, for arbitrary intergers n, the transformation which preserves the

forms of L, but does not belong to exp N_, has the form

g=1+R
{ (2.21)
R = leisn biE‘i,i—I—l + EISiSn-I-l aiH-,: +r
where r € N_ and
SJEN_DH
Provided
B+ (hi —hi_1)bi +a; —a;-1 =0, i=1,2,...,n | (2.22)

Since we always can adjust the fields a;’s in order to satisfy the above conditions, so, these
transformations have n—independent parameters.
We should notice that this particular type of gauge symmetry implies the existence

of some Poisson brackets
67 =R +[J,R] = /dm{J,W(:c)}e(:c) (2.23)

where W(x) is the implicit generator of the transformation.

§2.2 Gelfand-Dickii Poisson Bracket Structure

In this section, we will mainly discuss how we can get W-algebra from the Gelfand-

Dickii Poisson structure, which is based on the algebra of the differential operators. This
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algebra p has been studied intensively for a long time. There are some very nice reviews
on this subject, for examples[13,38,42,46]. Hereafter, we will adopt the convention in [13].
| The algebra p contains the following kind of objects
A=) ai(z)d; , (2.24)
-0
where a;(z)'s are one variable functions, and 8, is the derivative, and the integration

operation is denoted by the operator 971

0 a(z) = / da'a(a")

The algebra is equipped with the Leibnitz rules, and its generalized version for pseudo-

differential operators
da = ad + a'
-15 _ 99-1 _
0710 =00""=1 (2.25)

03t = 2 (-1 (1) Jawomie

There are two subalgebras
N

pr={A=) ail2)d'}

0

and
-1

b= A=Y ai(e)0))

—_C0

So, the algebra p has a direct sum decomposition as a vector space.

p=p+®p-

One can define the inner scalar product on the algebra p , which is also called the trace

on p (and a;(z) is known as the residual of the operator A)

< A>= / dza_1(z) (2.26)
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Then, let X € p_, and A takes the form

X =Y 0"z (2.27a)
1=0
A=0"LN worTi= Y Wi (2.27h)

i=1 i=-—1

On the one hand, by some general mathematical theorems[38,42,46], the (n+1)-th root
of the operator A defined by (2.27b) is well defined, that is to say, there exists a unique

pseudo—differential operator L satisfying

A= LD
{ (2.28)

L=0+a10; + a0 +...
The operator L is very convenient object, from now on, we will often use the the fractional
powers of the operator A ( that is just powers of L). On the other hand, from (2.26), one

gets

fx(4) =< AX >

=/ (xn+1 +ZX; W z(:c) (2.29)

It forms a functional space on which the Kirillov bracket is defined as[13]

{Fx, fr}(A) =< 4,[dfx, dfy] > (2.30)

It is easy to show that

dfy = X (2.31)

Therefore, the above bracket also can be written as[38]

{fx,frh(4) =< AXY > - < AYX > (2.32)

This is the so-called first Gelfand-Dickii Poisson bracket. Some detailed mathematical

analysis shows that there exists another Poisson structure[44] (in fact, the above equation
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is ill-defined for some special kind of operators, we will discuss this point in §2.7.2)

{fX,fY}z(A) =< (AJY).'.AY > =< (XA)+YA >
1 27 (2-33&)
s | del0nla XA V)
where
—k—-1-1
< (AX);AY > = 1 zn—m<n _ ) ™
( )+ —1<k;—i—l( ) i+ I —n jlk
I>n—j
< (XA)+YA S = Z (_1)n—k+j5in-j—l,n—k iTﬁk
—1<i<n—i—1
Tishsnoi (2.33b)
n—Il—j3—1
+ D > ( . ) ijlk
—1<i<n—ie1,n—k<ij \ thk—mn
—k—-1-—1
+ 1 2n—m <n ] ) 1m
—1<I;——i—1 = j+l-n e
n—j—__<_k__<_n—-i——1
n—0\/(n—-Fk\ .
j ijlk

/ de((5-1[4,X]_1)[4,Y]1) =
—1<I<n—1
—1<k<n—j

m=2n—k—1l—1—j5—1,
Szl;c = Zszo(*l)s(i+:+1) (kjs) (2.33¢)
i = J dz (e W)0™ (y; Wi)

where, we define

This is the second Gelfand-Dickii Poisson bracket. Drinf’eld and Sokholov have proved

that it is precisely the Poisson bracket defined by the egs.(2.23).
It is straightforward to give the explicit formulas for the first few cases.
1/n+42)\ ,
Wi(2), W)y == (5 4 )% +2Wi(e)8: + Wi(e) )6(z —v), (2.34a)
n+ 2\ ' 2
9* — 3Wad — 2W, + (n — 1)0*W; J6(z —y), (2.34b)

i =( (]
3 (n + 2)85 n E1§ *wW, — g(n — 2)0°W,

)

2

(@), W)} = - (3
11



+ 4W30 + 3W;> §(z —y), (2.34¢)

n—1

(W), Wa(y)} :(2 (” ;r 2) 8 + -}I(n + 4)( 5 )a‘*w1 + 2(7; — 3)82W;

- —é—(n +8) ("‘ N 2) O W, — 5 W8 — 4W;> Sz—y).  (3.34d)

Here, all the functions appearing in the right hand side are evaluated at the point z( and
hereafter, without specific indication, all the functions and the derivatives appeared in the
right hand side of the Poisson bracket are valued at the point z.), and the derivative O

acts on fields and é-functions as an operators in the following way
O (2)8(z — y) = W, (2)6(z — y) +2W;(2)6. (¢ —y) + Wa(z —9)6. (@ —v)  (3:39)

The first Poisson bracket is just the semi-classical Virasoro algebra. And all of the coor-
dinates are not conformal tensors.

On the other hand, from the equation(2.4), we know that all of the W—functions can
be expressed in terms of the (n-+1)-independent solutions to the higher order differential
equation(2.2), this in fact gives one new gauge of the DS-system(2.1) in which the co-
ordinates are £1,&2,...,€énr1. Therefore, we can consistently define the Poisson brackets
among these coordinates so that the Poisson brackets among W—functions are in coinci-
dence with the ones given in the above. Furthermore, we also can calculate the Poisson

brackets between W—functions and §;’s, which are

{fx(A), &(z)}
_ _q\n+jit+s—k n—k—s—1 n—k—s—j—1 I e '
I

520

(2.36)

1

+n+1

Y (=0T T (2 W)

k<n—j

In particular, if
fx(4) = /dwe(m)Wl(a:) (2.37)
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then, we get conformal transformation law of ¢;
{fx(A),&i(2)} = ei(z) + Aje () (2.38)

where, A; is known as the conformal weight.
§2.3 The generalized KdV Equation

After one constructed the two basic Poisson structures, then, there are many subjects
to be discussed. For example, we can try to find the conserved quantities, the involution
equations, and Yang—Baxter relations , etc. Once we consider the involutions, we will see
that these two Poisson brackets are related to each other. "At first, one can show that with

respect to two Poisson brackets, the conserved quantities are as follows

fr(4) = _nEl AR = ha(4) (2.39)

n+k+1
One can prove that the tangent vector is

k

¥ = (A7) (2.40)
From the eqs.(2.32) and (2.33), one can show that
{hk,hi}1(A) =0 (2.41)

{hE,hi}2(4) =0 (2.42)

Now, suppose we choose the first Poisson bracket, and correspodingly we choose hptk+1

as a hamiltonian. For simplicity, let X be time-independent, then we have

fx(A) =< AX >={fx,hntrr1}1(4)
(2.43)

=< [(A7FH)y, 4L X >
In a straightforward manner, one can deduce the involution equation of the operator A
A=[(AFFH),, 4] (2.44)
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This is nothing but the generalized KdV equation in the Lax pair formalism. On the
other hand, if we use the second Gelfand-Dickii Poisson bracket but choose hi(A) as a

hamiltonian, we also get the same dynamic equation for A.

§2.4 DS-System in sl(2) Case

Till now, we have introduced the W—algebra through the the DS-linear system, which
can be reconstructed from the differential operator A with the help of the Gelfand-Dickii
second Poisson bracket. Then, when choosing the suitable hamiltonian, we get the dynamic
equation of the operat;)r A, which is 5uistrgeneralized KdV equation in Lax formalims. Now,
we will mainly try to show the explicit algebraic structure. Firstly, we will introduce the
covariant sl(2) operators, and give its explicit formulas. Then, we consider the general
cases, focusing our attention on the algebra sl(n+1). Two new gauges will be introduced
into the game, which are probably useful, at least they are much easier to discuss. With
the help of the gauges, we will establish the decomposition of the operator A in the case

sl(n+1) in terms of the ones for sl(2).

§2.4.1 Covariant Operator d(*+1)

In the DS-linear system, the matrix L belongs to some algebra G. In this section,

we consider the case § = sl(2), denoted by g = {H, E+} with the following commutation

relations

[H,E4] = +2F,

[E-I—) E—] =H

14



Its (n+1)-dimensional representation (n = 2j) has the form

0 25 0 0
0 0 J2(5-1) ... 0
D(Ey) =11 :
0 0 0 e V27
0 0 0 0
0 0 0 0
V25 0 0 0
D(E_) = 0 2(7—-1) 0 0
0 0 . V27
J 0 0 0
0 (7—-1) © 0
0 0 (j—-1) 0
0 0 0 J
Define
ar = /(27 —k+ 1k k=1,2,...,2g

Then The matrices can be written as
(D(E4 )ik = arbihr1 = (64 )k
(D(E-)ik = ardr,i+1 = (E-)ik
D(H)y = 2(j — k +1)81, = H
So, the DS system has the form
(B+6H—e)E=0
And the higher order differential equation is
(8—276)0—2(7—1)8)...(0+2j8 )¢, =0
We have the (n+1)-th order differential operator in diagonal gauge

d) = (9 - 26 ) (0 —2( —1)8)... (8 +2j6)

15
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(2.47¢)
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(2.49)
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Now, one can make the gauge transformation

g = exp(f &),
(2.51)
£=g7"¢
Then, the eq.(2.48) becomes
(O+ué_ —&)E=0 (2.52)
where
u=0 —¢" (2.53)
If we define the set of new fields
N = ai1asz .. .akgk
Finally, we obtain the transformed the DS—system
0 -1 0 0 M1
nu 0 -1 0 72
o+ 1 0 2n—1)u 0 ... O UK =0 (2.54)
0 0 .. nu 0 Mn+1

This is very convenient gauge,since our coordinate in this gauge is the stress—energy
momentum tensor instead of § . Typically, when we discuss the covariant decomposition
of the operator A, this gauge will become very useful. In fact, it just gives a new (n+1)-

dimensional representation of sl(2), which has the following explicit form

n+1
ﬁ B (n +2— Qi)Eii (2.55&)
=1
Iy =) Eiin (2.55b)
=1
I_=) alEiny; (2.55¢)
=1
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It is easy to check the algebraic relations
[Py 1+] = £21+
(L4, I-]=p
and the eq.(2.54) can be rewritten as follows
(O+ul_—Iy)n=0
If we write the operator d(»*1) in the following way

d(n+1) — 6(n+1) + Zw£n+1]6n—i

=1

(2.56a)

(2.56b)

(2.57)

(2.58)

Then, all the functions W™ s can be expressed in terms of the field u. In order to do

%

this, we notice that the DS—system admits a graph representation as follows

;2 2 2
G U ;U al
‘f a , a \ ‘f' 8 . 3 \\ o , ,) ) P \\
%rm il}ﬁ {’n T V%/{ﬂ. %,{ﬂ J%‘L T 3}3 gz {)
where, from the right to the left, (n+2)—points on this straight line denotes £1,¢&s,..
and
» - a ‘\ /Q/(\\Q 5e Syt >
AHq il

