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Chapter 1

Introduction

The stochastic calculus with anticipating integrands has been recently developed by
several authors (see for example [7]). This theory allows to define [@,dW,, when
the integrand ¢, is not adapted to the filtration generated to the Brownian motion
{W, :t €[0,1]}. Moreover it allows us to study different types of stochastic differential
equations driven by {W; : ¢ € [0,1]}, where the solution turns out to be non necessarily
adapted to the filtration generated by W;.

In the present thesis we are concerned with the stochastic differential equations of
the type:

dXt th
7 TIX) =8 (1.1)

where ¢ € [0,1] and instead of the usual initial condition, where we fix the value of X,

we impose a boundary condition

which involves both X, and X;. We assume that {W, : ¢ € [0,1]} is a k-dimensional
Brownian motion and {X,} takes values in IR? (h being a function from IR* into IRY,
h € IRY).

The goal of this thesis is to develop, where possible, the results of the jointly paper




of Nualart-Pardoux [8] about the Markov property of the solution of (1.1), from the
one-dimensional case to the general d dimensional case. More precisely, in [8] is proved
in dimension one (i.e. d = k = 1), that the solution of (1.1) (if exists and is unique)
is a Markov field if and only if f/ = 0 and is proved via a counterexample that in
dimension larger than one the solution can be a Markov process, even with non linear
f's. In the present thesis we provide a necessary measurability condition for the solution
X, of equation (1.1) to be a Markov field. Using this new condition, we can prove in an
easier way than in [8] the dichotomy result in dimension one (section 6.2) and state a
necessary result, in dimension larger than one, in the “triangular” situation.

The thesis is organized as follows: in chapter 2 we prove some existence and unique-
ness theorems (following [8]) for the stochastic differential equation of type (1.1) with
a boundary value problem of type (1.2). In chapter 3 we present a short introduction
about the anticipative calculus (referring to [7] for a comprehensive exposition) and state
two Lemmas that we need in the following sections. In chapter 4 we state an extended
version of the Girsanov theorem for non necessarily adapted processes which is due to
Kusuoka(in [6]). Moreover we prove that we can apply it to our problem and compute a
Radon-Nikodym derivative. In chapter 5 we study the Markov property in the linear case
and find out a measurability condition that the solution of a general non linear stochastic
differential equation of type (1.1) (under boundary condition (1.2)) has to satisfy if we
assume that it is a Markov field. In chapter 6 we prove another existence and uniqueness
theorem for a particular class of problems with linear boundary condition and apply the
previous measurability condition to this class. In the second part of this chapter we give
a new proof of Theorem 4.4 of [8]. In the last chapter, we show, via a counterexample,
that the result holding for d = 1(i.e. that the solution of (1.1) (if exists and is unique)
is a Markov field if and only if f/ = 0) , can not be extended to the case d > 1. We
utilize again the existence and uniqueness result proved in chapter 6 for the particular

“triangular” class.
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Chapter 2

Existence and Uniqueness

Let {W;;t € [0,1]} be a standard k-dimensional Wiener process defined on a probability
space (2, F, P). We are looking for a solution {X;t € [0,1]} of equation (1.1),(1.2) as
an JR%-valued process. We shall assume without loss of generality that k¥ < d and that
the kernel of the d x k matrix B reduce to {0}. We suppose moreover that the mapping
f: R* — IR? takes the form:

f(z) = Az + Bf(z)

where A is a d x d matrix, and f : IR? — IRF is measurable and locally bounded. -We
are finally given a mapping h : IR* — IR? and a vector h € IRY, and we consider the

equation:

L+ f(X) = BIE

(2.1)
h(Xo,X1) = h



In other words, a solution is thought of as an element X € C([0,1];R?) which is s.t.:
X+ Ef(X,)ds = Xo+BW, 0<t<1
(2.2)
h(Xo,X1) = h
Remark 2.1 Notice that in this section we shall consider the solution {X;} as a function

of the input {W,} defined pointwise on the space C(IRy;IR*), so that the fact that {W;}

15 a Wiener process is in fact irrelevant.

