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Chapter 1

Introduction

In this thesis, evolutionary tracks for 15, 20, 30 M stellar models under different mixing
assumptions are computed with the code of PADOVA stellar evolution group. Further-
more, some attempts are made using Xiong’s (1985) method to treat stellar convection
for intermediate mass stars also during this work. Finally a comparison between Xiong’s
hydrogen burning models of 15 M, is presented

As the evolution of massive stars depends very much on the chemical profiles built up
by nuclear reactions and convective mixing in stellar interior, the treatment of mixing is a
very critical point. Mixing of chemicals inside the convective cores, overshooting regions
and ;s,emiconvective regions is important because it determines the chemical distributions,
therefore affects evolutionary scenarios. Mixing may be treated separately by assuming
its form and degree, or treated together with convection. Because the convective zones de-
pend on what theory is to be accepted, the adopted theory of convection may explain the
differences among theoretical models. Different convection theories give different descrip-
tions of the thermodynamical properties of the convective regions, and more importantly,
the different ways and different degrees of mixing which greatly affect the evolution of
stars.

Conventionally, mixing is taken as an instant process in convective regions and mixing




there is complete. We also have some regions in stars, which are not stable against pertur-
bations, such as the region outside the retreating convective cores of massive stars during
the hydrogen burning phase. This requires some partial mixing in those regions as found
for the first time by Schwarschild & Harm (1958), and was termed by semiconvection, for
massive stars this was first studied by Chiosi & Summa (Case B in the work, 1970). The
true physical reasons for this finding are not yet clear even at present time. One way to
treat this mystery phenomenon was to acquire the fulfillment of some local convection
criteria, either Schwarzschild’s or Ledoux’s as done by Chiosi & Summa, and compute
chemical distribution under this condition. Partial mixing was also accepted as a diffusion
process (cf. Simpson 1971, Eggleton 1972, Langer 1985), provided the diffusion coefficient
by either chosen explicitly with some prescription (Langer 1985, Weaver 1978) or com-
puted in each zone by checking the neutral stability condition adopted (Simpson 1970).
Diffusion is a quite good way of treating all the mixing processes in stars if the diffusion
coefficient is well chosen. Large enough value of the coefficient gives short mixing time
scale and perfect flat profile as found in fully convective regions, while small coefficient
could mimic the chemical profiles for partial mixing cases. And this treatment is a rather
simple way to get the chemical distributions in stars and to reveal the problems related
to mixing.

In this thesis I will assess the problem of mixing with diffusion for different cases.

Chapter 2 is mainly about the current major developments to the study of massive
stars.

In chapter 3 I discuss the Mixing Length Theory and present some comments. Xiong’s
method and results on massive star evolution are summarized. A comparative study with
the present method is presented here.

Chapter 4 describes diffusion process and the numerical treatment which is used for
this work.

Based on the method described in chapter 4, the evolution of 20, 30 M models are



computed. Chapter 5 is deserved to description of input physics used in this work, and
discussions of the numerical results of the models. Conclusions of the present work and
possible extensions are given in chapter 6.

The figures related to each chapter are put in the end of the chapter.




Chapter 2

Evolution of Massive Stars

Massive stars are defined as stars whose cores never go to a degenerate regime and burn
all nuclear fuels quiescently. The minimum mass for this category of stars is 10-12 M
according to the standard model, the exact value depending on the chemical composition.
The evolution of the stars in this mass interval is affected by many physical factors.
These include mass loss from the surface through a stellar wind as observed, the mixing
treatment and the extent of mixing. Different ways of taking into account these factors
may produce very different evolutionary scenarios. The observation of supergiant stars
gives us much information to help understand the evolution of massive stars. (see recent
review by Chiosi et al 1991). Observation of luminous (massive) stars (M, < —7) in the
solar vicinity (within 2.5 Kpc from the sun) and in the Large Magellanic Cloud (LMC)
highlight some evidence which offer constraints on the evolution theory of massive stars
(Humphreys 1978, Humphreys & Davison 1979, Gamany et al 1982).

Humphreys & Davison (1979) pointed out for the first time that the most luminous
blue stars are about a factor of six brighter than the most luminous red stars. This fact
defines a luminousity boundary in the HR diagram (fig.5). Because stars evolves away
from the main sequence to red side in the HR diagram at almost constant luminosity, this

boundary may imply that either the evolution of these stars is so fast that we have hardly



hardly any opportunity to find them or that the most luminous stars never go to red but
directly evolve into WR stars. The highest mass loss rates are found along this boundary
(de Jager et al 1979), and the boundary itself is marked by some luminous blue variables.
This implies that the evolution of stars should include heavy mass loss to account for the
observational facts.

Another problem revealed by those observations is presented by the stars found in the
blue Hertzsprung gap. A large number of stars is found in the region just to the red of the
main sequence, while the theoretical expectation is that this region should be unpopulated
because of the fast evolution of stars in this region . Some observational uncertaintities
may be the cause for this problem such as the distance of individual galatic supergiants,
individual reddening and colour excesses for LMC stars, which make the comparison
between theory and observation less clear. On the other hand, the observations may also
imply, besides the observational uncertainties, that the main sequence band has to be
widened to reduce the gap. Dispersion in the initial chemical compostition may also affect
the red edge of the main sequence band and the blue edge of the helium burning band,
and makes the gap filled. It is clearly seen, with the help of the published evolutionary
models with different compositions (Maeder 1990), that this effect cannot eliminate the
gap completely.

A ‘ledge’ of blue stars found in the above observations, is clearly seen in the HR dia-
gram of LMC supergiant stars (fig.5). The star density in the range 3.9 < logT,;; < 4.2,
decreases redwards and forms a diagonal line (Fitzpatrik & Gamany 1990). Explanation
of the ledge is that stars with intial mass 40-50 M, either perform an extended loop short
before core helium exhaustion (case A of Chiosi & Summa [1970], semiconvection and
mass loss of Langer [1990]), or slowly move redwards while burning helium in the core
(Brunish & Truran 1982 a,b). Models with core overshoot and mass loss (Maeder and
Meynet 1987, 88, 89, Maeder 1990) cannot be used here, because these models spend the

whole core helium burning time in the red. The ledge and even the stars found in the




middle of the HR diagrams raise a problem for models with overshoot.

The ratio of red to blue supergiant stars in the luminosity range —9.5 < M, < —6.5 is
about 1:10 (Humphreys & McElroy 1984). As the link between blue supergiant stars and
red supergiant stars is generally accepted, evolutionary models must acount for both the
blue stars and red stars. Evolution theory should give the life-time ratio implied by the
star counts, either through the blue-red-blue scenarios as most popularly viewed (Chiosi
& Summa 1970), or blue-red ones (Brunish & Truran 1982 a,b).

The red Hertzsprung gap does not make particular difficulties to evolutionary models,
the time to cross this gap is fairly short for all schemes. A lack of the massive stars close to
zero age main sequence is found in the HR diagrams of supergiants. This is explained by
the fact that stars are not observable during the first 20% of their core hydrogen burning
life time, because they are located in the circumstellar gas from which they formed. As
this period is at least comparable to the total life time of post main sequence stages, this
point together with photometric incompleteness make a big uncertainty to the comparison
of theoretical results to observed star frequencies.

Star counts in different areas of the HR diagram of supergiant stars (Meylan & Maeder
1982, Bertelli et al 1984) suggests that there must be an extension of the main sequence
band. Theoretical aspects for this extension are mass loss by stellar wind and its effects on
the atmosphere, core convective overshoot, and tile underestimate of radiative opacity in
the CNO ionization region (Bertelli et al 1984). The observed shape of the main sequence
band serves as an important constraint on the core overshoot models, as argued by many
authors. (Chiosi et al 1978, Bressan et al 1981, Bertelli et al 1984, Maeder & Meynet
1987)

The observation of supergiant stars offers many opportunities to test evolutionary
models. To account for all the observed properties, much theoretical effort has to be
made. Among all the recent theoretical approaches to the evolution of massive stars,

mass loss (which is a directly observed phenomenon), overshoot from convective core and



semiconvection are the most discussed topics. For the present work I will be concentrating

on these factors.

2.1 Semiconvection

In this mass region, the evolution of stars is affected by the problem of semiconvection,
which was first recognized by Schwarzschild & Héarm (1958). In these stars during central
hydrogen burning, the convective cores retreat, leaving behind a certain chemical profile.
The radiative gradient V,,q in the region outside the core, where the hydrogen content
grows outwards, starts to rise and soon exceeds the adiabatic gradient V4. This makes
the region dynamically unstable. This problem is removed if we introduce some partial
mixing, which equalizes the above two gradients (temperature neutrality condition, related
to standard Schwarzschild criterion). Noting the existence of a gradient of molecular
weight, Sakashita & Hayashi (1958, 1961) argued that neutrality should be taken with a
density criterion, which is proposed by Ledoux (1947). Kato (1966) using a local analysis,
pointed out that the density condition should be applied with the presence of a gradient
in molecular weight. Langer et al (1983) developed a method to treat this partial mixing

with diffusion. They found that, in a region with

p_ dinp, (2.1)

Vad < Vrad < VL(: vad + 4 — 36 dinP

the medium is vibrationally unstable. A slightly displaced mass will start to oscillate with
slowly growing amplitude and penetrate more and more into regions of different chemical
composition, leading to a rather slow mixing mechanism. A way of choosing the diffusion
coefficient is offered in this treatment which will be discussed in chapter 3 & 4.

We have no clear knowledge of the mechanism of semiconvective mixing. One way
to treat semiconvection is to calculate the hydrogen profile by keeping the neutrality

condition fulfilled. Because of electron scattering dominant opacity (s o [1 4+ X]), this is



easily done with the dependance of radiative temperature gradient on opacity. Existing
models critically depend on what condition is to be used (Chiosi and Summa 1970). The
density condition, namely the Ledoux criterion, is a stronger condition favouring stability
compared to a temperature condition.

Semiconvection will not happen if mass loss by a stellar wind and/or overshooting are
taken into account (Chiosi and Nasi 1974, Chiosi et al 1978). In Xiong’s (1985) point of
view, semiconvection is not a physical phenomenon which is most probably due to local
treatment of convection and disappears if a correct treatment is used.

The explosion of SN1987A brought a lot of studies on the evolution of massive stars,
aimed at reproducing a blue progenitor with the evolutionary models. Models with semi-
convection work very successfully for this purpose (Langer 1989, Woosley 1988, Weiss
1989). But as a general treatment, the same method should be able to account, at the
same time, for the whole population of massive stars unless we could prove that the

SN1987A progenitor is an exceptional case.

2.2 Evolution with mass loss by stellar wind

During their evolution, massive stars lose matter through stellar winds. This marks a
very important property of evolution of stars, which greatly improves our understanding
of these stars as reviewed by Chiosi & Maeder (1986). Evolution incorporating mass
loss shows substantial differences from the constant mass case. In practice, to avoid the
enormous task of self-consistency between the wind properties and the underlying stellar
structure, mass loss is achieved by some empirical formulation from mass loss theory
(Castor et al 1975, Abbott 1982, Pauldrach et al 1986, De Jager et al 1988). No self
consistent model which offers mass loss rates as a result of physical properties of stars is
available up to now.