[. \\ = G& U ( Curved im)

IV 1

Taking summation over all of the different paths from ¢; to £,42, we get

brno = d(n+1)§1 =0

17
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Thus, the formula of the operator d(**+1) is

[%§4]

) = Z Z O ag, 11

g=0 pi1+..+pg41=n—2g¢+1
. AP2 42 Pq 2 Pq+1
8 apl+p2+3u PPN 6 arp1+.‘.+pq+2q_1'[l/6

5]

= Z Z OPrudP*u ... 0P1ulPr ! (2.59)

g=0 pi1+...+pgp1=n—2¢+1

=1 =1 =1
_ Z F[nﬂ’ll. u(h)u(jz) u(jq)an—r
- J1J2eeedq T
0<g<[ 2]

Jitetig=r—2q¢+1

directly, we obtain the following explicit fomula

e W
wL’H'l] _ Z Z F_y[r;;..].jqu(h)u(n) . .u(Jq) (260)
g=1 Z?=1 ji=r—2q+1
where
o
===
2w = e VYi>0

and

Ao, = [ (rr2-2-3m)
=1

St pi=n—2g41 70

i=1

(2.61)
. (sz+2i—1> . <P1 +p2+... 4+ pi —.j]l —22 — e —]i-l)]
=1 . Ji
The first few ones are given below
n n+2
Wg = ( 3 )u,
2\
wgn—i-l] = 2<n+ >u ]
4
(2.62)

1 1 2
w[3n+1] =(3u + —3—(577, + 12)u2)(n§ ),

tr 1 2
w:[;“rl] = (4u  + 2(5n + 12)uu )<n _g >
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For example, let us consider the case n=3

JLS ‘24 '55 g’l gl

d® = §* + 9%(3u) + 40ud + 3ud® + (3u)?

= 8% +10ud® + 100 + 3u + 9u?,
Now, we give the first few covariant operators below
4(® =1,
4L =0,
d® =6% + u,
d® =8 + 4ud + 2u,

d® =9* +10ud® + 10u -+ 3u  + 9u?,

d®) =05 + 20u0® + 30u 8% + 18u" 8 + 64u’d + 4u” + 6duu

§2.4.2 The Covariance of The Operator d(™*!)

At first, let us consider the Schrédinger equation as a example[24]
(0% + u(z))é(z) =0 (2.64)

From the eqs(2.34a) and (2.38), it is easy to find the Poisson brackets as follows

{u(e), u(w)} = ~(50° + 20 +v)5(z ~ v)
(2.65)

fule), €(w)} = £ (69 + 3¢ )5(z — 1)
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Using these relations, one can show that

/ / de dy f(z) g(y){u(y), (8 + u(z))E}
_ / / de dy g(y){u(y), u(@)}(z) + {u(v), (=) }u(z))

) (2.66)
+ [ [ dedygto) tutw), )} (@)
= —/d:cg(:c) (%(fn +ué)0 + ‘;‘(fu + Uf),)f(w)
This is equivalent to the following one
(), (8% + u(e))e} = ~(5(€" +uE)d + (€ +ub) (261)

We see that (8% + u(z))é(z) is a conformal primary field with the weight 2. Since the

Poisson brackets generate the conformal transformation in the following way

Seulie) = [ dy {uly),u(e)}e(w) (2.682)

5.6(z) = / dy {u(y), €(=)}(v) (2.68b)

then, the Schrodinger equation is invariant under such transformation generated by u(z)

which forms the semi-classical Virasoro algebra.

Now, we turn our attention‘on the Boussinesque equation
(85 + 4ud + 2u + Va)é(z) = 0 (2.69)

or instead, define

Wi(z) = 4u(z) (2.70)

20



Then, from the equation(2.34), we get the following algebra
{Wie), Wi(y)} = —(20 + 2W18 + W,)8(z — v),

{Wi(z), Va(y)} = —(3V28 + 2V3)8(z — v),

{Wi(z), ()} = (60 +26)6(z — y),
L g (2.71)
{Va(z),€(y)} = 1(5532 —26'0+4¢ + §W1€)5(9«‘ —-y),

9

15 J
2

5 W, &

1 '

FAWZO+ W, + 4WLW,)é(z — v).

a straightforward computation shows that

{Wi(e), (85 + 4ud + 2u + V2)€(2)}
=- <2(€m + W€+ %Wl'é +V2£)0 (2.72)
+ (" W+ %WK + Vz€)'>5(w - y)-
Again, we see that (85 +4ud+2u + V3)£(z) is a conformal primary field with the weight 2,
which will be denoted by D()¢(z). Therefore, the Boussinesque equation is invariant

under the conformal transformation generated by the field Wi(z). In fact, this equation is

also invariant under spin-3 transformation generated by V5(z), due to the fact that

{Va(z), Dé(y)}
_ @D(s)g(y)az = —2—(17(3>£(vc))'<9 (2.73)

+(DWe(e)) + Su@DVE(E) )i(a - 9).

That is to say, the Boussinesque equation has W-algebraic symmetry which is generated
by the conserved currents Wi(z), Va(z).
We have shown that d(®),d(®) are covariant operators, i.e. which map the conformal

tensors with the weights (—3) and (—1) to the conformal tensors with the weights $ and

21



2 respectively. Generally, if ¥(z)-» is a conformal tensor with the weight =%, then,
y : 2

(d(”+1)\P(m)-Tu> will be another tensor with the weight (1 + %). This can be done very

easily in the linearized form. Consider the DS-system(2.57). Define

J=ul_ — I,

Then, under the infinitesimal conformal transformation

g:1+R7
1. 1 n

R=e(ul- —I;)+ -ep+ 3¢ I_.

2

J transforms in the following way
6.J =R +[J,R] = éul_

beu =% u + eu + 56”’

and

d D[] — d D[+ §u]

(2.74)

(2.75)

(2.76)

(2.77)

This means that the set of the linear equations remain unchanged, and the transformed

covariant operator has the same form as the untransformed one but different ingredients.

This shows its covariance. In fact, if we make the finite conformal transformation

v — f(a)

Then, we will have

O] — ()0 (d<n+1>[a])<f'>% = ™ Vlu(z,1)]

where

(2.78)

(2.79)

(2.80)



Obviously, the field (d(”“)['&]\lfi(f(m))) is a conformal tensor. Therefore we see that
2
d(™*D[u] is a tensorial operator when acting on Q%g(f(x)) The conformal weight of ¥ is

determined by the central charge of the Virasoro algebra.
§2.5 The Representation of The Operator D("*1) in The sl(n+1) case

Now, we turn our attention on the algebra sl(n+1). Consider its (n+1)-dimensional

matrix representation. The DS—system reads

(@+L—I)¢=0 (2.81)
where
Iy =) Eiin (2.82)
=1

and L is a lower triangular matrix. In the following, we will show its properties in several

different gauges.

§2.5.1 Diagonal Gauge

In the diagonal gauge, L is a diagonal matrix. The the DS—system takes the following

form.
hy =1 0 0 &
0 hy —1 ... 0 &
O+ = 1o e C =0 (2.83)
0 0 h, -1 :
0 0 0 hn'H gn-l-l
where
n+1 .
> hi=0 (2.84)
=1

The operator D(™+1) can be easily written as

DU = (84 hpy)... (04 ha) (0 + k) (2.85)
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§2.5.2 Drinf’eld—Sokholov Gauge

Now, if we choose

0 0 0 0

L=|{ + + =+ = = (2.86)
0 ... 0 0 0
Wy ... Wo Wi 0

Then, the operator D{™*1) has the simple form
D(n+1) ="t 4+ > wign (2.87)
1=1
This gauge is the so—called Drinf’eld-Sokholov gauge(the DS-gauge), which is related to
the Diag. gauge by some gauge transformation. Due to the gauge invariance of the operator

D"+ one can express the functions W;’s in terms of the coordinates h;i’s, vice versa.

n

;1
Wi=> (n—1+1)h + 5 > hihy,
I=1 I#£k
(2.88)

n—1
—14+1\,n ' '
25D S G [ DI (CR RIS LA R SIS

2
=1 k<I I>k>m

Generally, we have

n—r+1 . .
n—1[01+1 » [ l+k—71 (1) (ja)
We= > ( . >h§>+ > (])( . >h,jil+1h,jik_,+... (2.89)

=1 1k J2
Jitja=r—1

W-algebra are given by the second Gelfand-Dickii Poisson bracket, which has been shown
before(see the equation(2.34)). We see that Wi is the energy momentum tensor which

forms the semi-classical Virasoro algebra, but the other brackets are complicated and

other conserved currents are not conformal tensors.

§2.5.3 Covariant Gauge I
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In order to simplify the W-algebraic structure, it is better to look for a set of con-

formal tensors(primary fields) as the coordinates of the the DS-system. We will call such

kind of gauges as the covariant gauge. One of them is as follows[25]

L=) N(I.)'X;
I=1

(2.90)

where the set of fields {X’s} are choosen to be the n-independent coordinates, and { Njs}

are normalization constants satisfying the relations

n—I4+1
Nr >0 ((-)Digri=1 I=1,2,...,n.

In this gauge, if we write the operator D("*1) in the following manner
D(n+1) 8(n+1) _I_W on— 1 +W an 2 “i"Wn

Then, these W—functions have the following expressions

7

Wz——— (TL—l)X +X2——2<n1_ )u -I—Xz,

1" 1 2 1 4

" ; 2 2 —2 "
Wy =(4u  + 2(5n + 12)uu )<n—6l— ) + ?(n 5 )Xz

1 n— 2 _ 1 '

senerally, we obtain
w, =% Y T H (ml) H it XUV G | x
921 (t1=n—g+1) (t2=r—g+1) I=1

:.X.,~ + w,[fﬂ] + fr(Xl,Xz, ces ,Xr—l)
where

t=37] 1Pl+21 14, ta =2l Jit it

-1 . ! -1 .
kl:Zs:lp-“"Zs 1113+l ml:Zszlps_Zszllj-’“
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and
o 2 2 2
Ckll = aklakl+1 cae a'kl+il_1 (2-94C)
These formulas establish the connection between two sets of coordinates {W;’s} and {X;’s}.

On the other hand, if we define the rank of the field in the following way
Rank[X;]=1+1 (2.95)

then, from the last step of the above equation, we see that on the right hand side, the
function f. only involves the fields whose ranks are less than (r+1). So, we can say that it
represents a decomposition of the field {W.} in terms of the fields {X;,Xs,...,X,} and

r+1]

Wl Now, our aim is to prove that all the fields {X3, X3,...,Xn} are conformal tensors

whose conformal weights are equal to their ranks. In order to do this, we go back to the

linearized system again. In the same way as before, we define
J=L -1,

then, make the following infinitesimal transformation

g=1+A8,
1, 1. (2.96)
R =¢(z)J(z) + =€ (z)p + 3¢ (z)I-
The matrix J transforms like
v ! I 1 mn .
§J = ZNI(I_)I ((I +1)e (z)X1(z) + e(:c)XI(cc)> + 3¢ (z)I- (2.97)
I=1
Obviously, one can extract the transformation laws of the coordinates
- ' - ' 1 + 2\ m
5€A1({B) =2€ (:c))&l(m) + e(a:)Xl(a:) -+ ‘2— (n 3 )6 (IE),
(2.98)

§.X1(z) =(I +1)e (2)X1(z) + e(x) X} () I=2,3,...,n.

The first equation tells us that this transformation is a conformal transformation, and
the second one shows that all the fields {X2,X3,...,Xn} are conformal tensors whose

conformal weights are equal to their ranks , i.e.