Following [8], we first associate to (2.1) the equation with f=o0:

ay, _ dW,
dt + AYt = B dt

(2.3)
h(Yo,Y1) = h

A solution of (2.2), if any , is of the form:
t
}ft — e—At [YE) +/ eAsBdWS}
0

where the last expression makes sense for any continuous function {W,} by integration

by parts. Therefore a solution of (2.2) must to satisfy:

1 —
3 (Yo,e-A (YO + / e“‘sBdWs)) =7
0

Let us define :

Fo= {/01 e Bdio(t); o € C([0, 1];Jzzk)} c R

We now formulate our first assumption:

(H.1) { Vz € F,the equation h(y,e—-‘(y b)) = Zh)

has a unique solution y = g(z)
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Under (H.1) the equation (2.3) has the unique solution:
1 t
Y, = e {g( / eA*"BdWS) + / eASBdWS}
0 0
We now define the sets of functions:

Co([0, 1]; R?) = {7 € C([0,1]; B*);n(0) = 0}

Y = {¢ e C(0,1]; RY); ft—£o+_[)tA§3ds€ImB
0<t<1;h(f,&)=rh}

It is easily seen that there exists a bijection ¥ from Co([0,1}; JR?) into ¥ s.t.:
Y: = (W)
We define the mapping T from Co([0, 1]; R?) into itself by:

T(n) =n+ [ Fbu(n))ds

We can state the following theorem (for the proofs in this chapter we refer always to [8])

Theorem 2.1 T is a bijection if an only if equation (2.1) has the unique solution
X = ot (W)

In the following we shall give some sufficient conditions for T' to be one-to-one and

onto. Let us start with:



Proposition 2.1 FEach of the following conditions implies that T s one-to-one:

dX € Rs.t.f + Alis monotone and
(H20){ (=) — g()] > |eA(z — & + g(=) — 9()}; 2,4 € F
= g(z) = 9(=)

dX € Rs.t.f + Alis strictly monotone and

(H.2i7)
eMg(z) —g(2)| < lev(z — 2/ + g(2) — g(2')]; 2,2’ € F

Remark 2.2 [t is possible to prove that the following condition also wmplies that T s

one-to-one:
(H.2i3) g and e**Bf(e ') are monotone,¥0 < ¢t < 1

We now give a sufficient condition for T' to be onto:

Proposition 2.2 The following three conditions imply that T is onto:

(H.3) f s locally Lipschitz
(H4)  limac g suppy <, [f(2)] = 0

(H.5) 3c st |g(z)] < (14 |z]),z € F

In chapter 6 we shall prove directly that our nonlinear equation admits a unique solution
(as a consequence it implies that 7' is a bijection (Proposition 2.1)). It is nevertheless
interesting to present some example where the previous general conditions are satisfied
(for the proof see again [8]). We shall consider the case where the boundary condition is
linear, i.e.

h(y,z) = Hyy + Hyz




where Hy and H; are d x d matrices. Then a sufficient condition for (H.1) is that the

matrix Hy + Hye * is invertible, and moreover:
g(z) = (Ho + Hie™*)™(h — Hie™"z)

(this condition is satisfied in chapter 6 by our triangular model). Clearly (H.5) is satisfied
in this case. Assume (H.3) and (H.4), if we suppose that Hy is invertible, we have that
a sufficient condition for (H.2ii) is that:

f- (Iog \Ho“lHﬂ) I is strictly monotone

(see again [8]).

Two interesting examples of this kind of problems are those of the periodic boundary
condition (i.e. Hy = —H; = I and h = 0) and of the proportional initial and final value
(i.e.Hy = al, H, = bl, where a,b € IR, and again h = 0).



Chapter 3

Some remarks about the

Anticipative Calculus

In this section we shall recall the notions of derivation on Wiener space and Skorohod
integral (see Nualart 7] for a complete exposition of the basic results about the antici-
pating stochastic calculus). Moreover we shall prove two Lemmas that we shall need in

the following sections.

Let {W(t), 0 <t < 1} be a d-dimensional Wiener process defined on the canonical
probability space Q = Co([0, 1]; IR?). Let us denote by H the Hilbert space L*(0,1; IRY).
For any h € H, we will denote by W(h) the Wiener integral

/O Lh(), W),

We denote by S the dense subset of L*({2) consisting of those random variables of the

form

F = f(W(hy), . W(hn)) (3.1)

where n > 1, hy,--+,h, € H and f € C;°(IR") (that means, f and all its partial
derivatives are bounded).