During the main sequence phase, the effect of mass loss may be summarized as follows,
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o Convective cores decrease more rapidly than constant mass evolution, but the frac-

tional mass of the cores is larger as a result of stripping matter off from the envelope;

e Stars evolve at lower luminosity, but are over-luminous for their mass. The exten-
sion of intermediate semiconvective and/or full convective regions is reduced. The

semiconvective zone is removed if a very heavy mass loss rate is to be accepted;

o The life time on the main sequence is longer due to the fact that the lower luminosity
overwhelms the effects of smaller cores and the weakened semiconvective feeding of

fuel into the core;

e The main sequence band is wider for moderate rates and narrower for high rates.
Very large rates may make stars stay forever in the high effective temperature region

(blue side) of the HR diagram;

e Mass loss may give a lower age of clusters and make the line of constant mass in the
HR diagram steeper, which leads to a systematic variation in the determination of
stellar mass by means of evolutionary tracks. This point is especially true for more

massive (higher rates) and highly evolved (long history of losing mass) stars;

e Helium cores at the end of the core H-burning phase are smaller than for constant

mass evolution.

Subsequent phases after H-burning are more complicated to explain. The running of
the tracks during He-burning is affected by many physical properties of the structure.
The behaviour in HR diagram is determined by several competing factors: 1) classical
mirror expansion corresponds to core contraction; 2) the increasing size of the core mass,
absolutely by shifting of the H-burning shell and relatively by mass loss, favours a redwards
motion up to some critical point and then bluewards; 3) large intermediate convective
zones will homogenize the envelope and tend to limit the growth in stellar radius; 4) large

luminosity to mass ratio favours envelope expansion.
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After the He-burning phase, the evolutionary time scale becomes very short. Then
the mass loss is small and unlikely to be important for those stages.

The evolutionary tracks for massive stars with mass loss is shown in figure 6.

2.3 Effects of convective overshooting

The physical ground of convective overshoot is simple indeed but the treatment of this
phenomenon has resulted in a variety of proposed models. Generally speaking, with the
inclusion of overshoot, stars go to lower effective temperatures, and run at higher lumi-
nosities. Stars live longer due to the enlargement of the convective core, which overwhelms
high luminosity. This general feature holds for simple methods (Bressan et al 1981) as
well as the most sophisticated one of Xiong’s (1985). Models taking into account core
overshoot produces life time ratios which fit observed colour magnitude (C-M) diagrams
of (LMC) very well (Chiosi 1989, Maeder & Meylan 1989, Bertelli et al 1990). Also, the
weak point of these models, the morphology of tracks on the HR diagram, is improved
by including envelope overshoot (Alongi et al 1991). In another sense, because of the
consistent treatment of envelope overshoot with that of the core, this finding could imply
that overshoot may general exists in all convective zones in stellar interiors.

As a classical tool for testing stellar evolution theory, C-M diagrams and luminos-
ity functions offer strong diagnostic and calibration means for overshoot and imposed
parameters. Lots of studies aimed at this purpose can be found in the literature.

Compared with classical models, evolution incorporating core overshooting shows the
following character: 1) Much wider main sequence bands; 2) Older ages when determined
from turn-off, red star clump and AGB luminosity; 3) Larger ratios of main sequence stars
to evolved stars; 4) Higher luminosities of core He-burning models, but much narrower
loops; 5) Absence of luminous C & M stars in clusters with turn-off mass greater than

M,, =~ 5Mg (instead of M,, ~ 8.9M); 6) Lower turn-off mass in the mass (age) range
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which shows the transition from clusters exhibiting a well developed RGB to those which
do not. All above features become more apparent for increasing overshoot extent.

Also, overshoot models brings into agreement the discrepancy between evolutionary
mass and pulsational mass (Chiosi 1991), this being one of the long standing problems
in this field. Models including overshoot improved the explanation of galactic clusters
(Mermiloid & Maeder 1986).

As for the problems revealed by the HR diagrams of galactic and LMC supergiant
stars, new models are presented by Bertelli et al (1991), which takes into account mass
loss, both core and envelope overshoot and revised opacities. The result suggests that
convective overshoot and opacity change play dominant roles. As convective overshoot
receives so much emphasis, I will try to approach this phenomenon by taking into account
overshoot from all possible convective regions, with the method of Bressan et al (1981)
developed for the overshoot velocity field and the treatment of diffusion. Mass loss and

semiconvection will also be considered.
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Figure 3 Evolutionary tracks in the HR diagram of mas}ive stars with initial composition
X = 0.73, Z = 0.02 evolved with mass loss by stellar wirds. The hatched areas indicate the
main sequence band and the beginning, ‘of He-burning, which is spent according to the
repartition given in the last two columns.of Table 2. The first dot along each track indicates
the beginning of the He-burning phase. The second dot (if present) indicates the beginning
of the C-burning phase. The mass loss rates for OB stars are from Garmany et al. (98); for
red supergiants, the expression by Schénberner (225) scaled on the results by van der Hucht
et al. (112) is used; and for WR stars, results by Barlow et al. (24) and Nussbaumer et al.
(202) are adopted. These models were computed with Schwarzschild’s criterion for convection
and no convective overshooting. The evolutionary tracks indicated by the solid lines have
been computed with mixing length in the outer convection equal to 0.3 x density scale height
(171). The dashed lines show the effect of a different treatment of the outer convection (that
is. of a mixing length equal to 1.5 x pressure scale height).
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Chapter 3

On stellar convection theory

A long standing open problem and probably the most disputed point of stellar physics
is convection which occurs in stars for almost every mass interval and every stage of
evolution. Even at the present time, when it is generally believed that the main features
of the structure of stars and the evolutionary scenarios are well understood, we are still
facing the lack of a satisfactory theory of convection. This is a source of uncertainty in
understanding the nature of stars. Thanks to the progress in other aspects in this field,
and better observational data available to constrain our theoretical results, the uncertainty
induced by convection is becoming more apparent than it was in the past.

Historically, our understanding of convection, comes from laboratory experiments (a
good review was given by Spiegel 1971,1972), where the Boussinesq approximation is
always acceptable. The basic idea of the Boussinesq approximation is that the vertical
extension of the fluid is much less than its density and pressure scale heights, allowing
the state quantities to be treated as constants. And another approximation is usually
assumed, i.e. the inelastic approximation which was used in astrophysical convection
(Gough 1969, Xiong 1986). The underlying physics of this approximation is to filter out
high frequency phenomena such as sound waves, which are believed to be not important

to transport processes in stars. The Boussinesq approximation is adequate for laboratory
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convection, but not true for convection in stars, where the thermodynamic quantities vary
considerably inside convective zones. Nevertheless, the usually used mixing length theory
for stars is in fact a Boussinesq theory, as reviewed by Spiegel. His argument was that all
those assumptions are valid implicitly for the mixing length. This is seen in the derivation

of the mixing length theory

3.1 Mixing Length Theory

The commonly used stellar convection theory is the one developed by Bohm-Vitense
(1958). The basic idea is to model the comp]jca,tedbmotion of convective elements by
some average elements. In reality, convective elements may have sizes varying from as
small as the molecules to as large as the dimension of the whole field. These fictitious
elements all possess the same physical properties if generated at a given radial distance
r from the center. Each of the elements will travel, on average, a distance A (defined as
the mixing length) through the medium due to the buoyancy force, and at the end it will
mix with its surroundings, therefore losing its identity. By assumption, the dimension
of the average elements are set to be the same as A, the mixing length, and the shapes
of the elements are not specified. This is surely an extremely simple picture for stel-
lar convection, and the mixing length theory constructed on this simple picture greatly
simplifies our description. Here, we have two characteristic lengths: the mixing length
and the dimension of the element (in mixing length theory, they are set to be the same,
but if the problem of overshooting comes in, we will have another length scale in mix-
ing length framework), usually set to be proportional to local the pressure scale height,
with the coeflicient being a free parameter. The determination of these lengths may have
considerable consequences to stellar evolution. The same problem of parameterization of
these lengths exists also in some sophisticated theory for st‘e]lar convection (cf. Xiong

1985,1986). This parameterization will have basically the same effects, if they use the

15




same quantity (pressure scale height), as will be shown in section 3.3 for Xiong’s case.
This might be an intrinsic problem of all current convection theories. The theory should
give, instead of require, a measure of the dimensional lengths, this is why the theories are
non satisfactory.

Besides the crudity of the mixing length theory, stellar models constructed on the basis
of mixing length theory do not show any obvious contradictions with observations. Some
attempts were made for refined theories of convection (cf. Spiegel 1960), and some non-
mixing length theories (Faulkner et al 1965, Unno 1967, Xiong 1985) were also proposed.
But it is not clear yet whether or not these theories are superior to classical the mixing
length theory. Although mixing length theory is now a conventional way of treating stellar
convection, this does not mean its weak points are ignored. Precisely the contrary, great
efforts have been made to control the uncertainties within tolerable margins. While the
main lines of stellar evolution given by mixing length theory is believed to be correct, the
most apparent weakness, that of overshoot, could be attacked also with this treatment
(Maeder 1975,Bressan et al 1981). Again, the parameterization introduced by this way
of extension of the theory should be calibrated with observations. Recent studies show
that these approaches give a very good improvement over the classical models. (Chiosi &
Maeder 1986, Chiosi et al 1991).

For the purpose of stellar evolution, the main task of a convection theory is to give
expressions for the transport of energy by convection. In the framework of mixing length
theory, the expression turns out to be very simple. I will follow Cox and Giuli’s de-
scription. In a convective zone, we assume complete pressure equilibrium between the
convective elements and their surrounding matter, and the hydrostatic equilibrium al-
ways holds at each level. Consider a convective element which begins to rise at a position
of radial distance r from the center possessing an initial temperature 7/(r) which is as-
sumed to be the same as the value of the field. After moved a distance §r from the original

position, the temperature will change §7" = %{:'57’, while the corresponding change of the
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temperature of the average field is, dT' = 4Ldr. So the difference between the element

and the surrounding at the new position r + dr is

dT" dT

AT(br) = 6T" —dT = §r(- — 7-)

(3.1)

Using Schwarzschild’s notation (Schwarzschild 1958), VAT = [(—dT/dr) — (—dT"/dr)],
we have

AT(6r) = 6rVAT (3.2)

Supposing here that the temperature will not change drastically within ér, and setting

T' ~ T along the path of the element in é7, we can write,

dlnP dinT dinT’

AT = érT[(—dinT/dr) — (—dInT'/dr)] = — - §rT[( dlnP) — (dlnP )] (3.3)
or, with the definition of local pressure scale height: A, = ~m%3
T /
VAT (ér) = -X—(V -V (3.4)
P
where V = gf:]:g is the usual notation for the temperature gradient (with respect to

pressure), the prime means the same quantity for the rising element.

