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Introduction

Symmetry and texture perception have been investigated in order to
understand the structure and processes of the visual system. The percep-
tion of various kinds of symmetry have been studied extensively in many
aspects. Recently, works have focused on how the information in sym-
metrical displays is processed. Issues concerning the neurophysiology of
symmetry perception and the processing models have been raised. Theo-
ries of texture perception are converging toward the point that preattentive
texture discrimination is based on the local differences of stimulus features

such as orientation, color, size, and brightness of textural elements.

This thesis is based on two expeﬁments, designed to test if perception
of symmetrical textures is affected by homogeneity of element sizes and
shapes along the symmetry axis. Mirror symmetry about a vertical axis is
used. Two kinds of patterns are studied: (1) in the first, the distribution of
element sizes and shapes is completely homogeneous; (2) in the second, the
distribution of element sizes and shapes is changed along the axis according
to reflection. The dependent measures are sensitivity and reaction time of
symmetry detection for human subjects. Results show that the lack of
homogeneity makes symmetry more detectable but does not affect reaction
time. It is hypothesized that heterogeneity of size and shape distributions
makes the symmetry axis more salient and this saliency affects symmetry

perception. Details about experiments are described in Chapter 5.

Our visual system consists of several separate subsystems whose func-



tions are quite distinct in early processing. The visual subsystems are con-
sidered to be responsible for extracting the functional primitives of early
vision, such as edges, symmetries, etc.. Some anatomical, physiological,
and psychophysical studies of the visual system are presented in Chapter
1. In Chapter 2, theories of preattentive texture perception are presented.
Chapter 3 illustrates views of how visual information is reconstructed and
visual patterns are represented. Chapter 4 discusses the perception of sym-
metry and Chapter 6 shows the conclusions from our experiments. The
psychophysical and statistical methods used in data analysis are presented

in Appendix 1 and Appendix 2.



Chapter 1

Visual System
1.1 Anatomical and physiological studies

Anatomical and physiological observations in monkeys indicate that
the primate visual system consists of several separate and independent sub-
systems which analyze different aspects of the same retinal image. They
can be conceived as independent parallel pathways from the eye to the

cortex.

At the early levels, in lateral geniculate body, there are two subsys-
tems. Asshownin Fig. 1.1, the primate lateral geniculate body is composed
of six layers. Single cells in the geniculate body receive input from one eye,
right or left eye. The layers are stacked in an interdigitating way; e.g., in
the left geniculate body, the sequence of the layers from the up downwarér
is left, right, left, right, right, left. The geniculate body is composed of
two subsystems: the upper four parvocellular layers and the bottom two
magnocellular layers. Parvosystem receives input from retinal cell type A,
which is large, and magnosystem receives input from retinal cell type B,
which is small. These two types of cells are anatomically different. The two
subsystems differ physiologically in four major ways: color, acuity, speed,
and contrast sensitivity. (1) Most cells in parvocellular layers are strikingly

sensitive to differences in wavelength, whereas cells in magnocellular layers




are not. (2) The magno system has better acuity than the parvo system,
They are sensitive to orientation, size or spatial frequency. (3) Magno cells
respond faster and more transiently than parvo cells. They are sensitive
to the direction of movement. (4) Magno cells are much more sensitive to

low-contrast stimuli than parvo cells. They are sensitive to edges.

Fig. 1.1. Six cell layers in the left lateral geniculate body of a macaque

monkey (seen in a section cut parallel to the face).

The segregation of the two pathways is perpetuated in the primary
visual cortex and other visual areas. Cells in magnocellular layers project
to layer 4Ca, which in turn projects to layer 4B. Layer 4B projects to
visual area 2 and to cortex area MT, middle temporal lobe. Parvo cells
project to layer 4CQ, then to layer 2 and 3, and from there to visual area 2.

Physiological studies suggest that the segregation of functions is continued



to the highest levels so far studied. The segregation seems to become more
and more specific at each successive level (Livingstone & Hubel, 1988). Fig.
1.2 (a) shows the main connections from the lateral geniculate body to the

striate cortex and from the striate cortex to other brain regions.
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Fig. 1.2. (a) Main connections made by axons from the lateral geniculate -
body to the striate cortex and from the striate cortex to other brain regions.

(b) Diagram of the functional segregation of the primate visual system.

Fig. 1.2 (b) shows the functional segregation from lateral geniculate
body to high visual cortex and higher visual areas. One high visual area MT
seems to be specialized for the analysis of movement and stereoscopic depth.
Visual area 4 contains cells sensitive to color. So far, specific channels for

color, orientation, brightness, stereo, movement, and size have been found.




1.2 Psychophysical Studies

Perceptual experiments have been done to establish the primitive fea-
tures of visual system, to describe how these features are initially coded by
the visual system and to understand how the features are related to the

further processing and conscious experience of object perception.

Consistent with anatomical and physiological results, psychophysical
exﬁériments reveal the existence of different stages of perceptual process-
ing. In early vision, image features, or primitives, such as color, orientation,
spatial frequency, stereoscopic depth, and direction of movement, are coded
by separate channels. Most theories suggest that in humans there are two
visual systems. One is preattentive and another is attentive. The preat-
tentive system is parallel in the sense that it can process visual information
over a broad portion of the visual field at the same time. Features are coded
simultaneously by the preattentive system. The attentive system is serial
in the sense that the spatial extent of the stimuli that can be processed
is limited. The attentive system is capable of identifying an object and

establishing relationships between features by serial scanning.

Julesz (1984) indicates that the preattentive system can detect feature
gradients but cannot identify which features create the gradients. He ar-
gues that the preattentive processing is limited to short range interactions.
Differences of features can be coded in parallel only at high density. To
know what features create the differences requires attentive processes oper-

ating over longer ranges. Attention is directed by the preattentive system



to the location where differences in features occur.

Julesz suggests that the operation of the preattentive system can be
accounted for by a simple system of feature detectors. These feature detec-
tors have local connections of inhibitory or excitatory type between similar

detectors.

Treisman (1980), in her early feature-integration theory, accepted the
idea of a dichotomy between preattentive and attentive. According to her
point of view, the automatic grouping together of similar elements and sep- |
aration of them from dissimilar ones, is allocated to preattentive processing.
During the preattentive processing, features are registered simultaneously
and independently on separate maps that are linked to a master map of
locations. Thus, information about both what and where is offered by
the preattentive system. Only the relation between the two is unspecified.
When detail processing of an object perception is required, e.g., to identify
the object, a further stage of attentional processes is accessed. It is pro-
posed that focused attention allow for the linking together of information

found in given spatial locations across the master map.

Treisman (1988) proposed a new explanation of perceptual processing.
She hypothesizes that attention varies along a continuum during perceptual
processing. Two extremes are (1) completely divided attention distributed
widely over the whole display; (2) sharply focused attention to one item at

a time.




Treisman suggests that the master map could correspond to area
V1 where many units appear to code several properties at once (Treis-
man, 1988). These properties are size or spatial frequency, orientation,
color, binocular disparity, luminance, and contrast (Hubel & Wiesel, 1977;
Thorell, De Valois & Albrecht, 1984). Areas beyond V, appear to special-
ized in abstracting particular properties from the multidimensional array.
Attention would gate the access to each of these specialized areas. Treis-
man suggests that the mechanism of selective attention is inhibiting inputs

from all but a selected item or group.



Chapter 2
Texture Discrimination

As mentioned in Chapter 1, it is suggested that human vision op-
erates in two modes, one is preattentive and the other is attentive. The
preattentive system uses distribu£ed attention that is mediated by a paral-
lel process, while the attentive system uses focal attention scanned serially.
The study of preatténtive texture discrimination can serve as a model sys-
tem with which to distinguish the tole of local texture element detection

from global (statistical) computation in visual perception.
Definition of Texture Discrimination

A texture is an aggregate of elements (that occur either at random
or in semi-regular locations). When looking at textures, one can have the
impression of either a unified texture or several separate subtextures, with
little or no apparent effort. This is demonstrated by Figure 2.1. In Figure
2.1 (a) one can perceive effortlessly, even within a brief flash of presenta-
tion, that one quadrant of the texture differs from the rest. Julesz defined
this effortless, spontaneous, and rapid performance of differentiating jux-
taposed textures as visual texture discrimination (Julesz, 1962). On the
other hand, in Figure 2.1 (b) there is no segregation between micropat-
terns = and = . Figure 2.1 (a) will be regarded as an example for

texture discrimination since the texture can be easily discriminated in a




tachistoscopic flash. However, in Figure 2.1 (b) texture discrimination fails
for tachistoscopic presentation times that yield good discrimination for Fig-

ure 2.1 (a). Hence, Figure 2.1 (b) will be regarded as a nondiscriminable

texture.
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(a) (b)
Fig. 2.1. (a) An example of discriminable textures. Two textures have

identical first-order statistics but differ in second-order statistics. (b) An

example of nondiscriminable textures.

