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Introduction

The subject of this thesis i; a general study of the
“anomalies in  the framework of erdinary and supersymmetric
Field theoriee. In what follows, we shall see tﬁ%t the
importance Q? such a treatment is motivated by the fact that
anomalies control the construction of consistent fiald

fthenries.

Tt iz well—known that symmetric properties of a
classiral +#ield theory are studied in terms of the Moether
“thecrems which states that "to every continuous transforma-
figrn o0f coordinates which makes the wvariation of the
corresponding action to vanish, and for which the transfor-
mation law of the field Ffunctions is also given. there
corrasponds a definite invariance, i.e. a combination of fthe
figid functions and their derivatives, which rTemains con-

served. Here: one should remember that the coordinates can

he in an internal space as well as in space-time. For exam-
ple, they can be the coordinates in +the abstract isospin
space. Let us see how +this theorem works in classical

theories.

Suppose we have a general Lagrangian




=L [Ptx), 2.G(x)]

which is not an explicit function of the space—-time coordi-
na%es,g%a. If this theory:, or squivalent this Lagrangian, is
invariant under 2 ctontinuous transformation. we shall pget a

vanishing variation of the Lagrangian, i.e.

s =o0 ,

From the Noefther theorem, we can get the following eguation

stemming from the invariance of the Lagrangian

[3(’9 ) S? (9(3 524 3"9""565”»)4%”]“ o, {0-1)

whare the spinor and internal indices, L2, are dropped for
the sake of simplicity. Inmtroducing a current operator};%i s

we can rewrite this equation as

whare a stands for all indices which have not been summed

owver. After a some algebra, we can define a charge




QA “jjoi’;(j, , {0-3)

which satisfies a conservation squation

& o, (0-4)

H

This procedure shows how to see the symmetry proper-—

tin

Y

of & «classical field theory. The Lagrangian of the
classical theory has the same symmetry properties as the
theory i%ts2l¥ So we can study the symmetries of fthe lLagran—
gian in terms of the Noether theorem to know those of the
theory. One has %o remember here that this statement is not
true in guantum +field theories. 45 we discussed above.
carresponding  to a transformation, we can derive the varia-
tion of the action associsted with our Lagrangian. I this
variation wvanishes, the Lagrangian is invariant and we can
get & symmetry. If not. the Lagrangian is not invariant and

we can noft get a symmetry. We can consider two examples to

sge practically how we can derive the desired symmetry. The
first one is about the translation of the space~time coordi~-

retes. The second one is about the U{1) invariance of a com—

play $isld This

transformastion.

ig, in +fact, an internal cosrvdinate




First of all, let us consider the space-~time trans—

imtion invariance. The ‘transformations of the coordinates

G%ﬂ S 29; 3-3%44'69“ » {0~5)

and the 4transformation law of the field functions is
8?(#) = QA -~ Pla)
{0~&)
= On P Ux) AR,
eing the eqguation {(0~11, we get the well-known energy-

mumsEntum tensor as

T 9% .
-I;MJ: a(?ﬂq’) (Bgcf)-agégf"u {0-71

f

which satisfies

9}q§u= o . (0-8)

From the zevoth component of this tensor, we get +the con-

served gnergy-momentum 4-vector
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Second, we consider the following transformation

G €mq’£x)

{(0-10)
comdsy ul‘ o=y
g" ---«»Q,aso(x)

for a complex scalar field. The infinitesimal transformation

S@ar= 41X §ix)

(0-11)

SPxrm - i G ()

The Lagrangian of a free complex scalar field can be written

=R

L = (@pff’)(?’“ﬂf)-ﬂzg‘f, (0-12)

from which we can derive the conserved current as




In ==il(2.8)0-F (0]
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= 0
IM
kecause & is a coordinate independent parameter and the

Lagrangian is invariant under such & transformation. The

corresponding charge can be defined as

CQ g“ifel?f[(a,?*)cp-‘ (f’*[%cfu ' {(0-14)

which satisfies
L]
Gl =0 . (Q0—-15)

In the claessical #field theory, it is & conserved quantity.

In gquantum theories, instead of the Lagrangian, one
has %o «consult the Ward Identities in order to investigate
whether or not one can implement., at tﬁe guantum level., a
symmetry exhibited by the classical Lagrangian. In chapter
i, we shall discuss this issue. In what follows, we shall

briefly discuss the spontaneous breaking of a symmetry in

urder to re-sgxamine the Goldstone theorem in the case that a




global symmetry 1is broken by an anomaly. Let us consider a
simple one-parameter group G{A) as an example. Suppose the

l.agrangian is invariant under fThe tramsformation
i A i
@) s Q' (x) (0-16)

Iy dMpether theorem: we caen define & current, 7}‘ +  which

satisfiss the equation
P
= , -
" Ju= 0. {0-17)
In general, if the integral

ngswd’x 7, (1) {0~18)

gxist, we can define it as the consevrved charge a + and the

charge showld have zero esigenvalue acting on the vacuum:
Qlo>=0, (0-19)

1# we suppose that the wvacuum possesses the translational

invariance, we have




{olaqloy ﬂfol’7c<e>37’,,mmo>

=<0l 5, (2) & Jo> [ o (0-20)

=40] g, () @ 10> % tafinily

bacause fthe amplitude <0} j,(ﬂ)(&fO} is independent of +the

space—~time coordinates. In fact
. =t s 4 H P
{ol gt A10> = Lo] &% 5 1o @ &% 0>
-t f‘" N £
={o] &% Jo mm.“ ®lo> (0-21)

=<o] o (x+a) Rlo>

So. only if Qi0F=0, we can have finite amplitude. But, if
the charge, i.e. the integral, does not exist, the transéfor-—
mation operator can not be defined and nothing can ensure
the amplitude dinvariant under this transformation. This is
tha so-called spontaneous breaking of symmetries. in this

-F

m

g: we can not find any sign of symmetry breaking in

.agrangian becavse the Lagrangian is still invariant.

Suppose a classical Lagrangian has & given symmetry




and the associated current satisfies the eguation
ﬂ 3
2 Im= 0 (0-22)

AfFter the guanitization procedure for this theory. the above

zquation becomes generally
VA .
97‘/‘“_,@4:1‘ {0-23)

On fthe right hand side, the second term is infinite and
unacceptable. Fortunately, it can be removed by renormali-
zation. Buf, if & is different from zero, this symmetry is
broken even after the quantization procedure. What is
important here is that a classically conserved +transforma-—
tion is no longer conserved. The breakdown of the suymmetry
is caused by the finite term A, which can not be removed by

renormalization.

The renormalized current satisfies the equation
VA .
2" 9m= A . {0-24)

In this case, fhe quantized theory possesses different sym-

metries Tespect to the classical field. This is not desired




becsuse we vrequire a definite symmetry group in  the quan-—
tizad fthaory. In the wearly days, when %this behavior was

seticed, one call it anomaly because this is an anomalous

brzakdown of symmetries. ne has to pay attention to the
fact that the anomaly comes from divergent graphs, but it
app=aars as a finite aperator. We shall see if again in

chapter 1, where we shall derive the Ward Identities.

Mow, we are going to see what +the conseguence of

anpmalies ie and where they come from.

Anomalies appear as a loop effect in quantum field
theeries. Even though they are detected through the failure
2f a certain regularization scheme, such a fact is not suf-
fFivient to indicate the presence of the anomaly. It might
happen that another regularization scheme exists which is
cempatible with  the symmetry one thinks is broken by the
anaomaly. The anomaly, if it shows up, is a more intrinsic
property of the theory. 1%t is true that it ic detected by

means 0f some vegularization scheme.

In order to see the possible consequences of the

anomaliss, it is advisable fo classify them into ftwe dif-—

ferent categories those associated with global or local Sy m—




In the case of & global summetry, the ancmaly does
not  introduce inconsistences and we nesd not worry about
them., Sometimes, they are even welcome to get results compa-
£ible with phenomenoleogy. Practically, we should say that
the anomalies associated with global symmetries do not des-
traoy the ftheory. In fthe following:, we will give some exam—
ples to show that, sometimes, the anomalies in global sym—-
mafry theovries are necessary to render a theory consistent
with observed results. On the other hand: the ancmalies of a
loeal  symmeiry theory are disastTous because the gauge sym—
meftry is broken, which is crucial in the proof of +the uni-
tsrity and venormalizability of the theory. In this case,
thae theory will lose its unitarity and ifs renormalizabil—
ity. In this sense, the theory will be destroyed by such
anomalies. But the global symmetries are not used to prove

these properties.

Mow let us have a look at the problem of the imple-—

mentation of & classical symmetry in field theory and the

gffaect of the regularization scheme on this problem. Gen—
erTaily  the symmeitries in & «classical +Field theory are

checked by nature and desired implementable. But, after




guantization, many kinds of sgmme%riesvmag get anomalies.
The first result is, of course. the breakdown of the associ-
ated symmetry. Afterwards it will lead to different final
results for local and global symmetries. As we said above,
for global symmetries, the anomslies do not introduce diffi-
culty., Buf for locally symmetric theories. they do destroy
the consistence of the ‘theories. This can be seen by
analysis of the Ward Identity as we shall do in the first
chapter. In fact, we can only see i+ the symmeitry is broken
ar nat in view of the appearance of anomalies. The fact is

P

hat anomalies spoeil the Ward Identity, but anomalies are

7

not necessary to appear when the MWard Identities are
spoiled. Therefore. within a regularization procedure. sym—
meitries may be broken by anomalies. In +this sense, the

implementation of a symmetry directly depends on the appear-—
ance of anomalies. On the other hand, fthe implementation
depends also on the regularization scheme, which is unavoid—
sble during quantization becauvse we always get some infinite

guantities. which have to be removed

Mow, let us consider some examples which show fthat
the anomaligs of global symmetries do net destroy the

thenries and necessary for a good agreement of known sxperi-

mental f+acts.




The first example is the famous triangle {Adler—
Gell-dackiw?) anomaly [ 1 1. In the two-photon decay 9of the
neutral pion. when one calculates the divergence of the
current  associated with the?&-trans?crmatian in the frame-
wark of perturbation theory, one gets, at +the one-lcop

approzimation, a finite guantity as follows
R
29, = & {0-25)

instead of a vanishing quantity as in the classical theory.
This is checked by calculating the graph given in fig. 0-1
This behavior was found +fivrst by Adler when he calculated

kS

the lifetime of the neutrel pion decay
0
T — a7

He could get the correct value, with anomaly., according %o

the eiperiments.

e have also some other examples. In the +following,

we shall comsider the U{l) problem and @ -vacuum in QCDL 2 1.

GUD is a gauge theory for the strong interaction.

In QCD, the fundamenital state is degenerate and more
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complicated. We have %o distinguish them by a parameter 59,
and dencte the real vacuum by @ =0. i e 3@1}. dccording  to
the Fecei and Guinn‘’s conventionf 2 1, fthe ftransition ampli-

tude of &<—vacuum is
ITILE: =$£ (a8, dp enpffurt o 10.95} eaptis e, (o-26)

where the integration over the gauge fields. é@m’ should be

done according to the constraint
& T o
¥ & o A
3270 folxﬁw_;; -.-.-:,?/_ (0-27)

1+ we remove the & -relation from the @ ~-vacuum %to the
Lagrangian and use the normal vacuum. we shall get a new

tarm in the Lagrangian like

2
. ~
t @ F;ﬁ/“” (0-28)

°

&
327+ b

From the chiral U1} transformation

Vix) —s eapfivia} Yin)
G (x) — Y eapfivris]




{O—-29)
P12) — enp (-2i0) @15,
the Lagrangian scquires a term like
: ¥ a e |
“240*32??,_5“&,}2 ' {0-30)

I¥ we set @ =2F, the transformed Lagrangian will have no

@-mdependenf term.

The last example is fthe B-number <{(baryen number}
viclaetion in GUT’s. Here the graph which we have to consider
is the vector current insertion in an axial theory. The
graph is dreawn in fig. 0-2. Where the current -7?‘,\,?7}‘&?,
is inserted in fthe axial ftheory +from which a vertex with W}
can be found. (%a '&%b;é}& atre the generatore of internal
symmetry group. The loop inftegral of this graph is the
same as  the one we find in computing the Adler’s anomaly.

From the internal group, we shall get a factor like

ﬁr(@w{@—b,a-@})' {0-31)

A%t the beginning of chapter2, we shall see how to get £fhis
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factor. Because the generators are

il

(5 a j&@ﬁw

]

G

oo 4.n {0-32)
G- 4o

where the generators /f& and )%b are the generators of the

#lavar group SUin). Therefore the factor will be

”\é’ﬁ"ﬁ’(gﬁ’a. ﬁ'b}) {D-33)

i¥ the three colors are taken into account. we should get

tha ¥following +factor

v C{Aa. A3 . (0-34)

This result shows that the anomaly does not vanish. On the
gther hand: we can consider the anomaly of leptons in our

thesry. The graph which gives out anomalies 1is as beforve,

hut the current insertion are changed intoc the lepton

cyrrent,




7}‘ = /Q'Y/‘j ’ {0~-35)

fha internal generators are

Gga.z J%‘a

@y = v | {0-36)
GQ= ﬂ

The corresponding anomaly has the same space part as the

haryon anomaly. The internal The internal factor is

~4

Av ko, K1 (0-3

Tharafore the lepton anomaly looks exactly like <fhe baryon
anemaly. o the difference of the baryon number and the lep—
fon number will be anomaly-fres because the baryon and
lepton anomalies are canceled by each other. This result
means that in GUT’s theories. a baryon can decay into lep-
ftoansi 3 i, what isg conserved is the difference

between lepton and baryon numbers.

Iin locally symmeftric theories, the influence of an




anomaly will be wvery different becasuse. here: we have a
gauge symmatry group. SBince the Ward Identities associated
with fthe gauge symmetries are violated due to the presence
of an anomaly., and since they are crucial in  proving the
unitarity and the renormalizability of the theory, an ano-
maly jeopardizes fthe quantum consistency of the ftheovry. This
fact tells wus thaet 1local symmetry anomalies should be

somshow removed to have a consistent theory.