The random variables of the form (3.1) are called smooth functional. For a smooth
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functional F € § of the form (3.1) we define its derivative DF' (resp. D,F') as the

d-dimensional stochastic process {D;F,0 <t < n} given by
D,F = Z (W (h1)y weey W(hn))hi(2) (3.2)

(resp. DpF = (h, DF)r2qx(o,1);re))- Then D (resp. D},) is a closable unbounded operator
from L*(Q) into L2(Q x [0,1]; IRY). We will denote by ID'* (resp. ID™?) the completion
of S with respect to the norm || - ||1,2 (resp. || - ||n,2) defined by

I Fll1,2 = | Fll2 + |1 DF | 22 (ax 0,13 R4 (3.3)

(resp. || Flinz = (E[F? + (DaF)2)?).

We will denote by § the adjoint of the derivation operator D. That means, § is a
closed and unbounded operator from L2(Q x [0,1]; IR?) into L?(2) defined as follows: the
domain of §, Dom §, is the set of processes u € L*( x [0,1]; IR?) such that there exists

a positive constant ¢, verifying
1
| B [ (DeFyu)dt 1< eullPllzzoasns (3.4)

for all F' € S. If u belongs to the domain of § then §(u) is the square integral random

variable determined by the duality relation
1
E(/ (D, F,u,)dt) = E(§(u)F) Fe D" (3.5)
0

The operator & is an extension of the It6 integral in the sense that the class L? of
processes u in L2(Q x [0,1]; IR?) which are adapted to the Brownian filtration is included
into Dom(§) and §(u) is equal to the It6 integral if u € L?. The operator § is called the
Skorohod stochastic integral.

Define ILY? = (L*([0,1]; ID"?)%. Then the space IL'” is included into the domain of

§. The operator D (resp. Dj) and §é are local in the following sense:

11



(a) 1{p=e}DF =0 for all F' € ID'?;
(b) 1{fl Iul?cJIho}c‘J"('Ll,) =0 for all w € ILY2.
0 LA

Using these local properties one can define the spaces ID,;” (resp. ID;2) and IL;? by

loc o

a standard localization procedure. For instance D> (resp. ID;?) is the space of the

random variables F' such that there exists a sequence {(Q,, Fy,),n > 1} such that Q,, €

F,Q TQas. , F, € D" and F, = F on Q, for each n > 1. By property (a) the

1,2

derivation operator D can be extended to random variables of the space ID,;’.

We shall now state two Lemmas, that we shall need in the sequel. We shall present

here only the proof of the second one, referring for the proof of the first one to [1]:

Lemma 3.1 Let F: Q — IR and u : IRF x Q — IR be measurable functions such that:
(2) u(-,w) € CY(IR*) , for allw € Q;

(1) u(z,-) € DV? , for all ¢ € IR* and there ezists a version of Du(z) such that

the mapping ¢ — Du(z) is continuous from IRF into H;

(#z) for all a > 0 we have :

(43i), Esupiyc, | u(z) 2] < oo ;
(i3i), 5P |ica | Vu(e)] < oo ;
(i31)s E(suppyica|| Du(a)||2) < oo ;

(w) F,eD? ,1<j<k.

loc

1,2
loe and

Define G(w) = u(F(w),w). Then G € ID
DG = (Vu)(F)- DF + (Du)(F) (3.6)

Let H be a real separable Hilbert space. Consider a stochastic process {W(h);h € H}
defined in some probability space ({2, F, P), such that:
(i) { W(h) } is a Gaussian process ;
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(ii) E(W(h))=0 for all h in H;
(iil) E(W(h)W(g)) =(h, g)n-

In this context one can introduce as before the class S of smooth functionals of the
process W(h), as the set of random variables of the form (3.1) where the elements h;
are in H. Then for any smooth functional F of the form (3.1), its derivative DF is the
‘H-valued random variable defined by

pF =3 I winy), ., W(h)he

i=1 Bm’:

Then, as before, D is a closable unbounded operator from L%*() into L?(Q,H). All
the preceding notions can be extended to this more abstract framework. The following

example will play a basic role in the sequel:

let us take the Hilbert space L2([0,1]; IR?) with the scalar product:

(hyg) = (e*™h(u),e™g(u))r2(0,1R9)

= 3 [ (b () ()

(where A is a d x d matrix) We can define the derivation operator D with respect to the

d-dimensional Gaussian process
oA
¢, = / At dW, .
0

Let Gi = o(€(hs);t < s < 1) and G = o(é(hy),£(h2)) where é(R) = [y h(u)dé, and
hy = 1, k1 = 1y, he = 1p1). Let Ky = span{h,;t < s < 1} and K, = span{hy, ho};
we can prove the following:

Lemma 3.2

(i) Let F € D} A€ G and 1,F be G-measurable. Then DF € K, a.s.

loc?

(i1) Let F' € ]D;{f, A€ Gy and 1, F be Gy,-measurable. Then DF € K, a.s.
Proof We give the proof just of the second part of the Lemma (the first part can be

13



proved in a similar way). Since we can approximate F by ¢, (F) with ¢, € C°(IR),
¢n(z) = @ for |z| < n, it is sufficient to prove the result for F € D} NL*(N). Lethe H

loc

with h L K,. Then since EY(F) is a function of £(h;) and £(hs) , it is easily seen that
EY9(F) € ID*?, and that Dy[E9(F)] = 0. However, F € ID}? and F = E%(F) a.s on A.

loc

It then follows from the local property of Dy that:
1
DyF = f h(t)D,Fdt =0 a.s on A
0
and it holds for any Al K;. It remains to choose a countable set {k, : n € IN} C H s.t.
71, € K2 = (ﬁ,hn>[."[ =0 Vn

and to remark that

Dy F=0 Vn, a.son A

Q.E.D.

14




Chapter 4

Computation of a Radon-Nikodym

derivative

From now on we shall assume that £ = d and B = I. In this section we recall some results
proved in [8]: first we state the extended Girsanov theorem of Kusuoka (Theorem 6.4
of [6]) and then apply it to our situation. As before we assume that Q@ = Co([0,1]; RY)
equipped with the topology of uniform convergence, F is the Borel field over {2, P is

standard Wiener measure and W;(w) = w(¢) is the canonical process.

Theorem 4.1 Let T : ) — Q be a mapping of the form
T(w) = K, (w)d
(w) w-}-/O (w)ds

where K is a measurable mapping from ) into H = L?(0,1 : IR?), and suppose that the
following conditions are satisfied:
(i) T is bijective;
(1t) For all w € Q, there exists a Hilbert-Schmidt operator DK (w) from H into itself
such that:
(1) 11K (& + f hds) — K(w) — DE()hllr = of|4]) as Al tends to zero.
(2) h - DK (w + [; hsds) is continuous from H into L*(H),

15



the space of Hilbert-Schmaidi operators.
(8) I + DK (w) is invertible.
Then if Q is the measure on (Q,F) s.t. P =@ T-1, Q is absolutely continuous with

respect to P and

%% = |d.(—DK)|exp (—5(1{) - % /01 iKtiZdt> 7

where d(—DK) denotes the Carleman-Fredholm determinant of the Hilbert-Schmidt op-
erator — DK, and 8(K) is the Skorohod integral of K.

To define the Carleman-Fredholm determinant (see e.g. [12]), it is sufficient to say
that:

(i) If A is a linear operator from IR into itself,

do(A) = JJ(1 = Aj) exp(A;)

J

where the );’s are the nonzero eigenvalues of A counted with their
multiplicities.
(i) A — d,(A) is continuous from L*(H) into IR.
We want to apply Theorem 4.1 to the mapping T defined in chapter 2. Moreover we
shall compute the Radon-Nikodym derivative %% in this particular case.

We have Ki(w) = F(ii(w)). Assume that f,g € C'(IR%; IRY).

D,Ki(w) = f(#u(w))Dsthe(w)

= Flduw))e Mg (&)™ + e 1 (s)]
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where ¢; = [! e**dW,. The operator DK (w) € L*(H) is given as

(DE@)) () = Y. [ DiKi(w)hids

=1

Conditions (ii.1) and (ii.2) are here satisfied (as a consequence of the fact that
b — (f(e(w + [ heds), é1(w + f; hods)) is continuous from H into IR?, for any
w € ).