This gives the excess in temperature after the element has traveled a distance §r.
This distance is going to be replaced by our mixing length A, which measures for an
average eddy the distance between the starting point and the ending one, where it is
supposed to mix with the field. Substitution of this distance with A is direct under our
assumptions, and this is the implicit entry of the Boussinesq approximation, because doing
this substitution requires A being very small within which T, p, P etc... are approximately
constant. But calibration of this length scale gives that A is nearly one pressure scale
height (Schwarzschild et al 1957, Sears 1959, Demarque et al 1964). This is one of the
main self-inconsistencies of mixing length theory. The same idea will be used for the

derivation of the convective flux, the mean convective velocity, (see below).
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The motion of this element with excess in temperature will lead to an energy flux,
which is easily written as,

F.= %pvcpﬁrVAT (3.5)

where, p is the density, v is the speed of the element which will be given later, and ¢, is
the specific heat at constant pressure. The reason for using c, is the pressure equilibrium
we assumed at the beginning. The numerical factor is due to the consideration of only the
upwards moving element, the descending ones are cooler than the average field which will
absorb energy during its motion, therefore leading to an outward energy flux. A similar
expression could be given for sinking elements. Equation (3.5) gives the total flux with
the factor replaced by one.

To give the actual flux of convection, mixing length theory uses an average over all
possible 7. This is done by replacing §7 with A, the mixing length. And all other factors
in the right hand side of equation (3.5) should be thought of as averaged over the distance

as well as the sphere of each level r along the path. With this idea, the flux is written as,
P ‘
F.= —épvcpAVAT (3.6)

where ¥ is the averaged speed of convecting elements. With the help of equation (3.4) we
may write the expression for convective flux in a more convenient form for the interest of
stellar evolution, which is

1 A

Fo = 506, T3(V = V') (3.7)

Now, we have an expression for convective flux which is suitable for stellar structure
equations. But one thing is still missing: the average velocity of convective elements.
To find this, lets consider the equation of motion for an element. Because of the excess
in temperature of the element under consideration with respect to the medium, and the

pressure equilibrium we have supposed, the element will have a different density from the
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surroundings. Let Ap being the difference. The equation of motion is written as,
F=—g———= (3.8)

Write p = po(1 + Ap/p), where pg is the equilibrium value. And noting the hydrostatic
equilibrium supposed at the beginning and droping out the subscription for equilibrium

values, we have,
7 =—glp/p (3.9)
This expression corresponds to a net force (buoyancy force minus gravitational force):
f = —gAp. At the starting point, there is no excess both in temperature and density, so
this force is virtually zero there. The above equation gives actually the force at some new
position after a displacement of 7. Suppose the gravitational acceleration does not change
in this small distance, then the work done by the net force through a finite distance, Ar,
1s,

W(Ar) = /Omf(c?r)d(&r) = —g[JArAp(ﬁr)d(ﬁr) = ——-;-gAp(Ar)Ar (3.10)
where in the last equality, we have supposed Ap varies linearly with Ar. This expression
of work done on the element should be averaged over all possible Ar with the same idea for
convective flux, which is replacing Ar by the mixing length A, and introduce a numerical

factor. We write,
W(A) = %W(A) - —%gAp(A)A (3.11)
During the motion of the element up to its dissolving, there must be some energy
changes with the field due to friction, heat loss and transfer of kinetic energy to surround-
ing matters. This is treated with a parameter concerning the efficiency of convection.
For the moment we assume one half of the work will become eddy’s kinetic energy, so we

have,
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which gives the following velocity which will be used in the expression for convective flux,
2 lg ‘
70 = —==Ap(A)A (3.12)

Using the equation of state, we can replace the density in the above equation by

temperature, bearing in mind the pressure equilibrium, it can be written as,
Alnp = —QAInT

where

3lnp) (Bln,u,) (5lnp)
Olnp PN BInT " T N ginT ™"

For a perfect gas, @ = 1 — (Olnp/0InT),, while for a more general case, with the

- Q= (3.13)

medium being a mixture of perfect gas and blackbody radiation field, Q = i-'f}@ - (2::{,‘,) P

In any case, with eq. (3.12), the mean squared velocity can be written as,
1 _A?
9° = —gQ—AVT 3.14
v =299 (3.14)

At last we have the final expression for convective flux,

_ L e P 2 3/2

It is this expression which goes into the energy equation for stellar evolution and structure,

(d

whenever the medium is found to be unstable against convection. The equation for energy
transport is based on a lot of simplifying assumptions. The frequently used idea of average
for expressions of temperature difference, velocity, and energy flux brings in this theory
some crudity. This difficulty is regulated by adjusting the ratio of mixing length to
pressure height. The resulting formulations depend only on the local thermodynamical
quantities, which is not true in reality, because the convective element has some memory
of its past formation and previous interactions with the environment. A more realistic
description is a NON-local version of mixing length theory. This is related to the problem

of overshooting which is discussed in the next section.
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3.2 Treatment of overshooting

The determination of the boundaries of stellar convective regions is a subject which de-
serves a lot of attention. Classically, the borders are defined by the so-called Schwarzschild
criterion, which actually gives the point where the acceleration of the convective elements
vanishes. But the elements may still move, due to their inertia, further into the stable
region outside the convective zones. This is the problem of overshooting. Overshooting
is very important to stellar evolution, because it will change the size of the core, if it is
supposed to occur for convective cores, therefore affecting the lifetime because of more
fuel is available, and the subsequent stages. Besides overshooting from convective cores,
we may take convection from all other convective regions (intermediate and envelope)
consistently the same way as for core convection. The effects of envelope overshoot is
studied by Alongi et al (1991). The extent of overshoot, and even the existence is now
subjected to a lot of studies in this field, as reviewed by Renzini (1987)

The way to treat overshooting is different from work to work, the results are quite
different and sometimes even contrary. Among the pioneer works in this topic, Saslaw
and Schwarzschild (1965) found the overshoot ‘distance negligibly small, while Shaviv
and Salpeter’s (1973) work gives very large distance. Determination of the boundary for
convective cores is not an easy thing to do. With mixing length theory, this is achieved
by introducing another parameter to describe the extent of overshooting (Maeder 1975,
Bressan et al 1981). The criterion proposed by Roxburgh (1975), which is claimed to
be parameter free, has been convincingly criticized (Bressan 1984, Baker and Kuhfub
1986) for its consistency. According to Renzini’s argument, the overshooting zone is small
if the temperature gradient is radiative there, large if adiabatic. On the contrary, in
Xiong’s treatment, very large and radiative overshooting regions can exist at the border
of convective cores of massive stars. This will be studied in the future.

Local mixing length theory is inadequate for the study of this problem, because velocity
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become zero when the element reaches the border defined by Schwarzschild criterion. A
non-local description of the element has to be developed. There are several ways to do
this (Maeder 1975a, Cloutman & Whitaker 1980, Bressan et al 1981). The one I used for
this thesis is developed by Bressan et al (1981). I will introduce it in the following, and
extend it to general case to account for envelope and intermediate convective zones.
This treatment is based on the assumption that the temperature is adiabatic up to the
point where the velocity becomes zero (see fig 1). A non-local description of the motion
of a convective element is established in the framework of mixing length theory. Write

the equation of motion (eq. [3.9]) as

Ov Ap
’UB; = "‘g'—;“. (3.16)

Now Ap will not be approximated as done in eq.(3.10), but given by integration of the

change along its path from the original position 7, to its present position r,

_ [T _Op
Ap—/rl (2 - S (3.17)

And the expression of convective flux will not be the same as eq (3.15), because the

temperature difference eq(3.2) is to be expressed the same way as density, so we have

A . r. o1’ oT 1 o100
AT = ./,-l [—8; —_ ‘é‘;]ﬂw ké.lS}
Correspondingly the flux in this case becomes
r 9T oT
_ _of 1
Fy = keppv /”[&B 8:c]dw (3.19)

where k is a numerical factor, which is set to 2 to take into account both the rising and
descending elements. For the expression of velocity, after some mathematical evaluation,
and ignoring the contribution of the molecular gradient term in equation (6) of their
paper, they give,

1, 1 mgXy F

O P A i L 3.20
3" kJe T X, cpp v ( )
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where the convective flux is determined by subtracting radiative flux from the total flux,
both of which are known throughout the whole star. The above equation is numerically
integrated from the starting level 71, up r = 7 + 1. where [ = AH,, and H, is pressure
scale height, A is mixing length parameter. The behaviour of the element within [ is the
same as in local mixing length theory and, at the end, the element will dissolve and lose
its identity. This integration is done for all elements originated in the range between the »
and r —[. Because elements created in this range may arrive at r with different velocities,
the maximum is take for the velocity field at this position. The border of the convective
core is defined at which the velocity determined by this method becomes zero.

This equation if derived for a chemically homogenous convective core. The dropped
term concerning the molecular weight gradient may be several orders of magnitude higher
than the temperature term, which forms the barrier for convective penetration if some
discontinuity is present. But there is some argument for this point: this barrier might be
removed by convective overshooting from unstable regions on a very short time scale and
further extension is then possible (Castellani et al 1971, Maeder 1975b, Renzini 1977).
As the purpose of the present work is to explore the possibility of treating overshooting
with diffusive mixing, I assume here the same way of evaluating the velocity field is also
suitable for envelope and intermediate zones if they happen during evolution. Then, for
those convective zones, we will treat the rising and descending elements separately. As
the sinking elements are cooler than the environment, they will make a negative flux with
respect to is direction of motion. In this case, the expression of velocity for rising element
will be the same as eq (3.20) except the k is cancelled. For the descending elements we
have

13_ 1 rgXTFC

_ d 3.21
3 ko TX, cpp (3.21)

Here, the minus sign appears because the element is sinking, » < r;. The same idea

for mixing and scale length is valid for these elements. Again, take the maximum of all
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possible values of the velocity for the velocity field of sinking elements. For all element,
we take the larger value of the two as the convective velocity.

The physics of this treatment is not discussed here in this thesis. But this way of
proceding is consistent with the treatment of convective core. I will take it here as an

assumption.

3.3 Xiong’s Treatment

As a special case of non-MLT, Xiong’s theory (Xiong 1985,1986) turns out to be probably
the most complicated treatment as far as stellar evolution is concerned. As a theory for
stellar convection, its present form is only a proto-type, in the sense that its application
is limited to a medium made up of two chemical components. More precisely, it is only
suitable for the hydrogen burning phase, where H and He dominate the chemical evo-
lution in the core. I will first give a very simple description about its basic ideas and
assumptions involved to give the final formulation of the scheme. More details are found
in Xiong (1986), second I will present partial results. Unfortunately, this method has
been abandoned due to enormous numerical difficulties.