[Xf(m)]conf.weight =I+1 (299)
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Now, our coordinates are stress tensor and primary fields, and the the DS—system has very
simple form(the matrix L only contains I ,which belongs to subalgebra s1(2)). However,
if we try to express DY) i terms of d(™ 1) it is still very complicated. In order to do

this, we will introduce another covariant gauge in next subsection.

§2.5.4 Covariant Gauge II

In the last subsection, we have introduced one set of coordinates which are conformal
tensors. In order to show how we can decompose D(n*+1) into pieces which are covariant
operators we discussed in the first section, we consider some examples.
Example.1 The algebra is sl(4)

In this case, from the definitions (2.90) and (2.91), it is easy to see that the DS—system

(2.81) has the following form

0 -1 0 0
3u 0 -1 0
J = X, 4 0 -1 (2.100)
X3 %Xz 3u 0
where
J - L - I_|_
and the operator D(*) reads
1
D@ = d® 4 X, + 5 Xz + Xa (2.101)
now, we introduce new coordinates in the following way
2 _ 2 _ v
Vg = _Xz, V3 = ..X3 (2102)

Surely, they are conformal tensors. From the eq(2.33), the Poisson brackets can be written
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down

{u(z), u(y)}=— (%83 +2ud +u )§(z — y)
{u(z), Xa(y)} = — (3X:0 + 2X,)6(z — y)
{Xa(2),u(y)} = — (3X20 + X,)b(z — y)
ule), Xs(y)} = — (4X:0 + 3X})5(z )

{Xs(y),u(y)} = — (4X30 + X;3)8(z — y)

and, the operator D(*) can be rewritten as
DW = ¥ 4 9y dMy, + 05dOvg

Example.2  The algebra is sl(5)

In this case, the matrix J takes the form

0 -1 0 0 0
4y 0 —1 0
%Xz 6u 0 -1 0

%X;; %Xg 6u 0 -1

X4 %Xg '?{‘Xz du 0

In the same fashion as before, we get
fu(e),u(®)} =~ (50° + 20+ )6z )

{u(z), Xa(y)} = — (38X20 + 2X,)é(z — y)
{X2(2),u(y)} = — (3X20 + X,)b(z — )
{u(e), X3(y)} = — (4X30 + 3X,)8(z — y)
{Xs(y),u(y)} = — (4X30 + X3)8(z — v)
{u(e), Xa(y)} = — (5X30 + 4X,)é(z — y)
{Xa(y), u(y)} = — (5X50 + X,)6(z — y)

It is not so difficult to show that
D) = 3O 1 4, d Py, + v3dDvg + vad Doy
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Here,

U% :___—Xz, v§=_—‘X3

, 2.108
V2 =X, + ouX —-??—X"+—1—X22 .
¢ =T T2 T4 X,

’2
Using the above Poisson brackets, one can easily show that (2uXy — HX, + 211‘{{‘(22 ) is the

rank-5 conformal tensor,therefore vy is also a conformal tensor with weight 5.

Example.3 The case sl(7)

In this case, we have the following matrix

0 -1 0 0 o 0 0
6u 0 -1 0 o 0 0
22X, 10w 0 ~1 0o 0 0
S| 3% X 122 0 -1 0 0 (2.109)
22Xy X3 32X, 120 0 -1 0
1Xs 2X: 3Xs X2 10w 0 —1
Xe 11Xy 22X, 3Xs ZXp 6u O

It is tidious but straightforward to do the calculation, some Poisson brackets are in the

following
fu(e), u(w)} =~ (53 + 20+ ~9)
{u(z), Xi(y)} = — (T + )X8+ IXp)é(z —y), [=2,...,6. . (2110
(Xr(2),u(y)} = — (T +1)X0+ X6z —y),  [=2...,6.

and, the operator D7) can be written in the following manner

D(T) = d(7) + ’vgd(4)'l)2 —+ vgcl(3)v3 -+ v4d(2)v4 -+ ’Usd(l)'vs, —+ ’Ug (2111)
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where

JYZ :'Ug, Xg = Vg,
- 54 3 /2 18 1z

Xy =vi — —7—uv§‘ + 72 —v2vy,
- 16 5 12 4 " 125

s =vg = Juvs = gy o gvsvy — g, (2.112)
- 25 5 " 6 .2 5 o

Xo =vj — —1—1uv,§ + TI0Ye T 7% T 12615”5 + 33(2"021)( ) 16v,v,

"2 " ' ' " r2
+15v, — 6u v; + 20u vov, — 142uvev, + 176uv, + 225u’v?).

Now, let us consider the general case sl(n+1). We introduce a set of new fields in the

following way

2 _ v 2 ~xr
Vg :)ﬁz, Vg :_Xg,

' 2

—2\ /9 3 . 1X
2=y, + (" ZuXy - 2 et
vi =Rt o gt e T 1y,

12

n — 3 16 2 _n 1 X
=X —uXs; — =X X2
Vs 5+(2><9u3 9 3+4)X3)+ﬂ1
. n—4 25 5 1 6 .2 2.113
’Ug E}XG -+ ( 9 ) (ﬁzwz — H'U4’l24 -+ H”U4 > —ﬂz.XzX;; ( )

II2 e

176 Xz 44 X2 44 Xo 11 Xg 33

1 ! 1 159 X
—10u X, + T1uX, — Y + 61 Az — 225u X2>
where the coefficient is
a*al aala
61: 122, /32___123
N, NyN3

here N3,N3, a1, a; and a3 are constants given before. Recusively, we define

r—1r—i—1 .
—i1—1-1 r—ti— n—1i
’UzEer+fT-(X1,X2,...,JY,~_1)_Z Z <n ? >’Ut E -1) E ] (2.114)
i =0



Then, the operator D(™*1) has the following decoposition
D(n+1) — d(n+1) + Z’vid(n“i)'vi (2,115)
i=2
This relation can be checked directly, since
W,-. :Xr + w7[,n+1] + f-,-(Xl,Xz, ‘e 7Xr-—1)
(2.116)

) Porsisl o gy ) s
Now, what we should do is to prove the conformal tensorial properties of the fields {v;’s}.
From the construction, we see that vy, vs are tensors. It is not so difficult to show that vy,
vs, vg are also tensors with ranks %, 3 and % respectively. As to v, for arbitrary integer r,
we also can show that it is a conformal tensor with rank (%Ll—) Since in the first section of
this chapter, we have said that d(®1) is a tensorial operator when acting on the primary
field with the weight = (see the eq(2.79)), on the other hand, we know that D) s also
a tensorial operator, therefore, in such kind of the decomposition, v, must be a conformal
tensor with rank (3'—2'3-1—) Otherwise, suppose that v, is not a tensor, which satisfies the

relation
{on(@),u(y)} = —(0,07F2 + 58" + ...+ by 1 8% + a1v:0 + azv, + 9(2))8(z —y) (2.117)

then, under the infinitesimal conformal transformation, the transformation law of v, will

be deduced from this Poisson, which is

Sevn(z) = = [ dy{on(e), uw)}ely)
(2.118)

=a, elvr + as efu; +ge+ by ) 4 brp1€
We see that the higher derivatives of ¢(z) are b-type of terms. Noting that under the

infinitesimal conformal transformation,

A7) — (14 D) d ] + T [ale (2.119)

31



where @ is defined as 2¢ u + eu’ (see €q(2.80)). Since (D("'H)\I!_zzz) is a conformal tensor

with the conformal weight (1 4 %), so, its infinitesimal change would be like
n n ! n n '
(DI _w) = (14 7 )e (DY _a) + (DT ) (2.120)

Substituting (2.115), (2.119) and (2.80) into the above eqation, and comparing the deriva-

tives of € on both sides, we only have one possibility—wv, is a conformal tensor with the

r—}—l).

weight (™3

Until now, we have introduced a new covariant gauge in which the operator D(*+1)
decomposes into pieces of the covariant operators d{®+1). However, in this gauge, if we
want to write down the matrix L, furthermore, the explicit form of the DS—system, that

is really not an easy job.

§2.6 The embedding of sl(2)—system into sl(n-1)—case
In the last paragraph, we see that D(*t1) decomposes into pieces of the covariant
operators d("*1), This gives us some hints, the DS—system in sl(n+1) probably can be
expressed in terms of the ones in sl(2) case, they can be tra.nsférmed to each other by W-
algebaic transformation. In this subsection, we will take a example to show this property.
We know that sl(2)-system(in (n+1)-dimensional representation) is a sub-system of

the sl(n+1) case, i.e. if we set all v fields in (2.81) equal to zero, then we obtain (2.57)
(O04+ul-—I4:) =0

We know that this system only has one parameter family of sl(2) gauge symmetry, which
corresponds to the Virasoro symmetry, We will denote such a sl(2) subalgebra as sl,,(2).
Now, if we make the transformation which belongs to sl(n+1) rather than si,,(2), surely,
the transformed matrix L will be a lower triangular one. Since sl(n+1) is no—direct sum of

n-sl(2) algebras whose representations are (n+1)-dimensional, so it is resonable to conjec-
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ture that appropriately adjusting n—parameters transformation will give us the covariant
gauge I, or II. In order to shed some light on this, let us take sl(3)-case as a example.

In covariant gauge I, the the DS—system is

(8 +7T2)6=0 | (2.121)
where
0 -1 0
Jo=12« 0 -1 (2.122)
Xg 2u 0
set
X, =0 (2.123)

then, we get sl3(2) system(i.e. the matrices belong to 3-dimensional representation of

s1(2)).

(0+J2)¢=0 (2.124)
where
0 -1 0 :
J3=12« 0 -1 (2.125)
0 2 O

It is straightforward to check that there does exist a transformation

r

-0 o 0
g=| —(c +2uo0) 0 o
X0 —(o" + 2uo) o (2.126)

]. " 1
=cly — 5(0‘ + 2uo)l_- + ch(S)a’l'_2

such that

g7l g g=1Js (2.127)

provided

073 = const. X,
(2.128)

(d(3) — 1X2)o = 0,
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This is not the gauge transformation (which connects the different gauges of the same
DS-system),but the transformation generated by W-algebra. The condition (2.128) only
requires that the field X, should be a rank—3 conformal tensor, this is just what we need.
On the other hand, this means that given two systems, the relevant transformation is
completely determined, or in other words, the embedding way of sl(2) into sl(3) is unique,

up to the gauge transformation.

§2.7 The Property of W—Algebra
In this subsection, we will show some explicit W—-algebraic structures in the covariant

gauge II.