Remark 4.1 Notice that everything here is defined for any w € ) and not just a.s., by

integrating by parts the Wiener integrals.
Let {¢;0 < ¢ < 1} denote the d x d matrix value solution of
{ B =
50) = I
We have (for the proof see [8]):
Proposition 4.1 Suppose that f € C'(IR?,IR?), (H.1) holds and g € C*(IR*, IR?). As-

sume moreover that T defined in chapter 2 is bijective, and furthermore that

det(I — e*¢1g'(&1) + 9'(61)) # 1 (4.1)
Then the conditions of Theorem 4.1 are satisfied.

Remark 4.2 From the computation of the Carleman-Fredholm determinant in this par-
ticular case, we obtain that condition (4.1) is equivalent to the fact that d.(—DK) # 0
and form the theory of the Hilbert-Schmidt operators (see e.g [12]) that it holds if and
only if condition (11.3) is satisfied.

We shall now give two sufficient conditions for (4.1) (that we shall use in section 2 of

chapter 6):

17



Proposition 4.2 Suppose that f,g € C*(IR?,R"). Then (4.1) follows from each of the

following hypotheses:

(H.2.) I\ € Rs.t.f + M is monotone and Vz,y € IR?
24
eg'(v)z| > le (I +g'(y))e] = @=0

J) € Rs.t.f + M > 0¥y € IRand
Vz,y € BR? e*g'(y)e| < e (I + ¢'(y))2]

(H.2.45) {

It remains to compute the Radon-Nicodym derivative J = % of Theorem 4.1. The
main step is the computation of the Carleman-Fredholm determinant d.(—DK). In
Appendix A we shall compute the Carleman-Fredholm determinant in a more general
case (itself a generalization of a similar result present in [2]) and we obtain that under

assumption of Proposition 4.1, if K; = (1),

d(-DK) = det(I —e*¢rg' (&) + g'(£1))

exp (— /01 Tr [f(¢t)e“‘4tg’(§3)e‘4t] clt)

At the end we obtain that:

Theorem 4.2 Under the assumptions of Proposition 4.1, if Q) s defined as in
Theorem 4.1 with K; = f(i:),then

J = |det(I —e g (&) + g'(€1))l

1 _

exp {—% /01 Trf(pbt)dt—/u F() o dW, _%/01 |f(¢t)$2dt]

where [ f(1,) o AW, is the generalized Stratonovich integral (see [7]).
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Chapter 5

The Markov Property

In this section we shall study the Markov property of the solution {X;} of equation (1.1).
Following Rozanov [10], we shall first define the splitting o-algebras and state some basic
results about these o-algebras. In this first part we shall assume that (2,4, P) is a

general probability space and all the o-algebras considered are sub o-algebras of A.

Definition 5.1 Let A, and A, two o-algebras; we say that the o-algebra B splits A, and
Ay (or is splitting ) if:

P(A, N Ay|B) = P(A1|B) - P(A,|B) (5.1)

for any Ay € Ay and A, € A, .

As usually, condition (5.1) is equivalent to the following condition in terms of random

variables:

E(&1 - &|B) = E(&1|B) - E(&IB) (5:2)

for any & € L%(A;) and & € L?(A,).
We shall now state, without proving (for the proof see [3], pagg. 56-58), two basic

results about the splitting o-algebras :
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Proposition 5.1 If the o-algebra B splits A, and A, , then it also splits the o-algebras
All :Al\/B G/ndAé:Al\/B

( with a more compact notation:
A1%A2 = Al\/B-Z]—l,—AzVB )

Proposition 5.2 If the o-algebra B, 1s splitting for Ay and A, then so is every o -algebra
B 2 By of the form
B =BV B,

where B; C Ay V By and B, C A, V By.

Remark 5.1 Let us note that trivially holds:

Al%flz and A’lgAl,A,z_C_Ag = A’;%A’z

We shall use these two propositions in the last section of the present thesis to prove,
in a very direct way, a general result about the Markov property of the solution of a
Stochastic Differential Equation depending on another independent Markov process.