From the divergence equation
9}“7/..= A, (0-38)

ore can think that the eanomaly caean be asbsorbed into the
radefinition af fthe current j)‘ : 50 that the redefined
current is anomaly-free. But fthis redefinition will lsad to
the introduction of a non-local <ferm in our Lagrangian.
which is not desired. As we said above, anomalies can not be
removed by a proper counter term in Lagrangian. Another

approch is to cancel anomalies by other proper particles.

When necessary, new particles can be introduced. For exam—
plieg. 1n the standard model, the ancmalies af leptons
ara cancelead by the anomalies af guarks. This is alse
the indirvect evidence of introducing quarks. But sometimes,




rEw particles introduced can net be found in nature. then
this approach is not acceptabls, either, unless we have a
nueturel eiplanation  why we can not  Find them. If we take

tha infternal group into account, we shall get a factor like

I ({Gan. Go} Ge) . {0-35)

it a proper rvepresentation of the group is chosen, this fac—
ter will wanish and the anomaly will be removed. For exam—
ple, for real representation, fthis factor is zevo, that isg
apomaly—free. For simple algebra, the only ones which have
nan—-zarn factors are BUinl, n 3/ as well as SO(&H:. This
apprpach is also used in supersiring theories. For every
thaory, one should find out a praper method +to remove *the

lowcal  symmetry anomaly, if it exists. so that the theory is

ot

from 1

“+

T2

i

If no way %to remove i%t, +the +theory will be
replaced by another one which is, or can be made, anomaly—

frae for local symmetries

A supersymmetric theory may also have anomalies. But

am

T

5 new features will appear here. A very important factk
pointed out by Ferrera end Zuminoel 4 1 is +that the chiral

currant 724 ' the supersymmetric spinor curvent4s;“and the

emeTay-momentum tensar Qﬂ“ can be put into a supersymmedric




muitiplet. This is very convenient because we can get all
anomalies after we derive out the anomaly #vom £fhis super—
conformal current in & supersymmetric formalism. 3f course,

the anomalies are members of another supermultiplet

Most recently, superstring theories have attracied

it

ot of attention. Because in supersiring theories, we
slwsys work in higher dimensional space instead of the nor—
m&i HA-dimensional space, some new Ffeatures appear. For
grample, in higher dimensional +field theories, anomalies can
be cancelad by proper counfer terms introduced into Lagran—
gians. Dut this is impossible in 4~-dimensional space accord-—

ity to the non-renormalization theorem.

In study of superstring theories, one can see that
it i3 more important to study anomalies because, here, the
gsuge group can be fixed by the conditions for an anomaly-

frae theory. These conditions are composed of the vanishing

trace

N (GaGse G5d @ e G-f*fmmmw)w (D-40}

and one for gravitational anomaly~freel 5 1. Many groups are

axcluded by the conditions Ffor the cancellation of
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anomalies. We hawve known that the type-I, open or Bresn—
Sochwarz superstring theories are ancmaly-free with the
gauge group L0320 & 1; The Heterotic superstring

theories are anomaly~free with the gauge group S0{32) or E

i

L7 1. The first type of superstring theories is the com—
bination of N=1 supergravity and the VYang-Mills theories.
in this period, the superstring theories are the most hope—
ful because they possess many unexpected and wonderful
¥patures. Therefore, the study of anomalies in superstring
theories is wvery mean— ingful and important because we can

resirict ourselves in a smaller range.

In chapter 1 and 2. I present a general overviesw on
anomalies in gquantum field {theories. In chapter 3, I tackle
the problem of the R-symmetry chiral anomaly in global
supersymmeiric Field theories. Finally, in chapter 4, we
carry out the calculation of the divergence of the supercon—
formal current in N=1 super ¥Yang-Mills. We perform a two—
ivop analysis in the background Field Formalism in terms of
the Heat-kernel expansion and check the well-known rvesult

that

EJ«&] - meo Dal W), (0-41)
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Chapter 1 General features of anomalies in guantum

field thepries

First of all. let us see the exact definition oaf
anomaly in terms of the generating funciional. 17 {egffective
action or generating functional of fthe I-particle irreduci-

bile diagramsl.

One generally says that a symmetry of the classical
srtion develops an anomaly whenever the symmetry is expli-

ciftly broken by guantum corrections.

Orme has to pay attention here to the fact that this
breakdown is explicit, instead of spontaneous. The explicit
breaskdown of & symmetry can be seen from the Lagrangian and
ni conservation equation of a currant can be devived. So. we
can neither define a conserved charge. But. a spontanecus
oreakdown of a symmeftry can not be seen directly from the
Legrangian of the theory. One can derive the wvanishing
divergence of a current in terms of the Noether theorem Rut

heva, fthe inftegral

5‘,{3;( 9 (i-1)




doees not exist. Therefore, we can not define the associated

tharge. so the symmetry is broken.

It is known that anomalies break symmetries, but the
inverse is not true. For example. let us cansider a gauge
theory. I+ the cut—-off regularization scheme is employed,
there is a term with non—zero mass dimension which appears
in lLagrangian from cubt—off, But this term isv not gauge

invariant.. Then the gauge symmetry appears to be broken.

Sut, anomalies may not appear.

In classical field theories, we can use the Noether
theorem But, in quantum field theories. the MNoether theorem
does not work, and is replaced by Ward Identities for study~-
ing csymmetric properties of our theory. In other words.
anomaly must break, if it exists, the Ward Identities and

the associated symmetries.

As we said above, the spontaneous breakdown of a
suymmetry does mnot lead to an anomaly. But in the case of
Bxplicit breakdown, there are still +two possibilities. If
the breakdown can be switched off by changing the parameters

uf the transformation, it does not lead to anomaly., either.

$eed
o

the case of an anomaly. an explicitly breaking %erm




mppears, but it canmot be switched off by ceontinucusly vary-—

ing i%s coefficient, as in the case of an usual explicit

breaking Lterm.

Concsider a classical acktion

Sajag‘;{‘;&w | (i-2}

Under a conserved transformation. the wveriation of the

sction is retao. 1. e.
S8 =0 (1-3)

Taking guantum corrections into account: one can define the

so-ralled sffactive action Tw '
rag...éﬁ“?r {1-4)

whera & i7ﬂ account for all locop corrections contributed
by i-PI diagrams with an arbitrary number of amputated

srternal legs (amputated means putting on the condifion

0 +m* 3 to remove the propagstors away from external
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& symmetry is said to be ancmalous if

ST=SJ§A¢ o {1-5)

with A # Sﬂ g+ where T.z,mz denotes a local monomial

{ ot polynomial !} in the fields. Because an action can be

written as an integral

S8 = [d ST = [d% S Maen (1-8)

and

S ﬁfol‘;tr {1-71

I¥ one can write

A = SThea (1-8)

H

1]

BE n have

SS@!"‘X(T'TM)“O : (1-9)

The cendition is thet A& cannot be written as the wvaristion




o9f a local polynomial in the Ffields

In guantum #ield theories. we have two ways to see

anpmalies. One is using Ward Identities and considering the
graph in #fig. i-1. éAnother way is considering all one-loop
corrections. We tan see that the graph in fig. 1-2 spoils

tha symmeiries of the effective action.

Mow, let us briefly discuss the definitions of gene~

rating functionals Z, W and TW .

The generating Ffunctiocnal of & genersl Green—

funcition is defined as the vacuum—fo-vacuum ampliftude

VAR z{o]o) =Nf,@ga e}‘gr?‘n {1-10)

AS/[?.DJ =fo!§r. %9’?%?_%,“380&“'/‘.?) #’J?) ‘(1—11)

By means of this definition, an n—-point Green—function can

he written as

{»)
@ 0 ra)SSTIG(R) - G L)1 >




fig. 1-2
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(i-12}

T & S W
=(-4) §I(m0  §Ixw mj’:’“

The generating functional of connected Green—-functions is

defired as Z[J] which satisfies

WIiil= 8{2”]. (1-13)

Therefore, the connected n-point Green—function can be writ-

TEn A%

{nd - g‘ .
G.Q(xl-’ zn) (“1 SJ(XJ gj(xm)gf ][

(i-14)

KT[O@)--- @I D> |

{5
gnd the 1-PI Green—functions corresponding to G}WP, fﬂ is

defined by

T m= ) < ( &m (1-15)

ani
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(i~141

We shall derive this expression in detall afterwards.

In terms of the generating +Functional
functions without potentisl, we cen write

Wraj - wa{-aﬁm V(- =2} WeLTT

>Jw

Including the gquentum corrections, the

acfion can he expressed as

Tt90) =237 = [d% T (2)Gu ()

with the definition

JC%)=~--

S, 0 T (Yu)

T

)
9 J ()

Gyt = 2[7]

in fact, %ﬂm iz the classical fields.

gf Gresn—

{(1-17)

effoctive

(1-18)

{1-193

(1-201)
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Lat us consider the derivative of the effsctive

action respect of %%R’

(Yo = ¢ 8%
S? ==2—T(Yq Wﬂ? J - (4% St 2T g, 0
_§2 83 % 85
ST §(p ~d jc‘l‘%’ gga
(i-21}
YR R TR PRV A
a3 [dy &%= S u
== T (X)),
Thsa ga nd order of the derivative 1s
o (%) o O J(R3) S (%0- %2 Sme (oo
P xI§Y > Pyl 5 %

ar we can wrifte

gj(h) & I (%) ( S*2LTI “5’ .
Bcfu(” 3% ® Pu §J () 5T (#s)

From these expressions: we can devrive the ftwo-point 1-PI

Sreen—-funciion as

rm(x,,h)" & T (Yu) [JW

S%(m)ﬁgoa (%)
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as we pointed out above.

To see something move about fthe effective action,

iwt us comnsider the definition

[(%) = E(J)v—fd‘%jcx)%(x) (1-23)

.+ the tree—-level, i.e. the classical approximation, we have

T(g)= S(C_pﬁ) (1-26)

where g(‘?u) is the classical action, herause there is no

guantum corrections here. One can wrife

2M4,= S (Gu) + [d2 T %) Pulx) (1-27)

From the above squation of +he connected n-point Green—

Function. we can write » at tree—level.

wpdank
ZEJJMQZ ';!‘-‘:JJXI'“OL‘I#Q Q‘tc_’ J(x')"’J(xa) {12813




(=2 0Ras ) S . i o
Gre ( HyoAn) = = To 83(&.)% &WJ“ (1-325

*

ooy
-

“imilerly, we Caw aise write

Tty =2 %{jd;x,m dxwr(“)gam(w.)-" D () - (1-30)

, feap . . L .
WwhETe 1” is 1-FI n-point Green funciion.

fow, let us consider the derivative of the generat-
ing fumcticnal of general Green—functions with respect to

Jeay,

Y UCI IR ;
< = wf{ 2(3)}

VD
jo{x, i_'g 5 S (2 - 2D {1-31)

- (olza ‘*“’ﬁiﬂ_ St~ 7)
3T (2

Therefore

.:2.. SWiay wryy- 22803l (1-32)
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2yt JIR) =0, we shall get

W SZ(I)
é}[xﬁ-' w (0)’§Ti?;b !Jg@

Ramowving WG away, we'll get

er' - SZ(JD
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Furthermore, the second order of the derivative is

L S WLI] - gwm(ﬁﬁ_&%wm}) .
1 SJ(%)‘EJ(:{.) EWIEDY, Wity

? 2
&) §IA0)

+ W)

=i S}UD S §22(7)
tWLal <5 --_-...-—gj +W(j)_~m8383

Futting o (®) =0, we’ll get

12) 0 8 1 82 (I)
G ‘xhXZ-)n W‘o){ﬁﬁ ‘('-’*T%—J%{‘BZ—‘} »

where the second term is the conmnected part.

2
S)C’CHXz)s > 2LT(=)

SIS THe)

{1-33)

(1~-341

(1-33)

{(1-3&)

{1-37)




From the definition of the generating functional of

general
Green Funcitions and the effective action. we can write

TREL ) ai\lﬁ@%@ enp {ES{gMEfQ%jﬁg»%y}f 1-38)

Here: we can define

Ef&ﬂ(f”?u

{1~-39)

where Qfd

plays the rule of & background $field and €f$ s
in fact, is

the quantum +isld. Un the other hand, the effec—

tive action can be written as

9= S + T4 00 .

that is, the summation of the classical action and all

loop
corrections, Then, we have
L2 {4 T2 (90 =N [RG eap {ilS 92~
«5(%3]”]&3(?“%)} (1~41}

=Nfa@%wffELS’(%-*%)-SC%J’J‘J&?&%Q’J




Harg 71 5{%@) generates all i-PI diagrams with, at least,

orng-loop.

SBinca mélz; is mnothing but the equation of
b Qur
motioT. this term does not coniribute for the onm-shell

divargences., From fthe above expression, we can see that the
prriy integrated guantity is the gquantum field. So. the only

nagn-vanishing propagator is < . and the classical

]
ot
3.

1 can be only & parameter in vertices or in external

i
l~
o
i
1

Mow. let us consider the Ward Identities withoutk
anomalies. After this, it is easy to study the Ward Identi-
ties with anomalies. Buppose that we start Ffrom a rclassical
sction which possesses some suymmetry. We shall derive the

Ward Identities corresponding to this symmetry of the clas—

The motivation is +that Ward Identities are more
sesential in studying the symmetric properties of a guantum
theory. From the Ward Identity, we can divectly ses the

brezking of a symmetry and the snomaly.

Let us consider a «classical action, S(Y¥) and a

“transformation of Fields.




00 = 8%;%‘?(‘%3), (1-42)

where é; is the variance of khe field under this transforma—
tior, £ is a parameter of the transformation, and ?{ is the

~charge of the field ?w. By definition,

8= [de (9

(1-43)

BEW = [d5%[ 8L + P (§2DLT .

- . L . L. »
Zincae we arse interested only in internal symmetries, g:ﬁ =0

it slways assumed. Then. there should be

SS(‘?)=fd'5c S};é(if) . {1-44)

{

o study the invariance of the acftion: we need only study

the invariance of the Lagrengian.

gx/ =3%§§ g?}*?"-%g? (1-4%5)

For internal symmetry,

G = Qo+ §Ga




{1-44)

8(?}?’)%9}({?) ' (1-47)

-l
S0

(99?8?) (2 - 255, 114

Here, the second term iec nothing but the eguation of motion.
it the equation of mofion and the classical invariance of

the Lagrangian are assumed, we get

A =
29 gaﬁ’” C)r

{(1—-49;

a

I =

Tha Ward Identities are generally used for local symmetries.