This theory starts with the basic dynamical equations of fluids with two component
mixture (cf. Landau and Lifshitz). To describe the turbulent convection, a normal way of
studying turbulence is used. Quantities are written as a mean value plus its fluctuation.
Equations for fluctuational variables are given by subtracting the mean equations from
the original equations. Then the equations for correlation functions are constructed using

the resulting equations. In the deduction, the following assumptions are used

e In the stellar interior, molecular diffusion flux and molecular viscosity is always

small compared with turbulent diffusion and radiative conduction;

e Turbulent convection is supposed to be subsonic, therefore relative fluctuations in
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temperature and density are negligible;

e High Reynolds number is a character of stellar convection, the dimension of eddies
for which viscous dissipation become important is much smaller than the dimension

of mean field;
e The inelastic approximation is accepted to filter out the sound waves;
e The fluctuation in gravitational potential is neglected;
e Turbulence is quasi-isotropic;

e Turbulent motion is quasi-steady, because the time scale of turbulent motion is

much less than that of evolution;

e The third order correlation functions are approximation by a gradient form of the

second order ones

All the assumptions except the last one seem to work well while the last one is not very-
well studied, and one of the two parameters which measuring non-local effects and its
relation to overshoot comes in to the equations at this point. This makes the theory some

what uncertain.

3.3.1 Results for Massive Stars

Models for massive stars evolving on the main sequence are presented by Xiong (1986)
with his statistical theory of convection. Some other attempts with this approach to the
study of variable stars (Xiong 1980, 1982) and helioseismology were also made. For the
first case, as massive stars evolve away from main sequence, the convective core shrinks,
leaving the convective region being chemically homogeneous because complete mixing is
found there. In the second case, since we deal with a chemically homogeneous envelope,

the complications from abundances are removed, which greatly simplifies the problem.
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From the point of view of simplifying Xiong’s method, the above points also suggest a way
of simplifying this theory, which is to move the problem related to chemical abundances
from the equations of dynamical quantities, and treat them by means of other simpler
methods. Diffusion, for example is a good candidate, and the link mentioned above will
be the diffusion coefficient. If loss of physics could be controlled in a tolerable fashion,
this would be a solution for the problem.

For massive stars, the main results for this theory maybe outlined as follows,
e With this theory, the semiconvection does not occur.

o the evolutionary tracks run at higher luminosity than in classical treatment. The
difference depends on the choice of the convection parameters ¢;,c; (two numerical
parameters in Xiong’s model which regulate the transport efficiency and mixing

extension) and becomes larger for lower masses.

e the life time of the burning phase is much longer because the core is enlarged by a

considerable amount, this also depends on the parameters.

e evolution occurs at much lower T,;s, which makes the main sequence band of this

mass range wider.

e A simple criterion does not exist, i.e. neither Schwarzschild’s nor Ledoux’s criterion
is verified. The actual behaviour is closer to Schwarzschild criterion. The boundary
of the convective core is defined by the convective flux which changes its sign when

pass through the boundary.

e The turbulent kinetic energy flux is less than 1% of the total, so it never has any

influence on internal structure.

e The temperature gradient approaches the radiative temperature gradient, instead

of adiabatic in the overshooting region, as a result of a negligible turbulent flux in
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this region.

e The mass of the convective core is almost unchanged in H-burning phase, but the

overshooting region shrinks.

The above results can be understood in the following way. Actually, the first four of
the above points are general results of models with overshoot as reviewed by Chiosi et
al (1991). With overshoot alone, using the PADOVA code, Xiong’s results (Xiong 1986)
could be modeled with a large overshooting region (A=2.5, 1.5 where A is overshoot
parameter of Bressan et al 1981). Two tracks with different A for a 15 solar mass star
were constructed for this purpose. As we can see from figure 2, the lowest effective
temperature in the hydrogen burning phase is lower at increasing A. All the tracks run
at higher luminosity than the classical model. Concerning the positions of the ZAMS, we
find some difference between Xiong’s models and ours which is mainly due to the opacity
used. The opacity in use in our models is by Huebner et al (1977), which has a bump
in CNO ionization region. The effect of this enhanced opacity is to make the models
less luminous and fainter. So, if we attribute the difference of ZAMS position to this
reason, and shift Xiong’s track to the one with A = 2.5, we find a very good fit. Table
1 gives log(L/Lg), logTess, the central composition, pressure and temperature, and the
core mass of our two tracks together with those by Xiong. Note that while the convective
core mass for Xiong’s case is defined approximately by the Schwarzschild criterion, the
mixing region is larger than the value listed there. To conclude, it is clear that the main
feature of the behaviour of the models can be very well resembled by larger a parameter,
or more precisely, a larger overshoot region.

The last four points reveal severe systematic differences from those of convective over-
shoot based on the Mixing Length. These points imply a very different internal structure.
Therefore, the most interesting aspect of Xiong’s work are the results for the internal

structure and the criterion of the border for the convective core.
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3.3.2 Difficulties

I have made some efforts to apply this theory, using the Xiong code, to intermediate mass
stars. The internal structure for stars higher than 2 My, with homogeneous chemicals
is given. As pointed out by Maeder(1975), and also by Xiong(1985) the ZAMS models
are only slightly affected by overshooting. In Xiong’s scheme, this is because the energy
transport by convection is negligible in the overshooting region. The size of the over-
shooting region is much larger than in others (Meader 1990, Bressan 1990), Fig 3. This
is mainly due to the choice of the convective parameters: by putting ¢; = ¢ = 1/2,
approximately 2H, is found for the overshoot region. These values were usually adopted
in Xiong’s calculations. With this value, Xiong’s formalism gives the same convective
energy transport rate. But this large overshoot region leads to models contradicting the
observations (Bertelli et al 1984).

The numerical difficulties in Xiong’s scheme encountered in intermediate mass stars
is due to the following. When a models evolves away from ZAMS, as the fluctuation
for chemicals (here, the hydrogen content) comes into the equation, all the 17 equations
(instead of 10 for homogeneous case) must be solved. As pointed out by Xiong(1986),
these equations are of Stiff-type, and the problem of spatial oscillation is met in the con-
vective region. The domain of convergence is usually very small for solutions of convective
variables. In intermediate mass stars, pressure and density are larger than in high mass
stars, and the spatial oscillations make it very difficult to converge the model. A small
time step, which means small adjustment in chemical abundance and other quantities, is
needed to achieve a stable solution. As the time step became very small, the computing
time became so long, that the calculation of numerical models became exceedingly time
consuming.

There is another potential, probably bigger difficulty in Xiong’s scheme, i.e. the greatly

increasing number of equations if more chemicals will be involved. If one more chemical
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element is included, four variables and four equations must be added, i.e. the cross-
correlation functions with temperature, velocity and the other chemicals, and the auto-
correlation function.

All this means that much computational effort has to be spent to reach the the same
evolutionary results obtained by means of other treatments. One argument against this
theory is that, because of the same dependence on pressure scale height is used to deter-
mine the boundary of convective region, Xiong’s treatment suffers of the same problem
affecting mixing length theory, i.e. the unbound growth of the core. When we go to
lower mass stars, the core grows because the pressure scale height becomes large. This
trend continues and tend to diverge. As it can be seen from figure 3, Xiong’s method
gives a larger overshoot region (larger core mass) because a larger parameter is used,
whereas the ratio of overshoot mass to the Schwarzschild core mass varies, with respect
to the stellar mass, in the same way as in other simple methods. The main results of this
method are quite similar to those with other methods, if we allow for difference caused
by larger parameters. Therefore, it is clear that such an enormous numerical effort is not
compensated by physical improvement with respect to results obtained from the mixing
length theory. This is the main reason why I gave up this method and use the PADOVA
code.

Xiong’s method has no such problems if applied in variable stars, solar oscillations and
envelope structure (Xiong 1990). To be used in stellar model calculations, ways out must
be found to cope with the above difficulty. The key point are the chemical equations. One
possible way out is to treat mixing of chemicals and other processes involving chemicals
in diffusion scheme, and treat the structure and dynamic properties of turbulence in a
seperate manner. Xiong argued against this possibility (Xiong 1986), in a sense that the
chemical contents are strongly coupled with dynamical variables, and preferred to treat
them simultaneously. In light of the problems mentioned above, I think it is worth looking

back to diffusion. This may not be so ad hoc as it may seem to be. As shown in chapter
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4, if we treat convective mixing as a diffusion process, the numerical difficulty in getting
‘the chemical distribution is greatly reduced. If diffusion is properly taken into account,
and most important, the diffusion coefficient is carefully chosen, we may get results in
agreement with observation. In turn, the observation may constrain the theory and the
treatment of diffusion.

Nevertheless, Xiong’s method gives a detailed description about the dynamical prop-
erties of the turbulent field in the one dimensional case. Xiong’s method suggests that the
composition profile in the overshooting region is smoothly connected to the outside profile
given by the retreating boundary (see figure 4). Xiong’s treatment of composition is not
a diffusive one, but this profile could be anyway achieved by assuming some diffusion in
the overshooting zone. We can take the whole convective zone, the fully convective region
(classically defined by Scharzschild criterion) plus the convective penetrative region, as

the domain of diffusion.
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TABLE (1)
( ovs = 1.5 )
MOD Age LogL LogTE comp LogTc LogRHOC LogPc M c.c.
1 0.000 4.1920 4.4362 0.750 7.45975 0.58910 16.23737 0.372
21 5.740 4.3090 4.4671 0.637 7.52174 0.72641 16.40851 0.383
35 9,273 4.4016 4.4623 0.541 7.53029 0.71450 16.37933 0.372
52 12.689 4.5167 4.,4492 0.417 7.54471 0.71315 16.35718 0.355
71 14.877 4.6133 4.4272 0.312 7.55956 0.72385 16.35000 0.340
92 16.288 4.6907 4.3966 0.224 7.57427 0.74369 16.35502 0.325
127 17.464 4.7709 4.3426 0.133 7.59452 0.78405 16.38133 (0.308
151 18.125 4.8246 4.2831 0.069 7.61357 0.83048 16.42318 0.29%4
(ovVs = 2.5 )
MOD Age LogL LogTE comp Log Tc logRHOc Log Pc M c.c.
1 0.000 4.1506 4.4306 0.750 7.45742 0.57601 16.22256 0.457
20 7.054 4.2752 4.4654 0.637 7.51975 0.70789 16.39049 0.450
34 11.492 4.3881 4.4660 0.540 7.52973 0.69224 16.35924 0.443
51 15.601 4.5362 4.4593 0.417 7.54599 0.68814 16.33812 0.430
70 18.111 4.6567 4.4409 0.311 7.56216 0.69418 16.33017 0.421
91 19.672 4.7560 4.4098 0.224 7.57806 0.71006 16.33525 0.410
125 20.912 4.8608 4.3454 0.133 7.59945 0.74575 16.36216 0.394
150 21.559 4.9349 4.2558 0.069 7.62227 0.79726 16.41393 0.380
Table le. M = 15Mgc, =c, =13
L ‘ M,
No r log T, log ig Xc log P, log T, M,
0 0 4478 4.210 0.750 16.483 7.516 0.356
2 5.683E6 4.484 4.335 0.637 16.455 7.530 0.370
4 9.462E6 4.487 4.453 0.540 16.435 7.544 0.390
7 1.302E7 4.482 4.606 0415 16.415 7.562 0.403
10 1.515E7 4.464 4.730 0.310 16.408 7.579 0.417
13 1.648 E7 4.433 4.830 0.224 16.412 7.595 0.423
17 1.754 E7 4.374 4933 0.133 16.436 7.616 0.430
21 1.815E7 4.298 5.006 0.069 16.485 7.639 0.430
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Chapter 4

The Treatment of Mixing with

Diffusion

In the present work, we take the mixing of the chemicals inside convective regions as a
diffusive process. This method is used by many authors for stellar evolution calculations.
The motivation is to give an expression to some slower mixing processes required by the
instability analysis of stellar interiors, such as semiconvection, and to see what is the effect
of a molecular weight gradient given by partial mixing in these regions on the evolution of
stars. The true physics of the partial mixing is not known at present. People use diffusion
to model this complicated phenomenon. Some new points ofl view are given by these
studies, See for example, Eggleton (1971,1972), Simpson (1971), Sreenivasan & Wilson
(1977), Langer et al (1983, 1985, 1990), Weaver et al (1978), and for diffusion, see Jost
(1960)

In the central convective regions of stars, as the convective mixing is so effective that
mixing uccurs on time scale which is much shorter than that of nuclear burning, homo-
geneous chemical distributions are always found. In the semiconvective case, however,
the mixing occurs on a time scale comparable to the nuclear time scale, as discussed by

the above authors. Differing from fully convective zones, mixing inside semiconvective
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regions give rise to molecular weight gradients as a result of incomplete mixing. These
inhomogeneous chemical profiles have some consequences on stellar structure and give a
different picture of evolution.