Studies of texture discrimination have focused on the determination
of the basic stimulus properties that mediate segregation (i.e., visual prim-

itives), as well as on the nature of the segregation process itself.

Julesz’s Conjecture

The problem of texture discrimination has been studied in two kinds

of textures. One approach has used randomly generated black and white
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dot textures, as shown in Figure 2.1 (a). Random dot textures can differ in
their statistical properties: dot density (first-order statistic); joint épatia.l
correlation of the dots (second-order statistics). The second approach has
used textures composed of elements or primitives arranged either regularly

or randomly (Beck, 1967; Olson & Attneave, 1970; Julesz et al., 1973).

Julesz has studied texture discrimination extensively with random
dot textures. He uses the method of random geometry to describe textures
(Julesz et al., 1973). In this method n-gons of arbitrary shape are thrown

in a random way on the texture. The nth-order statistics is equivalent to

Fig. 2.2. Nondiscriminable iso-power-spectrum texture.
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the n-gon statistics. This is the probability that the n vertices of n-gons will
land on a certain color combination of the texture. For instance, the statis-
tics that monopoles (the 1-gons) would fall on blacks is the first-order statis-
tics. It determines the proportion of black and white areas. The second-
order statistic is the probability that the vertices (end points) of randomly

thrown dipoles (2-gons) of all possible lengths and orientations will fall on
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certain colors of the texture, e.g., both on black. Similarly, the statistics of
the three vertices of triangles (the 3-gons) falling on a specific color com-
bination is the third-order statistics. Figure 2.1 (a) shows two subtextures
with identical first-order statistics and different second-order statistics. A
texture with identical second-order statistics (also called iso-dipole texture)
but different third- and higher-order statistics is shown in Figure 2.2. Here
one texture consists of identical micropatterns (R’s) thrown at random in
the peripheral area, while the second texture, embedded in a central square

is composed of micro-patterns that are the mirrorimages of the others.

It has been shown (Julesz et al., 1973) that texture pairs composed of
mirrorimage dual micropatterns are iso-dipole, regardless of the micropat-
tern chosen. As demonstrated in Figure 2.2, such an iso-dipole texture pair
cannot be discriminated without scrutiny, in spite of the fact that their
third- and higher-order statistics differ. Indeed, from 1962 to 1978 many
other kinds of iso-dipole textures were generated that could not be effort-
lessly discriminated (Julesz, 1962, 1971, 1975; Julesz et al., 1975; Schatz,
1978; Pratt et al., 1978). The observation that iso-dipole textures are usu-
ally not discriminable without scrutiny led to a conjecture. Julesz (1975)
conjectured that texture discrimination does not occur for textures that
have the identical global first- and second-order statistics. That is, textures
which differ only in third- or higher-order statistics are not spontaneously

segmented.

Julesz claims that such a conjecture is not just a mathematical game.

After all, the second-order statistics determine the autocorrelation func-

12



tion. In turn, the Fourier transform of the autocorrelation function is the
power spectrum. Therefore, iso-dipole textures are also iso-power spectra
textures. In the light of this realization the conjecture is equivalent to the
statement that in preattentive (effortless) perception of textures the phase
(spatial position) spectra are ignored. Thus texture perception is very dif-
ferent from figure perception for which the slight distortion of phase spectra
can render the figure unrecognizable. For example, in figure perception a
shift of line arrangement makes a T different from an L. But, in texture
perception there is no apparent segregation between these two textural
elements as shown in Fig. 2.5. If Julesz’ conjecture were corroborated, it
would mean that the preattentive perceptual system operates quasi-linearly,

in the sense that only the simplest nonlinear decision is made.

Counterexamples to Julesz’s Conjecture

Julesz and his colleagues have constructed textural patterns which
have the identical first- and second-order statistics but which give strong
textural discrimination. Figure 2.3 shows some examples. (a), (b), and
(c) were generated by the method described in Figure 2.4. The texture
shown in (d) has identical third-order statistics (hence identical second-
order statistics). The small squares in the first row and middle column
are selected black and white at random, while all 2x2 squares on the left
of the middle column contain even numbers of black squares and all 2x2
squares on the right of the middle column contain the odd numbers of black

squares.

13




Fig. 2.3. Counterexamples to Julesz’s conjecture. Discrimination is based

on nonlinear local features of (a) connectivity, (b) corner, (c) closure, and

(d) blobs.
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Fig. 2.4. General method for generating iso-power micro-patterns, seen as
a generalization of the four-disk method by four steps. Step (b) involves
the generalization of disk A to any bilaterally symmetric shape. Step (c)
converts the disk B and C into 180° rotation invariant shape. Step (d)
converts the disks D and D’ into two shapes where each shape is invariant

under reflections on the Y-axis and D’ is the x-axis reflection of D. The
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final step (e) demonstrates how B, C can be rotation invariant for 180°/n
rotations, while D and D’ are symmetric with axes determined by 360° /n

rotations (from Caelli et al.,1978).
Textons: Julesz’s approach to preattentive perception

The existence of the counterexamples led Julesz to modify his conjec-
ture. The modified conjecture proposed that the preattentive texture dis-
crimination system cannot globally process third- and higher-order statis-
tics, and that discrimination is the result of a few local conspicuous fea-
tures, called textons. Only the first-order statistics of these textons have
perceptual significance, and the relative phase between textons cannot be

perceived without detailed scrutiny by focal attention.

Besides color, Julesz has so far identified three additional texton
classes: (1) elongated blobs of given orientation, width and aspect ratio,
(2) terminators, (3) line crossings. Corner, closure and connectivity can
actually be simply described by differences in terminators. Preattentive
texture discrimination is based either on the difference in the textons or
the difference in the first-order statistics of the textons. In Figure 2.3 (a),
(b), (c), (d), for instance, texture discrimination is based on the differences

in connectivity, corner, closure, or blob, respectively.

Julesz concluded that preattentive texture perception is an early warn-
ing system which triggers the attentive perception system. If there is some

discontinuity in the power spectra of adjacent areas, or there is some con-
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spicuous local change in textons, the figure perception system is switched
on. So the preattentive system can be regarded as the ‘ground’ perception

system and the attentive system is the ‘figure’ system.
Beck’s approach

Research has shown that texture discrimination occurs strongly in
terms of éimple properties such as brightness, color, size, and slope of tex-

ture elements (Beck, 1972), as shown in Figure 2.5.

= —J_JTTT TT)\)\)\ A
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Fig. 2.5. The upright Ts are easily discriminated from the tilted Ts (a

difference in line slope), but hardly discriminated from the Ls (a difference

in line arrangement).

Beck (1972, 1973, 1982) hypothesized that texture discrimination is
based on differences in the distribution of the slopes, sizes, colors, and

brightnesses of texture elements and their parts. Discrimination occurs as

v ~a result of differences in the first-order statistics of local features rather

than as a result of differences in the second-order statistics.
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Beck’s model

Beck’s model hypothesized that the retinal intensity array is trans-
formed into textural elements following the rules of proximity, similarity,
and good continuity through the linking operationé. Textural segmentation
is a process operating on textural elements, the subpatterns which occur
repeatedly within the texture, operated on directly in texture processing.
The formation of elements is hierarchical, in the sense that elements may
be features or aggregates of features. In Figure 2.5 elements are Ls upright

Ts, and titled Ts. Figure 2.6 shows the diagram of Beck’s model

Retinal Feature Textural Differencing Degision
Array Detectors Elements Operations Unit

Fig. 2.6. The diagram of Beck’s model.