Auts 1t van be also used for global symmetries. In order %o

do this, we use a frick that the parameter, & . is assumed
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to be x~dependent at the begginning. At the end of the calcu-
lation, we put if bhack to a constant. Now, let ws do this

derivation.

From the sbove eipreszicn. we have

= L
oL = 2}”9%}460 850 , (1-50)

whetre the sguation of motion fterm is removed. Bince

i

&

?Cj’(x) E(x) (1-51)

we have

St X = @”9/“[99 x Q) £ (2]

I

8(3)'&jﬁ[x)+jﬂ-@v,£(z> {1-53)

]

Syl 57 D E ().

Tp derive Ward Identities, let ws start +From n—-point con-

nectad Green—-functions

ITJ

O e 20 =< TIT Q2]
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=N DG T Gray /%

transformation is as #follows

1%

G (ot;) L2ty (o la;)= Prar+icn g iy t1-54

udndasr which, we have

Go (tmn)= T A @ (x:)] >

(1-55)

/ H 4 !
L el

The delicate point here is the invariance of the measure.

Hers we are geing te assume that

7
DG -G +i [kt Loy, s

as treated in the Fujikava’s approach. However, for the time

keimng: we are interested in the Ward ldentities without ano-

Since we can write




N Q) +ie (x99

{1-57)
=1 QR+ Z 1820 4TG0+ I e,
i > i
we can ged
(ny’ , ‘
@e = Nfa@gol'i+§:E(X;)g;;]@'gom)iwgfd‘g%j@fdgﬁ
=N J2911+ Zi e ;1T Praiy«
s f oy . . . SRR 1-5
aa[?+lfdx{g(x,;%h?/'{m)*y,f'a)hﬁnefﬁu 58)
tmy iJdx
=G +N 0 & o Jdk i
x|z S(:z—-x;,)?,;E(z,;)-r'E-?k,jf’-’rjf-’%&]b
&g before, in the case of global symmetries.

9)‘7}‘-; gwx+(%.%mﬁbn)8?’ {1-5%)

Considering a general case, géhh15£r9&0 is assumed, fthat is

the Lagraengian may contain terms which explicitly break the

classical symmetries. As an example., iet us take the chiral




summetry in GED into account: where the First term in

L.agrangian, QV'TQ pressrves the chiral symmetry:. but
”~

et the mass term.

Generally fto say., the sponftaneous breakdown of sym—
metries does mnot introduce ancmalies. Meither does the
eeplicit breakdown which can be switched off by changing the
transformation parameter. Anomalies are introduced by the
eaplicit breakdown of symmetries which cam not he switched

af+ by changing the parameters.

From the above expression, we can write the variance

of the classical action when &€ is treated local

08 = [dx §,_,Z

{1~&0G)

=[x [ 5,57+ 57, 5. €0].

Tha #irst term of fthe inftegrand is the wvariance o4 [agran-—

gian for global € . which can be written as

gwi/ = 9/,\7‘/” = § §5ﬂ ] {1-51)
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where the eguation of motion term has been dropped because
it does not condtribute at the end. In terms of the new sym-

kol., one can write

5 ﬂjd%[ﬁ(ﬁ)gaﬂ-ﬁ‘jﬁ-%&(‘w} (1-62)

@t’:‘@ Nf@?[i +1Z E(a;) fxﬂﬁ%’(%:)”

{1-463)

«[v+ifd' | £(x)§£+jﬁ.%£w}}e“"’§‘i ,

if %;aﬂ_ =0, & classical symmetry appears. Otherwise. the
svantually sxplicit breakdown is present. For example, there
pzists & mass term in the Lagrangian of a chirel theory. To
understand fthe second ferm the above sxpression can be

rewritten as

) Gt""" r:r". Nfﬁg’ et’fdxoiﬁ ‘j’(#;}fd’;z .
{1-&64)

x[Z8(x-25)%; +52 +9" w1l E(2),

Here we used the trick




Etn) = 35‘(1“«&), (i~&5)

where € is & constant. Since the Green function is nothing
but 'iZT%Q"'Sﬁ’}:-iZ%H}, the scattering amplitude which must be
’
Emy ()

precerved, i.e. B =6 , the second term should be zero.

This condition is egquivalent to

Z%; g(?é“K;MT[ﬁ?!xa?3>e+<fsx«ﬁ?s>“ (i-66)
_“9?{1‘7]“21(?;}&30 o
ftie i1z nothing but the Ward Identities. In above expres—
F10W the second term is a n—-point Green function with the

insertion of Séﬁ,, that is the variation of the term which

1]

-
A

22

iicitly break the classical symmetries. SBince this term
iz not interesting for us, we always assume it vanishing. On
the other hand, the third term is 2 n-point Green function
with fthe current insertion. It is fthis term that we wuse to

study anomalies

Mow, a temark is available. from which we can see
hoew +o get the information about anomaly. The Ward Identi-
ting nifer a method #for checking whether fths guantum ftheory
posEpeses & symmetry. I+ the classical symmetry is imple-—

mentable in the guantum ftheory, the third ferm will exactly

rsncel the first one, and the Ward Identity is preserved. If




the third term will give an extra term except canceling

the first fterm, and the Ward Identifty will be spoiled. In

rase:. the divergence of the corresponding current is a

finite term. ralled anomaly. If can be writen as

@fjﬁ =fA (1~67)

1 the Ward Identity, the contribution to the third term 1is

of tns form like

STLAN Qend]> (1-68)

e
4

harefare, when we calrulate anomalies, we always evaluate

the graph in  fig. 1-3 and construct it with ﬁ%“ . If this

canstruction  wvanishes., the term ¢ ﬁ?ﬂg’“ﬁ)} does not
sentribute and the Ward Identities are respected. Uther-—

ié)?.ﬁ;%;([@ﬁ@(ﬁ{))ﬁa . we shall get anomaly. This is why we

proba anomaly just by computbting fthe construction

In $¥act, we can have a loock at the third term.

QLTI M0 T Gua]> ~ <35, TG >+ (1-67)
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fig.
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whers the commrutator is

{jo, @jzéﬁgg@; O (x:-7) (1-70)
from the gquantization of the theory.

From the Ward Identities, we can see that

L%;8x-2,) (1-71)

iz the sum of the conserved charge. The appearance of

anamalies will destroy the conservation of the charge.

Another point should bé mentioned here. From this
Brpression, we can also derive the Goldstone theorem pro-
vided that no anomaly appears. The anomaly will alsc make
tha expected Goldstone particle disappear. I%t is in this
mecharnism that the U{l) anomaly in QCD explains why the
srpscted Goldstone particle does not exist. We shall derive

the Ward Identifies with and without anomaly in the follow-

e
-t
oy

3




Let us write down the Ward Identity sgain

95 0 (22 QS = LTI G120,

£1-72)

where the explicit breaking term of the cleassical summetry
is drapped. Taking the Fourisr fransformation in x #for the
Ward Identity gives

PR i .
ZHe G- [k TONT G >0 (17

anr

PR o . i .
Z9;e" f:’(X;)"'Hf&gc-epﬂ?ﬁ«('bﬂﬁ?:?”" =74

Mow. 1t is important to note +that in  the limit of zero
momantum,

the last term receives contribution only from the

gventual zero mass states present in the

theory. Moreover.

the arguments of Lorenz covariance

<ol 9utor | G>=iFgP, , (1-7

P
o

g mEasures the coupling of the massless siate € +to the

wvacusum Through the currewtjnm,




i
1]
]

}

F@<OE ﬁ@;l&)aZ%<ﬁ%°:N” (1-78)
+ [dReTISR2TS)> .
How, if (a) Sel. =0 (as we assumed abovel, (h) (£9;040%; >
#0, i.e. there exist & charged order parameter which
acquiTes & non—vanishing vacuum expectation value, we shasll

have the Ffollowing sxpression

F@s("ﬁﬁ{fzﬁ@?%ﬁg;(ﬁ@;};@o . {1-77)

Thersfore, we shall have F&;é 0. Bince this fact. the spon—
tansous breaking of a symmefry implies that., via Ward Iden-

tity. there exist massless state G coupled to the current

;im . From fhe above analysis, we can get the conclusion
that in the sbsence of anomaly the spontaneous hreaking of
) con—  ftinuvous symmetry leads to that there sxist mass-—

igss spin—0 particles. This vesult can be derived from the

Ward Identi- fies associated with the invariance.

Mow we are going to see the dilatation anocmaly. The

transformation law can be written as

z):ae"xﬂs(l-rﬁ-f---)xﬂ {1-78)

where




A >0 Por dilatation,

{1-79}

A ¢ o, for contraction.

e : i . A : A
This transformation gives a factor @ to & line. a factor :
: . . 3A . e

tn an area and a factor @ to & volume. That is to say, the
transformation law of a quantity depends on its dimension.

Sunpose bthe dimension of the fields is
[¢] =L {1-80)

then

Plxrm eGPy = (1 +AL) QIR

(1-811

7. .0 ( =
29 ra o vﬁgam)% (14+ALL-13)2¢()

Inm the case GF‘Q?WG , we have

[P) =l =~ {1-B2)

’




v;ﬂéw~; b

2k
§L = AL ?tw;%@%(hn)?}?ww
ag-ij,m mﬂzﬂ@ + {1-83)

Therefore

O L A%f G -x2VT, " 9=0 (1-84)
3]

B N J

we can define the canonical current associsted with the

dilatation Egmmetrg,léﬁ » such that

Eﬁﬁﬂa 0 {1-85)

It can be also expressed as the improved guantifty in tfterms
ogf the improved energy—-momentum tensor, Here one should
o
notice that J:&n is associated with z;\ .
e note that the dilation anomaly depends on the
appearance 0of a dimensional term in Lagrangisn. Bince the

dimegnsional regularization scheme introduces a mass scale

term. the scale invariance will be spoiled by this scheme.




Mow we are going to calculate the dilatation anomaly
for
3 2,2 A r. B
oiu.@&%(%y)m%mfpmz?-@ , (1-8&)
then
/S'afdwaf/—» % 2 (1-87)
X = Jdxz ®eG .
From the first term, in mass scale: we have
[G) =X, LX=N-2 (1-88)
The mass term is same as asbov From the interaction term
we have
[AJ=Y , Yan-4x o (1-89)
{/M3=1 and

in order to keep [ AJ=0, we introduce a parameter
rawrite fthe Lagrangian as +follows

4'“% ¢? (1-90)

oLy 3L (2¢) = LmiG pm
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Y = N—-27n+ G=4-7r1, (1-91}
From this we get
d/)nu = (24 (P) - Ml

-v'fé'(ﬂ"])«u“?;?a)?’z (1-92)

7 n-4 - {1-93)

Hers we rcan see the anomaly because, generally

i» ~ ‘C‘Z'J';:;}'q . (1-94)

l.et us go on to see the connection between q%, and

the rencrmalization group equation. Remormalization group

gguation says that any physically measured gquantity is inde-
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3 , 3 . }’ . »
pendent of the parameterzm . EO,CQL‘X p is proportional %o
tha renormalization group egquation. We renormalize fthe

Lagrangian as follows

L =g (29 - fme Qe =400t

(1-953

2
+Kg £ (293 =Kok m P = K\ S50°93
where

Kq,m,»gg ﬁnq,m,w’%"g ’

$s = (14K Gp= B¢ (Re. €3G |
'm;n(x+Km7v’(t+3<v5'm;es&,;2;;'m;’ (1-9&)
A= M2, Ae £=26-n

2222.°28 . 2= (14K,

. {nJ)
We consider n—point function, bare and vennvmal1zed;f§,

fn)
i which satisfy
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iw) o -
R~ <P P>y Pad-=-CPr e
““‘/z d - .
2(9 Qg PedlPaPed--C PG> 1-97:
= b o)
Zo I
() ot -
Te ¢ Mg, Ag) = %Q’&()\R,E}ﬂ; }(’“mﬂnfﬁ) {1-98)

Taking the derivative with respect tm/M s we get

D!Zé“’ﬁ 9252 r(") z—"/g r‘ﬂ}

dpm oM “’5}%"
’“"‘g‘i’ 2@ T:"—-}Afi+(ﬁ,* {1-99)

+2Me 2 _ 2As D 2 yrm g
op B " op oAnd]

which can be rTeuwritten as

- SAa 3 om .
()4 /Maf“ ?ﬁg }4 afqagm ’OM%‘P) ,’ <1 1G0)

It becomes
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(}"5}%‘“@' (@(ﬁa);é%;-ﬂ?(ﬁg)-&’)fmm 9 [in, t1-101)

zfter introducing the definitions

gr;\a)gﬂ gﬁﬂ

DMg

ﬁyhfﬁg):ﬂzm

Y (he) = "ii’-"‘;:%—@‘“%‘f’ ,

where and are called anomalous dimensions.
™

{ q&#) L into the gemerating functional

2 = f"@?( zh/aam

wa have

E%.E%§.=-—7%§‘CJ(dg;gg‘+Jﬁ1§Lj€?>"

. ) Lo
where L is the loop counting operator because QA

{1-10ED

I# we put

(1i—-1G4d:

11-104)

= OF-V

Since the second term on the right hand side is not changed

du=z to
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¢ — 2,°¢

7

J— 2,7,

which keepéT?? invariant, we do net consider 1t

have

(n-82% = (m_6>Lc [yt > 2

=(n-4)[ 208 2, 2 2. 2 2.y,

oMy A A 204 9y

xé(mg,?su.Jg,a)awé‘;C(g,.& 2.

Hare we usad the following formulas

o 2m B omn |
(n=4) 9;;% ® ’?;,vnn

7

n-6) 228, g1,

o Ze v

In terms of the Lowenstein’s result., we get

{1-105)

Then we

(1-1G4)

(1-107)
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far a gauge theoryl 8 1.