§2.7.1 Examples
Example.]  The sl(3) case

From the eq.(2.115), we see that the operator D("+1) can be re—expressed in terms
of d(¥) (i=0, 1, ..., n-2, n+1) and a set of conformal tensors, so, for a particular case n=2,

we have

D® = d® 4V, = 8° + W18+ W,
Vo =02, Wi = 4u (2.129)
Wa =2u + Vs = %W; + V2
From the second Gelfand-Dickii Poisson bracket(2.33), we easily obtain the following al-

gebra
{Wi(z), W1 (y)} = — (20 + 2010 + W;)6(z — y)

{Wi(z), Va(y)} = — (3V20 + 2V3)6(z — v)

, (2.130)
{Va(z), Wi(y)} = — (3V20 + V; )é(z — y)
(V@) Ta(w)} =g d5(z ~ )

Example.2  sl(4) case
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Again, from the eq.(2.115), in this case n=3, we have
DW = d* L v, d(1)V, + V2,
=0* + W1, 0° + W,0 + Wi,
Vs =03, Wi = 10u, (2.131)
Vs =02, Wy = 100 + Va,

" 1 T
Ws =3u +9u2+§V2 +V3
Then, doing the same thing as in the first example, one will get the Wy algebra

{(Wi(z), Wi (y)} = — (50 + 2W10 + W, )é(z — y),
{Wi(z), Va(y)} = — (3V20 + 2V;)6(z —v),
{Va(=), W1(y)} = — (3V20 + V3 )8(= — y),

{Va(=), Va (1)} =(d® = 4v3dPv3)é(z — ),
{Wi(2), Vs(y)} = — (4V30 + 3V3)8(= — v),

(Va(z), Wi(y)} = — (4V30 + V3)6(z — y), -
(2.132)
_1__d(7) — §v3d(3)v3 - _283530;(1)53)5(@, - ),

~ 7 14 _ 7 1_.m26
{V2($),V3(y)} :(3V263 -+ “5—V2 (92 -+ 2V2 8 -+ §V2 §5V2W1(9

17 ! 27 1
+ -igVVlVZ + '2—5V2W1)6($ - y),

rr26
{Va(=), V2 (v)} =(5 V283+ V282+ V28+ V2 5z V20

1 ' 9 ) ,
-+ §VZWI -+ %W]Vz )(5(12 - y),

where

S _n 45V

2y,
8 +32 Vs

B2 = VaWy — 1

(2.133)

It can be easily checked that ©2 is a conformal tensor with conformal weight 6. Generally,
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for any tensor Vi with the conformal weight (I+1), we can construct new tensors like

12

c v (21 +3)cV;
ViWy — ——— v g e T
T Ty Ty vy

(2.134)

7 '3
' 2 ! c " 3(] -+ 2)6 VIVI VI
VW — —— __‘y _ .
IV], I+1VIW1 I+1 I 2(I+1)2 ( VI VI2

and so on. Where c is the central charge of the Virasoro algebra generated by W;.

§2.7.2 The Properties of W—Algebra
Property.l Covariance

From the previous results, using the Poisson brackets given above, one can show that
the Poisson brackets are covariant under the conformal transformation. That is to say, if

we denote the bracket in this manner
{A(z), B(y)} = C()8(z — v) (2.135)

where, A(x) and B(x) are fields with weights [A]cons. and [B]eon . respectively , C(x) is an
operator. Then, this operator is a tensorial operator with weight ([A]cons.+[Blconys.)
Property.2 Antisymmetry

Before discussion the antisymmetry, we recall that
0:6(z —y) = —=0,8(z — v)
f(=)é(z —y) = f(y)é(z — ) (2.136)

F(1)8:6(z —y) = (F(2)0: + f(z) )8(z —v)

So, we can introduce one operation as

=1, vf
o = -9, (2.137)



So, if the fields A(x) and B(y) satisfy (2.135), then, after this operation, we get

Al

{B(2), AW)} = €' (2)6(z - v) (2.138)
This is just equivalent to
{B(y), A(=)} = —{A(=), B(v)} (2.140)

This is exactly the antisymmetric property.
Property.3 Jacobi Identity

These Poisson brackets satisfy the Jacobi identity. this is guaranteed by the construc-
tion of the Gelfand-Dickii brackets in a rigorious way, soﬂ, we avoid the calculation here,

although we can prove this from the above brackets.
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Chapter 3
The KAV Structure in CCFT

§3.1 Introduction to CFT
Recent years CFT is one of the fascinating subject in theoreticel physics. On the one
hand, it is the vacuum of the string theory, on the other hand, it is also the continuum

limit of the lattice medel in two dimensions. It has been studied intensively|2,6].

§3.1.1 Conformal Symmetry

A conformal field theory(CFT) is a quantum field theory, which possesses the confor-
mal symmetry. The conformal transformation is one special kind of the general coordinate
transformation. In 2—-dimensions, it is just the holomorphic and anti-holomorphic cooor-

dinate transformations as follows
z — f(2), z— f(2)
Its infinitesimal generators are
L, =—-2z""19,, L,=-z""10;

At the quantum level, they satisfy the commutation relation

C

12(n3 - n)6n+m10 (3']‘)

[Ln, L] = (n —m)Lpym +
This is the well-known Virasoro algebra. Here, c is the central charge, which indicates a
class of theories rather than one particular theory. For example, c=1 both in the theory
of a single free boson and in the theory of two free fermions.
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One way to study 2-dimensional CFT is the lagrangian formalism. In this way,
one can follow the standard manner developed in quantum field theory to calculate the
physical quantities. However, on the one hand, not all of the CFT are realized in lagrangian
formalism. On the other hand, CFT can be obtained without reference to the lagrangian

formalism. Indeed, one can construct CFT only from the following requirements

(1) Field Content: There is a set of fields {A;} where the index i specifies the different

fields. This set of fields in general is infinite and contains in particular the derivatives of

the fields A;’s. It is closed under the Operator Product Expansion (OPE).

(2) Primary Fields: There is a subset of fields {®;}, called the primary fields, that under

the conformal transformation, transform like
_ of\* (9F\* s
o9 — (L) (%) sttt (32

where A is the conformal weight of the primary field ®(z). If the number of fields in this

subset is finite, then the CFT is called rational conformal field theory(RCFT).

(3) The rest of the fields in {4;} can be expressed as the linear combinations of the primary

fields and their derivatives.
(4) The theory is conformal invariant and modular invariant.

(5) And finally, CFT can be unitary or non—unitary.For example, Lee-Yang model doesn’t

have unitarity.

In a conformal field theory, physical quantities are correlation functions.” We will see

that they are determined by the above requirements.

§3.1.2 Conformal Ward Identity

For any quantum field theory with an exact symmetry, there is an associated con-

served current. Consider a CFT on the flat Euclidean plane(gu, = é,,), in the complex
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coordinates z = z + 1y, the line element is
ds* = g, dze* dz¥ = dz dz

So, the components of the metric tensor (g%(z, %)) referred to the complex coordinates are

and the components of the stress—energy tensor 7%%(z, Z) are

1 .
T,, = Z(Tu — Top — 2iTY5),

. 1
33z = (Tzz) 3 Tzi = ET:

The conformal symmetry acquires that the stress—energy tensor T%%(z, z) should be trace-

less , that means

and conserved, that is to say

aETzz + 82Tiz = 07
0*Ty, =0 =
0,13z + 0;T:: = 0.

So, we have the holomorphic and anti—-holomorphic parts

I

T,.(z)

{ 0:1,, =0, T(2)
22(2)

BZTEZ == D, T(Z)

l

For holomorphic sector, consider general correlation functions
<X >=< Al(zl)Ag(Zz)...An(Zn) > (33)

then

be < X >= f dze(z) < T(z)A1(z1)A2(22) ... An(2n) > (3.4)
C(21,22,032n }
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This is the integrated conformal Ward identities. where the integral contour surrounds the
points {21, 22,...,2,}. From the above equation, one can derive the conformal transfor-

mation laws of the fields {4;}. For example

!

8.T(z) = 26 T(z) + €T’ + 132-6" (3.5)
that is equivalent to the Operator Product Expansion(OPE)
T(z)T(w) c_ 1 - ! 2T (w) + ! 0T (w) + regular terms (3.6)
z2)T(w) = = w .
2(z—w)*  (z—w)? z—w 8

On the other hand, as we knew in the last chapter, the transformation law implies the

commutation relation

6.4(2) = [Te, A(2) (3.7)
where
Te= ¢ d¢ e(¢)T(C) (3.8)
Co
That is to say, the conformal transformation is generated by the stress—energy tensor,

which can be expanded as

T(z)= > Lnz"7° - (3.9)

nez

If one consider the correlation functions of primary fields, then

< T(z)@l(wl)@«z(wz) eee @n(zn) >

(3.10)

z — w; z — w; Ow;

. A; G
—; <( E + ) < By (w1)®2(w2) ... Pulzn) >

This is the unintegrated conformal Ward identities, which state that the correlation funec-
tions are meromorphic functions of z with singularities at the posotions of the inserted
operators. The singular terms in the operator product can be written out and can be

expressed in three equivalent ways

8.8(z) = €0,%(2) + Ae (),

Z—Ww

T(2)®(w) = (z—_éw—;;@(w)ﬁ— L gd(w)+ ..., (3.11)
[Ln,®(2)] = 2710, 8(2) + A(n +1)2"®(2)
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Define

_ T(0) .
L_w(z) = fo e (3.12)

then, the derivatives of primary fields and their products with the stress tensor T(z) are

expressible in terms of this set of operators acting on the primary fields.

Lo(2)®(2) =%(2),

L_1(2)®(z) =0,%(2),
(3.13)

L_i(2)®(z) =8(-9)(2), vk > 0

These are known as secondary fields or the descendant fields of ®(z), under the infinitesimal

conformal transformation, they transform like

8808 (2) = 0,89 (2) + (A + k)e 8(7F)(2)

k -
k+1 dl+le(z) (—k—1)
i ; (1+1)! [ dzH1 | ® (=) (3.14)
c 1 d*tle(z)]
T e |2

A primary field together with all of its descendants is known as a conformal family, denoted

by [@l]

§3.1.3 Null Vector and Kac Determinant

For a physical model, the energy—momentum tensor T'(z) should be unitary and

regular everywhere. This requires the vacuum satisfying the following conditions

Ln|0>=0, n> -1
<0|Ln=o, n<1 (3.15)
L1=L—n, nez
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The field operators acting on this vacuum yield states of the Hilbert space. Particularly,

the primary field creats a highest weight state
| A >=®(0)|0 >

which satisfies

Ly | A>=A]A >,
{Ln | A>=0, n>1
All of the descendants will creat the states {| A >, L’llleiZkz e L’l’;cn | A >} (for arbitrary
positive integers A1, As,...,An;k1,k2,...,ky) in Hilbert space of the states of the given
CFT. For any primary field, there is a subspace (corresponding to a conformal family,
called Verma module) which spans a representation of the Virasoro algebra. But for the
total Verma module obtained in this way, we are not guaranteed however that all the states
are linearly independent. That depends on the structure of the Virasoro algebra for given

values A and c. A linear combination of states is called a null vector state if it satisfies

Ln‘X>:O, n>0
Lo [x >=(A+k) | x >,
(3.16)
<x|x>=0,
<x|A>=0, VA >

Where k is an integer, and is called the level of the null vector. The irreducible repre-
sentation of the Virasoro algebra with the highest weight | A > is constructed from the
above Virma module by removing all null vectors (and their descendants). The vacuum is

level-0 null vector. From (3.1) and (3.16), one can show that the level-2 null vector is

3

=(Log — ————I? A 3.17
| x2 >= (L2 2246 + 1) ) A> (3.17)
privoded
5 1
8A” + (¢ —5)A + 3¢ = 0 (3.18)
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The level-3 null vector is

2 1
xs >= (L3 — ———L 4L
[ X3 >= (Los = g bk F Ay A 2

L*)H)|A> (3.19a)

if

3A? —TA+2+¢(A+1)=0 (3.19b)

Generally, at level N (arbitary integer), one should calculate the Kac—determinant of the

matrix, which is the inner products of the states at the given level of the form

<A|Lmy LmyLpyoo Lo, | A>

This is a P(N) X P(N) matrix(where P(N) is the partition of N). The vanishing of the

determinant means the existence of null vectors. Kac has given the formula

P(N-pg)
detMpn(c, A) = const. H (A - qu(c)> (3.20)
pgsiN
The null vetors occur, if the weight of the primary state takes the following values
[(m+1)p—mq]* —1
A = 3.21)
where
1 1 /25—c¢
- _— 4= 3.22
m=TyEaV 1. (3.22)

Once we set null vectors equal to zero, then, all the correlation functions between null
vectors and other fields will vanish, which results in a set of differantial equetions to
determine physical correlation functions among primary fields[4]. For example, level-2

null vetor gives the following order—2 differential equations

(3.23)



The solutions to the above equations are expressible in terﬁs of standard hypergeometric
functions. This is the key point to solve a CFT model, since we will see that all the n—point
functions can be constructed from the so—called Conformal Block ,which generally is not
easy to calculate, only at some special values of A and ¢, we can compute it by using the

differential equations derived from null states.