There is an encoding of the brightness, color, size, slope, and the
location of each textural element and its parts. Texture elements can differ
with respect to more than a single value of a feature. For example, the
upright Ts and tilted T's in Figure 2.5 differ in two values of features (slope).
The features belonging to textural elements in neighboring spatial regions
are compared and the difference encoded. Difference detectors encode the
total differences in brightness, color, size, and slope of texture elements in
neighboring spatial regions. The response of a difference detector, such as

the one for slopes, reflects the total difference between texture elements in
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neighboring spatial regions.
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Fig. 2.7. Preattentively distinguishable textures (a) with different first-

order statistics and difference in element size; (b) with different second-

order statistics and different element orientation.

ks

Not all discriminable textures have the same strength. As shown in
Figure 2.7, the discrimination is stronger in the left panel than in the right
panel. Beck proposed that the difference signals are proportional to the
difference in activations of feature analyzers stimulated by textural elements
belonging to neighboring spatial regions. It is further assumed that the
difference signals are decreased by shared features that stimulate common
analyzers. In a sense, similarity can be regarded as noise which reduces
the discriminability. Difference signals arising from two different features,
e.g., slope and brightness, summate and strengthen textural discrimination.
The strength of a difference signal is a function of the size of the spatial

region over which it is taken. The larger the spatial region for which a
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difference signal occurs, the stronger the textural discrimination. This is
illustrated in Figure 2.8. the difference signals become more concentrated

in going from the top to bottom display.
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Fig.2.8. Example of how texture discrimination is a function of the size of

the spatial region over which difference signals occur.

Beck assumes that there are decision units which segment a visual
pattern into textural components on the basis of the magnitude and dis-
tribution of the difference signals. Textural discrimination occurs if the
magnitude of difference signals between components of a visual pattern is

sufficiently greater than that within each component.
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Evaluations

By comparing Julesz’s texton theory with Beck’s hypothesis of tex-
ture discrimination, we may find that some of their views are similar. Two
processes of decomposition and comparison are suggested. First, there is
a decomposition of textures into more basic features in early visual pro-
cessing. These features are detected automatically and in parallel. Second,
texture discrimination is based on the differences in local first-order statis-
tics of features of textural elements. When differences are large enough,
segmentation occurs. Third, attention is called to the region where feature

differences occur.

On the other hand, the textural elements suggested by Julesz and Beck
are different. Julesz hypothesizes that textures are analyied into elemen-
tary features which are called textons. According to J ulesz, discrimination
depends on the difference in texton density or identity between neighbor-
ing regions. Beck argues that stimulus features are grouped into textural
elements through local linking operations, such as, grouping by proxim-
ity, similarity, or good continuation. According to Beck, discrimination

depends on the feature differences between textural elements.

Several recent reports criticize the texton theory and some explana-
tions have been proposed (Treisman & Gormican, 1988; Gurney & Browse,
1987, 1989; Bergen & Adelson, 1988). Treisman and Gormican, on the basis
of their experiments on searching, argued against the preattentive detection

of line-crossing and elongate blobs, two of the textons Julesz defined. They

20



think these are conjunctions of features, which require serial search. One
example they used is the following: a vertical red bar among vertical blue
bars and circular red blobs is unlikely to pop out, although each element

would presumably count as a unique texton for Julesz.

Fig. 2.9. Textures consiéting of Xs within a texture composed of Ls. (a)
the bars of the Xs have the same length as the bars of the Ls; (b) the bars
of the Ls have been lengthened by 25%; (c) the bars of the Ls have been
shortened by 25%.

Gurney zind Browse (1989) claimed that textons are not necessary for
texture discrimination. In their experiments on discriminability, they min-
imized the configurational differences between micropatterns. Only one
micropattern pair with terminators, line-crossing, or line-segment differ-
ences was more discriminable than the L-T pair, which is claimed to be
preattentively indiscriminable by Julesz and Beck. Thus, they hypothesize
that something related to the notion of micropattern size has an effect on

overall discrimination. They suggest that when two micropatterns that are
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composed of the same line segments are enclosed by different circles, they
will stimulate different sets of simple receptors. Similar discriminations
have been studied also by Bergen and Adelson (1988). They tested the
discriminability by varying the relative sizes of the Xs and +s, as shown
in Fig. 2.9. They indicated in their report that lower-level mechanisms
tuned for size may be sufficient to explain this discrimination. When the
micropatterns produce equal responses in size-tuned mechanisms they are
hard to discriminate, and when they produce different size-tuned responses
they are easy to discriminate. Discriminability can be predicted without

reference to more feature-like properties of the micropattern.

Bergen (1986) suggested that textures composed of Ls and +s elicited
different responses from circular symmetric center-surround operators. Also,
Beck (1986) showed that the responses of simple center-surround operators
could form the basis for segmentation. Caelli (1985) has demonstrated com-
putationally that L— and +- shaped micropatterns may be segmented on
the basis of the responses of simple orientation selective filters. The similar
ideas of center-surround operators or orientation selective filters are shared
by other scientists (Marr & Hildreth, 1980; Fleet, Hallett & Jepson, 1985;
Pollen & Ronner, 1983; Bergen & Julesz, 1983).

Recent results have shown that texture discrimination is an aéymmet—
rical process, e.g., texture A within texture B may be much easier to dis-
criminate than texture B within texture A (Julesz, 1981; Beck, 1982; Treis-
man & Souther, 1985; Enns, 1988; Treisman & Gormican, 1988; Gurnsey
& Browse, 1989). An example is shown in Fig. 2.10. The region of Ls
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embedded in +s is easier to discriminate than the region of +s embedded

in Ls.
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Fig. 2.10. (a) Discrimination of Ls embedded in a background of Xs. (b)

Discrimination of Xs embedded in a background of Ls.

The asymmetry of discriminability cannot be explained by Julesz and
Beck’s hypotheses preséﬁted before. According to their hypotheses, dis-
criminability is a function of the differences between two neighboring re-

gions. In this case, asymmetry is not expected.

One explanation of such kind of asymmetry is “more is better” (Beck,
1982; Treisman & Gormican, 1988). It is supposed that a target stimulus
having gréater magnitude on some quantitative dimension (e.g., size) than
the background distractors will be more easily detected than a weak stim-

ulus in a background of strong distractors, where weak and strong refer
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to the magnitude of the stimulus on some quantitative dimensions. The
asymmetry shown in Fig.2.10 may due to the size difference, because L and

+ are enclosed by circles of different sizes.

The effect of organization was also considered and found to contribute
to the asymmetry. Two textures differing only in the arrangement of iden-
tical micropatterns also elicit asymmetry discrimination. The irregular tex-

ture is more easier to discriminate. Fig. 2.11 shows such kind of asymmetry.
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Fig. 2.11. The left panel shows irregularly placed circles embedded in
regularity and the right panel shows regularly placed circles embedded in

irregularity. -

There are many computational approaches to texture discrimination
(Caelli, 1985; Gurnsey & Browse, 1987, 1989; Malik & Perona, 1989; Laws,
1980; Levine, 1985; Field & Sagi, 1989; Kube, 1988; Poggio, 1988). Some
of them involve nonlocal computations. They suggest that nonlocal factors

play a role in texture discrimination. Details will not be presented here.
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After all, which stimulus properties mediate texture discrimination is still

in discussing and the nature of the discrimination is not yet completely

explained.
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Chapter 3

Pattern Perception

Pattern perception is one important branch in vision research. Though
there has not been a strict definition yet, one thing is certain. A pattern
has some extent of regularity; i.e. constituent elements are more or less in
order. There are several ways of expressing this concept. One can say that
patterns have structure, or internal organization; or that pattern elements

are correlated.

Fig.3.1. Both two profiles and a vase can been seen alternatively.

The overwhelming of information in our visual environment is prover-
bial. A fundamental process of visual perception is the extraction of infor-
mation useful for separating the figure from the ground. Certain patterns
tend to be seen as the thing, while the rest is perceived as the background.
In essence, we divide the world into two categories; into something we shift

our attention to, and into remaining items that form the not-thing and
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become ignored. In some insfances, figure-ground organization is bistable,
as shown in Fig. 3.1, in which perception alternates between a white vase

on a black background or two black profiles on a white background.

Factors influencing ﬁgure—groﬁnd organization have been studied by
Rubin (1915) and other psychologists following the Gestalt tradition (Kof-
fka, 1935; Kanizsa, 1979). Figure-ground organization is influenced, among

other things, by stimulus factors like relative area, closure and symmetry.

Relative area. As shown in Fig. 3.2 (a), the smaller a region is the
more it tends to be seen as figure; and conversely, the larger the area of a

region is the more it appears to be the ground.