We can now define the two type of Markov properties which are of interest in our

framework:

Definition 5.2 A process {X;;t € [0,1]} is said to be Markov if for any t € [0,1], the
o-algebra o{X,;} splits the two o-algebras o{X;;0 < s <r,t <s <1} and o{Xgr <s <

t}

Definition 5.3 A processa{X,;t € [0,1]} 1s said to be a Markov field if for any 0 <r < t < 1,

the o-algebra o{X,, X,} splits c{X;;0 < s <r,t<s5<1} and c{X,;r <s <t}

It is possible to prove (see [4]), that any Markov process is a Markov field, but the
converse is not true in general. In the case of periodic boundary condition Xy = X, we

can not clearly expect {X;} to be a Markov process, but it could be a Markov field.
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It has been proved ( see [9]) that in the Gaussian case ( f affine and h linear) the
solution is always a Markov field and is moreover a Markov process if h(z,y) = Hoz+ Hyy
is such that ImHy, N ImH, = {0}.

It is possible to extend the previous result (see Nualart-Pardoux [8]) to the case in

which the function h is not linear. Let us consider the equation

ix, W,
5 TAXite = B

h(Xg,Xl) - h

where A, B, h and h are as in chapter 2, and ¢ € IR*. We assume that (H.1) holds with
F = R4, which implies that (5.3) has the unique solution:

t
e (BAW, — cds)) + e~ / 4 (BdW, — Cds) (5.4)
0

1

X = E_Atg(/

0

Theorem 5.1 The process {X;;t € [0,1]} given by (5.4) is a Markov field.

Proof Let us define
t
£ = / e (BAW, — cds)
0

For ¢ € Cp(IR?),and 0 < s <r <t <1, we have

E[p(X) | Xuiw € [0,1\(5,8)] = B [o(e™(g(€1) + &))l€uiu € [0,1]\(s,2)]

= Efp(e (y + &))léwin € [0,1\(s, )

ly=g(&1)

{&,} is a Gauss-Markov process, hence also a Markov field. Therefore the conditional law
of ¢ given o(é, : u € [0,1]\(s,t)) is Gaussian with mean ¢, + C\¢, + C2&; and constant

covariance, where ¢y € IR? and C, C, are d x d matrices satisfying C| +C, = I. Therefore
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the quantity
B [ip(e ™ (y + &) léujw € [0,1\(5,)

is a function of y + C1€, + Ca€; = Ci(y + &) + Caly + &2).
We have
E [p(X;)[€u;w € [0,1]\(s, )]

is a function of X, X;, hence equals
E [p( X)X, X))

Q.E.D.
Let us now come back to the general equation. We shall assume that k = dand B =1

and we shall consider

dXt .
7y + f(Xy) =

dW,;
dt

(5.5)
h(Xo, X1) = R

Recall that 2 = Cy([0,1]; RY), F is its Borel field, P Wiener measure, P = QT~!, J = g%
and Wi(w) = w(t) the canonical process.

We shall prove in the following Proposition a general measurability condition that has
to be satisfied whether {X;;¢ € [0, 1]}, solution of (3.3), is @ Markov field. In the following
section we shall use this Proposition to prove, in a different way than in the paper of
Nualart-Pardoux [8], that the Markov field property of the solution {X;;¢ € [0, 1]} implies
in the scalar case [d = 1] that f(-) is affine. Moreover we shall characterize in dimension
d > 1 the Markov field property, in the particular case where f has a triangular form (
ie. Vi=1,..,d f(z)depends only on (z,,...,z;) ) and the boundary condition is linear

and has a similar triangular form.
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Proposition 5.3 Suppose that (H.1) holds, equation(2.1) has a unigue solution, f and g
are of class C* and (H.2)” holds. Then, if {X;;t € [0,1]} is a Markov field, we have

Tr((I —e*p(1)g'(é1) + ¢'(£1)) (e p(1) ™ (s)ViOF (Ya)d(s)g' (€1)) € F7
te0,1],t<s<1

where (Vlaf(lfﬂ))ij = oy (Y-;) ’ jrf = O'{%,K;t <s< 1}

Oz 0x;
Proof : recall that Y, = g(¢) + & and & = [5 e dW,. Let t € [0,1] and define the

following three o -algebras :

Fi = O'{YO,Y}} = U{Q(fl)aft}
Fii=0{Y;0 <5 <t} =0{g(£),&;0 < s <t}
Fei=0{Yy, Yt <s <1} = o{&;t <s < 1}

(where e stand for “exterior” and ¢ for “interior”).