In present the study, the same diffusion scheme for convective mixing is accepted.
In a similar way as to treat partial mixing in semiconvective regions, we will take an
assumption that a partial instead of complete mixing happens in overshooting regions,

the physical reasons for the idea are to be presented later.

4.1 Mathematics of Diffusion

The mathematics of diffusion can simply be described as follows. Suppose we have a
medium with some chemical profile. As time goes on, diffusion homogenize the medium.

According to Jost (1960), Fick’s first law gives,
J=-DVvC (4.1)

where C is the chemical concentration with a dimension [g ¢cm™3], and J is the flux
(corresponding to concentration diffusion Chapman & Cowling [1970]) of this chemical
with a dimension of [g em~2 sec™!]. D is defined as the diffusion coefficient. The diffusion,
in this case, happens because of the gradient in concentration, and the effect of diffusion
is to reduce this gradient. In general, any gradient of physical parameters in a mixture
will lead to transportation of species. A more precise definition of diffusion flux for a two
component mixture is found in Laundau & Lifshitz’s book on Fluid Mechanics (1987),

which is the following,
J = —pD(VC + krVinT + kpVInP) (4.2)

The meaning of the symbols are: D, is the mutual diffusion coefficient, kr the dimen-

sionless thermal diffusion ratio with its production with D, giving the thermal diffusion
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coeflicient, and kpD;, the so-called barodiffusion. If we have convection in our medium,
the turbulent mixing is dominant. The physics of this mixing is not yet understood be-
cause the nature of turbulence itself is not clear at this moment. We only know that
the turbulent motion is so vigorous, which makes the region of full convection completely
mixed. A simple picture of convective mixing is that the large eddies get energy from the
average field and start the motion with the composition of their original positions, they
distribute the kinetic energy to smaller eddies and so on. As this part of the energy is be-
ing turned to thermal energy at the level of smallest eddies, the composition will be mixed
there with the surrounding. As we can find from the literature, mixing due to convection
in a stellar interior, despite being very complicated, could nevertheless be treated as a
diffusion process. This is a hypothesis, and the main problem is, if we accept this assump-
tion, to determine the diffusion coefficient. There were some discussions in the literature
about the equation of diffusion for the problem (Sreenivasan et al 1977, Cloutman et al
1976). Cloutman et al used a one point correlation function of fluctuations of turbulent
velocity and chemical concentration to treat the problem of turbulent mixing, and the
gradient approximation is made to the correlation in leading to the equation of diffusion.
Langer et al (1983) proposed an equation which is not the same one as the one used later
by the authors. Actually, we can arrive at the final equation as the one used by Weaver et
al (1978), and Langer (1985), by making assumptions to the flux of the diffusion. Noting
the form of the definition of diffusion flux (eq. 4.2), we assume that the diffusion flux
due to turbulence can be written formally, being proportional to the gradient of fractional
abundance of the diffused chemical, with all physical details contained in the coefficient.
This is actually the Boussenisq approximation. So the total flux of the convective region
is

J = —pD(VC + krVinT + kpVinP) — pD.VC (4.3)

where D, is the coefficient due to convection.
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All the terms except the last one in the above equation describe the contribution
of molecular diffusion as the results of gradients of chemical concentration, temperature
and pressure respectively. Molecular diffusion can be neglected in astrophysical contexts
because of its low efficiency or long time scale compared with that of turbulence (Cloutman
et al 1976, Xiong 1985, Kippenhanh & Weigert 1991). With this definition, we can derive

the equation for diffusion as follows. The mass conservation is always fulfilled

Op = o
e + V- (p¥)=0 (4.4)

and the equation of conservation for species i can be written as

opUi = Lo
gt +V - (pUA) = -V T, — g (4.5)

Using equation (4.4), we can write equation (4.5) as

v = =
—-—(—it— = "'V'Ji"'% (46)

where, d/dt = 0/0t + v - V is the Lagrangian time derivative and g; is the burning rate
of the species under consideration.
Putting the flux into the above equation, and taking into account the spherical sym-

metry of our problem, yields,

U

aU;
_______+ (2

dt p Or )

and writing the spatial derivatives into Lagrangian coordinate, using,
o 1 0
Om,  4wr2pOr
m, (mass inside the sphere with radius r), as we use for structures, at last we have,

oU;

om,

dUi _ g

dt - p er[(4r) Ry

] (4.7)

Equation (4.7) gives the usual diffusion equation to be solved for chemical distributions

in stars. We have not gone into any physics of diffusion yet, which is mainly contained in
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the diffusion coefficient, and probably the way of approaching this is not so direct. A lot
of attempts have been made to study the relation between the choices of the coefficient
(or the calculation of it), and its consequences on stellar evolution. Work done on this
subject include explicit calculations of the diffusion coefficient (Simpson 1971, Sreenivasan
& Wilson) and using prescriptions (Weaver et el 1978, Langer et al 1985). For the present
work, we will accept the way of using a prescription for the diffusion coefficient to study
the incomplete mixing in stars.

As we can see from the work done in the past about the diffusion models, the evolution
of stars depends on what coefficient is to be used. For the fully convective zomnes, all

authors use the same formula for the diffusion coeflicient,
1
DFC = *?;’Ulm (4.8)

where v is the convective velocity, and [, is the mixing length, both depend on the
convection theory.

This formula could be verified in the following way. Suppose the velocity of a convective
element is v. It starts with the concentration of the original place. It is to be mixed at
the end when the element dissolves. In mixing length theory, this length traveled by the
element is exactly the mizing length. The motion of this element will make its contribution

to the diffusion flux; for an upward moving element, it is
1 1
3t = 601}5! = ngvtSl

the numerical factor comes from the average of cos? # for upward moving element, with
f being the angle between the direction of motion and radius, and 61 is some scale distance
traveled by our element. Noting that the values of p ;v and C (or U) are determined at
(—61) (and at [+61] for downward moving elements, taking the current position being 0)
we can expand p,U and v at z = 0, neglecting all terms except linear ones, we have,

7 = 5le(0) 5 22sU(0) 7 2s1)[U(0) = 2 61
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The net flux is given by j = j* — j~, which is

1.0U0 d(pv)
——-?;[——;vpéfl-i- 57

j = Udl|
The second term describes the gradient of mass flow, which corresponds to the variation

of density according to mass conservation. For steady state it is negligible. So we write
- 1 — —
Je = ——gpchlVU = -D.,pVU (4.9)

where D, = ~—-§ pv6l is taken to be the diffusion coefficient if we take the convective mixing
as a diffusion. This expression for D, in the equation is a qualitative one which suggests
a way to evaluate the coefficient in the full convection case.

Now we have the equation (4.7) which was used by researchers with different numerical
schemes. Some of them made simultaneous solutions of diffusion with the normal stellar
structure equation (Simpson 1971), which means introducing a second order differential
equation to our problem. Doing this might improve the accuracy of the problem (Clout-
man & Eoll 1976) as the diffusion coeflicient becomes very large, but this can also be
quite time consuming, the extreme case was found in Xiong’s method. Others solved this
equation independently (Weaver et al 1978; Langer et al 1985, 1990). There are not any
significant differences existing besides the more different ways of choosing the coefficient
and the convection treatment involved.

In each convective zone, the diffusion equation is solved to give a chemical profile. The
problem of choosing the coefficient is to be discussed latter. A numerical scheme is given
here for solving the diffusion equation. The first term in eq.(4.7) can be written as the
change rate of abundance of chemical 7, which is more convenient for numerical purposes,
then we have,

dU 0U 0 0u

i g T 2\2 2
dt ( (975 )nucl + amr [(47‘-71 ) Dp 8mr

The term (%?)nucl times the time step is the variation of fractional abundance at each

] (4.10)

mesh point before and after a time step, given as numbers on each mesh through a nuclear

reaction routine. Now the equation is ready for discretization.
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4.2 Numerical Methods

Our grid is the same as the one used for stellar structure models, with the center being
M, which is the total number of mesh points, going down to 1 at the fitting point with
atmospheric integral. The left hand side of the equation is discreticized with forward

difference,

dU;/dt = (U — U)/ At

where At is the stepwidth in time, the superscripts give the chemical concentration at
time ¢"*!, and time ¢". The subscripts stand for the mesh m;.

To discreticize the right hand side, we have to consider the stability of our scheme.
There are many schemes for this kind of parabolic equation (e.g. Crank 1986). In our
case, as the mesh is not a equal-spaced one, the scheme turns out to be slightly different
from others usually found in numerical books. For a general discussion, we use a weighted

mean scheme as follows. For simplicity, we first make the following substitution,
D; = [D;(4nr?)?p?; (4.11)

So the second term on the right hand side of our equation is discreticized in the
following way. The first step is to make a centre space difference of the second derivative
with respect to mass, at two intermediate points, P+% 3%(mi-1 ——m,-), and P_% 2 (mi—migr)

with half stepwidth in mass which gives,

2

(mi—-l — M1 )

[(DBU/@m)p+% - (DBU/@m)p_%]

The second step is to make the difference for the first derivative, again with center

space difference, which yields,

- Al
(M1 — miy1)

ol

(Uier = U]

(mio1 —m;) 2
1 (D; + Diy1)
(mi — miy1) 2

(U = Ul (4.12)
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where 0 < a < 1 is the weight constant, which is to take into account contributions from
different epochs. With @ = 1 gives an complete explicit scheme, a = 0 complete implicit
scheme, @ = 1/2 the well known Crank-Nicolson scheme which has second order of accu-
racy both in time and space. The superscript in the above equation defines quantities at
different times.