(a) (b)

Fig. 3.2. Demonstrations showing (a) how the smaller area tends to become

the figure; (b) how closure enhance figure perception.

Closure. Areas with closed contours are more likely to be seen as
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figures than areas with open contours are, as shown in Fig. 3.2 (b).

Symmetry. The more symmetrical a region is the more likely it is
to appear as the figure. The greater the amount of symmetry, the stronger

is this tendency.
Pattern Simplicity

In principle, a pattern can be interpreted in many Wdyé. Usually,
only one interpretation is preferred. Even in the rather simple line drawing
in Fig.3.3, several different interpretations are possible, but the preferred

interpretation will be two squares.
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Fig. 3.3. Interpretations

In order to be able to predict such preference, scientists in shape percep-

tion have searched for the underlying principles that govern the human
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interpretation of patterns.

Some scientists (e.g. von Helmholtz, 1867; Gregory, 1973), advocate
the likelihood principle, which states that the preferred interpretation of
a pattern is the one which reflects the. most probable situation. Others,
like the Gestaltists, advocate the minimum principle, which states that
human pattern perception is guided by simplicity. For instance, grouping
would occur according to proximity, similarity, continuity, and common fate

(Wertheimer, 1912; Kohler, 1920).
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Fig. 3.4. The Gestalt laws in pattern organization. (a) the role of prox-
imity; (b) the role of similarity; (c) the role of continuity; (d) the role of

closure.

Proximity. Spatially adjacent elements are grouped, as shown in

Fig. 3.4 (a).
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Similarity. Elements of similar brightness, color, and shape are

grouped, as shown in Fig. 3.4 (b).

Continuation. Among many possible perceptual interpretations those
that will minimize changes or interruptions in the contours of the con-

stituents will be perceived as figures, as shown in Fig. 3.4 (c).

Common fate. Elements which move or change together are seen as

a unit or with a common fate.

Closure. Elements are grouped according to closure, as shown in

Fig. 3.4 (d).

These Gestalt laws have great heuristic value, but it is impossible
to find out a consistent priority order for them, i.e, sometimes one law is
stronger, sometimes another law. Koffka (1935) suggested that all laws
are specifications of a general minimum principle, the tendency towards

Pragnanz.

Hochberg & McAlister (1953) and Leeuwenberg (1969, 1971) suggest
that the figure Pragnanz maybe reduced to figure simplicity, which implies
that perceptual interpretation process is guided by the minimum principle.
The preferred interpretation of a pattern is reflected by the simplest de-
scription of that pattern. A pattern description can be seen as the formal
counterpart of the way in which a pattern is represented by the perceptual

system.
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Many researches have been done to specify this minimum principle
more exactly. Some scientists (Simon & Feigenbaum, 1964; Attneave, 1982;
Biederman, 1987) regard simplicity as an internal aspect of the perceptual
process. The idea of procedural simplicity implies that the preferred in-
terpretation of a pattern corresponds to the pattern description generated
from the most efficient procedure within some process model. Better in
line with the Gestalt tradition, other scientists (e.g. Hochberg & McAl-
ister, 1953) regard simplicity as being based on properties of a pattern
itself. This starting point of phenomenal simplicity implies that the pre-
ferred interpretation of a pattern is thought to be reflected by the pattern

description that expresses the largest amount of regularity in the pattern.

The transformational approach suggests, in different way, that the
perceptual system reveals regularity in pattern by means of a fixed set of
pattern transformations such as translation, rotation, and reflection. Regu-
larity is specified as being constituted by certain arrangements of identical
pattern parts. Garner (1970) takes the number of such invariant transfor-
‘mations, as allowed by a pattern, as a measure for the figure goodness of
that pattern. Palmer (1983), on the other hand, describes pattern by means
of a network in which pattern parts and their properties (revealed by invari-
ant transformations) are stored and related to one another. Palmer suggests
that the preferred interpretation is reflected by the “best” reference frame:
each frame allows specific transformations, and the “best” frame is the one
that reveals a maximum of symmetry in the pattern. Leyton (1986a, b)
proposes a criterion for the internal structure of pattern descriptions which
are formulated directly in terms of reference frames and invariant trans-

formations. This criterion enables an explicit specification of perceptual
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differences between possible interpretations of a pattern. Leyton, by the
way, defines a description as a mapping from a set of transformations onto
a pattern, i.e. the pattern is not converted into some description but just

has to be reconstructable from that set of transformations.

In the encoding approach, descriptions of a pattern are obtained on
the basis of a symbolic representation of the pattern, in which identical
symbols represent identical pattern parts. By means of coding rules, the
symbolic representation is reduced into a code. The encoding approach
starts with Hochberg & McAlister (1953), who proposed a simple method
to measure the complexity of 2- and 3-dimensional patterns. Later, more
intricate coding systems have proposed. These systems are applied to the
encoding of visual pattern (Vitz, 1966; Leeuwenberg, 1969, 1971; Restle,
1979).

Structural Information Theory

Leeuwenberg (1969) proposed hypothesis that pattern descriptions
are meant to express regularity, where regularity is specified as being con-
stituted by certain arrangements of identical pattern parts and is thought
to be revealed by the perceptual system. His coding system is based on
coding rules which prescribe the combining of single identities, and codes
express the allowed combinations. On the basis of such combinations, the
human system is thought to extract information. Leeuwenberg embodied
the minimum principle in the coding rules, and claimed that preferred in-

terpretation of a pattern is reflected by the simplest description of that
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pattern.

By means of Leeuwenberg’s coding approach (Leeuwenberg, 1968,
1971, 1989), pattern interpretations can be represented in a pattern code.
The general procedure runs as follows. A pattern is first represented by a
symbol series. Each symbol corresponds to an element of the pattern. For
instance, in Fig. 3.5 the contour of the pattern consists of subsequent angles
and line segments, each of which is labeled with a symbol, called pattern
symbol, and angles or lines segments of equal size are labeled with an iden-
tical symbol. This pattern is represented by the symbol series kalckalckalc.

Next, the symbol series is encoded into pattern code.

Fig. 3.5. Tracing the contour of the pattern, yields the symbol series
‘kalckalckalc’. This symbol series represents the subsequent angles and

line segments in the contour so that the pattern can be reconstructed.

The encoding consists of describing regularity in the symbol series which
corresponds to regularity of the pattern. The symbol series is encoded as
far as possible by applying onto it a number of coding rules. By means of

these coding rules all redundant information is eliminated from the symbol
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series so that after this encoding process the pattern is represented by a
code which only contains information about the essential pattern elements

and their interrelationships.
Coding rules

Leeuwenberg’s structural information theory provides the concept of
accessibility for the choice of appropriate coding rules. Regularity and hi-
erarchy in a code of a pattern should correspond directly to regularity and
hierarchy in the pattern. The criterion of accessibility is that a coding rule
should be both holographic and transparent in order to be appropriate for
the encoding of a symbol series that represents a visual pattern. This en-
ables a differentiation between coding rules, on the basis of both regularity
and hierarchy as described by coding rules. The coding rules that are in
line with the concept of accessibility, not only account for an easy extrac-
tion of information from the pattern in order to construct a pattern code,
but also account for an easy extraction, at higher cognitive levels, of a pat-
tern information from the code. Based on the concept of accessibility there
are three essential coding rules in Leeuwenberg’s coding approach, each of
which describes a specific class of regularity, namely iteration, symmetry,

and alternation (ISA). The definitions of these rules are as follow:
Iteration rule:

kk---kk — N« (k)

it is applied to express the series contains successive identical symbols.
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Symmetry rule:
kiky - - - knpke - - - kyky — S((k1)(kz)---(kn)a (P))

it can be applied to express that a series contains pairs of identical symbols,

nested around a so-called pivot.

Alternation i'ule:
Fashay - koo — (k)/{(21)(22) -+ - (2a)

zikzsk - 2ok — ((21)(z2) - - - (z0))/ (k)

it can be applied to express that a series contains successive subseries which
either all begin or all end identically. According to these coding rules the
pattern shown in Fig. 3.5 can be represented by the code 3 * (kalc).