§3.1.4 Fusion Algebra
For any given CFT, the field content {4;} contains all the conformal families, which

form a closed algebra under the multiplication(OPE). That is fusion algebra,
Z NE[24] (3.24)

where the constants N %’s are integers that can be interpreted as the the multiplicity of

the conformal family [®] in the product [®;] - [®;], and which also satisfy
N;N; = N;N;, N;N; = N} N, (3.25)

where we use a matrix notation

k _— ark

They can be simutaneously diagonalized and their eigenvalues form one dimensional rep-

resentations of the fusion algebra[5]. For RCFT, matrices are of finite dimensions.

§3.1.5  Duality and Others
As we saw in the previous subsection, each element of the Fusion algebra is a conformal
family. Now, let us consider the product of arbitrary members of conformal families, OPE
between two primay fields is
Bi(2)8;(w) = > Oz —w)Brm 28t Mg (R () (3.26)
p{k}
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1k}

Non-zero 3-point functions are completely determined by the coefficients C;

< 8;(00)®;(2,2)8,(0) >= Cijpzi i~ ArzAi=8i=4, (3.27)

For 4-point function

< @.;(Zl)@j(zz)@z(Z3)@m(Z4) >

there are two ways to perform OPE, one is z; — 2z3,z3 — 2z4; the other is z; —
23,22 — 2z4. As a multiplication, OPE is of associativity, this means that two different

ways should give the same results. So, we have the crossing symmetry or duality

< @i(zl)@j(z;z)@l(Z3)@m(z4) >

= CijpCump
P

(3.28)
= CitgCimg

. . . . . . k
This equation gives an infinte number of equations for the coeflicients Oi{jp} . Here, the
intermediate states involve many conformal families, if we only consider one of them, for

example, [®,], then we call the following amplitude as the conformal block
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FMplz)F(plz) = (3.29)

Any correlation function can be built from them. Particularly, one conformal block in
the first way of OPE can be expressed in terms of ones in the second way of OPE, the
coeflicients in this transformation is called fusion matrix.

The spin structures of primary fields are determined by monodromy matrices, which

are defined as
{ z — z exp(2mi)

Di(2) — M;i;@4(2)
Suppose that in the operator product, we make half monodromy such that the posi-
tions of two operators are exchanged, then we get the braiding matrix.
The braiding matrices and fusion matrices are not independent. Starting with them,
one can discuss the quantum group structure of CFT.
Till now, we only consider CFT on the complex plane, if we work on Riemann surface,
besides the conformal symmetry, there is the modular invariance which gives additional

constraints on the partion function. We have no space to discuss these subjects.

§3.2 The Semi—classical Limit of CFT
For a CFT which has Virasoro symmetry, the central charge c is very important index.

When ¢ — oo, we call theis theory as the semi-Classical limit of the given CFT(CCFT).
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In this section, we mainly consider how we can get the classical limit of some simple null
vectors. Then, by a strong arguement, we write out the most general form of the classical

null vectors.

§3.2.1 The Level-2 Null Vector
From the definition of the secondary fields (3.12), one can rewrite OPE as the following
form
T(2)8(w) = Y % (3.30)

nez

In order to calculate the explicit form of the descendant fields, we introduce the following

normal product

1T(z)®(w)l = Z (zn_zL_n@(w) + z_n—2®(w)Ln>
n>0 (3.31)

1
+ é—z_z(Lo@(w) + @(w)Lo)
By making use of the commutation relations between L,’s and ®(w)(3.11), we can establish

the connection of these two kinds of the operator product, which is

T(z)®(w) = > Lnz " ?(w)

nez

1 T()8(w) 4 3 2 L, B(w)] + 55 Lo, B(w)]

=1 T(E)8(0) t+ oA o) + S v
:—-——A——2@(w) + ! 0P (w) ' (3-32)
(z —w) zZ—w
b 1T(w)B(w) 1 _-2%<I>(w) - -—2%8'1)(10)

= w)( 47 () (w) 1 4558(00) + 2 o8(w))
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This Laurant series results in the following expressions

L,(2)®(z) =0, n2>1

Lo(2)®(z) = AD(z),

Li(2)®(z) = 8,9(2),

(3.33)
A 3
La(2)8(z) = 1T(:)8(2) t ~ 5 8(2) — 09(2)
, A 2 :
La(2)8(z) = 1T (:)8(=) 1 + 3 2(2) + 5 09(:)
This leads to the following level-2 null vector equation
2(2A + 1)

®(z) =

((zé?z)z + 2028, + é@%___“))

;21T (3.34)

The CFT on the complex plane coordinatized by z can now be transformed to a cylinder

by the conformal transformation
z— w=Inz, or z=c¢e (3.35)
The primary field transforms tensorially
B(z) — Boyi(w) exp(~Aw) (3.36)

but, the stress-energy tensor T(z) picks up an anomalous piece which is propertional to

the Schwartzian derivative

c
Teyi(w) = 22T (z) - 52 (3.37)
So, the null vector equation on the cylinder is
A(l—-A 2(2A +1
(o2 + 202 o ) = AT (Toutw) + 5 J2)t (539
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In the classical limit, the central charge goes to infinity, therefore
A=———+o(=) (3.39)

On the other hand, in the semi—classical limit, we can simply replace the normal products

of operators by the ordinary field products. So, the null vector equation (3.38) becomes

(95, + nglgo —(Z:Tcyl(w)} ) Poyi(w) =0 (3.40)

Since the stress—energy tensor T,y (w) obeys on the transformation law

C 1

§eTeyi(w) = 2€ Teyi(w) + eloyi(w) + ¢

so, in the classical limit, Tyi(w) is divergent, we can remove this divergence by simply

redefining

This new field obeys the following transformation law

11

beu(w) = 2€ u(w) + eu () + e (3.42)
We recognize that it corresponds to the classical Virasoro algebra
fufw), (@)} = ~(385 + 2u(w)Pu + ' (w)S(w — ) (3.43)
In terms of this new field, the null vector equation (3.40) can be rewritten as
(0% + u(w))@eyi(w) =0 | (3.44)

This theory lives on cylinder, particularly, on the circle w = iz. Noting that
u(w) = —u(z),
92 — _p2
¥(z) = Peyi(w)
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then, we obtain the Schrédinger equation

(82 +u(z))¥(x) =0 (3.45)

§3.2.2 The Level-3 Null Vector
Substituting the explicit expressions of the descendants in (3.33) into the eq(3.19a),

then the straightforward computation gives us the following level-3 null vector equation

(220° +3(A +1)2%20% + 2(A +1)*20 + A*(A+1))®@a(2)
(3.46)
—2(A +1)2* 1 T(2)0%a(2) t +A(A +1)2° 1 T (2)8a(2)t = 0
where the contant ¢ and A satisfy the eqation (3.19b). Again, transforming to cylinder
Beyi(w) = Ba(2)2
Teyi(w) = 22T(2) — 55 (3.47)

!

T, (w) = 222T(z) + 2T (2)

[

then, the eq(3.46) becomes

A+l
(afu—(u - c)Bw)@cyl(w)—2(A+1)1Tcyl(w)6‘<l>cyl(w)i

1

FAA+DET

cyl

(0)Bey1(w)f = 0. (3.48)

In the classical limit, from (3.19b), we have

12 1
- i — 3.49
A 1 p + o 62) : ( )

Again, we remove the divergence of Ttyi(w) by simply making redefinition (3.41). The new
field u(w) satisfies the Virasoro relation (3.43). In terms of u(w), we can write out the null

vector equation on the circle w = iz

(8° + 4ud + 2u )T _4(z) = 0 (3.50)
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where

U_i(z) = Peyi(w)

From these two simple examples, we see that the classical limits of null vectors takes the

forms

A s (z) = 0 (3.51)

and u(w) is the classical version of the stress—energy tensor, which satisfies (3.43)({0r
n=1,2).

Generally, a higher level null vector has the form like

Xn+1(2) = 0(2)@a(2) (3.52)

where O(z) is an operator which contains Ly(k = 1,2,...,n+1). So, in the classical limit,
it will be an order (n+1) differential operator. On the other hand, since the conformal
transformation law of primary fields have the same form both at quantum level and at
the classical level, therefore, the classical null vector is conformal tensor, which is yielded
by an order (n+1) differential operator acting on another tensor. For the minimal model
of CFT representation), the only involving symmetry is the Virasoro algebra, so from the
analysis in the last chapter, we know that the only possible candidate for level-(n+1) null
vectors is

Xn+1(z) = d"FVT_4 (2) (3.53)

If the CFT has W-algebaic symmetry, then, in its classical limit, the null vector will be of

the following form

Xnt1(z) = D(n+1)‘1’~%(1’) (3.54)

Once we set them to zero, we get the null vector equations, which are higher order differ-
ential equations for V_n(z).
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§3.3 CF'T as Integrable Model
In the previous section, we have shown that the null vector equation of CCFT has

the following universal form

Q¥(z) =0 (3.55)
where
D(n+1), sl(n+1)
Q= (3.56)
dnt), s1(2)

We can linearize these equations, what we obtain are just the DS-system (2.57). So,
following the standard way, we can define the Gelfand-Dickii Poisson brackets, reconstruct
the W-algebra, and solve the Hamiltonian involution system. The involution equation of

the operator Q is just the generalized KdV equation

.

0 =[P,Q) (3.57)

Here, P is the positive parts of the certain fractional powers of Q. Therefore, we can say

that the classical conformal field theory(CCFT) in this sense contains a certain DS-system.

§3.4 CCFT as Constrained Involution System

In this section, we will consider several simple null vector equations. At first, we
introduce time coordinate by making one parameter family of conformal transformation,
then, we will see that the consistent condition of t.he involution of the constraingd condition

is just the generalized KdV equation.

§3.4.1 Schrdédinger Equation

At first, let us choose the simplst case as a example,

DPU_y(z) = (8" + u(z))¥_1(z) =0 (3.58)

1
2
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From the analysis in §2.4.2, we know that this equation is conformally invariont. therefore

if we make one perameter family of the conformal transformations[24]

then, the fields and the operator transform according to

¥_i(z) — (fe(z) 739 _1(filz)) = ¥_y(=,1),
u(z) — (fi(2))2u(e) + 1S, = u(z,1), (3.59)

DP[u(z)] — (£ ()} DP[u(e)l(fe(2))7 = DP[u(=,?))-

where 5, is the Schwarzian derivative

AN EHON
%= e 2(f;(w)) (3.60)

[N

The transformed Schodinger equation takes the following form

D(Z)[u(wat)]\ll (,1) = (82 +u($7t))‘1'—-21-(m’t) =0 (3.61)

-1
2

That means the transformed primary field still be a solution of the transformed equation.
Now, let us view t as time coordinate, then analyze the dynamics of this theory.