Some comments should be made here about the above scheme. For any problem of
this kind, with o different from 1, the above discreet form for our diffusion equation
are unconditionally stable. Of course some specific value of o will be chosen; we will

come to this point later. Now to simplify the above difference equation, we make some

substitutions:
A = (Dit1 + Dy) (4.13)
(mi—1 — Mgy )(mi — migq)
Ci = (D + Dicy) (4.14)
(mi—l - mi-l-l)(mi—-l - mi)
B = 4+ G
- ; D; + D;
(mic1 — mipr)(ms —mipr)  (mim1 — miyy)(mi — mig)
And take 6 U; to represent the term due to nuclear burning in our equation:
§U;
= i/ Ot )nuc 4.16
D (008t (1.16)
Then we have the following difference equation for our problem:
yrtlt _ yn
—t TP = §U; /At
At [At+
(1- a){Ait1 Uiy1 — BiU; + Cia Ui—l}n+1
+a{Aiy1 Ui — BiUi + Cipq Ui 1" (4.17)

Suppose there is convection between mesh points N, and N,, equation (4.17) valid for 7
goes from N, —1,to N,+1 and give us a set of (N;— N, —2) linear equations. Fortunately,

as can be seen from the above equation, this set turns out to be ¢ridiagonal, which can
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be solved with a very effective method. At both boundary points, however, we have to

provide other two equations given by the boundary condition of our problem.

4.3 Boundary Conditions

We will assume the diffusion equation is solved for a given model, in this case, the bound-
ary will be wall-like, that means no net mass flows across the boundary. This will have

the advantage of keeping easily the conservation of matter in one zone. So, we have,
Invy =Jn, =0 (4.18)

To discreticize the boundary conditions, we also have to write the original equation
for the boundary points. To do this, we imagine there is an extra point outside each end
of the region [N, N], and each point set at a distance from the boundary which is the
same as the first point inside the zone from the border. Each fictitious point outside the
boundary has the same D (defined by (4.11)) as the corresponding inner point. This is

just to guarantee eqs (4.18). Then we have:
Jo = (Up — Up)/2Am =0

which gives:
Ur = Uy
where subscript k£ denotes boundary meshes. I/ means imaginary points.
The equations for boundary points are, for the inner boundary Ny,

n+1 n
UNL - U-]V]_

= §Uwn
A7 U]VL/At

+(1 - a){ANl ~U]VL - BNL UNL + On -1 UNL—I}H+1

+a{An, Uy, 41 — By, Uy, + Cny-1 Un -1} (4.19)
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and for the upper boundary N,

n-+41 n
UN,2 b IYN2

)

i UNz/At
+(1 — &) {An,+1Ung+1 — By, Un, + Cn, Uny 17
+o{An,+1Uny 41 — Bw, Un, + C, U, } (4.20)

where the tilde variables mean the quantities of fictitious points.
The above equation also holds if the boundary becomes the center or the surface of
the star as in cases of core convection and envelope convection respectively. Using above

equations, we arrive at

Uit — Ug
A0 S .S T ) A
At Uni/ At +
(1 - a){CNl—l UN1—1 - BN1 UN1 }n+1
—I—CK{ CN1~1 UN1_1 — BN1 UNl}n (4.21)
Ut — Ug
PRS0 A b J— 5(] . At
At N/ At
(1 - a){A1V2+1 UN2+1 - BN2 UNz}n+1
+a{An,+1Unp+1 — Bny Un, 1" (4.22)

The Fictitious points are cancelled out deducing. and By, ,Cn,, An,,Bn,, are given

below:
B 1 (Dn,-1 + Dn,) .
N, — = Vg
(me—l - mN1)2 2 '
1 (D;'V-)—}-l + DN"))
B = = ~—= = *“A /o
YT (my e — ma,)? 2 "

The above boundary equations, plus the set of equations for interior points form a com-
plete set of tridiagonal system.
We will show below that our numerical scheme together with the accepted boundary

conditions gives a conservative finite difference formalism. The variation of chemical Uin
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a mesh labeled i is,

nt1 n
(@ +A; v (AA?)i + o —2~mi+1(Fi"l/z ~Fit1/2)
where,
Fir1p0 = %(Di + Diil)%
Summing up LQQ%E—UL) over the whole range [Ny, N;] gives the total variation in this

zone, i.e.,

N (pntl M AT 9 2

%QT—Z - fv\; Ae T My, -1 — MN, +1 vt MN;+1 — TN, -1 Froe (4.28)

So the total variation in this region will be the total change due to thermal nuclear
reaction, and marginal terms which are flux of matter flowing across the boundary. As
our boundary conditions set those terms to zero, this formula give strict conservation of
species, i.e. any change of species inside a zone will be completely due to reactions, if we
are free of numerical errors. As found in the numerical calculations, rounding errors may
be important in some circumstances, and we have to find a way to correct them

Some assumptions are to be made here. The coefficients in our difference equations,
A;, B;, A; all have superscript, i.e. they are values from different times. This means
in order to solve this tridiagonal system, two models of structure should be stored. In
practice, we couldn’t know a priori the structure quantities for the next epoch, because the
structure is to be decided upon our solutions for the chemicals. A possible assumption is
that the chemicals diffuse at a given structure, i.e. diffusion will not affect our structure.
This of course is not a physical picture, because it would be strange if this happens
in real stars. However, this is based on the following considerations. Solving chemical
distributions independently will be more convenient, and the results of new chemical
profiles will have their consequences on structure. In practice, every time we have a new

chemical distribution, just like nuclear burning for each step, we will adjust the structure
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to fit the changes in the chemical composition. This adjustment is automatically done by

the routines that solve the structure equations. In this case, we will have

AP = AT
BI' = Bntl
Oin — Cin+1

This assumption is shown to be acceptable by our numerical experiment, if the time

step is well tuned.

4.4 Conservation of chemicals during diffusion

In solving the linear equation in the above section, we have to keep the chemical contents
inside our diffusion regions, so as to be conserved. Although the numerical scheme and
the boundary conditions of the problem are conservative ones, numerical errors may exist
in our system which could be thought of as leakage. That means some small amount
of fuel is to be lost or added to the star as if the region had some unexpected thermal
nuclear burning going on inside. This will surely affect the age estimate, and possibly
affect evolution on later phases. To control this problem, we integrate the abundances in
diffusion zones, and check this integral before and after the solution of our linear equations.
The integration is done with the following method.

As the mesh is non-equally spaced, we fit two sets of three successive points,
(mi+1,mi7mi-—1) (miumi——lami-—Z)

with two second order parabola, and take simple averages of the two fitted functions to

approximate the value of the abundance U in the interval [m;,m; 1], i.e.
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where

P, = a;z> + bz + ¢
Py = a;12° + b1z + ;4

The integral of Uis then approximated by the integration of the fitted function P;

mi—y miy 1 pmi-
/ Udm ~ Pdm = 5/ (P, + P3)dm (4.25)

my my

The final formula of this approximation is

Pidm = 2 (3U; +3Ui1 ~

/”""1 h; L; + R;
2

Then, the total integration over the diffusion region, [Ny, N3] is given by,

™ Ny : L, + R;
/ Udm = = 3 (3U; + 30, — i1 By (4.27)
iy, 6 &~ 2
where
62 8;
Li= 35 U =604 75 Ui
A ¥
Ri——mU AU — 1+/\i(];—2

hi =m;_; —my

6 = hi/hips
Ai = hifhi_y
L]\[ = RQ =0

and m; is the mass inside the sphere of mesh 1.

We make the integration with equation (4.27) for every diffusion zone at each time
step to check for conservation. If the relative error is greater than some given value (say,
1074, as I used for this work), then, the difference between the integrations of the two
epochs will be attributed to the profile before nuclear burning, and the whole diffusion

equation is solved again until the condition is fulfilled.
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4.5 About the Diffusion Coefficient

Now, the problem is to choose a proper diffusion coeflicient for our problem. Different
choices appear in the literature which leads to quite different results. This is easily under-
stood because the evolutionary features depend critically on the chemical profiles. Here I
just list in the following a few possible ways to obtain the coefficient from literature. Gen-
erally speaking, there are two types. One is to directly calculate the coefficient according
to the run of hydrogen to maintain convective neutrality. Since inside the cores of massive
stars opacity is dominated by electron scattering, we have & (1 + z). Another way is

to use some explicit dependence on local thermodynamic quantities of the coefficient.

4.5.1 Numerically calculation of the coefficient

Simpson (1971), Sreenivasan & Wilson (1977) accepted a direct calculation of the coeffi-
cient by checking the run of hydrogen content to keep the convective neutrality fulfilled.
Then it is assumed that the other chemicals will be dispersed with the same diffusion
coefficient. This is carried out in practice by the following. The diffusion coefficient is

written in to two first order equations (using Simpson’s notation), for the diffusion flux,

-
i

i

|
b
—~
=
o
(@¢]
N

and for the time variation of the abundance z°,

fzs . 0¢°

And the neutrality condition is also specified,

oT 3xL

('51_3)“ ~ Sio0Tm 0 (4.30)

where z* is the chemical abundance of chemical s, A is Simpson’s diffusion coefficient

(corresponding to 4wr2p?D in our notation), §° is the burning rate of chemical s, the
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other symbols have the usual meaning. Now the equations (4.28), (4.29) and (4.30) are
solved simutaneously. And here z° is only the hydrogen content which determines the
almost purely electron scattering opacity in interior of massive stars. Because the runs of
luminosity, temperature, and adiabatic temperature gradient are all known, the diffusion
coefficient can be determined, and the same coefficient is then used for solving other

chemicals.

4.5.2 Prescriptions of the Diffusion Coeflicient

Another way to get the coeflicient is to give the coefficient explicitly with some local
thermodynamical quantities. This prescription is assigned to all chemical elements.

For the convective core, with the same treatment of diffusion as in slower mixing
regions, chemical homogeneity should be achieved. This is done through large diffusion
coefficient. This yields a very short time scale for diffusion to homogenize the medium.
The following formula, which could be given by a simple dimension argument, is generally

accepted for fully convective case (Weaver et al 1978, Langer 1985),

Di = %vili (4.31)
where [; is some local scale length describing the convective mixing which may be thought
of as mixing length. Hence, to determine /; we may use the same treatment of the mixing
length. Also, v; is the convective velocity at the mesh 2. This expression for the diffu-
sion coefficient is implied by the derivation of concentration flux in the above text. The
physics behind this choice is straightforwardly to be seen, because inside the convective
zone, mixing due to turbulent convection is dominant and the other diffusion processes
like molecular, thermal or barodiffusion are negligible. The differences in the diffusion co-
efficient for convective cores among different authors are due to the different treatments of
convection, and the different choices of the precise expressions for the convective velocity,

as well as different setting of the mixing length. The velocity used in this thesis is given
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by the algorithm by Bressan et al (1981).