Three aspects should be noted in applying the coding rules. First,
the Symbols are considered to be variables standing for arbitrary subseries.
This implies that the coding rules can be applied not just to express identity
of single symbols but, in general, to express identity of subseries in a series.
For instance, ababab — 3 * (ab). Any subseries between parentheses in
an ISA-form is called a chunk. Secondly, a code of a symbol series does
not have to consist of just one ISA-form. In general, a code is a series
consisting of single symbols and ISA-forms obtained by applying the coding
rules to subseries of the symbol series. For instance: akpkpfrstsrq —
a2 * (kp)fS((r)(s),(t))g. Thirdly, the subseries inside a chunk in an ISA-
form can be encoded just like any symbol series. For instance: bapabapa —
2 % (b@pa) — 2% (bS((a),(p)))- In such a case, the ISA-form is said to be

hierarchically nested.
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Minimum Principle

Leeuwenberg argues that a code provides a description of regularity
in that series. The ultimate meaning of the code is constituted by the fact
that a code provides a mean to obtain a classification and an organization
of the series which is considered to reflect an interpretation of the pattern

that is represented by the symbol series.

Because patterns can be partitioned into different groups of elements,
and because coding rules can be applied to these sets of elements in dif-
ferent ways (e.g. by choosing different starting points or by applying the
coding rules in different orders), different codes, representing different pat-
tern interpretations, can be arrived at. Leeuwenberg coding approach uses
the quantity structural information to measure the preference of different
pattern interpretations. Structural information-load is defined as the num-
ber of pattern symbols in a code of a series plus the number of I-forms
and S—forms in code. For instance, in Figure 3.4, structural information
load about the interpretation we given is 5. Minimum code is a code that
contains a minimum amount of structural information load. The preferred
interpretation of a pattern is reflected by a minimum code of a symbol
series that represent the pattern. As refer to Fig. 3.3, it is clear that inter-
pretation (a) has the minimum code and it is true that this interpretation

is preferred in perception.

Experimental validity of Leeuwenberg’s structural information theory

is controversial. There are evidences against this theory and there are
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evidences support this theory.
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Chapter 4

Symmetry Perception

§6666666
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Fig. 4.1. Thr,e,e‘ basic forms of symmetry: (a) translation; (b) reflection;

(c) rotation.

Symmetry is commonly classified as a simple harmony of proportions,
of balance, of which there are three basic forms: (1) translation, in which
the element moves up or down, left or right, or diagonally while keeping
the orientation; (2) reflection, in which the element reflects as in a mirror;
and (3) rotation, in which the element turns. Further more these forms
can be combined to form the regular patterns. The general form of symme-

try, however, requires the invariance of a configuration of elements under a
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group of automorphic transformations (Weyl, 1952). In other words, sym-
metries are one of the simplest invariances of patterns that preserve their

identities under certain specific transformations.

Symmetry is a very salient global property of pattern. Our visual
system can perceive it eficiently and rapidly. Mach (1886) was the first
one to draw attention to the importance of symmetry for our understand-
ing of the visual processes and visual system. Symmetry reduces pattern
complexity and is important in form perception. Perception of symmetry
also affects other visual processes; e.g., encoding and representation (e-g.,
Garner & Sutliff, 1974; Enns, 1987; Howe, Powell, Jung, & Brandan,1989;
Leeuwenberg, 1988; Freyd & Trersky, 1984), recall, discrimination, and

establishment of a reference frame.

Many researches have been done in various aspects of symmetry per-
ception. Effects on symmetry detection and variable mediating symmetry
detection have been studied. Several models or approaches have been sug-

gested to account for experimental findings.
Effects and Explanations
Preference in detection

The most consistent finding about the perception of symmetry is that
not all types of symmetry are equally salient. Symmetry about the vertical

axis is the most salient one and is detected most quickly (e.g., Julesz, 1972:
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Corballis & Reldan, 1975; Goldmeier, 1972; Palmer & Hemenway, 1978;
Palsher, 1990). The order of horizontal and diagonal axes is debatable.
One finding is that the horizontal is more salient than the diagonal (Palmer
& hemenway, 1978; Goldmeier, 1972). The other is that diagonal is more
salient than the horizontal (Corballis & Roldan, 1975). Multiple symmetry
is detected faster than single symmetry (Palmer & Hemenway; 1978).

Mach (1886) thought that the special salience of vertical symmetry
was due to the structural bilateral symmetry of the visual system and that
perception of horizontal symmetry was accomplished by mentally rotat-
ing the figure or by an intellectual act. This means that shape might be
mentally rotated, or normalized before information about symmetry is ex-
tracted. This hypothesis is supported by Shepard and Metzler’s (1971)
experiment on similarity judgment, Corballis and Roldan’s (1975) exper-
iment on symmetry detecting in eight different orientations in 45 degrees
steps. Decision times increased as the angle between the axis and the ver-
tical axis increased. Corballis and Roldan also found that tilting the head
shifted the decision time function in the direction of head tilts, suggesting
that retinal coordinates are more important than gravitational ones. They
concluded that the retinal information is mapped on the phenomenal co-
ordinate system. Information can be rotated mentally on the phenomenal
coordinates to test the information against a template for detecting vertical

symmetry embedded symmetrically in the brain.

Palmer and Hemenway suggested a two stage model: (1) the observer

selects a potential axis by a crude but rapid analysis of symmetry in all
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orientations simultaneously; (2) if a given axis meets the selection criterion,
a perceptual reference frame is established in the appropriate orientation.
The observer then performs a detailed evaluation of symmetry about the
selected axis by explicitly comparing the two halves for mirror-identity. The
selection process is biased toward vertical and, to a less extent, horizontal
rather than diagonal axes. Thus, symmetry about the vertical axis is easiest
to detect, followed by horizoptal and diagonal. To explain the effect that
multiple symmetry is easier to detect than single, they suggested further
that the order of the selection is variable. Otherwise, if the order were
fixed, the preference for multiple symmetry should not occur. If the order
were fixed, a figure with both vertical and horizontal symmetry should be
detected as fast as a figure with only vertical symmetry, because vertical

symmetry is detected before horizontal.

Attention to brain structure as a basis for the saliency of vertical

symmetry is also presented in Julesz’s work (1971). Julesz suggested that

perception of symmetry requires a point-by-point comparison process based -

on neural anatomy that has a symmetrical organization around the center

of the fovea.

Rock and Leaman (1963) argued against a simple structural explana-
tion for the salience of vertical symmetry, on the ground that the advantage
of vertical symmetry is not a matter of retinal orientation; e.g., if the ob-
server tilts his head through 45 deg, a figure with true vertical symmetry is
still more salient than a figure with true horizontal symmetry, even though

both figures are equally tilted on the retina. Rock and Leaman suggest
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that we have become sensitized to vertical symmetry simply because it is
so common a characteristic of the environment. A great many objects,
both natural and manmade, exhibit symmetry about the vertical. This
sensitization, they note, could have come about either through learning or
as a consequence of biological evolution. However, one could also interpret
Rock and Leaman’s data as further evidence for a process of mental rotation
which normalizes the input before symmetry is perceived. Consequently, it
is still possible to maintain that the perception of symmetry could depend

on the structural symmetry of the nervous system.

There are preferences for detection of different kinds of symmetry.
Julesz (1971) has shown examples which indicated that reflection symmetry
is easiest to be perceived from complex patterns, followed by repetition

(translation) and rotation symmetry.

Corballis and Roldan (1974) investigated rapid perceptual judgments
about tachistoscopically presented patterns that were either symmetrical
about or repeated across a vertical axis. Based on their results, they sug-
gest that if the pattern are perceived holistically, reflection symmetry is
more salient than repetition, but if they are perceived as two separate fig-
ures to be matched, then repetition is judged more rapidly than reflection
symmetry. It is still conceivable that the perception of symmetry may de-
pend on a point-by-point comparison between symmetrical regions of the

two hemispheres.
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Redundancy in Symmetrical Displays

By studying visual perception we can reveal how the brain processes
information. For instance, one can distinguish between serial versus par-
allel processes; or study how the brain selects the relevant information. A

general assumption regards the idea that visual information is redundant.

It has been claimed that the perception of bilateral symmetry in dot
textures reflects the existence of processes which reduce redundancy in the
image. Barlow and Reeves (1979) have suggested that the organism recon-
structs an image on the basis of minimal information. They point out that
one advantage of symmetry is that it allows the image to be described eco-
nomically. For instance, if one half of an object is the mirror image of the
other half, then one half need not to be described at all. The redundancy
reduction in the perception of bilateral symmetry is achieved by ignoring

the reflected half of the symmetrical pattern.