In what follows, we give @ short summary on gravita-
tional anomalies. Gravity has & non-Abelian structure simi-
iar to Yang-Mills theories. This can be seen by analyzing
the general coordinate fransformaftions which are at the
besis of general covariance or. if one wishes, by consider—
inyg the local Lorentz invariance of the Einstein-Cartan for-
malism. The non—Abelian structure of the general coordinaste
transformations can be ssen by considering that the commuta-
tor af  two transformations, characterized by psrameters

i 2
39“‘“)‘““f2ﬁ‘x’ gives a third transformation wifth parameter

3 .
p §f,\{x) given by

4
k;(x)m ‘g”wau ‘g,.(x)-E"’a” k} . {1-109)

I+ one considers a theory where chiral +fields are
croupled to & gravitational background field, gravitational
anomalies can be induced through the non-conservation of fthe

eneTgu—-momentum tensor {for the effective action *To be

invariant wunder general coordinate transformations, fthe




energg~mamentum; tensor of the theory should be covariantly
conserved). The structure of the purely gravitational
anomalies implies that they can exist only in the space-
times of dimension D=4n+2, that is, 2, & 10, efc. Indeed,

by considering supergravity theories in ten-dimensions, Wit-
4
terr and Alvarez-Gaumel 7 1 have computed the expressions for

tha gravitational anomaly coming from loops chival 1/4,

hital 3/2 and self-dual tensor Ffields. These expressions

™

have actually been ¢vucial for the anomaly cancellation
mechanism proposed by Green and Schwarz in  the context of

the %ype—I open superstring [ B8 1.

To conclude this chapter. we give some words asbhout
the +topological origin of anomalies. The basis Ffor under-
standing the topological origin of the anomaly is through
the Atiyah—-Singer theoremt % 3, which states that the index
of some elliptic operator is @ topological invariance which
which depends on the basis manifold and the bundles con-—
nected by the elliptic operator. Just to fix the ideas. one
can  consider tﬁe axial anomaly problem, where the elliptic
cperator is the Dirvac Operator. ;5(1@) » where A is a gauge
#ield background configuration defined on a Zn- dimensional

space~time. The operator ;5 connects the space of positive

chirality spinor +to the space of negative chirvalities. The
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t

-'-
dimlker( P )1~ dimiker( B )1 {1-110)

bt
pa |
[«

™
it

his is a topological invariance which moreover can be writ—

st the integrael of some characteristic class which meas~—

b
M

uraes the topological twisting of the manifold and the spaces

aFf Pplus” or "minus® chirelities. By computing the index of
the Dirac  apsrator, one can obtain the chiral anomaly

n  and the index thénrem: which 11lustrates the

,-
-

3
m
i
i
.
e}

topoingical aorigin of the anomaly, also provides the choice
#¥  the particular cheracteristic class which determines the

i

ivndwy of the given elliptic opesrator. This is the analytic

-

way 0oF computing the index., which is & topological invari-

ATD

jen)

In this sense., one van say that the index fheorem
nrpvides an  interesting bridge between analytical methods

v Lopology. Then it helps in pointing ouft the basic topo-

ivgicsl nature of anomalies.




Chapter 2 Technical considerations

on anomalies

# 1 Calculation in the usual approach

In the previous chapter we introduced the general
idea of what an anomaly mesans and through a series of exam—
ples we discussed Far a given theory. which currents {(global
ar locald may develop an anamaly. HWe ever sau that the gauge
anomaly cen he eliminated through its group theoretical fac-
Tor  Er{d Gu ) G$ ¥ @1,>. We used, in short:, a few Fformulae
about anomalies to discuss general results. In this chapter.
wa shall devote our aftention to more ftechnical details and
derive the results previously adoplted. Iszues like anocmaly
power counting rule, non-renormalization for the anomaly and

pxplicit evaluation of an anomelous graphs will be touched

First of 811, let us see what kind of graphs may
isad +to anomalies. Suppose we have a graph with n~external

vertor legs drawn in fig. &-1. The anomalies are always pro-—

partiosnal fto  an € e . Since fthis graph contains
ﬂ!/‘z, 20
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s emxternal linss and wn-1 independent external momenta.
covariant arguments indicate that the final expression of

the graph will be

éf‘w“"/“w AT AR R gy P (pamyP (27D

Thisz means that the number of vector lines and independent
axternal momenta have fto be such that fthey allow for a com-
piete saturation of the 2D indices of the tensorjgﬂyMz”. 2p -
S0 we hava

N+(M-Dz2DdN2D+% (2-2)

*

Since hoth M and P are integers, we get

RzD+1 | {(2-3)
This formula gives, in 2D-dimensional +ield theories, the
ipwest graph carrying anomalies. Since the higher order

graphs may also carry anomalies and be expressed in terms of

ihe lowest order graph. in Fact. we need only calculate the

")

iowsst order graphs

.

Mow, let us see some examples. In 2-dimensional




The lowest order graph is drawn in

space, D=1, n @&

Fig. 2-2. in 4-dimensional space, D=2, n & 3. The Ilowest
prder gragh is & triangle. drawn in fig. 2-3. In &-
dimensional space, D=3, n @ 4 The lowest order graph is &

couare: like the graph in fig. 2-4.

In what follows, we are going %o derive the triangle
anomaly  in  4-dimensional space. First of all: we consider

tha group theory factor of the anomaly.
g B Y Y

The anomaly of a certain current, let wus say the
gauge current, comes as a one—loop corrections to ifts diver—
gence through the computation of the graph given in fig. 2-5.
The fermions which circulate inside the loop, and appear in
the definition of the claseical conserved current. have the

fpllowing coupling to the gauge fields.

8{857/‘@&110/9/& (2-47

where ©%* denotes the generators of the gauge group in  the
rapresentation, R, of the chiral fermions. Rendering expli-

cit the indices of the representation, R, the vertex reads

5@;«7@5(&“);} 1!’1.(,/(}/‘“ (2-57




66




where i=1,2, , dim. K. So, the corresponding Feynman

rule  becomes like the graph in fig. 2-6. {The derivation of

5,

this wvertex comes basicallu #$rom the application of the

o

uncftional derivatives

i

3
S {2~&)

S Pty §Y4a) 5t Ys)

#a the classical actiond.

Mow, iet us come back to the anomalous graph and

in it +the wvertex Faynman rule as in the graph in

P
—
pe
2]
o
-4
et

e ]
=
P

i
~J

Here two remark are in order:

{11 Motice that a certain interrnal line connects a
P ]

P; with a Y; . simply due to the fact that the fermionic

kinetic term is diagonal, namely

Vi onY; (2-7)

{ii) Notice alsoc the order of the matrix indices of

“the generators Gm,: the first one refers to the spinor @P :

and the second to the spinor 1P a
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Bince the gauge group generators appearing in  the
vertices can pass freely through the Y -~matrices of the ver-
tices and the propagator. the overall group theoretical fac-

tor of the triangle graph furns out to be

(Ga):( ﬁb)mj(ﬁc};;agﬁy(@a@b@c)_ (2-8)

Do mot Forget the symmetric graph drawn in  fig. 2-B which

the factor

(]
el
<
1l
1]

M GoGalre) - (2~

Futting them together. we finally get the folliowing group

thaoretical factor

v ({Ga.-Gol Ge) . {2-10)

whare LGg: Gpt is a anticommutator. This factor is very use-

ful for canceling anomalies.

Now, we are going to calculate the space-time part

o¥  the ancmalous triangle graph. According to the graph

drawn in fig. Z-% we have the expression in momentum space
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where the minus sign comes from the Ffermion loop and the

&
trars is over +the spinorial space. Each factor of 4 comes
4

; - . . i ‘

fvom the fermionic prapsgator =— , frem the vertex and
%-—m

insertion.

Hefore concentrating on the evaluation of this
intagral. let us compute an awuxiliary integral whose result

will be wseful for the case we are studying. It is

‘ Fel-Kitm [ £3 £340
I/ﬂ) J‘(z;g)”'jr[(?*?_’('f,m /A{?_,,.F/.. ¥

(2-1i2)
E+m
XTJ’ 2 Q!Yu]/
. P wm
whete
95K+ Ka. (2-13)

Thie integral is apparently linear divergent, haw-

avar the trace of the 'Y ~matrices will be wvanishing for the

pisces which diverge. Indeed the tvrace in the numerator 18




gonual to

; & /
4 éf,u‘,,;(,f")(z (2-14)
ang the remaining integral is convergent

&
4m €pupo K P Ky f (ﬁﬁ L {wm)l-’ N (T e

«[p-m]) .

Feynman parametrization of the momentum integral:

oo RN D) s
RABC 2[Jx£d*a{‘d3¢(ﬁx*3u}+c%)3 / tamie

!
ABC

f l 3
=2f7€4*fd*av[(ﬁ—snw(é—c)w e, z-i7

%o the parametric integrals becoms

]
¢
Iz=2/;XdXd?f(.§l£;{Pz*
(2~-181

+ 2g7[x(K.+Kz)-X‘}K.]"’K(K'"‘Ks)z}F'.

Mow, we are rTeady to compute the momentum integral, which is
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dane by means of the formula

f(4w)z(?z+2?-l<¢mz7’?=% (Gﬁ)”z(M{Kz)”, {2-15)

Then
1, 25'&5‘ ‘xdmﬁva['z(mﬂ-&)z“
- 2% K\ (Ky+2K2)=m" =X*(K+Ke )= (2-2013
- 2" Ky + 22X YK, (K, + Ke 27"
ar

I, = fXdId‘a/[X(l*X)(K.'#K;]-—

(4—7?7‘

_xaa,(p.,«-x?.‘lx);{f, (2-21)

-—-21*9(7-x)i<.-1<z,°m23"

Mow. for future purposes the case of importance will

z 2 2
w that for which Ki =Ke=0 and ( K + Ka ) =2 KyxKea (fhis

will ke the on-shell condition +for the external fields).
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Than the inftegral Ia, reduces to

1= f xdx f CI?[(KF’K&)X((’K)[P?)—MJ(.2 -223

Thern the +inal parametric representation for the loop

integrals I!}M) ig

1\/AU =4m Envpe KEKS (4m)”

{2-23)

!
% f x o ol [ (K + EICT VRSN

In this form. i1t already suitesz for our purposes

et us now come back to our anomaly triangle graph.
Hefore computing the integral mw?L, let us convert this
intesgral into the divergence of the current. Momentum con—
servation of this graeph gives that the current insertion
carries a momentum K, + Kz, so that we have actually to cal-

culste is

N
(K| <+ K&)P quu?(K'l K"} M) ’ {2-24}

ich is giwven by
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(K, 'f”k'a.,) Tj,,u‘g(xnif&, m) = 3%52@%? i

i

N 20 A dal R Ho=Frm
/"(«; K= et 7“"(;<=—ﬂr)‘—mv“

“UNow, the trick is f£o Tearranges central terms inside the

(F + W +mI (R BV (Hamfvm) =
=(FHRAm)(F =2 Kat = BV (=5 )
22 (e +m) Ve (F-plem) + (2-26)
[ k)=r) Vi (Y- +m) +

F(F+ 1 +m) Ve[ (§-Ka)'=-m*] |

inserfting this rearrvangement into our expression for

the divergence: we obtain

A
€ Ky + K&)?T)‘uf (Ki,Ka;m) =




«7,53_

azmlwy(x,+y<;)+

{(2-27)

f A ) @’-e-m /“,7, ?’"Ka*ﬂ
(zR) ?, i (?“Ka)z-'”ﬁ

- A% Fem o Fagiem
Tr (25" 42 m‘% (4 + Ky ) MQ'YK'YU

where the last term can be written as

e J‘M F+¥tm o, fm

(2-28})
&5)(%*K0’ J ?”

Hera we have to add a remark. Noftice fthat the last
two  terms are both divergent. They then need to be regular~—
ized., The safest method to be used here is by introducing a
mase Tegulator. Dimensional regularizetion would not be con-
vaniant here dus to §the presence of the 1} —matrix which is
g particularity of the 4-dimensional space~time. Upon intro-
duction of & vegulator +field with mass ﬁa t M gones fo
infinity at the end of the calculations) our expression for

A
iKg+Kh}? T;”P (K, Kz i ™ } becomes

(‘K.'f'Ka)P[ ?}‘”P(K' Ke; M) = _?/.u?(xv Y M)J =
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=2m 1!/”‘-’ (Ki, Kaym)=2M 1,/,,, (K, Ka:) +

(2-2%
¥-Ks+m -
(23)“ "T‘“T" ( ?—Kz)"m"T”

“ﬁff(z,nvmyf L*r] [m—m] .

4K, n ”?,

<

Now that the ftwo integrals have bsen regulatsd by
the la mas gﬁﬂ we can apply the following argument: each
integral 1s a pseudotensor, due to the presenca of °(r. How-
gver. they individually depend oniy on one four—-vector: the
first on Ky and the second anlﬂ . 5o they are bhoth zevro since
they are Lorentz pseudotensors depending only on one veckor.
PMotice that before regularization, this argument could not
be applied a5 the integrals were divergent and did not have

any sense. Therefore

Y )
’(K]*Kl}er Tf‘”? (KNKI; 7") =2 Tf.gp (K!)K3;M)j="
{2303

=-2mlw,(x.,;<;; M)-'ZMJ:/W (K, Ka;M)

We can see fthe relevance of fthe integral J&“” which




wae dedfined previously., We had

Tipo = 4imGuupe KP KS 1< fxdxdwa ﬁ

(4)

(2~-31)

2 =}
c[(kie KD X (1mm)(1=9)=m*]

.
Ipw Co.0; Pm) S = s g KK

oo oan eapansion of wa (K, K :m™) arocund the point K, = Kg =0

2
Iyuu (Kn Kl.~ m>"‘*--—-——-_l_€)40?6 KaPKf‘*

(¢m) m
{2-33)
+ higher powers of the inverse of m.
Tiis tThen shows that
M K 'K -""‘-————--s oy
/)%:l; Iv\u( [} ‘L}M) (4 )z G/MUG'G'K Kz, . { ~34 )

iy

wie see that a finite part pesrsisfts from the effects of




...7'{;._

the regulator field of mass . This is the momentum space
version of the anomaly developed by the divergence of the

current

(K| ¢ Kz}PT/aup (k,, KB—}M) =
(2-331%

¢
= 2m lyw (K, Kz pm)= W%mupv%?%f.