Directly calculating gives us

. 0
U_i(z,t) = Et—\ll,%(:c,t)
= (—~12—o"(:c,t) —I—J(m,t)az)\lf_%(a:,t) (3.62)

= (20,0 + 300, + ga')\lf_%(m,t)

where

o(z,t) = o) (3.63)

‘We choose



then, from eqs(3.58) and (3.62), we obtain the time involution equation of the primary

field Psi, or its dynamical equation

V_i(z,y) = PY_,(,1) (3.64)
where we adopt the convetions
Q = 07 +u(z,1),
{ . (3.65)
P=(Q%)+
and generally, we define
P =(Q7), Vk > 3. (3.66)

In fact, since the involution dynamics and the infinitesimal transformation law are closely

related, i.e.
(z,t = 0)8t = —>€ (2)¥_3(z) + e(w)\If'_%_(:c) (3.67)

if we define

8tfi(z) [i=o= ()

then, we can simply get ¥ directly from this infinitesimal transformation law by making

the replacement

56\11_%(55) I ‘i’,
. () (3.68)
e — o(z,t) = %‘-(—E-)-

Thus, we have introduced the dynamics through one parameter family of field~dependent
conformal transformations.
\

(z,t) = P\I'_%(cc,t), dynamical equation,

_1
: (3.69)
Q\P_%(w,t) =0, constrained condition

§3.4.2 The Boussinesque Equation
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Now, we turn our attention to the CCFT with W-algebra symmetry. let

= 0% + 4ud + 2u’ + Vo,
{Q +4ud +2u +V; (3.70)

Q‘I/_l(a:) =0
As we know, this equation is invariant not only under the conformal trasformation, but
also under the spin-3 transformation. The infinitesimal spin-3 transformation is defined as

bx =¢(x),

5.0_s () = / dye(w) (T (2), Va(3)} » (3.71)

1» 8 1.
=—~(ge +63§+§eu— 3¢ N _1(z)

Since the involution of ¥_;(z) has the same structure as this transformation law, so, for

a finite one parametor family of spin-3 transformation

T — fi(m)a

o(z,t) = fi(=)

EHC)
directly, we have
: 10 ., 8 1 .
U_q(z,t) = ——(-6-0' + 00" + Fidantd NV _1(z,t) (3.72)
Now we choose
o(z,t) = -1

That means

(0: + 0:)f(z,t) =0

This tell us that f(z,t) only depends on (z —t). Accordingly, we have
. 8
U_(z,t) = (0% + gu(w,t))\li_l(m,t) = PV _q(z,t) (3.73)

it 1s easy to prove
P = (0¥, (3.74)
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Then, we have a constrained system once again

{\i'-l(m,t) = P¥_i(z,1) (3.75)

Q\If_.l(;v, t) =0
Thus, we may conclude that CCFT can be considered as a certain constrained invo-

lutive system, which has the following universal form

\I'._%»(:c,t) = PVU_x(z,t)
{ QU¥_z(z,t) =0

z

(3.76)

Here, Q is some higher differential operator, and P is the positive parts of the certain

fractional powers of Q.

§3.4.3 The KdV Structure in CCFT

Till now, we have shown that CCFT is equivalent to some constrained involutive sys-
tem. Now, the problem is the consistency. Since if the constrained system is Weﬂ—@eﬁned,
the dynamics and the constrain condition should be compatible. This compatibi]ﬁj“ty will
give us some consistent condition. Now, we will see that this condition is just the KdV
equation.

Take the derivative of the constrained condition in (3.84) with respect to the time

parameter, we get

QU_z(2,) + Q¥_a(z,t) =0 (3.77)

From eq(3.84), we see that this equation leads to
(Q@+(Q,P)¥_y(z,t) =0 - (3.78)

Since the operator @) annihilates the field \If_.z;_(a:,t), therefore, its any polynomal also
annihilate W_x (z,t) , but all of the them have higher ranks than that of Q. On the other

hand, Q has less rank than Q. Furthermore, since

(@, P] = [Q,(Q%)4] = [(Q%F)_, Q] (3.79)
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so [P, Q] also has lower order than @ has. Finally, we find that the order of the operator
(Q +[Q, P)) is less than that of Q, however, the simplest annihilator of ¥ _= (,1) should
be Q. Thus we get

Q =[P,Q] (3.80)

This is nothing but KdV equation. For example, if
Q=08 +4ud+2u +Vo (3.81)

then, this KdV equation reduces

1
w=1V,

U , (3.82)
Vi, = —%u — %guu

which is just the Boussinesque equation.
We summarize in a few words, for null vector equation, when we make one parameter
family of the transfirmation , the dynamies for the primary field appears, and the consistent

involution of the constrain gives us the condition which is nothing but the KdV equation.

¥ = PY¥
{ (3.83)
QU =0
and
Q =[P, Q] | (3.84)

A few comments should be mentioned. Firstly, when we choose different field-dependent
gauge transformation o(z,t), we will introduce the different dynamics for ¥(z,t). Sec-
ondly, since the null vector equation gives a set of differential equations for correlation
functions, we can in principle discuss their properties with the help of such a kind of KdV
structure. Furthermore, we also can consider the quantized version of the classical null

vector equations.
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Chapter 4

Introduction to 2-Dimensional
Quantum Gravity

In this chapter, we will give a relatively self-contained but far from complete introduction
to 2-dimensional quantum gravity. There are two motivations to study 2-dimensional
quantum gravity. One of them stems from the investigation of the off-critical string theory.
Another reason is to shed some light on 4-dimensional quantum gravity. It is well-known
that a first quantized string propagating in R%-spacetime can be most elegantly discribled
as a theory of d-free bosons coupled to 2d~quantum gravity[8]. The bosonic matter system
has the conformal invariance, therefore, the theory can be considered as a certain CFT
coupled to 2d-quantum gravity. Since a physical theory should be anomaly free, the total
anomaly of matter sector and gravity sector should be zero. In this sense, we say that
matter and gravity couple together. In critical dimension d = 26(or in superstring case,
d = 10), the matter part is the anomaly free, so, the matter and the gravity essentially
decouple, we can consider them separately. However, if the target space has non—critical
dimension, the non-zero anomaly of matter sector should be compensated by the anomaly

of gravity, so, dealing 2d-quantum gravity is an unavoidable step. The investigations
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of 2d-gravity are going on three different directions. The first one is the path integral
formalism, in which by making suitable gauge fixing, we can get some critical exponents.
Instead, the discretized version of gravity admits a matrix model representation, so, one
can use matrix approach to study the perturbative and non—perturbative properties of

gravity. Finally, the topological field theory is also a powerful tool to attack gravity.

§4.1 Path Integral Formalism

Considerable progress in this direction was made by Polyakov([8], and later KPZ[10].
They quantized the theory in light-cone gauge, in which they discovered a rich symme-
try structure that is sl(2,R) Virasoro-Kac-Moody algebra. This symmetry survives the
quantization of the theory and gives the exact solution of 2d—quantum gravity.

After the success in light—cone gauge formalism, Distler and Kawai[26] and David[27]
proposed a conformal gauge method. This is based on the fact that 2d-gravity can be
represented as the Liouville action, whose free part is a conformal theory, and the Liouville
interaction term can be treated as a marginal deformation of the free action. In this way,
we can derive the gravitational anomalous dimensions in a much easier manner. But, the
gravitational dressed correlation functions are still not so easy to calculate.

These two methods both are based on path integral formalism. Now, for the sake of

simplicity, we briefly review the second procedure.

§4.1.1 Conformal Gauge

Let ¥ be a smooth two dimentional surface of genus h (no complex struc'ture given),
and let g be a metric on ©. The space of metrics is an infinite dimensional Riemannian
manifold, which will be denoted by M ET}. The inner product on its tangent vector space

can be defined as

| 6g |l = / 426 /g(Ag™ g™ + Bg**g**)6gasbgca (4.1)
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. Where A and B are non—negative constants. This determines a metric on MET}, and
thus formally, a Riemannian measure denoted as Dg, which is g—dependent. On the other
hand, if there is matter fields living on X, in the same fashion, one can define the functional

measure Dy X as

[ Paxsx el 5x 2) =1,

(4.2)
| 6X |2 = /dzg\/gax - 6X.
Consider a general action ( which describles matter fields X# couple to 2d—gravity)
DgD, X
z T 29— exp(—Su(X;9) — Se) (4.3)

~ Jg Vol.(Diff)
Where Sps is the matter action, and S, is the counter~term. The factor divided out is
the volume of the symmetry group which are the diffeomorphisms of the Reimann surface.
The matter action and the measures are totally reparametrization invariant, furthermore,

the matter action is also invariant under the Weyl rescaling of the metric g

g — €%,
(4.4)
Su(X;9) — Sm(X;e%g) = Sm(X59).

but, this doesn’t work for the measures. This is the crucial point of the theory which we
should carefully analyze. In order to see this, we make gauge fixing as we usually do in

quantum field theory, i.e. we parametrize g by a reference metric § and the Liouville fleld

o.

. [dT] ‘- @ .
Z = / il VoZ.DgA Dy®DybDycexp(—Sm(X;g) — Sgn(b,c59) — SC) (4.5)

Where S41(b, ¢;¢) is the ghost action, which is also Weyl and reparametrization invariant.

On the other hand, the measures of the matter and ghost fields transform according to

. d .
Djea X = Dz X exp(ZB—;SL(g;‘I))) (4.6a)
26 .
DyerbDyezc = ngDgcexp(-—Er-S'L(g; ®)) (4.6b)
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Where Sy, is the Liouville action

1 R
S1(§;®) = /d2§\/§<§g“baaq>06<1> + R® + poeq’> (4.7)

Here g is the bare cosmological constant, and R is the scalar curvature of the reference
metric g

(8%)/(125\/31% =1-h (4.8)
Where h is the genus of the Reimann surface. The norm of the Liouville field @ is induced
by (4.1)

|60 > = / 26/5e% (50)° (4.9)

So, it determines a functional measure for & (denoted by Dy,®) , which is obviously ®-
dependent. Due to this fact, the path integral over @ is quite difficult to perform. It would

be nice if we had a new measure like

15813 = [ @ev/ase) (4.10)

Several authors have shown that this measure can be obtained from (4.9) by the Weyl
rescaling transformation (4.4). The Jacobian of this transformation is just the exponential

of the local action of the Liouville type[47,48]. Finally, the total measure transforms like

D.

geéAnge<1> nge-fe cpgeé@ = DgX’ngDchgq) exp(<——S(<§; Q\)) (4.11)

where S(®;§) is a Liouville type action, choosing suitable convention, which has the form

1 .
5(2:6) =5 [ V560,208 — QD + dpexp o)
(4.12)

1 _ 1 .
—_-2—/d2z(8<1>0<13 - ZQ\@R@ + pr/§exp ad)
T
here, S can also have other finite counter-terms. The coeflicients are fixed by the require-
ments of the anomaly free condition and the dimension analysis.

Q= (253_‘1) (4.13a)
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and

ax =7 Q+ /O - =(—§—1ﬁ)(\/és—d¢¢1—d) (4.13b)

Finally, we can get the totally renormalized action and the stress tensor

Stotal =Sm + Sgn + So + 655 (4.14a)
Tiotar =Tp + Tgh + Tqb + 5Tf (414b)
Z(Bs) ::/DgXng'DgCDg@e_s“’“l (4.14¢c)

where Sy is the free part of the Liouville action S
1 [, L1
So = — [ d*2(098% — ~Q+/3R®)
2w 4
the stress tensor obtained from this action is
1 2
Te(z) = ——2-(3@(9@ + Q0% ®)

The last term in (4.14a) is the finite counter—term, which are renormalized vertices. Since,
‘in CFT, a vertex is in fact a primary field, so, the possible finite counter—terms are of the

following form

655 =SB / 026 /GUM (£) I (€)elP) (4.15)

where, we denote the matter primary field by M (¢) , the ghost one by \Ilfh(g) and the

liouville ghost screening factor by exp(c;®). with the total conformal weight is equal to 1

AM LA L AT =1 (4.16)
and
1 1
A2 = 2ot — Zo 4.17



Now, all the terms in 85 are marginal operators. On the other hand, since ® is dummy
integration field, the partition function is is invariant under its shift, this invariance will

help us to get some important results.