Since

we have, for every non negative measurable function { on (2, that:

| F(X@)dPw) = [ F(¥(@))dQw)

i.e. the law of {X;;¢ € [0,1]} under P is the same as the law of {Y};¢ € [0,1]} under Q.
This implies that for any non negative (or equivalently () integrable) random variable x

which is F} measurable,
Ep(xJ|F7)

A;r.‘ = EJ‘(J(;\L?TIr ) = E[’(J!f()
- {

is F} - measurable.

23



Recall that :

J = |det(I— et g(1)g/(61) + g'(6))] x
xexp |5 [ Trf(V)ds — [ (Yo dw, — 5 [N 1F(V)ds]

= Z.J;.Jte

where

b= "t
Z = |det(I ~ e9{1)g (&) + /(&)
Ti=exp [5 [ 1ep s - [ Py oaw, — 2 [NIF ()P
T =y [ Trivds - [ Fyoaw, 5 [ ifi(vras)

Since the increments of {W,} in any interval I are o{Y; : ¢ € I} measurable, we

conclude that

J{ is F; -measurable and J{ is F; -measurable .

Then we have

EP(XJ]ff) - EP(XZ . J!i . Jte]}*f)
Ep(JIF) — Ee(Z- T T
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J; Br(xZ - T ;)
T Ee(Z - Ti|F)

Ep(xZ - Jﬂfcg)
Ep(Z - J;|F7)

Let us choose x; = n(Ji)™!, for any 1 non negative , F; - measurable random variable,
and x, = (J;)~!. Clearly x; and x are both non negative, F; - measurable random

variables: therefore

Be(u? - JF) _ Be(nZ - Ji|Ff)
Bp(Z-J(F5)  Ee(Z-TiIF7)

is F; — measurable

and

Ep(x2Z - J{|F7) __Er(Z2|77) is F; — measurable.

Ep(Z - Ji|\Fg) — Ep(Z-J{|F)

Moreover their quotient will be F; - measurable, i.e.

Ep(nZ|F¢)
Ep(Z|F¥)

is J; — measurable

for any non negative ! - measurable random variable 7. We are therefore interested just

in the part of the Carleman-Fredholm determinant d.(—DK) given by
Z = |det(I — e*¢(1)g'(€1) + ¢'(€1))]-

Recall that
¢(1) = d(1)(B(t) ™ () = (¢, 1)¢(¢)

where ¢(t) is F! - measurable and ¢(¢,1), as the solution of the differential equation

ag(t, 1) ’
dt - _¢(t71)f (Yf)
(5.6)
¢(t>i)|t=l =1
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is F; - measurable.

Let us consider, for every deterministic ¢ X d matrix y, the function

y — I —elyd(1)g'(&s) + 9 (&) 5
clearly det|I — etyd(1)g'(&1) + g'(&1)| is Fi - measurable and it holds that

Ep(n2|F¢) _ Ep(ndet|I — e*y(1)g'(&) + g (€)1 77 )y=sie)
Ep(Z|F¢)  Ep(det|I —edyd(1)g'(€1) + g'(E)IIFE )y=s(:1)

(we use the wellknown result that E(f(Y,Z)|G) = E(f(y,2)|G)y=y if Y is G - mea-

surable)
Calling
_ Ep(ndet|I — etyd(1)g'(&1) + g'(E)I|1Fs) )
Vuly) = Ep(det|I — edyg(1)g'(¢&1) + g'(&1)]|1F¢) i 50
where

= {(w,y) : Ep(det|l - e*yg(1)g'(€1) + g'(&1)I|F7) # 0}

we have that
T et 1)
is F; - measurable.

The process {£, = [je?*dW, ; 0 < s < 1 } is a Gaussian process and we shall
denote by D the derivation with respect to this Gaussian process (see chapter 3). Note
that Ff C G = o{é(hy);t < s < 1} with {(h) = [) A(u)dé, and h, = 1 4(u). Let
K = span{h,;t < s < 1}. To evaluate D[th,($(,1))] we shall first construct a sequence
{(Q,ur)} CFx DD

(a) Q70

(b)  up =1 ason Q.