Julesz (1971) proposed that redundancy reduction is achieved by giv-
ing relatively greater weight to point close to the axis of symmetry. As he
noted that,“... This point-by-point symmetrical representation is strongly

weighted in favor of areas close to the axes of symmetry.”

Jenkins (1982) studied the perception of bilateral symmetry in dy-
namic dot textures. He found that not all of the symmetry information
available in a symmetrical texture is utilized by the visual system. The

symmetry information utilized by the visual system fall within a stripe ap-
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proximately 1 deg wide about the central axis of symmetry, irrespective
of the retinal size of the texture. There is an increasingly efficient utiliza-
tion of symmetry information from the outer boundary of the 1 deg stripe
inwards, until, at .3 deg the symmetry information is utilized maximally.
Outside the stripe, the symmetry information was found to be completely
redundant. Barlow and Reeves found that symmetry is best detected when
next to the axis, worst when in the middle of each half figure and higher
again when lie near the edge of each half. These findings support Julesz’s

proposal.

According to known mammalian neurophysiology, Jenkins thought
that a bilaterally symmetrical dot texture can also be described as a two-
dimensional distribution of uniform orientation point-pair elements, of nonuni-
form size, which fall across the same axis evenly such that the uniformly
oriented pairs have collinear midpoints. Jenkins studied such kind of bi-
lateral symmetry perception. Based on his experimental results, he argued
against the necessity to postulate the existence of a symmetrical neural
organization centered about the fovea. He proposed that there are three
processes involved in the perception of bilaterally symmetric dot textures:
the detection of orientational uniformity of the different sized ﬁoint—pair
elements; the fusion of salient element point-pair into a salient feature; the
detection of the symmetry of the resulting feature. The most likely candi-
dates for the constituent elements in fusional process are the smaller, most
salient, least redundant individual point-pair identified by Jenkins (1982)
as subtending approximately 0.3 arc. There are interactions among these

three processes.
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Jenkins indicated additionally that the orientational uniformity pro-
cess is most sensitive to vertical symmetry. The fusional process is indif-
ferent to orientation whereas the detection of symmetry process seems to

prefer the vertical axis.
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Chapter 5

Experiment

Introduction

When a homogeneous texture is reflected around a vertical axis, a
symmetrical texture is generated , as shown in Fig. 5.1. However, mirror
symmetry disrupts texture hbmogeneity. In Fig.5.1, a large scale rectangle
is formed by reflecting the square. It is easy to observe that the homogeneity

is disrupted around the symmetrical axis due to the occurrence of large

Fig. 5.1. An example of bilateral symmetry pattern got by

reflecting the homogeneously distributed texture.
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scale elements. Does heterogeneity along the symmetrical axis play a role

in symmetry detection? This is the prime purpose of our experiments.

In our experiments two sets of symmetrical textures were tested and
compared. The textures of both sets were generated by reflection around
a vertical axis. In set A, the distribution of element sizes and shapes was
heterogeneous. In set B, the distribution of element sizes and shapes in the
original half-texture was heterogeneous, and designed to generate a homo-
geneous final texture. The sensitivity and the reaction time of symmetry
detection were measured. The Signal Detection Theory (Appendix 1) was
used in estimating the sensitivity. The t-Test (Appendix 2) method was

used in statistical analysis.

Method

Experiment 1

Two sets of line textures were used in this experiment. Each set
had both symmetrical textures and noise textures. The textures were
8.1lcm x5.6cm and were shown on the computer screen which is 24cm x 16cm.
Subjects sat viewing the screen binocularly at a distance about 80cm.
The visual angle was about 5 deg. Stimulus luminance was kept constant

through all the experiments.
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Stimulus generation

Textures were generated by a computer plot program. We generated
two sets of symmetrical patterns and two sets of noise (non symmetrical)
patterns. The basic elements were lines 2.5mm or 5mm long. In set A some
lines 10mm long could occur along the symmetry axis, as a consequence
of reflection of 5mm lines. Some 5mm lines could occur after reflection of

2.5mm lines.

point 2
W’W | A AT A Ao F o e N
point 1 point 3 o point 4

Fig. 5.2. Four possible cut points

There were 25 rows in each texture. For randomization purposes, tex-
tures were programmed as cylinders made of 25 circles. The elements in
these circles were lines 2.5mm long and lines 5mm long. Lines were sepa-
rated by a variable white space and randomly positioned by the computer,
following a uniform distribution. The ratio of the black to white space was

one to three.

Symmetrical textures: set A

As shown in Figure 5.2, there are four possible cut points: Pointl,
point2, point3 and point4. Each circle was cut at one of these points and

then unfolded. The resulting stripe was reflected around a vertical axis in
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Fig. 5.3. An example of symmetry texture set A in experiment 1.

Set A is composed of heterogeneous textures.
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Fig. 9.4. An example of symmetry texture set B in experiment 1.

Set B is composed of homogeneous textures.
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the right direction. This procedure produces heterogeneous textures made
of black lines on a white background; lines along the symmetry axis could
be 2.5mm, 5mm or 10mm long; lines far from the symmetry axis could be

2.5mm or bmm long. Figure 5.3 shows this kind of texture.
Symmetrical textures: set B

Starting from the same basic circles used to generate set A, stripes
were obtained by cutting at point 3 the circles those cut at point4 in set
A, and at point2 those cut at point3 in set A. The remaining part of the
texture was the same as in texture set A. Textures of set B were completely

homogeneous. Figure 5.4 shows this kind of texture.
Noise textures: set A

To generate noise textures, each row was randomly shifted rightwards
or leftwards in a range of 0 to 4mm. Noise textures were not completely
uncorrelated, because all 10mm lines were not shifted in order to avoid the
possibility that subject may detect the position of these elements instead

of detecting symmetry. Figure 5.5 shows this kind of texture.
Noise textures: set B

Each row of the texture were shifted as in set A. The 5mm lines along

the axis were not shifted, in analogy with 10mm lines of set A. Figure 5.6
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shows this kind of texture.
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Fig. 5.5. An example of noise texture set A in experiment 1.

Set A is composed of heterogeneous textures.
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Fig. 5.6. An example of noise texture set B in experiment 1.

Set B is composed of homogeneous textures.
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Subjects

Sixteen subjects participated in this experiment. Most of them were
college students. All of them were naive with respect to the aim of the

experiment.

Procedure

The experiment was composed of a training session and a test session.
There were 80 trials in the test session, 20 trials of each set of either sym-
metrical textures or noise textures. The order of the trials was random. A
training session contained a minimum number of 20 trials. Further train-
ing trials were presented, until the subject scored the critical level of 70%

correct.

To initiate a trial, the subject pressed the “START” key whenever
he/she was ready. A fixation point, located on the symmetry axis, was
on during the intertrial interval. The stimulus texture was shown on the
screen immediately after the subject pressed the “START” key and the
exposure time was 500ms. The subject was instructed to indicate whether
a texture was symmetrical or not by pressing the key “YES” or “NO”. Keys
corresponding to YES and NO were chosen by the subject freely from the
keyboard at the beginnig of the experiment. The subject was told to press
the “YES” or “NO” as soon as he/she decided the texture was symmetrical

or not. Responses and reaction times were registered by the computer.
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Result

The time limit of 2 sec was chosen. Slower responses were eliminated

from the data analysis.

Table 5.1: Sensitivity and reaction time of
~experiment 1

zP'(A) set A | zP'(A) set B RT set A RT set B
heterogeneity | homogeneity | heterogeneity | homogeneity

1 1.158 1.250 845 807

2 1.056 947 1026 957

""""" 3 983 1.174 1205 1256
4 3.090 1.863 1275 1136

5 1.419 1.217 1128 1148

6 1.915 1.628 1261 1262

7 871 1.111 1107 1188

8 .998 456 1223 1166

9 1.056 947 858 892

10 3.090 1.863 1130 1125

11 1.915 1.628 1125 1155

12 .998 456 1341 1332

13 1.915 1.458 1295 1350

14 .60 637 683 666

15 , 1.579 1.748 1042 1050

16 .180 973 1046 1037
average ©1.489 1.210 1100 1095

Data were analysed according to SDT (Appendix 1). The sensitivity
measure was zP'(A). Each subject contributed with a pair of PHit and PF.A.
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values. Table 5.1 shows the sensitivity measure and RT for the whole group.