Finally, remember that the graphs contribuiing are the one
rsiculiated abowve and ancther obtained from it by exchanging

K, with Ka.and/d with O, i.8.,

e
(K! + Kﬂ-)PTyfnp (Kz., Ka,’ M):-
(Z2-36}

= 2W1|,¢4(K&,Kv; ”")“@cﬁ"ﬁ éty‘pcKa.PKf..

By adding the two graphs together, we get the §fol-
lowing expression fov the anomaly of the divergence of the

curtent

g

"y

3

G/w?rK.PKg (2-37)




Finally, the operator form for fthe anomaly 1is osbtainsd by

the field operators A%M and;@u {Keeping in mind
that the on-shell conditions were already used in calculat-
ivg  the in%egral.Iy“,{iﬁ s Kyim 3y 3. In so doing we get the

oo o T

zlebrated sxpression for the anomaly:

4 T A B —-_'w-—o £ o 3
Anomaly® & 45 > gé)w,m@ R K. Ka (2381

i3
~4

o2 2 o & -
A = e Ervoo P {2~-3%)
Tany & o FETT
@
WMith this result, oene can talculste the 71/ 2 Y
decay procedurse and the result is as follows. Using the

smooth extrapolation in the neighborhood of q =0 with
2 .
J(")a(:-r—-%——-r-« Tto {Z-40)
¥ 12 rm? ) J (o).

and the guantity, g/ m=1/% . whevre + ~ 93 Mev, the life-tim

m

from the leading term of the expansion (2-40) is

&

I - 2my Mf Zanp w w 2Be | o 12 (2755* 04 -k,-ks)
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= 3
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This vresultl 10 1 is quite near the experimental rate

FW’-‘CT-?TiP-J’) V. (2-42)

Mow, ftwo important remarks are worthwhile

13, Notice that though we have dome ocur calculations
by considering & mass m for the fermion, the sxpression
for the anomaly i1s mass independent and indeed chiral fer-—
mions, which are massless, are +the responsible for the
appearance of the anomalies. The mass we have vsed for our
calculations has been inftroduced as a sort of infraved
ragulator{fthe %riangle loop graph without mass in the propa-—-
gators has infrared divergencies?. But the limit m e  at
the end of fthe calculations does not cure the anomaly, which

ig really an effect of the zervo mass fermions.

2. The above expression +For the anomaly can be

shaown to be a total derivative:

G/ADPGFMFPFg /aupc-(.?ﬁ/au"’ 90/3)4);'?65




R P

=2 €uops (27RY)FFT (2-43)

=2 e/wgm‘ Bﬂ(fé”F”)

gmufm' Q}AFPF = G/ug’w_ (2’“9 P‘@f’_ @f"g%fa)ao {2—44)

So the anomaly is a ftotal derivative:

O =G5S F Gupe 27 (4°E )

2.2 Path integral and anomalies: +the Fujikava's

approach

In pur derivation of the Ward identities, we warned
thhe non-trivial fact of the invariance of the path integral
measure under the classical symmetry transformations. This
might not be the case in several interesting physical situa-
fiuns., Indeed, as we shall discuss in this section. ths ori-
gin and interpreftation of the anomalies will be traced back

in the non—-invariance of the functional measure under the




transformations of fthe classical symmetries.

Just to conclude., we could summarize by saying that
in  the path jntegral quantization it is in the functional
measure that we locate the ancmaly., which is equivalent o
styudying classical current insertions into connected G%ean’s

functions.

#s an application of Fujikava’s approachi 11 1. we

shall derive the axial U{i} and the non—-abelian anomalies.

13, The chiral U{1l} anomaly

The anomaly associasted with the global chiral U{l}
symmetry plays an imporftant rule in the general discussion
nt the chiral anomaly. This anomaly also deserves sufficient

athr

in

ntian in wview of the non-renormalization ftheorem fthey
ohey. Phenomenologically this anemaly has application in

conmection with the QCD (9 -vacuum problem.

To derive the chiral U{l}) anomaly., we shall start

From @ QCD-1like Lagrangian:

5& =1?5(;T/*J%_m3110..;—l_1%;:f‘”5w' {2-48)
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whare
F/““ ”[D/A;Du] , Dﬂz %w(,@/m ' (2-47)
Aﬂﬁﬁ;‘ra ’ ET&rTbJr‘E’fm,QT& . (2-48)
and

tT‘(TQ Tb )még% {Z2-493}

where delta functien is in the adjoint rtepresentation.

Montice that we follow Fujikava’s conventions for the 'Y -

matrices. After Vick rotation %o the Euclidean theory. we
frava
o
==Y {2-50}
Xk\ ﬂ L3

We start then now by defining the path integral of

the theory according to

wW =J@{p"©lp0®/3/ﬁ“‘ﬁ’“§£}, (2-51)
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where gauge fixing and ghost terms are supposed to be

includad above, however, they are nof relevant to the ano-

l.et ws now specify our chiral Wi1) trensformation

;W(X)'Y,r

V(%) —s Ylar=e V()

i iiJ
L0t
i

V) — Plors o™

wikh

sy

R ¥

v
1
L

and ses how the Lagrangian changes under an infinitesimal

"{I« transformation.

- = 92 - d o2& ~ .~
g‘f"'ga“va%ﬁ * 2.9 %“;,.‘tp +—a_ff §Y -+

+—§%8w=@5w"§manwn

]
{
Ui
B

.—

+ (Pia V) (i D)V
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*(@T’“lgfﬁﬂm"?)(mwﬂaﬁ).

Since

=0, §YP=iotysYP (2-55)
s we have
BL == () PV Y Y- 2ima Py Y | (2-5&)

The term multiplying ;%Ro{ defines the symmetry current

J/f\w = '@T’" T Y . {2-57)

The term mulfiplying m gives the explicit breaking of fhe

ciassical current

9”7‘;)’-'25”"‘:0')’4"}0- (2-58)

The whole idea of the Fuji&ava’s approach comes now.

It consists in expressing Jacobian factor for the classical

transformation as




fa"“Dﬁ(@) @ (x) = An Qulz) (2-62)

£

1Y

V(=3 AnGalz) =3 Qa <zl po2

F‘J
B.
]
g

VP =3 2.6l =28.¢9al 22,

with the coefficients Q.. and-@n being elements of a Grassman

gigebra and the basisz wvectors (& } being an orithagonal
= .43

bamis

fel;( QL) Puln) = Dpan (2-64)

The expensicns of WY {x ) and Y (A in terms of the q% (X))
shawld be viewed 23 a coordinate

transformation in the fiesld

space; then the volume element

DPoYy

i t0 be ve-sxpressed in fterms of the new coordinates Ry and
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since one knows that the

mial in the +fields and

duced into the sffective

P
i

the motivation #for

anomaly appears as a local polyno—
as an explicif breaking term inftro-
action by guantum corrections. This

assuming fthat the non—invariance of

the measure comes with the exponential of the anomaly. The

raason for the appearvance of the paramster ¢ (X} is that the

annmaly is interpreted as the variastion of the effective

action 7$ under the classical symmatry:

gw;_m—?" A~ a&(xjfz\(x). (2~60)

The problem which then remains is the evaluation of

the Jacobian factor

wfifd’%wx)%(z)}, (2-61)

Its explicit valcuylation becomes more +fransparvent if one

gepands the fields %P (A ) and Qp (A ) in terms of the eigen-—

states of the Dirvrac’s operator in the presence of a back—

ground ﬂfux 1. Denoting them by&,(® ), we have




D@@"@w = ﬁdawd'@m . (D)
deh <Pl a) doh <X Pn?

Ome should note that the Jacobian determinants in the denom—

Land

imatoar coume because 7# and 1# are GBrassman Fields and so

thought of as 92_ .

The Jdatobian for the transformation from Qp { X and
L ad f—
1p (%) to Qw and 4. in the previous equation becomes the

grmity, the reason bsing that the Dirac apervaifor E§ is Hevrmi~

a@lﬁc@w = gd&nd-@:‘ . (2-&7)

Tha prablem now is to see how the new volume elemant
N dandd, (2-58)
n

under the chirael trensformation. This can be basi-

i
cally worked oub 1+f we seft fthe ftransformation of the coedffi-

riemnte Rr aﬁﬁ-én . To do this, let us start from

OLCR) Yy

lf,(x)=€ Y (x)




7 i ¥
=5 2190230, G 12y

Mow, dnvawing the orthonormality of the hasis %’h { A ¥, aone

tan devive that

R(RDI Vg

Q,:sg[fgl;?:(ﬂe: G, ()] Qw (2~70)

Anglogovsliy we can find that

e/ i Py 'Yy
8., "—‘%[j’oﬁ( @:(*)eng@m(x)]'@m . (2-71)

What we have mexrt to do is to work out the Jacobian

at the chiral transformation taken

.. . , 5 2
ramaining once again that fthe d Rlwand d%m bashave as ———-— and
]
w—e fdue to their GBrassmannian character. We have
234.,

Tidal d3. = dor [ [d% @1 -
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Hecalling now that det(Mi=expiitrlin{Mil}, we can rewrifs fhe

previocus Formula as

Ndald§r= +2pf-i 2 [dret (0@l G, 127]

(2~74)

*Tdandba .

To understand this last step, we have to wvse that

small amd the orthogonality of the basis P :
enp{ Ly b [d'% Gont2) €™ G, (2) =
= 2Ty S ol G (141 %o t) P =
= e f By hou  Gumu [l @2 i Y P )= (275
=ep{ v Jutl @L i s G, }=

= exp {Ziflkot(1)§] ¥, .} |

Fecalling once again that the change in the volume

slament is in the Fugikava’s approach given by
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90 ¢$ mﬁ’{‘wi/‘&[‘%o{(wg‘?(m} , (2-7&)

we identify the anomaly as being given by

ft}/ = 2: (Pf(?”TJ ({’“fﬂ). {2-77)

AT this point, it is already interesting to emphasize that
the anomsly can be written in terms of the eigenvectors of
the Dirac opervator in the presence of a Yang-Mills back—
ground, #s it is written in the previous feormula, the ano—
m&ly edpression: being given by an infinite series. may not
conpverge and  then needs a regularization., This is achiaved
by introducing & convergence factor in  the series of the

falliowing +form

A :;(P:(X)TJ (Pn(R')":

{2~78)

- A,
=L Z G (X Ve € G (R)

PR =R

S 9%1 is an sigenstate of the Dirac operator, the regular-

izeid expression for the series giving the anomaly bescomes

. - Pl
A =Jﬁ:;§ Gl Vs /”GD,,(X). (2-79)




We could now remark that the above expression
carrasponds to a logal version of the Atiyah—-Singer index
theorem on which we shall elaborate better at the end of

this section. It is worthwhile however to keep in mind this

since it represents an inferesting marriage between

utical and topological considerations about anomalies.

Coming back fto our series defining the anomaly. the
trovlem now is5 to evaluate its sum Having already regular-
ized it fhrough the exponential convergence factor, ws may
tske the basis g%.to be given by plane waves ,explikz}. This
iz & continuous basis and the sum over n should be conver-—
gent into an integration over the wave number K. One there-

fare abtains

TG Vs Gutry = o o, [k |

(z7)¥

(2-80)
ik ~Bqr '

z s
whare we should use thatﬂr:D’“%“‘z%‘{Yf,Y”]{?u and the trace

ig understood to be in the Dirac and internal spaces.

Manipulating the exponantials, the above equation

TN e rauritten as




2 T

Z@ (%) Vs S"nfﬁ)"‘,ﬁm% A LXs enp]

(2811}
. . {
~(t @&Df,)(akﬂ-@gf’)émi'?ﬂf?”] Ffm} .
Mow:, & Trick comes 1in. Une ve-scales ﬁgm according
K, — K ! . {2-82)
e 7 M

{oms should think of M as being the modulus of the cut—off
M, in the sense that the mass dimension has been factorred

puty a&nd espands the exponential in  the integrand. which

% (F: (207 ?n(x)m,ﬁ?’Tx 2] X

]
(FIY YD B Js 8

-

K

Mers the basic facts we vsed were: first. isolate the factor
KB 4 . ., L

2, i then sxpand the remaining expotential . taking

inte sccount that (Y Ej},;ﬂ% 13=0, and the 1limit when

M Fue=s to infinity. All we are leff with is the calculation

oF

e (W T VY, T DEo Fpe (2-a4)



artd the integral

% »

-} K s

f o K e {2-85)
(27)¥ -

With these results, the Final expression we get for

o

al current anomaly is

+
1*‘
m
u
N
bt

Vatde 4 -
34 32ﬁ2}§, € E !,F.a? (2-8&)

As promised. the chiral variation of the volume ele~—
mant was the source for the above anomaly. Reconsidering our
anaiuysis of the Ward identities in the presence of an  ano-
ma Ly the moditied chiral Ward identity for the theory con-

sidered here will read

TNV YD =2im<T (T 1 Y-

{2-~87)

<T(.$YF)‘ F/wz)>> o,

327:2

where




g &
F}w = ij_o«(a F ¢ .

To conclude

indax

ETAIlYEls

ig sdefined as

npsrator and

index

In
numbber of

state

Kermel D =

cwitulating

af a Yang-Milis background and obtained.

IMYETIENT answueT.

9

3202

of a compact and elliptic

ook

aEher words:

the index of the Dirsc operstor

(288}

this section we would like to comment on
in the light of the Atiyah~Binger theoreml % 3.

operator D (functional

3, which is a topological invariant quantity:
the ditference befween the Kernels of the
its adjoint:
e I .
of D = Kernel of D — Kernel of D {289}
the index is fthe difference betwesen tfthe
independent zero modes {(zero modes means sigen—

, . ; ¢ .
of zero eigenvalue) of D and D since

Atiyah and Singer tackled the problem of
in the presence
as the

topulogical

the anomaly expression

{2~91)

I (EED.




Then their work motivates a possible ftopological interpreta—-

tion for the anomslies since they cean be viewed as the index

n¥ the Dirac opsrator.

2. The non—Abelian anomaly

We wish, in this ssection. fto discuss +fthe possible
arnomslies of non-Abelian transformations. In this case. con-
trary to the previous chiral U{l) anomaly we shall see +that
twn  differsnt forms (consistent and covariant) of anomalies
will appear which correspond to the twoe different specifica—
tions of the determinant of the Dirac operator {(det jﬁ 3.
Thesze two alternative ways of expressing & non—Abelian ano-
maly are equally relevant, howsever, they are used for dif-

feTent pUTPFOsSEs.