§4.1.2 String Susceptibility
In a theory containing gravity, the physical observables should integrate over all the

Riemann surface. For Fadeev—Popov ghost independent operators, we have
h h
viE) =1, A" =0

therefore, from the eq(4.17), we obtain the screening charge as follows

1 [25—d—+/(25—d)(1 — d+ 24AM)]
V12 V25 —d

One of the special case is that the matter primary field is the identity operator, also called

(4.18)

oy = —

puncture operator,denoted by P, we have
vM(e) =1, AY =0

this leads to

1
oy = ———
T TV

For unitary models, all the conformal weights are non-negative, therefore, we have «q

(V25 —d—+1-4d) (4.19)

is the minimal screening charge of the primary fields. However, in non-unitary models,
the conformal weight can be negative, so, the minimal screening charge corresponds to
the primary field of the most negative conformal weight. Now, choose the following finite

counterterm
0S5 = p/dzf\/gexp(ag@) (4.20)
where, p1 is in fact the renormalized cosmological constant. The partition function
Z(p) = /DgXngDgc’Dg@exp —(Sm + Sgn + So + ,u,/dzf\/g?exp(aoé)) (4.21)
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for small p, has the form

Z(p) = p

under the following translation

® —~—+<I>+a—po
So — So— Q [d*2/GRE = S — Q1 - h) &

due to the translational invariance of the partition function, we have
» Q
2w = Z(pe) exp((1 = 1))
Now, we introduce the critical exponent in the following way
2-T)=(2= 7)1 - R)

Therefore, from eq.(4.22), one can easily obtain

Yotr. = % (a-25- /(ZB=d)1- 3)) +2

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

This is the so—called string susceptibility, which accounts for the contribution of the identity

operator to the free energy, and indicates the singularity of the free energy in the infrared

limit(x — 0).

Now, suppose we choose another kind of the finite counterterm

s57= 8 [ dien/Guit (e

then, making use of the translational invariance of the partition function, we get
2(8) ~ BV

therefore, from the eq.(4.22), one obtain

Q 1
str. — T 2=
st ai+ 12A£VI

(25—d—— V(25— )1 - d+24AfW)> +2
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Generally, the finite counterterm can contains all of the possible gravitational dressed
physical primary fields. So, the string susceptibility is determined by the most singular
term, i.e. the term of the minimal screening charge.

For the unitary model, the most singular term of the free energy comes from the

identity operator(which minimizes 744 ). So, for unitary minimal BPZ series

6
d=1— —— =3,4,... 4.30
one get the string susceptibility
1
Yotr, = ——, m=3,4,... (4.31)
m
For non—unitary BPZ series,
6(p — q)* . .
d=1- blp—a)f (p,q) are relative prime (4.32)
Pq
the primary field with the conformal weight
(rP—q)? 1
Alpyg) = ===+ —
(2 9) dpg  4pg

contributes the most singular term. This leads to

2
o, = ——————— 4.33
Vst prq—1 ( )
Suppose
p=2
{ =2m—1
We get the sigularity of Yang—Lee model
1
Ystr. = ——
m

We see that it has the same value as the unitary minimal model. This fact reminds us

that different theories probably have the same critical exponents.
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We should remark that here, the deduction is only a formal one, since the integration
involved in the eq.(4.14c¢) is difficult to perform and renormalization is also a big problem.
The usual way to do this is to consider the behaviour of the partition function of fixed

area. However, we can formally define the expectation value of the identity operatox
<P >= /DgX’ng’DgC’Dg@ exp(—Stotal) / dzf\/g:rexp(ag@)

By making use of the translational invariance, one finds that for small p, the area behaves

like

<P>~pt

so, (< P > p) is like a scalar under the rescaling of p, therefore, we say that area and
the renormalized cosmological constant are conjugate to each other, and the fixed area
behaviour of the partition function can be describled in terms of the renormalized cosmo-

logical constant. The small u region corresponds to the surfaces of large areas.

§4.2 Introduction to Matrix Model

Another powerful tool to attack 2d—quantum gravity is the matrix model approach.
As we know, for a partition function of the off-critical string theory, the most difficult
problem is how to perform the functional integral over the metric tensor g, in the previous
section, we treated this by making gauge fixing of the reparametrization and introducing a
set of ghost fields, then, by using the translational invariance of the partition function, we
obtained the string susceptibility. In fact, instead, one can discretize the world sheet of the
string( or two dimensional space in the case of pure gravity ), so, every Reimann surface
with a given topology corresponds to a certain triangulation( or polygons). Therefore,
integration over M ET} reduces to counting inequivalent triangulations of the Riemann
surface in pure gravity case. Fortunately, this counting problem can be solved in terms

of random matrix method[39,49], finally, we obtain the string equation and the string
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susceptibility.

§4.2.1 Discretization of Riemann Surface
For the sake of simplicity, we only consider pure gravity[39]. In this case, we would

like to compute the integral

F(h) = / Dge™*
MET,

where
6
S [ Peyi+y- [ Pevn
T 27 Jy

The first term is the area of the Riemann surface, and the second one is a topological
invariant, which is the Euler characteristic x(Z). po is the bare cosmological constant.
Now, let M ET4 5 be the subspace of metrics of total area A on a surface with genus h,

denotes its volume by Vol(h,A), then, one can perform the integration in two steps
F(h) = / dAF(h, A) (4.33)

and

F(h,A) = / Dgel~#oA=0X(E) = Y ol(h, A)el~0A—HOX(E) (4.34)
MET4.n

In order to perform this integral, one can discretize £. Imagine a surface(we will call it
triangulation) made from adjacent equilateral triangles with area ¢ embedded into some
auxiliary Euclidian space of sufficiently high dimension, we can say that it consists of
some number of discrete points (the vertices of triangles) and definite couples of points
(the neighbours connected by edges of a triangle) are equally seperated. We say two
triangulations are different if they have different configurations in the auxiliary space. Two
different triangulations with the same topology can be related by a sequence of certain
flips of links (edges of triangles). Denote the number of triangles by n, then the total

area of the triangulation is 4 = ne. For a fixed A, increasing the number of triangles,
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and appropriately choosing the type of the triangulation, we can obviously approximaate a
given Riemann surface. So, every triangulation determines a metric on X. Thus, counting
different triangulations of ¥ becomes approximation to computing the integration over the
space M ET,. In fact, the triangulation of Riemann surface is just dual diagram of the
certain Feynman graph of the matrix field theory with cubic interaction, therefore, we only
need enumerate Feynman graphs. Using matrix method, one prove that the number of
isomorphism classes of triangulations of a genus h surface with n triangles has the following

large n behavior

1
V(h,n) ~ %™ . p¥272M=1 b (1 4 o( =) (4.35)
n

and

A y(2—2h)—1
Vol(h, A) ~ lV(h,n) = 3&!‘”6(—) b (4.36)
€

€ €

Here € takes the role of the cutoff, and the corresponding cutoff version of F(h,A) is
Fe(h,A) = Vol.(h,A)exp(—0A4 — pno(2 — 2h))

1 F 4N\ 1(2—2h) -1
= —e~A/e (-—) by exp(—pod — 6(2 — 2h)) (4.37)

€ €
by choosing

po = afe, 6 =~In(4o/e)

we get renormalized function F(h,A)

. 1 A Y¥(2—2h)—1 '
F(h,4) = + (Z}J) by (4.38)

where Ay is arbitrary constant with dimensions of area. Formally performing the integra-

tion over A, we have

F(h) = /OAdAF(h,A) = (%)1(2—%)& (4.39)
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Comparing with the result obtained in the previous section, we see that the ratio 7145 takes
the role of the renormalized cosmological constant, and + is related to the string anomalous
dimension

Y =2 = Ystr.
which is a universal constant, for example, if we use squares instead of triangles, we will
get the same results. In fact, we can use any other polygon to replace triangle, then,
after renormalization, the function F(h,A) has the same form as before, but v will change

discretely.

§4.2.2 The Graphic Enu‘meration

At first, let us consider a simple example, a matrix field theory with the action

VM, go) = —;—Tr(Mz) + Sorn(u) (4.40)

where M is N x N Hermitian matrix, which forms a N?-dimensional real vectorspace.

This real vector space carries a representation of the SU(N)
M— MY=UMU"}
The lebesgue measure

N
dM =[[dMs [ d(ReMij)d(ImM;;)
i=1 1<i<j<N

is invariant under such a unitary transformation. The partition function is defined as usual

Zn(B,90) = [ dM exp (BV (M, 50)) C (4a)

where 3 can be considered as the renormalization constant which gets into the game by
repacing M by g M, and go is bare coupling constant, whose renormalized version is

denoted by g. The action becomes BV(M,g) with

)Tr(M*) (4.42)

2l

V(M,g) = STr(M?) + of
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The propagator reads

J dM exp (—8Tr(M?)) Mi; My,

1
< Mi; My, >= = =801 (4.43)
’ J d M exp (—-gTr(MZ)) g
The Feymann rules are
iy B S
| — (3 ik i { } N = 41 T

Here, since a matrix has two indices, we should use a double line to denote it.

Following the usual way, we define the free energy

Fn(8,9) = ~In Zw(8,9) | (4.44)

which generates all the connected graphs. It can be expanded in powers of the coupling

constant g
FN(ﬁag)z“ZW <(T7’(Z\'if4))lc >e (4.45)

where the index ¢ means the connected graphs. For any given graph with V vertices B

propagators(bonds) and I index loops, we have (for quartic interaction)
B =2V

Since each closed loop corresponds to a dummy index running from 1 to N, then, gives
a factor N, and each propagator contributes a factor 213-, and for fixed ]—[3,—, each vertex

)
contributes a factor\‘ffg So, this graph contributes an overall N and § dependent factor

&‘
V-B 14
N'gV=B = NItV (%) = N* (%) | (4.46)
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where we have used Euler’s formula
I+V—-B=yx=2(1-h)

and h indicates the topology of the diagram. So, finally, we get the topological expansion

of the free energy

,8 v
~1In Zn(B) = Fn(B) = regular + Z NX (W) Fyrapn|V] (4.47)

graph
where the factor Fyrepn(V] is given by the products of the vertex weights derived by the
symmetric factors. The regular term is constant which doesn’t give any information about

the theory. For general fixed value of % , in the limit N — oo, only zero genus terms

survive, this is so—called spheric limit. Now, define

> (‘]%) ’ Fyrapn[V] (4.48)

graph
x fized

By

il

In order to get the contributions of higher genus, we should carefully tune 8 such that
F, is divergent, then , for convenient, tune the coupling constant so that the singularity
occurs at the point

=1

@] =

therefore, the scaling laws arise, that is to say, F} has the following power form

Fy ~ (g— - 1>2—F (4.49)

Define

2-TI'="

p |2

(2 - ')’str.)

then, we can express the free energy as

N %'(2—"7.”1.)
Fn(B) = regular + Z NX (-B— — 1) ay
X

N 2—72ur. X
”%[N('a”) } &
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Thus, when we choose the double limit

N — oo
4.51
U5 e
and
X 2~Ystr.
2
N (]—V- - 1) =t (4.51b)
ﬁ Gstr.

keeping fixed in this limit, the free energy has the following critical behavier

F(gstr.) ~ g(2h~2)ah (452)

str.
h

where 7,4, is the string susceptibility, and g, is the string coupling constant, or cosmo-
logical constant (from the genus dependences in (4.22) and (4.52), one can see that they

are related), and the factor ap, is g, independent constant.