This prescription of the diffusion coefficient gives a mixing time scale,
p =1*/D (4.32)

where [ is the dimension of the convective field. This time scale is of order of a year for the
typical convective core of massive stars. Hence it gives perfect mixing. The choice of the
coeflicient for incomplete mixing such as semiconvection are at variance in the literature.

For semiconvection, Eggleton (1972) used

Dsc x (vrad - vad)2 (433)
and Weaver et al (1978) gave
D.D
Dy ox ——2— 34
*D. 1D, (4:34)

where D, is the radiative diffusion coeflicient. These choices of diffusion coefficient give
very convenient numerical treatment, but contain some arbitariness. Langer et al (1983,
1985) proposed a method based on the vabrational stability analysis and a numerical
factor was used to scale the efficiency of semiconvective mixing. He took all the mixing
in stellar interior as diffusion, for fully convective region, he use the same expression as

Weaver et al’s and expressed as:

1
De = 57* Hyl-o98(1 = B)Vad( Vrad = Vaa))'° (4.35)

where v = [,,/A,, the other symbols have the usual meaning.

For semiconvective zones, he gave:

Ky V- vacl

Dsc =
6c,p Viep — V

(4.36)

where

K, = 4acT’/3kp
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is radiative conductivity, the other symbols have the usual meaning. «, is his scaling
parameter of the diffusion time scale.

The physical arguments underlying the choice of the diffusion coefficient are connected
with our understanding of the nature of convection. As we have no clear judgement on
the convection theories, probably we will have no judgement on diffusion process used for

chemical distribution.

4.5.3 Diffusion coefficient for overshoot region

To get the goal of we have in mind, we have to specify the diffusion coefficient. The idea
is the following. In the properties of elements overshooting into the region outside the
convective core, are studied by many authors. The turbulent energy flux becomes very
small (Xiong 1986) and the convective flux turns out to be negative (Bressan et al 1981,
Meader 1983). And due to the deceleration of the medium in the overshooting regions, the
velocity is slowed down and finally turn to be zero, the temperature excess of a element
turns to be zero when crossing the boundary and becomes negative (Meader1975). These
physical processes may imply that the mixing process there might be gradually slowed
down. My assumption of diffusive mixing is based on this simple consideration, and this
is also one of the results of Xiong’s method (1985). I will further assume that we accept
the same method for all convecti';fe regions if they are present. Doing this needs more
physical considerations, and it is left to be studied later. Within the overshooting region
outside each convective zone, I will follow Weaver et al’s choice for semiconvective mixing

region. The radiative diffusion coefficient is determined in the following way,

16racT?dT

F, = —
3kp dr

(4.37)

where F, is radiative flux.

Writing the above equation with the gradient of radiative energy density on the right
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side, we have

Arcdu, du,
b= =05 (4.38)

where D, defines the diffusion coefficient for radiative energy. This gives an approximate
measure of the time scale for some slower or incomplete mixing as inside semiconvection
regions. For the present work, we take equation (4.31) for convectively unstable regions.

For overshooting zones, we use

D.D,
-Dc + Dr

Dos = Qpg

(4.39)

where the cofficient is adjested to give a time diffusion scale around the current time step.

Because the mixing in real stars is not such a simple diffusion process, any choice for
the diffusion coefficient will be somewhat arbitrary. As long as the lack of a satisfactory
convection theory exists, using diffusion for chemical mixing in some incomplete mixing
regions in stars at least a workable means of treating chemical distribution. This treatment
actually introduces an additional parameter to stellar evolution, as is clearly shown by
Langer (1985), and the present work. Further work should be determine this coefficient

on a more physical ground.
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Chapter 5

Numerical results of diffusive

mixing stellar models

5.1 A brief introduction of input physics

5.1.1 The code

The code was originally developed by Kippenhahn, Weigert and Hoffmeister (1967). The
relaxation method introduced by Henyey (1958) was adopted to solve the normal equations
for stellar evolution. This code has been revised by the PADOVA stellar evolution group,

mainly concerning the mixing scheme, the new nuclear reaction rates and opacities.

5.1.2 Opacity

Radiative and conductive opacities are taken from the Los Alamos Astrophysical Opacity
Library (1977) wich can only be used for T > 10%; for T < 10%, the opacity was derived
from the tables of Cox and VStewa,rt (1970). The values of the opacity are obtained by
bicubic spline interpolations among the tables. The molecular opacity contribution due

to CN, CO, H,0 and TiO is considered, utilizing the analytical formula of Bessel et
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al (1989,1991). These formula are based on opacity tables including molecular opacity
sources computed by Alexander (1975) and Alexander et al. (1983).

5.1.3 Nuclear reaction Rates

Changes in the chemical abundances have been followed in detail using an updated
version of the routines employed by Greggio (1984). For the H-burning reactions, the
three pp chains and CNO tri-cycle have been considered (cf. Maeder 1983), while the
following reactions have been taken into account during Helium burning: 4He(a,v)
8Be(a,v) 12C(a,v) 160(a,v)20Ne ——(a,v)26Mg 14N(a,v) 18F(e+v)180(a,v)22Ne <
——(a,n)25Mg. The C'*(a,v)®O reaction rate has been taken from Caughlan and Fowler
(1988), the latest redetermination lowers the value of Kettner et al. (1982), Langanke
and Koonig (1982), Caughlan et al. (1985) almost to the 1972 one by Fowler et al., 1975.
Screening factors from Graboske et al. (1973) have been adopted. Beta decays have
been treated as instantaneous, as well as the 8Be(a,v)12C reaction. For the elements
2H, 7Be and TLi we have considered a depletion rate equal to the supply rate from the
beginning of the computation. For the remaining species (1H, 3He, 4He, 12C, 13C, 14N,
160, 170, 180, 20Ne, 22Ne, 25Mg, 26Mg) the evolution has been followed in detail using
an explicit scheme of integration. Following the notation by Arnett and Truran (1969),
the network equations are written in terms ;)f the abundances Yi = Xi/Ai, where Xi is
the mass fraction of the species 1 and Ai its atomic mass number, and can be expressed
as (cf. Maeder 1983): dYi/dt = -[ij]YiY] + [rs]YrYs . Their integration over the time
step (At), determined on the basis of the structural variations, is covered in several mini
time steps (At), whose number depend on the temperature at the given mesh point, if
convectively stable. In convective regions, however, the length of the mini time step Delta
t is controlled by the difference in the results obtained with one integration over the whole
Delta t, and that obtained with two successive integrations over (At)/2. In order to save

computational time, the variations of the abundances in convective regions are determined
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from the mean rates, averaged over the whole region, as in Iben (1964). The variations of
the abundance of a species i is determined by (AY7) = (dY i/dt) x (At), where the deriva-
tive is computed evaluating the reaction rates in t + (A t)/2, by means of extrapolation
from the two preceeding models. During Hydrogen burning, special care has been paid
to avoid oscillations in the abundances once equilibrium between supplying and depleti'ng
reactions is achieved by any element: the results of the numerical integration are com-
pared to the appropriate equilibrium abundances at each time step, and the equilibrium
value is adopted if necessary. The conservation of the total number of CNO nuclei and
of the total number of nucleons are secured in the computation of the abundances of 14N

and 3He, respectively, once equilibrium of these two elements is achieved.

5.1.4 Mixing algorithm

The numerical method described in chapter 4 is used for all diffusion regions, includ-
ing full convection, overshoot regions outside each border of full convection zones, and
semiconvetion occurring when V,q < V < Vgp.

When a region is fully convective, i.e. V,o4 > Va4, because of the large diffusion
coefficient, the medium up to the point where V,,y = Vg is completely mixed. This is
exactly the same as instant mixing.

In each overshoot region, the diffusion coeflicient is smaller by several orders of magni-
tude than for convective regions, and the mixing time scale [eq(4.32)] in the overshooting
region is comparable to the time step for changing the abundance of chemicals through
nuclear reaction. We can adjust the time scale for mixing with the parameter « to test dif-
ferent mixing time scales. The assumed slow mixing process “makes a profile” inside the
overshooting zone. For semiconvection, Langer’s scheme and coeflicient (eqs [4.35],4.36])

are adopted.
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5.1.5 Mass loss rate

Mass loss by a stellar winds is taken into account following the rate of mass loss for

radiation pressure driven winds of Castor et al (1975). The mass loss rate is given by,

l—a

x

L a|l -« o
= — (KT)Y (5.1)

T eunT |1

with L, M being the stellar luminosity and mass, ¢ the speed of light, vy, the thermal
speed of random motion of absorbing ions, I' the ratio of the luminosity to Eddington
luminosity. The force multiplier parameter @ and K are assumed to be 0.83 and 0.01
respectively.

For the case of outer envelope convection, we adopt for atmosphere mixing length,
lotm = 1.5.

The initial chemical abundances used for all the models is X = 0.700 for hydrogen,
Y = 0.280 for helium, and all other chemical elements heavier than helium (including

3He) is taken as "metal”, Z = 0.02.

5.2 A description of the models

Based on the assumption we made for the overshoot region from all convective zones in
the stellar interior, and using the numerical scheme for diffusion given in chapter 4, the

following sequences are computed.

Case 10: M = 20M Instant mixing throughout the whole mixing range, with core
overshoot parameter A, = 1.0, and envelope overshoot parameter A.=0.7. For intermedi-

ate convective zones, boundaries are determinied by the Schwarzschild condition.

Case DO3: M = 20M, Diffusive mixing with the diffusion parameter a,, = 1073;

with all boundaries determined by a velocity criterion.
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Case DO4: The same as case DO3, except a,s = 1074,

Case DO3ML: The same as case DO3, except mass loss is considered.

We also computed two tracks for the semiconvective case with Langer scheme.
Case SC30: M = 30M; Semiconvection and diffusive mixing: a, = 0.01.
Case SC20: The same as case SC30, except M = 20M,.

For each of the above sequences, I will give a table, and a set of figures. The table is
named after the name of the model, and the figures will be named by the name of the

coresponding sequence, and an index number.

5.3 Case SC30 Diffusive semiconvection and com-
parison with Langer’s models

Langer’s prescription for the diffusion coefficient is used for two models in this study.
Employing this model is aimed at testing the routine of diffusive mixing and to make some
comparison between the semiconvective diffusion models and our overshooting diffusive
ones.

Before going into details, I will put some stress on the difference in input physics and
numerical treatments. First of all, convection is differently treated, the one we are using is
based on a simple non local description of convection described in chapter 2, while the one
used by Langer (1985) is a classical version of mixing length theory. The mixing length
parameter [ ( [ = A/H), ) in Langer’s models is 1.5. The one we used corresponds to [ = 1
in classical mixing length theory. Due to some problems in the chemical routine when

using diffusion, our model stops at the central helium content of 0.255. This is mainly
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due to our treatment of chemical mixing by diffusion. Another thing is that we neglected
the energy transport by semiconvection and this brings simplicity to the mixing. This is
based on the fact that energy transport by semiconvection is negligible. However, this is
also to be included in the future.