In the present section., we are going to discuss and
skhetch the Abelian features of the derivation of the con-
sistent and covariant expressions  for the non—Abelian
anamalies. For this purpose we start with a Lagrangian

gdescribing the coupling of chiral fermions to gauge Fields

accarding to




L *’q?z‘i’)f/‘p/“‘lpb {2-92)

whara

(2—233

[Ta- Tel= :fabc,Tt ,

and in the adjoint representation

T (TaTo)=tCap, Ta=T1 (2-94)

andg

Y, =J—:215~"~P‘ (2-95)

Then in ferms of a four—component spinor?ﬁ ¢ w8 can write

5@ ={5E7/AD/«‘%I{‘W

=B I (G i f) LY

B N “r}. L
s"lp’iff'(l’é}h—rﬁ/“)’ SRV (2-94)

2




The relevant point we wouwuld Iike to call the attention te is
the appearsnce of twoe vertices invalving the gasuge field:
one with and anofther without a A{r, This motivates a more
genaral ftresatment, where one introduces a dervivative with
two different vector fields Ffor the two different vertices
{with and wiﬁhcut'?&). For this purpose, we follow Fugikava

anid start with

8&1 g‘iﬁi*}véizﬁ‘yp;
{227 )

D

n
\f‘ll)
|

ir};@fTﬁmiﬁ/zTgYJ .

Motice thet the artifact of introducing D/ and i@M will be

/A

shaown to have also some ftechnical motivation when we shall

Jeut

discuss the consistent enomalies. However, at the wvery end

ot the rcalculations we will set y; = A?n

see From the beginning of this section.

as one can already

jrel
7]
~u

ore starting to separate our caleculations for the




sonsistent and covariant cases, it is worthwhile to ramark
that the basic  operator ;g is not Hermitian in the

Euclidean sense: (9’, ,ﬁgba }Efﬁﬁgﬁ, : 603 3, whers

(&. )= [dx ¢

Wsing Tthis definiftion of the scalar product, one can rsally

trreck that

+ M . .
= - : (2-392)
P7=Y"( 9, V+id)# P,
where we wsed the following properties

U=V, Y=y, T e Ta . (2-100)

To circumvent the non«ﬁermiticitg of jg » there
appear ftwo possible ways: they consists in either making an
anaiytical continvation in é%‘ar using the so-called polarp-
decomposition of the opesrator j5 . These two different ways
uf handling the problem will lead +to the censistent or

covariant expressions  for  fthe anomaly. Left us now discuss

gach case seperately.
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13, The consistent anomsly

ot

i this case, the hermiticity of jﬁ iz achieved by

parfarming an analytic continuvation in K%M4
A, ——s i (2-101)
e A ?

o
so that P = B

If one now Te—-expresses the fields lp and 1p in

i d
the Grassman coefficients @Awn and -@“ ; with bhasis

“§u

Tgrms 0

vECtOTS C?m(lj and such that

73% ?“ ()= A, G, (x), (2-102)

the derivation of the Jacobian factoer +folliows exactly the
samsz patiterns as in the derivation of the chiral U{il} ano—

e A1l one is left with is the evaluation of the Jacobian

ik
ot
"

T
i
i
e
[}
-

% ) .
‘gf:a £ f-‘iﬁ- f-'x‘xT;Ta e“f’% ~€”W, ip-103)

(2#)%

7

Taking correctly infto account the traces owver the group gen-—

erators and the expansion in powers of M. one ebtains the




Failowing result for the anomaly

“3a7 & [ Ta 9 (0 2V, -

(2=-104 )
)
_"’:?:'Vu Vu%)j ,
if, @t the snd of the calculation, one sets @%R=~ %; .
Befpre proceeding to  the investigation of the

covariant  anomaly, it would be interssting to remark fthat

e

che Con

i

istent expression for the non—Abelian anomaly. will
be vesponeiblie, a5 we shall discuss in  another section
far the integration of the anomalous Ward-Identities in the
farm of the Wess-Zumine term which has many rtelevant

shenomensiogical applications.

2Z¥. The covariant anocmaly

The second way to overcoame the nen—hermiticity of

the originasl Jﬁ ie by considering the following eigenvalue

ggustions,




BB Gt = A5 ¢, (2)

PP 2= A pal) .

HMere we have uvsed the so—called peolar decompesition of the

0

i

i

ratar ;5 {(#functional analysis book!.

In view of the asbove eguations. one uwses the dif-
farent basis vectors gé,,\ and ¢"4 to reparametrize the fields

7@ (x) and 1? (x):

Y (0= 0uGul2) =2 Rn <2 Gu>,
(2—-1061

T ow=Z Lo Palm =3 ba¢dalad,

With such a change of basis in the field space. the wolume

siements o@iﬁo@w and cla,‘ o{-@., are related by
- =]
DYDY = [der <x1 Pad] 2

x[do¢ Pl 25T Tidand 4.

{im the other hand: wusing the inverse matrices, the ahove

ralation can be rewrititen as




DYDY = dok < Pl 2> ok ¢l (5]

df@e&»@wﬁam .

{2108

the Jacobian gi-

Havimg chenged the volume element.

to anomaly will become

wing Tige
» @ -
-1 + (2-109)
“ﬁr[?ﬂYxT&gon+ (Ph T\S'T&@MJ >
snziogously te the case of the Ull) chiral anomaly., we have
studiad, Introducing the convargence factors
'W*sz - < i
g and eﬁg/ﬁ‘ (2—-1107
basis,

e

regularize the sum above and using the plane wave
calculation reduces to calculating the following

'
[}

ot

ths anomaly

FARTESS10N

e"" K'sz TQ[ ‘ég ﬂ/ﬁl:‘ ‘e-pﬁ%i]

. . ¥
- o'k
%—\:r;%f(zm“
(2-1113
18- A
x € .
done in

we Follow & series of tricks as

fMNow
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Fujikave’'s woTk. The first step consists in rewriting

/

. -T ,
W""Yﬂ(@m ié/n)’”féf”“‘{‘f"rﬁ [?&.”n@m}x

{2-112)

l-—-—~ = POLZTs ) g rpi e

L/Ms%qﬁ/g/m ‘Q/Mg%,_lg/h (2-113)

From this new expression. one can show that

PP =pLy Ik PRy T

P pl=pe )a%tfﬂ' 7 (m’—-’;gi

The second step consists in showing that the sum of the con-

wergence factors is

éaﬁaﬁa ‘”¢ﬁ@4ﬁ ,pﬁgkﬁa “ﬁ”ﬂldh*

12—-115)

+ €
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Im poesess of this last result, the anomaly calculation

turns to calculating the following sxpression

s A 1 _.',
(*I)JQ/uahjtﬁ’ .dugn é; K gﬁffnra X

{ad-11413
[ —W(L)?/Ma. -P(R ‘xma ik

Thern comparing with our calculation for the chiral Uil ano-—
malg, aur problem now is just the same:. up %o the group gen-—

grators. The result is

; oPT
A== 5257 € I Te (Baotrr»

{(2—-3173

xh@m) + F/w (c)Fa@ (£)].

which is the expression for the covariant anomaly

Just to conclude, we would like to point out  that
the covariant anomaly is more suitable for applications in
the presence of both the local gauge and global chival sym-
metries, a&s for example unified theories. However, the con-—

dition for fthe anomaly cancellation: namely tr{ T;-ET};’Tt]J

such that it cancels simultaneously the consistent snd

[
in
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the rovariant anomalies.

Z. 3 MNon—-renormalizstion of anomalies

In this section, we are going to discuss the Adier—
Bardeen theorem, i.e. the non—-rencrmalization thecreml 12 1.
inn the following. we shall see that +this theorem ig very
powerfyl in discussion of the anomaly because it restricts
the chiral anomalies only at one-laonp level. Due teo this

theorem: we need not consider the higher loop effects.

The regularization method based on the introduction
of higher devivatives is not very practical but it is very
good for formal proofs and manipulations. It consists in the
irtroduction of higher derivatiye terms in the Lagrasngian.
which give rise to propagators which are bhetter behaved, of

the type }<’¥.

Ordinary gauge theories, this method of regulating
the theory has been developed in detail hy Slavnov and he
praoves thaft fthe divergences, affter +the higher derivatives

have been introduced. appear only at one loop level. From

two loops on, the theory is perfectly finite. Now since the




ansmalies appear  in association with divergent graphs, and

e can can—

3

Slavrmowv method respects g

i1
fo
A
iz
)
)
&
i
-—:3
ot
[
o
i

ciude +%hat the anomalies appear only at one-loop level.
Soing to eanoither vTegularizaticon scheme, an anomaly power

uniting  indicates that this resuli remains frue. For exam—-

Gig. in four-dimensions. anomaly power counting gives the

wnara

p T riumbey of external wvector lines,
EV = number of external fermion lines, (2-1183

L = rnumber of loaps.

I the triangle case. E =3 and E =0. Then

Theretore, for LB 2 we have that © is negative and the tri-




anpgle graph Converges. For L=1, 1% diverges and gives the

anomaly,

S50 concluding. we can zay that the anomaliss induced
py %the chiral fermions appear only at one—-loop level and do

net receive contributions from two loops on.




Chapter 3 & general overview of the arial anomaly

problem in globally supersymmetric theories

In the early days of supersymmeitTy. Ferrara and
Tumino showed fhat the suparcurrent {a spinor current!, it
it is suitably defined, share a super-multiplet with +the
anargy-—momentum fensor and the axial vectat currvent of susy.
This then suggests that, at the quantum level:. there is also
ann  anomaly super-multiplet which has the components of fthe
givergence of the axial current. the anomalous trace of the
improved snergy-momentum Ltensor and  the "Y —-trace of the
supersymmetTy spinor current. All of these anomalies are
ranagrmalized to all ovrders and proportional to the renagrmal—

ization grToup {3 ~fFunction.

This fact brings some questions about the wvalidity
of the Adler—Dardeen thecoreml 12 1 in susy theories. This
the2oram states that the divergence of +the axial current
receives only one—loop corrections, while the superconformal
anomaly is proportional te the !5 -function and thus gen—
arally receives corrections to all loop ovrders. This

apparently conflicting Tesult and the solution to this puz-

T

rle will be the main ftopic of this chapter. We shall define
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here the super~current multiplet both in & component field

and in a superfield analysis

Once this is done. we proceed to the anomaly calcu-

lation and finally we discuss the way %to recancile the

adler—Bardesn theorem and supersymmedry.

3.1 The superconformal current

The starting point is the Lagrangian

L =£o+im+x3—

==L (20T 2 (F% g -2(28)-LiPv oy

(3~1}

o 2= 2 3
+m(FA+GB-Fi YY)+ §(FA-F8-+26A8
~4YYA+IYVYB),

which i1s exprassed by means of component fields. From +this

Lagrangian. the equations of motion can be got as follious




DA +mF +28FA+2368 -igPP=o
OB+ me-28FB +286A+i§T VY =0,
YoY+mF «25(A-V8B)Y =0,
FemA+g(p-80=0,

@ +mB+2508 =0

Gince the Lagrangian is invariant under the restricted susy

=§

ranstormations {or a larger algebra for m=0)., space-time
translations and chiral framnsformations: the Noether theorem
givas the spinor current associated with the susy transfor—

mations

I =[v.2(8-78)] Y'Y + Y (2-VB)Y
+ 3V (R -v8) Y e

=[Y- (R -V:B)I Y'Y= (E+¥: GOV Y

the sacond spinor current associated with fhe remaining gen-—




srataors of %the special supsrsymmeitry transformations

==z, 3" -2 (A=Y B)Y"Y, (-

the cenonicel energy—-momentum tensor

[po= (2l 200+ (2.8)(2:8) +

(3-4)

*“”3( 92:‘?25* www 110)“'?‘??/“‘)&

and the axrial current

r

TJn= RIpBI-B(2A-ZIPLLY, @

whnich satisfy

EZM;jfng 0

?

I =c2m (-7, 8)Y,

(3-&3
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orJ = m(an-FB++iPv Y

Heves 1t should be noted that +the second spinor current can-—
nat be expressed only by fthe first one. To improve this

sifhuation, the improved gquantities are defined as

J{:‘f ﬁjm—r%(}”’v-B"T-??ﬂ)”

< (B +Y:B)Y 13-7)

1

M M
I“’“‘i’ ”"‘“F-ZJ;,__?

hers the improved second spinor current is expressed only by

the First one. énd the improved energy-momentum tensor is
2 2
@uu” Tjﬂﬂ”%(%ﬁau‘“?)&)upfﬁ +B8) (3-8)
These improved guantities satisfy similar egquations,

fd
I

D

1
o

O lig == %8 = 217

(3-93
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2 - 2m (ﬁg‘”"fxé;)‘%ﬁ,

E;ﬁﬂq%w)g 0.

o the case of presence of interaction, the modified

currents and ftensor are introduced as $follows

Jea=Thg t (v 2=y 2y )y

"

Iﬁ»&ﬁvﬁ’-?ﬂjﬁ;& ,

{3-10)

QLn,MHAQ (guu'“'zl(I%uﬁb'”)zﬁﬂzl)lg ;

63
» {7
;T¢wwiz-j>w + é%% Y,
which satisfy

0 I =0

M wy?
oLl vned =~ W0 I, “'jf"xb ,

Iy eeg =0, (3-11)




29/ «-..,ﬁ...
Dndpe e = :

After all of these definitions: the charge of the restricted
suparsymmetry +Eransformations: i.e.. the 3-dim integral of

the time component o#ija, has not been changed,

jd;jim *"fcﬁcjzﬁﬁf&%j’”m& , (3-12)

if m=0, the remaining charge has not been changed,
either. Himce the larger algebrs is preserved only for m=0,

this will not bring any difficulty.