§4.2.3 The Orthogonal Polynomial
A powerful mathematical tool for computing Fiv(g) is the orthogonal polynomial[51-
54]. Now consider the original integral, at first, we can integrate out the angular variables

and keep an integral over the N—eignvalues {A1,\s,...,An} of the matrix M.

+ o0 N
Zn(B,9) = (53:;1\, / [T dxak(\)exp (“ﬂz V(/\i)) (4.53)

T 1<i<N i=1
where
1
V(A) = 52% + g)\* . (4.54)
and
Av() = T i=x)=det | A7 (4.55)
1<i<N '

It is Vandermonde determinant. The quantity Qu is related to the volume of the unitary
group.
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Disgarding the irrelevant constant, we define

dp(X) = exp (=BV(A)d A (56a)

ZN(B,ci) = Zn(Bsci) O

— /+°° I du(aar(®) (560)

—% 1<i<KN

The set of the polynomials P,()A) can be defined as

[ b)) () = Bt (457)

— 0
where

P()\) = A" 4 lower powers of A

It is easy to show

An(A) = det | AT ||= det || Pi-1 (M) |

and the polynomials obey the following recurssion relations
AP, (A) = Ppi1(A) + RoProa(X) (4.58)

and

hy = Rphn_1 (4.59)

therefore we can formally perform the integration and obtain
ZN(,B,Q) - N'hohl e hN——l

and
N-—1

Fn(B) = regular + Z (N — k)In Ry (4.60)

=1

Since we always can rescale matrix field M, that is equivalent to rescale A, so we can choose

V(X)) = A2 + 492 (4.61)
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such that

V' =2\ + 1697 (4.62)
Using the recurssion relation repeatedly, we get
V,Pn—l = 169Pn+2 + 2Pn + 16g(Rn—1 + Rn + Rn+1)Pn + 2Rn-1Pn—2

+169(Ran—1 + R;H)z—l -+ Rn—an—2)Pn—2 + 169Rn—1Rn-—2Rn—3Pn—4 (463)

therefore, we can directly obtain the non—zero elements of the matrix V'

1]

Vn+3,n = lﬁghn+3

Vi —3.n = 169RnRn_1Rn_2hn_s
(4.64)
VT;.{_l,n = [2+16g(Rn + Rnt+1 + Bnt2)|hns1
Vioin = Bn[2 +169(Rn + Rnct + Ros1)lhn
and
+oo ,
nhy = / d (NP (N Pa(A)
+oco ,
— [ VPO Pas + RaPay)
“+ oo
=R [ duPL )Py (4.65)
+oo ,
= Rnﬁ/ duP,V P,
= RuBhnl2 + 169(Ru—s + R + Ross)]
Thus, we get the equation satisfied by R,
Rn[2+16g(Rn1 + Rn + Rnt1)] = % (4.66)

Now, define the continuum parameters



then, eq(4.66) can be written as
2R(z) + 16gR(z)[R(z —¢) + R(z) + R(z +€)l =z (4.67)
In the limit 8 — oo, it becomes

2Ro(z) +48gRj(z) == (4.68)

This equation, when the coupling contant takes the value ¢ = —Zlg, has the following

singularity (at point z=1, where we say a function is regular, if it is contineous and

infinitely differentiable, otherwise, it is called singular at that point)
z = 2Ro(z) — Ri(z) =1 — [1 = Ro(a)]? (4.69)

In other words

Ro(z) =1—(1—=)% (4.70)
So, in spheric limit(N, § — oo, but X=& <1 fixed)
N-1
Fn(B)= > (N —k)ln Ry
k=0
(4.71)

X
= [7’2/0 dz(X — z)ln R(z)

njo

= N*(1-X)2 +...
we see that the scaling laws will arise from the singular behaviour of R(x) near the point

X=1, when 3 equals to N, and the leading term was contributed by the neighbour of the

point X[33,34,35]. In this case, it is appropriate to introduce scaling variables

ol

t=(1-z)8%, r=(1-X)8 (4.72a)

and

(4.72b)



Obviously, in the double scaling limit, we have

=

fr)=r (4.73)

and

Fu8) = [ " di(r — 1) ()
(4.74)

= / dt(t —t)f(t) + regular
0
Discarding the irrelevant term, the free energy and the specific heat have the following

forms in the spheric approximation

fr)=F'(r)=r? (4.75)
4 5
F(r)= ET?

Comparing with the previous result, we find the scaling variable 7 and the string coupling

constant are related with each other, we can define
2 -2 =
Gstr. =T 2 . (4l6)

therefore, the string anomalous dimension is

1 E
Ystr. = _'2‘ (4{7)

In fact, if we consider the general potential like

V(M,g2) = > gorTr(M?*) (4.78)
k=1

then, when we choose the coupling constants like

o1 _ni(k 1) (4.79)

920 = (U o iRy

(s



the function R(z) has the following singularity at the point x=1

R(z)=1-(1—2)¥ (4.80)
Define
r=(1-Yygath (4.81)
B
we obtain
k2 ;
F(r) 7(24%) (4.82)

T (k+1)(2k + 1)

and the specific heat is

==

flr)y=r (4.83)

the string anomalous dimension is

Ystr. = —

|

§4.2.4 The String Equation
In the previous subsection, we only consider spheric limit, i.e. in order to get the
equation(4.68) from (4.67), we have ignored all the e terms in the Taylor expansion of

R(z + ¢). In fact, carefully calculation will pick up €? terms.

1
¢ =2R- R’ - ngﬂ‘z (4.85)
or equivalently
1 .
l—z=(1-R)’+ gRMﬁ‘z (4.86)

where the subscripts mean the derivatives with respect to x, hereafter we will also use the

similar notation for Ry, Rrr. Since in the double scaling limit

8 1

R.'c:: = RTTﬂg7 f (T) = _RTTﬁ%
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thus, from the eqs.(4.72), and (4.86), we obtain the Painleve equation

f2-§f”::T (4.87)

In the limit 7 — oo, f(7) recovers the spheric approximation (4.83).
In fact, there is another way to derive the Painleve equation, which was developed

by Douglas and Shenker[34]. At first, we normalize the orthogonal polynomials

Po(X) = Pa(3)/Vhn

then, define
S = [ AUV PAOAEAN)

= 6n,m+1 V Rn + / Rn+15n,m—1 (4880')

- +oo _ o -
J%nz[_cmoﬁ%ubxﬂg)
= Vr = Prm . (4.88b)

Obviously, only two pseudo-diagonal lines of the matrix Q~ are non-zero. Since A" = \*#

is an eigenfunction of the operator €%, so, we can reexpress @ in terms of this operator

Q= VEGT e + YR

= % /R(z) + /R(z)e %
Since in the double scaling limit, the leading singular term of the free energy is ‘contributed
by the neighbour of the point X=1, it would be also true for the expectation value of
A, therefore, we could replace the integral variable z by the scaling parameter, and the

expectation value of A wouldbe behave like

<A>= é(T)e“F(T)
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where

Q= 6’3““53*\/ (1-710)) + \/ (1-8-tir)) 7"

=24 B7H(0% — f(r)) +0(B7F)

The unwanted constant can be removed away by re-adjusting the potential

M—M+2=X—A=X+2

(4.89)

Since when we compute the partition function, M(or A) is a dummy variable, so, we can

make this shift freely, which doesn’t influence the free energy. However, using this shift,

we can define a new operator

= a(82 — f(r)) +o(87%)
In the double scaling limit, which is the Schodinger operator.

On the other hand, from the eqs.(4.64) and (4.88b), we get

OA

therefore, the operator form of the matrix Pis

P - mﬁe—eaw - ';;:8 (R(m)R(HZ' - €)R(:r — 26)) 6“363;,;

[N

€0, 1 e-—ea,,

o1 -
J/R(z) /R(z)

€

— e—ea:,; + — /8 e
g 3+/ R(z)

2 g2 L 5 fl-s— T —f(r o
~ GB+BEET -~ Sf(7) + (3& 2f(1)0- — £ ( >>+ (8

In order to eliminate the unwanted terms, it is natural to define

P=lat [T a0 R )
_ %(%aﬁ —25(r)0s ~ f (7-)) + o<ﬁ-%>
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—FP,=nP_1— gﬁ(Ran—an—2)_§Pn——3

@i

)

(4.90)

(4.91)

(4.92)

(4.93)



Again, in the double scaling limit, P is an differential operator with order-3. Furthermore,

from the definitions of P and Q, we have

“+ oo -
P, Qln = [ ) P2, HIPA(R) = (4.94)

that is to say, as operators

[P,Q] =1 (4.95)

This is the so-called string equation, which leads to the Painleve equation. Now, if we

introduce new variables

;= (g)l/sm, u(z) = -G)Z/sf(q—) (4.96)

and set

then, the operators P and Q have the standaed forms

Q = 82 + u(z), (4.97a)
;5 3 3 3
P =0 + -é-u(:c)ax + k (z)=(Q72)4. (4.97b)

The string equation, or equivantly, the Painleve equation determines the perturbative and
nonperturbative property of the specific heat. But, unfortunately, till now, we don’t know
how to get the exact solutions of these equations[35].

Till now, we only consider 1-matrix model. We can generalize the above discussion to
multimatrix model[55-59]. Furthermore, we also can investigate the symmetries of matrix
model[60,61,62], as well as d=1 string theory (the target space is 1-dimensional)[63-66].

But, there is still a long way to well-understanding of gravity.

§4.2.5 The Reconstruction of The Theory
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Till now, we know that in the double scaling limit, matrix model is a field theory in
which the physical quantity( the specific heat) satisfies the string equation, which defines-
the theory. In turn, we can view the string equation as the equation of motion deduced
from a certain action. Now, we construct this underlying action[67].

As we know in the first chapter, the fractional power of the operator Q is well-defined.
Define

R = %Res(Q’—%) (4.98)

which is half of the coefficient of the term 87 1. It is easy to see that this residue satisfies

a simple recursion relation

' 1 _m ' 1 .
Rl—l—l = ZR[ + uRl + 'Z‘Rl (4.99)

The first few R;’s are given below
]- 1 3 1 n

Ro == Ry = - Ry = —u’ + —
0= 3 1= g% 2 = 1% +16u’

1 " 12 ‘
Ry = 6—4(11,(4) +10uu +5u  + 10u®) ' (4.100)

1 r 1223 1 ! 1
Ry = 2_56"('u(6) + 14w 4 28u'n” + 210" 4 Toun” + 70w + 35ut)

Straightforward computation show us
(Q%)-,Q] = —4R, (4.101)

On the other hand, from the string equation

(Q7%)+,Q =1
Since
(@7 H)4,Q) = -1(Q"%)-,Q
we have
AR; =1 (4.102)
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After integration, we get

431 =T (4.103&)

For convenience, now we rescale z and u, such that

I+ = )R[[ |= (4.103b)
Since s 51 L1
1 -1
5o [ deRunll = fL1THQ ) = (L4 1) L Res(@H)
(4.104)
=(I+ )Rz[ ] =
Thus, we can write out the action as foﬂows
S = /dm <Rl+1[u} - :vu>
=Tr (Q”% +t0Q%)
where we define
ty = —da (4.106)
For the matrix model with the quartic interaction, the correponding action is
S = /dm [élz(u(q‘) — 10w’ —5u” +10u®) + mu} (4.107)
For general potential
1 1
S = ETT(Zt(OQH% +tOQ%> (4.108)
=1 .
the string equation is
Z t(l)Rl u] (4.109)

and the operator Q, equivalently, the specific heat u(z) satisfies following KdV equation

0Q

el CARIE) (4.110)
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