Among the 16 subjects, 5 were more sensitive to set B (homogeneous
textures) and 11 of them were more sensitive to set A (heterogeneous tex-
tures). There was no apparent difference in RTs in the two conditions.

Sensitivities in the two conditions were compared by the t—test (Appendix
2).

The results of the t-test is shown in table 5.2.
Table 5.2: Paired t-test
X: zP'(A)  Y:zP'(A) set B

DF | Mean X-Y | Paired t value | Prob.  (2-tail)
15 | .28 - | 2.518 .0236

* Set A: heterogeneous textures; Set B: homogeneous textures.

The advantage due to heterogeneity around the axis is significant,
t=2.518, (p < 0.025). This indicates that symmetry detection was better

in the heterogeneous textures.
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Exp eriment 2

Two sets of triangle textures were used in this experiment. Each set
had both symmetrical and noise textures. The size of the stimulus texture
was the same as those used in experiment 1. The logic of experiment 2
was identical to the logic of experiment 1. Shape homogeneity was the

independent variable, instead of length homogeneity.
Stimulus generation
Symmetrical textures: set A

Isosceles right—angle triangles were generated in pairs on the computer
screen. The middle points of these pairs were on the vertical symmetrical
axis. The size of the pairs and the orientations of the triangles were random.
Two triangles connected with their sides were allowed. The other configu-
rations of the triangles were eliminated. Therefore, texture elements were
small and large triangles in different orientations. On the symmetrical axis
only the elements & , ¥ , and € were allowed to appear. The position
of these elements were random and the probability was controlled. Figure

5.7 shows this kind of texture.
Symmetrical textures: set B

In set B all the parts of the texture were the same as in the texture
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set A except of the elements on the symmetrical axis. The elements 4 , w
in texture set A were unchanged and the element € in texture set A
were replaced by two elements & or w decided by computer and were

positioned randomly along the axis. Figure 5.8 shows this kind of texture.
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Fig. 5.7. An example of symmetry texture set A in experiment 2.

Set A is composed of heterogeneous textures.
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Fig. 5.8. An example of symmetry texture set B in experiment 2.

Set B is composed of homogeneous textures.
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Thus we had two sets of stimulus texture which had differences only
along the symmetrical axis. The distribution of element shapes was het-

erogeneous in texture set A and homogeneous in texture set B.

Noise textures: Set A and Set B
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Fig. 5.9. An example of noise texture set A in experiment 2.

Set A is composed of heterogeneous textures.
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Fig. 5.10 An example of noise texture set B in experiment 2.

Set B is composed of homogeneous textures.
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The elements allowed to appear in the noise texture were the same
as those in the symmetrical texture. The elements on the central axis in
the noise texture were the same as those on the symmetrical axis in the
symmetrical texture. Elements on the boundary were generated in pairs,
thus the noise textures had an symmetrical frames. The elements in other
parts of the texture were generated randomly and had identical distribution.

Figures 5.9 and 5.10 show this kind of textures.
Subjects

Sixteen subjects participated in the experiment. Two of them were ‘
involved in the experiment 1. All of them were naive with respect to the

purpose of the experiment.
Procedure

The experiment was composed of a training session and a test session.
There were 120 trials in the test session, 30 trials of each set of either sym-
metrical textures or noise textures. the order of the trials was random. A
training session contained a minimum number of 20 trials. Further train-
ing trials were presented, until the subject scored the critical level of 70%

correct. The procedure of experiment 2 was identical to that of experiment

1.
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Results

The time limit of 2 sec was chosen. Slower responses were eliminated

from the data analysis.

Table 5.3: Sensitivity and reaction time of

experiment 2

zP'(A) set A | zP’(A) set B RT set A RT set B
heterogeneity homogeneity | heterogeneity | homogeneity

1 .697 .646 1270 1137
2 2.382 1.701 956 940
3 1.434 1.229 1097 1191
4 2.128 1.810 958 940
5 2.311 2.114 1371 1392
6 1.281 1.361 657 703
7 374 .024 1297 1567
8 1.001 .954 1254 1250
9 1.692 1.929 956 972
10 1.732 1.803 967 962
11 2.382 2.114 1060 964
12 1.834 1.489 897 872
13 1.426 1.107 919 906
14 1.169 1.043 1062 1113
15 .695 .356 926 964
16 2.114 1.810 47 757
average 1.541 1.343 1088 1163

Data were analysed according to SDT. The sensitivity measure was

zP'(A). Each subject contributed with a pair of PHit and PF.A. values.
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Table 5.3 shows the sensitivity measure and RT for the whole group.

Table 5.4 Paired t-Test

X: zP'(A) set A Y: 2P/(A) set B .
DF | Mean X-Y | Paired t value | Prob. (2-tail)
15 |.198 3.599 .0026

* Set A: heterogeneous textures; Set B: homogeneous Textures.

Among the 16 subjects, 3 were more sensitive to set B (homogeneous
textures) and 13 of them were more sensitive to set A (heterogeneous tex-
ture). Difference in RTs was not significant. Sensitivities in the two con-
ditions were compared by the ¢-Test. The results of the ¢-Test is shown in
table 5.4. The advantage due to heterogeneity around the axis is signifi-
cant, t=3.599, p < 0.003. This indicates that heterogeneous symmetrical

textures are easier to discriminated from noise than homogeneous textures.
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Chapter 6
Conclusion

Experimental results show that mirror symmetry is well detected in
a brief exposure. Subjects were more sensitive to bilateral symmetry when
the distribution of texture elements is heterogeneous along the axis. The
heterogeneity of size and shape distribution does play a positive role in sym-
metry detection. It could be hypothesized that the differences of element
size and shape make the axis more explicit and this make the symmetry

more visible.

Size and shape are primitives processed in early vision. The differences
of size and shape make discrimination or “pop-out” easier (see Chapter
2). When a homogeneous texture is reflected, the resultant symmetrical
texture has large scale elements along the axis. These differences of size
and shape make the axis salient, although this effect might be not so strong.
Our experiments demonstrate that the explicitness of the axis enhances the

sensitivity to symmetry.

Detection of symmetry in random textures may be affected by the
properties of symmetric axis, e.g., orienta.tidn, location, and explicitness.
Barlow and Reeves (1979) indicated that it is certainly more difficult to
assess symmetry when the position of its vertical axis is unknown. Pashler

(1990) showed that detection of symmetry is more efficient when subject
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knows the location of the axis in advance. The RT is shorter and the
error rate is lower. Corballis and Roldan (1975) showed that there were no
differences in both RT and error rate when sﬁbjects knew the orientation
of the axis or did not know it. The difference in their results is due to the
usage of different kinds of displays. Fig. 6.1 (a) shows the display used by
Pashler; (b) shows the display used by Corballis and Roldan, in which the

Fig. 6.1. (a) Symmetrical display used by Pashler; (b) Symmetrical display
used by Corballis.

axis is marked by a line. As Pashler indicated, the display used by Corballis
- & Roldan explicitly cued the sub ject to the actual orientation of the axis. In
our experiments, the orientation of the axis was always vertical and sub jects
knew it. The main experimental factor was appearance, or the explicitness
of the axis. When the distribution of size and shape is heterogeneous,
the axis is more explicit. The results showed that sensitivity is affected,
although RT is not affected. On the basis of our experimental results, we

can hypothesize that the explicitness of the axis is more useful for symmetry
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detection than the preknowing of its orientation.

Previous researches converge toward the conclusion that symmetry
detection is a redundancy reduction process. Not all information is equally
used in detecting. In random-dot displays, information contained in the
area around the axis is efficiently used in symmetry detection (Julesz, 1971;
Jenkins, 1979, 1983; Barlow & Reeves, 1979). They indicated that the
paired dots near the axis create a strong and vivid impression. The re-

sults that symmetry detection is fundamentally a short-range process also

In Jenkins’ three processes mode of symmetry detection in dot dis-
plays, he suggested that a process that fuses the Ihost salient point-pairs -
into a salient feature precedes the process that determines whether this fea-
ture is symmetric. The salience of the central feature is dominant (Jenkins,
1983). Barlow and Reeves indicated that the salient feature, called outline,
is important because this creates the impression of a vase, or a butterfly,
or some other symmetrical object. They tested the efficiency of detecting
mirror symmetry in random dot displays. They suggest that symmetry
detection in their tasks requires nothing more than the comparison of dot
densities measured over quite large areas symmetrically placed about the
putative axis of symmetry (Barlow & Reeves, 1979). From their views, it

seems that it is not necessary to postulate a point-by-point comparison.