Mow that the component field expressions for the
currant have been known. we would like fto derive the classi-
mal supercurrents for both the chival and vector wmultiplet.
Theze are the superfields that contain the superconformal
companent currents. They can be obftained in principle from
the classical action via the Noether theorems or they can be
calvulated by considering supergravity covariantized action

and then piciking up the linear term in the supergravity

potential, sinmce we know that the latter couples +to the
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superconformal  curvent (fhis is the superspace analogus of
stating that the energy-—-momentum tensor couples to the

tensor  of general relativityrl, In general:; the fwo

e
§ii
(8
]
A
%]

procedures mentioned above do not lead to the same vesult,
uniess we pevform Field redefinitions. These redefinitions
have no phusical effect since theuy only change the currents

by tevms of proportignal to fthe field eguations.

Te start, let us consider the action fer a scalar

mulitiplet in the presence of background supergraviiy

g ""jd% 0{% E"§ e‘“’” E”‘ (3-13)

7

whera Ei is the supesvdeterminant of the Vierbein supevfield
) and}ﬁ is the supergravity pre—-potential. If one now uses

the linearized equation

o

alst

1 oM s . :
E'é %i“-ﬁé—D&DNH .4-:_%«,,9‘,{&3_{”“" (3-14)

we ohtain the super—current

l“
i

J. &3

a.a

~E (Ba T )(DuB)+£FiTF 219

The @ ~independent component 09\3“& is the R-symmeiry axial




current given by

# » -y - s
9&5@”%@ E?a&@"‘"‘%"".ﬁalpﬂ (3-1&)

the component linear in (9 is the supersymmetric current

Tp.wsm =% (05 AD P+ $ (Fa)F Sy
(3—-173

o &2
%5?%/@ 5£9aaqpp

2

and at the @(9 ~lavel, we find the improved enevrgy-—-momentum

tensor
@@@,Mﬁﬂaﬁ'{ZFkF &,«fs §ap =2 (?‘gﬁﬁﬁ)(ggéﬁ)
+ 2 'Tﬁé i 9& Y + Vs (P "}"@) {3—-18)
= (9pa P30 W + L¥1 Ty Dz A}
By using the superfield equastions of motion, one can show
Ehat

=2
D Juz=0 | (5-19)
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which i1s the eqguation expressing the conservation of the R~
symmatry axial current: fthe vanishing of the supsrsymmetry
current ry ~-trace and the wvanishing of ‘the improved

snargy-momentum ftensor trace.

An investigation of the super—conformal

L
i

current anomaly

{al The self-interacting scalar multiplet

Considering the scalar multiplet with components A,
& 1Pm v F oang G, where AF are veal and B: G are pssudo-
scaiar fFields, and iPx 15 a Magorana spinor field, the

cgmponent field Lagrangian for Wess—Zumino model reads

L =-d(omr~L (o8- Lifv 00 +4 (F g

{3-20)

+J[FA-F8+26AB-IX(R-1:8)X ],

i the four-component notation. the R-summetry axial current

13 given by




The one—ioop graphs contributing to the divergence of fLhe

current are given in fig. 3-1,

This example is interesting because, according to
what we generally say. external vecter fiselds are nesded fo
get an anomaliy. while here we are taking external spin—zero
gr spin—~half particles. however, using & susy regularization

rroredures. we find that, at one—loop level,

Therefore, unliike the Adler-Bell-Jackiw anomaly case, aoane

* )
could redefine 9)‘ by adding the guantity

2 "
[ ot
i og-w; i
7 (BB + 53 AYA) (3-23)
o that the new current is anomaly-free. Lelt us now consider
the rase of the coupling of fthe scalar multiplet to a baci-

around vector multiplet.

The Lagrangian is
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o S
<
e

R<




L =-4L(o)+ (2674 T (9, 200"~
- 108" (8% )~ 4 K (R8N 324
UL+ (2]

From which we can get, by vsing the Noether theorem. the

frllowing currents and tenser
@
8 = YYD, (A+¥:8)) X" +

+ £ 002 [ (8% ¥ B AY]

@fﬁu (PRNPuf3)+ (96)(9»8)«»%5“}&—%9;);{ (3-25)

Mpo = F( Qo) (47487,

t«(&"mﬁ%ﬁ 8 i g

Ip=RGQB-FANGLX.

“We lock at the one—loop matriz elements of the asbove quanti-
Fisa between tThe wvacuum and states of the vector multiplet.

e . LN 5 A . .
Mne anomaly &F‘7;; iz the usual chiral anomaly as fol-

“
Loy




{3-24)
32
Cm“ 3CV‘,
325
where (jv ig the Casimir operator for the Y-M group. This

gaxpression receives contribution only From the spinor part
of the current » that is. the graph, in Ffig. 3-2 formed by
goninar fields. This anomaly, %together with the ﬁ{ —-trace

of ﬁggw and the trace of q&u . may form & superfield as

peda

ts  components and  transform into each ofther under the

superconformal transfor- maticn.

{b) & discussion of the supercurrent anomaly in

susy gauvge ftheories

in the previous subsection. we have presented did-
ferent models where the axial current of the R-symmetry
recaives anomalous confributions. We know fthat this anomaly
lies in the same multiplet as the Y —trace of the susy

g

i

rent and the dilation anomaly. Thus, in & susy ftheory
where the scalar invariance is broken, the axial current has

& thival ancmaly and the susy current has an S—-susy anomaly.

the zoefficients of all 3 anomalies being equal. Howsver,
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- (&2

I

fig. 3-2



just as translational invariance is not violated {the trace
af  the energy— momentum tensor is anomalous: not its diwver-—

genice!. neither is ordinary G-susy {the fY ~trace of the

aysy current is anomalous, not its divergence).

In the present subsection, we would like to point
out that an anomaly may exizt for the divergence of the susy
current in the case of & susy non-Abelian gauge theory. It
is warthwhile, howsver, to stress that one cannot derive the
anomaly from a susy transformation o$> the axial wvecztor
current anomaly since these two anomalies do net lie in the

sama supermultiplet.

By considering as SU{2) susy gavge theovry, with

l,agrangian in the WKess—Zumino gauge , given by

izméfazp“f'”.@%{{ﬁ“}}(pﬂ‘lp)“ (3-27)

wirars the Yang-Mills field sirength is

O &
E"’"‘ = O fov -9,,/};-4'36“;@:’/): (3-28)

ot
i
B

s - & . . -
with A =1.2.3 and 1p is  an Majorana spinor. The

cugvariant derivative is
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(9&@)&52}.@“+3€%4,§\;ﬁ§ , (3-29)

It ¢an bhe shown that this Lagrangian ftransforms into a
total derivative under the following susy transformation
laws
a . B
&
{3307
1gh
By wsing the Neoether theorem: one can show that the

Mosther s current generafting the above transformations is

Seor

O m“‘i‘(ghﬁ}j}e)a{? GLPM?“F:_Q ) {3-31}

The contributions toe the anomaly of the susy current. :Tm& :
coms  Ffrom  the 4 graphs drawn in $#ig. 3-3. Their respective
ralculations with & suitable regularization procedure can

be found in referencel 13 3. where the opera— ftor form of

the anomaly was shown to be

9’S,u=~u c Ol = 20l X7°2 Vi (3-52)
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where fthe on-shell condifions for the external legs were

The 2xistence of such an anomaly for the divergence
o f @g;m is not a disaster for the theory and thes renormal-
trability of fthe above susy model is noft spoiled since nn
gauge particle is coupled to the susy current {remember that

susy is global in this modell.

The most sericus problem one should worry about is
nieat the appearance of a non-vanishing gfﬂﬁ;ux could destroy

translationsl inmvariance in superspace and then break global

FURY. Howawver. this i3 mnot quite the case since one can
P
dedineg a4 modidied supevcurrentAs;m given by

& & o . gs’& [ M a
%mwh@(ﬁ“e"g&p )‘”’é;{ii@,a{? QAv -
(3-33)

PP ~300 (V- 2V 26umala (T, Y 7YY

Thie modified opeTator is such that

9<el Bl V. 43 =0 |




i
[y
8]
L

|

&
)

4@3Wﬂ4§}.“§1ﬁ,ﬁ}mo , (3-35)

which meane that the one boson-one fermion matrix element is
pin 372 constraint. The

o~
ayiantencs of the conserved aperator Ag;a maans that +trans-

ranserved and satisfies the

i

tstional imvarience im supeTspace can be vestored and susy
18 not broken by anes-~loop effects. This is in agreement with
the fact that 1Ff susy 1is not broken at the tree—-level
apagrorimation, 1% is noet broken by radiative corrections in

any finite order of the perturbation theory.

YJust conclude this swubsection, we mouid like to
remark  That one can always +ind a mechanism to cancel the
anomaly of the divergence of the super—current by suitably
coupling a scalar mulfiplet in some representation of the

supe group to the susy Yang-Mills multiplet

]

{c) A sample calculation: the superconformal current

anamaly in superspace for the Wess—Zumino model [ 14 ]

We hsve derived in the subsection b, the super—

field which accommodate R-symmefry azxial current, SUSY




rurrent and fthe enerqgy-momentum fensor. By coupling the
jeze~Tumino model to a supsraravity background field, we

WERE

4

ashtained the classical suparconformal current to be

T s ﬂwéfﬁ&?épd@«@ér%i and . (3-36)

whith satisfiss the conservation egualtion

5

-y
ﬁ Je&i& = 0 {3-37)

py wvirtue of the eguation of motion. This conservation equa-

-

ion espresses the invariance of the classical theory under

i

L

I

perconfarmal transformations.

e wish now to make use of supergraph techniques to
compute  the exprasssion for fthe anomaly of :jd;{(aﬁ one—loop
ievel for the Wess~Zumino medel. We then begin by computing
the wone-loap graph of the graph. in fig. 3-4, with two

. . . . . (o)
giternal lines and one insertion of the operator s - By

using standavrd supergraph technigues, we computed the graph

drawn above., which we denote by r(¢, EF) J’) ., QOur final

I =g ﬂu[?’z{’}+§’)2(?"P’)‘zj-f{[é'(?*?)éa(?”fl)ﬁé-%

(27
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¢

pek b=

¥

d)(?? 5(10’)




+ (2P +p-p, ?;,é]ﬂ%ﬁé%é’[é'(?*

{ 3—38)
# Py (4P e L (29 +P-Plua§ I P -
""5%’(3? +P~Plus D P D D]
Orng should note that the divergent part of iﬂ ig
giwven by
2 f 4% o
[aw =% § S (g p)* (4 -0
{3~-37

Gy

thygam&(&”ﬁ&@Dm@j.

idn the ofther hand, 1f one now uses again the standard alge-
hra: i1t’s possible to show that the wave—-function rencrmali-
tation of ths q& —syperfield, which is calculated $Erom fthe

graph, drawn in fig. 3~5, whose ansuwer

% - _—
'.*2" 32f(’f£7[7'&(?+}’)13 '.fd'@ deprir) (3-40)

it wufficient to renormalize the Green funciion T? with




Ppep>
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ade #in—

pot
us
=

surrent  ingertion. This simply shows that 71
iteé by the renormalization of the external lines, so that

1nuys dimension vanisnas.

i
1
1%}
oo
fo)
=
i
t

After vemoving the infinmity, we are I8ft with a

: €]
cwaii-defined ane—loop renovrmalized current ;Tda . This
renormaiized current has & super—conformal anomaly. whose
valus can ba caleculated by using Pauli-Villar’s vegulariza~

tion its walue turns oput to be

E&J;me—é(%fpa(@ﬁz@)' {3-41)

Mow, w2 are going to mention *%The chiral anomaly

orablisam in global supevrsymmetry and the Adler-Bardeen

Ade pointed out in the previous sections. the R-
symmetTry axial current. the supercurrent and the energy-—
momantum teansor are the physical components of the supercon-
farmal current multiplet. Quantum correcitions break super-—
canfarmal invariance in an explicit way and fthan give tvise
tn enumalies for the associated currents. However. since the

guantum coerrections can bhe computed in & supersymmetric




manmer. one can also deduce that the snomalies will be
members of some multiplet, that is the divergence of the R-
symmetry current, the Y ~trace of the supercurrent and the
trace of the energy-momentum tensor belonging to the same
superfield and can be fransformed into each other by a

sppersymmetry transformation.

The fact that the frvace of the energy—-momentum fen-
sor i3 proportional te  the f& —-function means that the
dilatation anomaly receives contribution to all orders of
revturbation theory. On +the other hand, the divergence of
the R-current should:, by invoking fthe Adler—Bardeen theorem
for global chiral currents, Teceive only a one—loop contri-
hution., Howewver, these ftwo quantities share the same mulbi-

2t and should then be transformed into one another. This

[ ]

¥
appears to be a clash between the Adler—~Bardeen theorem and
supeTEymmetTy. This is the apparent paradox that we are

going to try to explain in the course of this section.

{a)y To start, let us consider +the massless Wess—

Iumino model and its superconformal current given by

oy Gty

oot =”'§‘5&$Dm¢+é§iaaéf¢ . (3-42)




Grmearding to the superfield calculation carvied out in  the
previcus section for the two-point funciiorn with a current-

inssrtion, one obtains a one-loop anomaly given by

ﬁ&jﬁéf m”%(%fﬁw[¢ﬁz$j . (3-43)

Let us extract the scalsr component of the above

sguation, that is. fthe divergence of the R-symmeiry curranti:

&9

-i{D" §‘;‘}Jmé¢}@s§ = ij:‘?s(%-fg‘”axﬁ {3~44)

o, g . &
KL%««%E% %‘*%/ﬁ Da ] . {3-45)

This shows that one can rtedefine a vrenormalized component
. . . . ; . 282 .
chiral current by Temoving the anomaly of ;74& . This means

that one can work with @ new subtracted current giwven by

(}"k/ le) a )
“*“?aa—(%) K:;, . (3-46)

1t general. a finite subtraction on the chiral current can

nont  be exbtended %o the whole current supermulfiplet without




destroying the conservation or symmetry properties of the
ranormalized energy-momentum ftensor. However., fthe massless
Wese-Zuming model is an  exception to  this general rule.
indead, the new chiral current defined above is fhe first
rompanent of a suparfield given by

Vol
Jaa=7°" u(%‘)zgg””; (3-47)

of o}

whara

(3-48)

moy | Gy

=t [ Dy FDadr L Fiua PJ.