Our model Case SC30 corresponds to case C in Langer (1985), with o = 0.01. The
HR diagrams and the internal structure map of convective zones of our model are given
in fig. SC30(1). The table SC30 shows some quantities of our model, as described in the
legend written below the table. The same figure is copied and named as fig. SC30(1L),

there are several differences found on comparison,

o The life time of hydrogen burning is 5.70 108yr while Langer’s model gives 5.6710°y7.

This difference is due to our model having a higher value of core mass;

e Our track runs at about 0.2 magnitudes higher than Langer’s, and at the b point
(conventionally defined as the lowest effective temperature reached by stars during
main sequence, which defines the boundary of main sequence band) our model
possesses a lower effective temperature. These are clearly the result of a larger core

size.

o Up to the point that our program stops, our model ignites and spends all helium
burning in the red-ward side of the HR diagram, while Langer’s spends 0.6% of the
hydrogen life time of helium burning in the blue, which is 7% of its whole helium

burning lifetime. This marks the largest difference between the two models;

e The main feature of the change of structure of convective and semiconvective zones
resembles Langer’s model. In Langer’s figure SC30(1L), during the main sequence
phase, one semiconvective zone is formed in the intermediate zone, while ours is
disconnected. The distribution of intermediate zones during the crossing of the

HR diagram is quite similar. There are some horizontal cuts by semiconvective
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thin layers. All these things may understood as the result of the calculation of the
diffusion efficiency parameter and mass zoning. As noted by Langer, if a is small,
the zones will tend to be connected. As I said at the beginning, we used different

mixing length theory and this will affect the value of the diffusion.

As data about the structure of the models is not given by Langer, and because of the
numerical problems for this mixing scheme, as mentioned above, further comparison is
not presented for the moment. Our models qualitatively reproduce Langer’s results. Fig
SC30(2-6) shows some information about the mixing. The three panels in each figure give
the energy generation rates which affect the chemical profile, and temperature gradients,
which defines the region of mixing, and the middle one gives the profiles of hydrogen and
helium made by these two factors.

Langer emphasized that one of the important aspects of the efficiency parameter is to
make the convective (either fully convective or semiconvective) zones more connected if
it is small and vise versa. During our numerical experiment, We found that this could
be due to neglecting neutrality condition. Without checking the neutrality condition, the
mixing could be at any level. This actually gives a possibility to create new zones if the
parameter is large, and, for a small enough parameter, it will not change too much the

hydrogen profile.

5.4 A description of the diffusive mixing models

5.4.1 Case: IO Instant mixing scheme

This is the original treatment of mixing in the PADOVA code. This is set to be a
standard for testing the diffusive mixing scheme, which is going to be described later, for
the present purpose. In this model, convective and overshoot completely eliminate the

molecular gradient profile instantly (corresponding to infinitely large diffusion coefficient).
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This fixes an upper limit for for degree of mixing in the overshooting region. The lowest
degree of mixing is the classical model, which does not mix at all in the regions by the

new criterion.

5.4.2 Case DO3 & DO4 overshooting and diffusive mixing

Diffusive mixing is computed for stellar models with two different parameters. The nu-
merical method is described in chapter 4. Our parameter a,, works the same as used by
Langer, and Weaver et al, so as to regulate the diffusion time scale of the mixing process.
It is very interesting to see the effect of incomplete mixing in the overshooting regions.
As we will see later, variation of this parameter will have the expected effect, which is
that larger values make the model beahave more like case 10, and lower values have the

oppsite effect.

5.4.3 Case DO3ML: Diffusive overshoot and mass loss

"To account for the directly observed features of evolution of massive stars, one model of
mass loss with the rate specified above is constructed. Diffusion in this case is included

to see how the diffusive mixing treatment will be influenced by mass loss.

5.5 Comparison of the models

5.5.1 General evolutionary features of these models

Central Hydrogen Burning phase. Through this phase, the evolution of all the models
I0, D03, DO4, DO3ML, is basically the same. The exception is DO3ML which loses
some mass, up to the b point. The mass of the star is 18.76 Mg, and some deviation
from the group is apparent, as shown on fig. 7 The lowest temperature at b is given by

the model with mass loss.
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As can be seen from the table of each sequence, the longest life in central Hydrogen
burning phase is given by the case IO, the smaller the o the shorter the life time. As for
Case DO3ML, the effect of mass loss to extend hydrogen burning life time is balanced
by this incomplete mixing of overshooting. This is not a surprising result, because this
incomplete mixing has the similar effect as some reduction of the core region. Less fuel
gives a shorter life time. This difference is bigger than the difference between case A
and case B presented by Chiosi & Summa (1970). Of course, this difference could be
as big if the parameter is adjusted. The semiconvective model forms an intermediate
semiconvective zone from a very early time of hydrogen burning, and this zone goes deeper
as the fully convective core retreats. This makes the hydrogen profile more smooth (fig
SC20 3).

Crossing the HR diagram and Helium ignition. As the stars exhaust the central
hydrogen, the core contracts. Only for the case SC20 does the core become radiative.
The others have a very small convective zones remaining round the center. This is due to
the very strong release of gravitational energy during contraction. The general structure
among all sequences is that, due to the energy source in the shell, some intermediate
convective zones develop. For all models with diffusive overshooting, the structure of the
intermediate zones are very similar to each other. A single intermediate zone forms at a
fractional mass of 0.6, and breaks into two disconnected zones, the upper one reaching
0.75. For the semiconvective sequence, some intermediate layers formed above the thick
shell hydrogen source (fig. SC20 3). Different from SC30, the SC20 model produces
at the inner boundary of these intermediate zones a very thick semiconvective zone (fig.
SC20). All the models run very fast across the HR diagram after ignition of helium. The

intermediate zones disappear at the ignition of helium in the core.
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5.5.2 Helium burning phase and the loop

The helium burning phase is quite different among the sequences, and can be seen from
the HR diagram of the five tracks (fig.7). The semiconvective case did not go to the
end for the same problem as the 30 Mg case but the helium content is already very low
< 0.1, so almost the whole life time of helium burning for this case is spent in the red.
In this phase, the track stays at a point (logT.;; = 3.614, logL/Lg = 4.7157) for quite a
long time until the problem of a nonphysical growth in the neon abundance occurs, see
fig.(SC20 2). Case IO and DO3ML evolve along the Hayashi limit during the whole He
burning phase, but DO4 & DO3 make loops to the blue side. This is a very interesting
point. Since this is a problem of the models with core overshoot, as seen in chapter 2, it
is solved by introducing envelope overshoot (Alongi 1991). For the chemical composition
used in this work, case IO, even using A, = 0.7, spends the whole helium burning in
the red. DO4, DO3 spend respectively about 36%, and 33.5% of their central helium
burning life time in this loop, and the highest effective temperature reached by these
two models are 3.87 and 3.82 respectively. As a prilimilary understanding, loops made by
DO3 and DO4 are not likely to be caused only by diffusive mixing. The most contrasting
point between the looping sequences and other overshooting ones is that they have used
extra mixing in the intermediate zone between hydrogen exhaustion and helium ignition.
This extra mixing in the large intermediate zones will have very strong influence on the
evolution of the envelope (Chiosi & Summa 1970). Actually, diffusive mixing only slightly
influences the evolution, as can be seen from fig 7. On the main sequence, where only the
core convection is present, the tracks of the sequences with diffusive mixing follow exactly
the same track as IO, the difference becoming visible only at the exhaustion of hydrogen.
Life time ratios. The life time ratio is a very important quantity for stellar evolution
and is strongly constrained by obervational star counts. Moreover this is ultimately linked

to the mixing processes in the stellar interior. The life time ratios of helium burning to
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hydrogen burning are

(La2) = 0.0531

H /10

(4z2) = 0.0614

ty / DO3

(4),,, = 0.0617

(%H-ﬂ) > 0.0550 (not reach He exhaustion)
H ) DO3ML

the

(t ) > 0.0550 (problem of chemical routine)
H /5C20

The life time ratio is considerably affected by using diffusive mixing but appears not
very sensitive to the change in the parameter. The life time on the main sequence for case
DO4 is 4-10%*yrs longer than case DO3. Probably more numerical tests should be done
to find a threshold value for this parameter.

Mass loss Case bf DO3ML The main features of stellar evolution with mass loss
is clearly seen in this model. The track runs at lower luminosity on the main sequence,

which gives a greater apparent difference than by diffusion only. This model does not

show the loop as with DO3 and DOA4.
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Central abundances

Overshoot with Diffusion a=16"*
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Chapter 6

Conclusion and future work

The present work is based on the assumption that overshooting can be treated as a
diffusive mixing process. Models of a 20 solar mass star are constructed with the help of
the code of the Padova stellar evolution group. To test the numerical method, models of
the same diffusion scheme are made. Comparison shows our method is quite workable,
despite some problems related to the link between the diffusive treatment of chemicals
and the chemical routines in the main code, which lead to the failure near the end of
helium burning.

Xiong’ model with a large overshooting distance is modelled with our method. Com-
parative studies show that most of the features of Xioﬁg’s results on massive stars can
be reproduced by introducing a large mixing extension in the core but some of them still
remain. The radiative overshooting is to be tested in the future.

Our results at present are not ready for comparison with observation, but the prelim-
inary models computed with our mixing scheme shows some interesting features on the
evolutionary tracks in the HR diagram. For the assumed diffusive mixing for all possi-
ble mixing regions, our models perform a loop in the core helium burning phase. This
may be able to account for the ledge. Current models with mass loss and core overshoot

alone (Maeder and Meynet, 1987, 1988, 1989; Maeder 1990) cannot be used because they
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ingnite and spend the whole core helium burning phase as red supergiant. Therefore,
not only the ledge, but also the existence of stars in the middle of the HRD cannot be
explained. The inclusion of overshoot at the base of the convective envelope (Alongi et al
1991) favours the extension of the loops. Our model with diffusive overshoot possesses the
same advantages (main sequence width, star counts) of the overshoot model, and perform
a loop, which is not found for the abundances used in this work for the instant overshoot
model.

The semiconvection is a subject stimulated by the explosion of SN1987A. Observa-
tional evidence shows that the progenitor was a blue supergiant which came from the red
side shortly before the explosion or a star even in the blue. A theoretical approach to
the evolution of this progenitor by semiconvective models turns out to be very successful
but those models cannot fit many other observations for the vast majority of stars. It
will be a great puzzle in stellar evolution theory if it is shown that the blue progenitor
is not a peculiar object. Current stellar evolution theory with overshooting could not
account for such an evolutionary scenario. The general understanding of this problem is
that the same evolutionary models must take into account the properties as well as of the
population of supergiant stars. This makes a very interesting point to study. The code
still has some problems for the treatment of mixing, and before we go further into this
problem, this must be solved.

I also want to apply the diffusive mixing methods to low mass stars. The evolution
of these stars is subject to intensive studies, and the observation gives a lot of interesting
points related to the mixing treatment. The ratio of star counts in the horizontal branch to
that of stars setting at higher luminosity than the horizontal branch gives a very sensitive
indicator of the primodial helium abundance. This must be considered as a very good

application and test of the mixing mechanisms.
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