The textures used in our experiments were different from dot textures.

The textures were composed of several textural elements. Textural elements
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were grouped into blocks according to proximity and continuity. In some
instances central salient feature was formed. This enhanced the sensitivity
of symmetry detection. Grouping into salient features is more difficult in
triangle textures than in line textures. I think the comparison of element-
pair and the comparison of global features are not exclusive. When the
viewing angle is large, or the viewing distance is small, the comparison of
element-pair is mainly used. When the viewing angle is small, or viewing
distance is large, the comparison of global features is dominant. Further

-experiments are needed to clarify these issues.
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Appendix 1

Signal Detection Theory

‘Classical psychophysics approach to detection centers upon the mea-
surement of detection threshold. A detection threshold is the smallest
amount of energy required for the stimulus to be reported 50% of the time.
Signal detection theory, SDT, argues that the threshold obtained by clas-
sical psychophysical methods measures not only the observer’s sensitivity
but also his or her decision-making strategy, or criterion. Signal detec-
tion theory offered an improvement over classical psychophysics because it

allows us to separate sensitivity from criterion.

When one is straining to “notice” a stimulus, particularly one of the
small intensity, it is clear that there are two components to the process: the
actual sensitivity of the receptor system to the particular properties of the
stimulus and the decision process as to whether a stimulus change actually
occurred or not. There is always noise inherent in any detection situation.
The noise referred to by signal detection theory is an ever—varying level
of neural activity of a type exactly like the nervous system’s responses to
the stimulus. There is background level of activity in the nervous system,
and sensory signals are superimposed on the activity. Some of the noise
is internal, related to the spontaneous activity level of the various neural
process. Some of it is external, related to variation in signal strength, light

from other source, and so forth.
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In SDT it is assumed that the distribution of the noise is a normal
distribution and the distribution of the signal stimulus is exactly like that
of the noise distribution, but shifted to a higher mean by the amount of
activation from the stimulus. Figure 1 shows the distribution of noise and
signal stimuli. The distance of the two mean values determines the sensitiv-
ity. It depends upon stimulus intensity and the sensitivity of the observer.
The symbol d' is used to represent sensitivity. The criterion z. represents
the observer’s willing to report the stimulus, depends upon factors such
as probability of stimulus occurrence and payoff. The signal is reported if

T >z,

DU—

o e I

Probability

Xy l Xon
Level of activation of sensary
system

Fig. 1. The distributions of signal and noise stimuli.

In a signal detection experiment the experimenter presents the signal
on some trials and does not present signal on other trials. As table 1 shows
that there are four possible outcomes of a signal detection which are Hit,
False Alarm, Miss, and Correct Rejection. The probability of each of these
four outcomes depends upon the sensitivity measurement, d’, the distance

of two means, and upon the criterion z..
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Table 1: Four possible outcomes of SDT

trial | signal signal
report present absent
hit false alarm
Yes
(correct) (mistake)
miss correct rejection
No
(mistake) (correct)
ROC curve
1.00 T T T T T T =
a =Az.o/./ /// // _
’ - / -

80} / d=10,7 ~
70 b / B 7/ .
. Va yz

. yd d=5, i
.60 "/ / C s
soff / 4 .

f / 4

40r / // 7
3o / yd .
.20 *// s b
20l // ]

.00
.10 .20 .30 40 .50 .60 .70 .80 .90 1.00

Fig.2. The receiver operating curves.

A receiver operating characteristic curve, ROC curve, shows the re-
lationship between the probability of a hit and the probability of a false

alarm. In an ROC curve, the sensitivity is a constant. Each point along
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a given ROC curve represents a different criterion that the observer has

adopted. Figure 2 shows a series of ROC curves.
The measure P'(A)

With respect to d’, another way of describing the observer’s sensitivity
would has been to have calculated P’(A), the proportion of the area under
the ROC curve. The advantage of this measure is that it is simple and easy

to be translated into a computer program.
Area estimation with only a single pair of hit and false alarm rate

It seems almost axiomatic that P'(A) can only be determined if we
have a number of pairs of values of hit and false alarm rate from which
the curve is constructed. However, it has been shown by Norman and
Pollack (1964), Norman and Galanter (1964) that a single pair of PHit and
PF.A. value can provide enough information to determine approximately
the path of entire ROC curve. Fig. 3 is a brief illustration. Figure 3 (a)
shows the plot of a singlé pair of PHit and PF.A. as the ROC curve, on
which ¢ lies, consists of a series of points each with equivalent sensitivity
to 7. The region, through which s ROC curve can not pass, will be those
where performance is either clearly better than or worse than that at <.
Figure 3 (b) shows the area which represents the better performance or
worse performance. Suppose that the observer alters his or her response
bias in favour of making more YES responses. This change of bias will

increase the PHit and PF.A. by a proportion p and results in the point @
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being moved along the straight line which joins 7 and (1,1) in Figure 3 (¢).
Similarly, if the observer alters his or her response bias in favour of making
more No respons;es, this will decrease the PHit and PF.A. by a proportion
g and results in the point 7 being moved along the straight line which joins
¢ and (0,0) in Figure 3 (d).

~ PHit (1,1) PHit (1,1) PHit (L1)
; B | ,
W | line 1
(0,) PFA. (0,0) PEFA.  (0,0) PFA.
(a) (b) | (¢)
PHit (1,1) PHit (1,1)
L line 2
(0,0) ~ PFA. (0,0) PFA.
(d) (e)

Fig. 3. Regions in which values of PHit and PF.A. will represent perfor-

mance better or worse than that at point 1.

All the points on line 1 and line 2 may have been obtajned’from an
observer changing his willingness to respond YES or NO and hence may

represent equivalent levels of sensitivity. Therefore any hit and false alarm
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rates which give points in the unshaded areas Ul and U2 might have been
obtained by a change in bias and need not represent greater sensitivity than

i does. So the area under the ROC curve has a upper and lower bound.
P(A)(upper) =U1+U2+ W
P(A)(lower) =W
The area under the real curve can be estimated as P'(A)

P'(4) = % x (U1 + U2 + 2W)

z-Transformation of P'(A)

Upper limit
of P4}

Probability denalry

05

Fig. 4. The tendency of P/(A) values representing high levels of sensitivity.

If P'(A) is used as a sensitivity score, problems can arise. As this
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measure is a probability score, it has a upper hnnt of 1. If some treatment
conditions yield high sensitivity, the distribution of P/(A) will bunch up at
the top end as illustrated in figure 4. This skewness, if too extreme, can
have unfortunately effects on the subsequent analysis of va.riaﬁce, so that

it is better to transform it into other score before statistic analysis.

z—transformation is shown in Figure 5. The shaded area under the
normal distribution curve is equal to P/(A). So each P/(A) has a corre-
sponding standard score value, zP’(A), which can be varied from —co to

“+o0.

standard score

zP' (3)
Fig. 5. z-transformation of P/(A).
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Appendix 2

t-Test

t-Test is a statistical method which can be used to justify if two exper-
imental samples are taken from two different populations or they are taken
from the same population. For example, we have measured the sensitivi-
ties of symmetry detection under two experimental conditions. Under one
condition, homogeneous textures are used, and under another condition,
heterogeneous textures are used. It is important to decide if the difference
in sensitivities reflects the real difference in the two kinds of textures used

or it is just a chance difference resulting from ordinary sampling error.

Apparently, the size of the difference in means and the variability in
the scores will influence the decision. t-Test takes these two factors into

account, where,

dif ference in means

standard deviation of the difference in means

A null hypothesis is set. It hypothesizes that two samples are taken
from the same population. In this case, the sampling distribution of dif-
ference in means follows t-distribution, as showed in Fig. 6. Larger the

difference in means, lower the probability to occur.
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Conventionally, the probability P=0.05 is ﬁsed as a significance level
to disprove the null hypothesis. Now, test the probability that observed
éjfference would occur if the null hypothesis were true. If the probability
is less than the significance level, the null hypothesis will be rejected. This
means that the observed difference is really due to the difference in two
samples, i.e., the observed difference is due to the r‘ea.l difference in two

experimental conditions.

t distribution

significance level

0

difference in means

Fig.6. Sampling distribution of the difference means of two sample taken

from the population.
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