For this radefined current. we have now the following super—

trace

ﬁ&ﬁa&m%(%)zﬁzpd(&? ¢) (3-49)

By extracting compoments one gets a conserved chiral current

Loy
B

a Y -trace of +the supercurrent and a trace for the

epeTgu—momentum tensor. both of which are proportional to

fhae ﬁa ~fynction given by




pror=2 (L)

(3-50}
4%

The Finsl conclusion is that we can arrive at 2 situstion of

.

i

conserved chiral current and & non-vanishing f% —function.

i

fhe next step is to extend this analysis to the case

cf &
=1 gauge %theory
{b} Pure N=1 ¥Yang—Mills theory [ 14 1]
Wa consider the MN=1 super-Yang-Mills theory whose

zupeTfield action 1s giwven by

S%#Tvﬁ[&&“@wdwﬁﬁ.e‘ {3-51)

where
w . 5—92( ﬂgv 3‘/) (=5
a=1D (€ ° Da € . 3-52
Aas in the tase of the Wess—Zumine model. one  Can
touple  the abowe action to supergravity and:, at the linesr-—
tred level:, ons

can read off the Ffollowing superconformal

current




(o) —
Tax =Ty Waela |

{3-531
which satisfies the classical superconformal law
o & e (0D - e
D' Jux =0 . (3-54)

el

y veading components, one can extract the classicel expres—

Ut

ion for the H-symmefry axial current

‘jiggmniafji&4aQa

{3~-55}
rd
which ie¢ conserved.
otot o ) i
0" dagy=0, (3-5&)

The one-—loap graphs contributing to the renormaliza-

re)
tipn of the cturrent gj,“k are given in fig. 3-6.

By evaluating these supergraphs, one can find that

their overall divergence is of the type

{3-572
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wh gT R ‘Ev' is the wave-~function renormalization factor of
the wvecbtor superfield. This means that a renormalization of
the exfernal wvector lines suffices to renormalize the super-
cenfermal current. Then, by subiracting the infinity of the
one—laoop graphs drawn in the figure above, one gets that the

renprmalized current satisfies

. (7
D~ !I&w;%-@fsz(w’) , (3-58)

n
where ﬁ ‘3) is the one—-loop renormalizetion group ﬁ -

function for the M=1 super~Yang-Mills model.

Going over into components, one can find by comput-—

g the guantify

o = (Y] P
{D*. D }Jualw«mze {3-55)

5 i (,p P’ -]
D Jua == % -@3;5&[ FEE+20"Aada)] | 1860

This shows that, due to the second fterm of +fthe right—-hand

side of the above equation, the R—current does not satisdy

the Adler—Bardeen theorem. The problem now would be fthe
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search for & different renormalized chiral current which
satisfies the Adler-Bardeen theorem. In other words, this
mgans  LYthat one has to ssarch for another supermultiplet
whach accommodates a chiral current that satisfies the
Asdier—Dardeen theorem and this new superfield cannot contain
the ensrgy—momentum €ensor. Thes panorema now would be the

foliowing:

Cy . (85 .
{ii fthe 7renormalized superturvent;jdéz contains an

axial cwurrent, the energy-momentum tensor and the supersym-

metry current, howswver the axial current here present is not

e
T

g Adler—Dardeen current.

Nn)
(ii} the wmodified supercurrent Jmg confains +the

axisl current that satisfies the Adlier—Bardeen theorem as
ite first component. It cannot coentain & symmetric, con-

zerved energy-moementum tensor nor the supersymmetry current.

In referencel 14 1, the modified current has been

formed and ite divergence turnsz out to be

ﬁ.h::, =£§‘Z[% WPDMWE,-*%wN(D?wf)j (3-s1)

This now gives for the first component




'/:/[«f’) ey Por
9% s =t L L (3-62)
which then shows that there iz in the theory an appropriate

ehiral current which satisfies the Adler—~Bardeen theaorem.

A8 & summary., one can say that there is no clash, as
it was thought for guite a time, between the Adler-Bardeen
theurem and supersymmetry. What one has +$o understand is
that the renormalized superconfsrmal current contzins a

chirsl current which does net satisfy the Adler-Bardeen

B

henorem along with the energy-momentum tensor and fthe super—
currvent. Howewvsr, a chiral cuvrrent which does satisfy the
Adier—-Bardeen theorem caen always be found, hut it is located
in another supermultiplet. Therefore, one can say that,
though at the classical level the axial current and energy-—
momantum Lensor are members of the same multiplet, gquantum

corrections split them to different superfields.

4ll these resulfs have been esftablished up fto now %o
crie-ioop. Fellowing agein Grisaru  and West, it is shown

that at ftwo—Iloops the modified superconformal current is

(2 ’
— (2) (e () ‘ )
D Jus z[.—._ﬁ o Daluw?) (3~-43)

PR e




It should be gaid that the First term on the right hand
L . . (2) . . . :
zide { prosoritional to @ Y comes from two~loop graphs with
, ‘ . o (e) . .
the insertion of the classical current :ju& » acvording  to

second term. which s propor—

.J.
a

ragh in  Fig. 53-7. T

i
e}

'r
.

- tmi#n-/gny, ariginates from the one-loop superfisld

Lt LAl
o ()] , 12 0 () ()
winioh subtractsed from JN&, to give Jad x “Jag Km,:{ J,

ince from the equation above the coefficient of the

[t3) {1} sy
g P (3-54)

and the Adler—DBardeen cuvrrent can be defined by subtracting
Hhoe .ﬂ&uﬁa term, this coefficient must bes zesro, since the

chiral current in this multiplet must satisfy +the Adler—

Gardesn  ftheorem and cannot receive any ftwo-lgop contribu-
tion. This then implies that
(> ) ple
£ - ; £- £ (3-65)
Thas process i1llustrates how +the f% —function at higher

crders can be fixed from the one—~loep value for ﬁa )
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fig. 3-8



hagter 4 Two-loop invesfigation of +the chiral

annomaly problem in M=l supersymmetric gauge theories

-

e Adier~Jardeen non renormalization theorem for
the enomaly of an axial current is 5 very outstanding result

br gm e
Tonatn

ahy

ey
K

bative and non-perturbative Ffield fheories

]
i

he  fact that the divergence of pseudo-vector currents
veveives just a one-logp and no contributions from higher
srders  should be well understood in the framework of super-—
symmefric thenries, where one expects differsnt currents
mffected by higher order corrections to be members of a zame
sugarmultiplet. Actually, as pointed out by Ferrara and
- . ' . {2

fuminel 4 3, the R-symmetry axial current. ;DM »  the

improved snavgy-momentum tensor, q%u ; and the {improved}

zupersymmetry current;.fgmu . are identified with the com—

~ta
i

panants oFf a8 vector superfislid. This aliready anticipates
censtraints existing among the divergences of the currents

sharing the same supermultiplest.

-
H
T

ne apparent puzzle arising in this context is  the
fact  that the /3 ~fynction, which in principle may rveceive
loop contributions to all orders. can be Irvansformed under

sugersymmetry  infto  the chiral «current anomaly which, as




alresdy stated, is not affected by corrections above one
ioop. This  situaftion haes been clarified in fthe papers by
Mowikev et al. [ 19 1, Grisaru and Westl 14 1, Tonin et al.

L & 3, and Figuet et al. [ 17 3.

In referencesl 18 1, supergraph methods were
empioyed in association with background field calculations
in suyperspace, and this allows for a remarkable simplifica-
fion. In the work we are geing to report here. we propose
o pursue an investigation through two loops of fhe diver—
gence of  the superconformal current by uwsing the supervsym—
metric 2x¥tension of the heat kernel method in superspace. We
shall here perform explicit supergraph evaluations with
@ fquantum background splitting and then use the results of
referencel 19 1 for the Serley coefficients. We =shall
then wvarify that the fwo loop contributions o the supercon-
formal anomaly is asctually governed by the two lmopF~Func«
fion  of fthe supersymmetric ftheory under consideration,
which is in our case. a general pure N=1 super-Yang-Mills

theory. whose superfield action is given by

E#TYIJ%J:@ WA+ A e (4—1%
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W= 45 (¢ Du e, (4-2)

By coupling the gauge field to the R=1 supergravity
multiplet and linearizing in the vierbein superfield. one

can show that the superconformal current turns out to be

ja&gTv Wmﬁ)‘& . (4-3)

it msatisfies the classical conservation law

B ©.

The authors of reference [ 12 1 have considered the
ane—-loocp correction fo equation (4-4) in terms of the heat
kernel method. In such @ case, there is only one graph to be
considared and the whole contribution comes from the Seeley
coefficient @plz. z,}=( wzpoz + ﬁi‘zﬁz D SM( (VU @’ 2.
We propese here to extend the results of referencef 19 1

going one order ahead in perfturbation theory., The whole set

nf two loop graphs Televant for our calculations is depicted

itn fig. 4-1.
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B)

(

(D

fig.



Before discussing and guoting fhe ANSWET S we
obteined by caelculating the above supergraphs, we would like
tg mention that ., apart from the current vertex insertions,
the Feynman rtules for the vertices coming from the Lagran—
gian arg the ones given in refervencel 20 1. To rvead off the
current insertions: the Televant pieces of » to the

ordar we wish to contemplate, are given below

jda:TY{52(3pdvﬂég‘ax_v’,p&yj.r
+ 5 FIv. V. DuvID D (§DaV -~  -®

-+ &IV Bav1+L &IV IV. 5.vID]

We rcan now start the discussion of the results of
our two-—loop calculations., First of all the tadpole graphs
af Figure 14~1,c¢) and {4-1l.e} can be shoun to be identically
vanishing by using the algesbra of covariant derivatives and
the complete expression for the guantum superpropagators in
fterms of the Seeley coetfcients. Due to the complexity of

the wvertices involving three or four vector superfields, a

sivigle supergraph of fig. 4-1 contains indeed a considerably

lsrge number of graphs, due to the permutations of deriva—




tives in the vertices. However, manuy of them can be identi-

#iad by exploiting the symmetry of the group theoretical
fartors, the algebra of covarisnt derivaetives and partial

inftergration in superspace. Once this fivrst step is accom

plished. there remain a number of few different structures
to be actually svaluated. Just to illustrate what we have

said. we ¢an take. for example. the graph of fig. {4-1,Bb).
From the expression for fthe three wvecfor verte:y, one  can
immediately see that there are., in principle. 3&6 graphs o
be computed. NMevertheless:, symmeftvric properties identify
mang  of them so that we end up with 18 different structures
%o be calculated. Proceduring similarly for all the ofther

noen~vanishing supergraphs, we Finally get +the following

ANEULT S
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fig. 4-1 A =

il

L 2 .
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fig. 4-1B =
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+—"é§—434[D.’5.s«G(3.-52ﬂ 3-3[§'é Pueg G‘(S"3‘>]‘ *

5;-‘-3;

+ 2 84£§,2Dw( &'(3-' - 3;)3\3@%;{5‘5“9: G‘(%t '52)]‘&:31 (4-9)

fig. 4-1E =0.

=- 5= 3% a5, 05,0015/ (5 -5 1 5se D} G (5-32) =
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$ (3 -32[D/ DI DIG(F.-3]+¢ & fdg,dgz x

x[alu@§|2G(§‘gl)][ﬁz&D:G(é‘gz)]@(51"523"

([0,D DG (5-320] - g—g“fal%—.clgg;[m.ﬁf@(g—go] x

x[ﬁzaD; @'(3 '3‘2)] G'(éc“ }z)[ 91::()‘\.5,;‘})?@-(3‘—52)] X 4

I ] =2 - z
+ _gz 4,[0‘%""%*[9:'\90.;\47,@(3‘3:)][&& Dz@;(g ..gz)]x

& (5= 32202104 5 D} G (3 - 30)]

(4-10)

(4-11)



whare Gl{z, z } stands for the full Green Ffunctien for the
vacfar  or ghost gquantum fields, whose background depsndence
15 entirely cvontained in the Seeley coefficients and covari-

ant derivatives appearing as vaertex factors in the graphs

Mow: we should notice thet all graphs which survive
the superspace manipulations correspond effectivelly %o
nething but the gauge-coupling renormalization. Toe undep~—
stand %this statement, it suffices to rvemember that the

vaphs of ¥ig. (4-1,b), (4-1,d}, (4-1,%} give contribu—

I
i
"3
il
i
U

tions teo wave—function renormelizastion. MHowever. since we
are werking in the background +ield formalism, we should

recall the well-known relationi 21 3
2,-27
§op=1 (4=-1)

hatween the wave-function (‘gﬁ} and coupling constant ¢ 23 ?
renormalizetion factors. According to reference [ 22 3. this
useful relation can be extended to the case of supearsym-
metric Yang—-Mills theories. In view of such 3 resuld, one
cen actually conclude that the overall +two-loep correction

te  the divergence of the superconformal current s 18

basically given by the two-loop ﬁ% —?unc%iun,Jgﬁ?a); aof fthe

= ot
thecry  {the graphs which contribute to D .:Tdé( are basi-—
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cally the ones which renormalize the gauge coupling con-

shant

4t this point, there ¢%ill remains the probklem of
doterminating the operatoral form of the superconformal ano-
maiy. For this purpose:. the explicit form of the Green func—

fians in  fterms of the Sesley expansion is crucial. The

relevant part for us is [ 1% 3

@(2.2) = G (2-2)Qu(2.27) %

(4-13

+ G l(2-2D8,(2,27)+ Galx-2DR (2. 2D

Inserting {(4-~13) into the supevgraph rvesults {d4-4&)
to (4-11), one actually obtains, after lengthy manipulations
with the covarisnt derivatives and partial integrastion:. that

tha operatoral form of the superconformal anomaly is

Do (W) {4-14)

in agreement with fthe well—known vesults of reference [ 14,

%3]
.

oo




o, we can finally conclude by writing down the net

result of our supergraph calculations:

' (t:¥]
= ot - g f) fa
-D j&é{ iz“ == ,Dmcwﬁ) {4-151
e 3§
e do not claim that ours is a new vesult but, as already

ressed at  the beginning of this letter:. we have used the

g
i
0

zupersymmetric exfension of the heat kernel expansion in
connection with the background field method %o calculate the
two—~loop contribution to the anomaly. Using standard super-—
sraph technigues and useful results of the background field
methods, we could check a result (equation{d4-14}} previously
obtained and discussed in several references gquoted here and

varify the walidity of +the heat kernel sexpansion for a

higher loop computation.
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