1,2 .
loe With :
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Figure 5-1: oi(z)
Let us consider the deterministic function:

(y,2,z) — det(I — e'yzg'(z) + ¢'(z)) = Ay, 2, z)
M;x Myx R — R.

(5.8)

Clearly this function is continuous. Consider the increasing sequence of open sets
1
A = {(y,2,z): 7{}- <|A(y,z,z)| < k}

We have
Ak T {(yazam) : A(y7z7w) :7'!: 0}

Let now ¢4 be a C2°(IR) (all the partial derivatives are bounded) such that

1 if L <z<k

or(z) =4 -1 f—-k<z< ——}5

0 iz ALk Ul-(k+1), -]

Moreover, let us (.(y) € Cp°(My) :
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y iyl <k
Chl(y) =
0 if [yl > k&

and in a same way yi(z) € Cg°(IR?). Defining, for 7 smooth random variable (i.e.
@(9(€1), Exry -+ 1 Esy) Where 51,-+, 54 € [t,1] and @ € CP(IRF1) ) :

w(y,w) = Ene(y)xe(&)xs(0(8))er(Aly, #(t), &) - Aly, #(t), &) F7
" B )€ xn(6())e(Aly, 8(2), 1)) - Aly, 6(8), &) FF

it is now possible to prove that u(y,w) satisfies all the conditions of Lemma 3.1 in

chapter 3 . Therefore we obtain that

d 5uk

D, (un((t, 1)),w)) = (Dewn)($(t,1)) + >

ig=1 8%1(‘?5(75 1))D ¢ij(t7 l))

Consider the set

={w: ot 1)| < &, [¢(2)] < K, [&1] < K, ((2,1), $(2),61) € Ax}-

Clearly
Yo(P(t,1)) = ue($(t,1),w) a.s. on (4

and Q; T as k — +oo. Therefore we obtain that ¥,(¢(t,1)) € D}’ and

d a'ﬁbu,

Daftulg(t, 1)) = (D) st D) + 3o ol Dbt 1) (59)

Since 1¥(¢(t, 1)) and (y) are F¢ - measurable, from Lemma 3.2,(ii) and condition (5.7)

we obtain

Dy(¢.(o(t,1),w)) = 4 + Af1 <y

(Dytb)(6(t,1),w) = Al + A1y
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Therefore
L (D@t 1) 0)) =0 s

& (D) 1)) =0 t<s<T

From (5.9) we obtain that

d, & O, 3
Eg(i,j__l m05¢ij(t, 1))=0 t<s<1. (5.10)

Let us compute ZZj:lﬁj{}%ﬁjf)‘)Ds‘ﬁij(t,l) for 0 < s <land 0 <t < 1. Since DF

commute with the integration, we have, for any £ = 1,...,d

qusij(t’l)

i
I
\
S
?:-
5
&.h
Q
B

D¥¢ii(t, )= = O

Therefore, we obtain that

_ ' =~ 0 of kvl
Df¢ij(t’1) - _/t‘ d)ia(u?1);.a_mamm(n)Da(}/.u)qsmj(t’u)du

= % [ ul gfm( Y, ) (£, w) DF (Y )du

(notice that for every [ and k fixed, D¥(Y!) is a scalar that commutes with ¢,;(¢,u) ).

Since

DHEY) = (el

T

1
( / e dW,) + (1(acr) )6sk]
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(recall that D* is the derivative with respect to ¢;)
qusij(ta 1) = (Bf(57t))ij + (Bf(sat))ij

where

8
(B(os = =3 [ Bl Dl o (Ve )™ Y 561

b of«
(Bi(s,t))i; = *Zf ia(u,1) 6:::,6;; (Ya)bmi(t,u) (e )ip1 (s<iy Sprdu

When t < s <1 we obtain that

(BE(er ) = = [ el Dl 5= (Rt )™

and condition (5.10) implies

d, < .,

E(MZZI m{31 (8,t) + B5(s,t)}) =0

fort<s<land k=1,..4d.

.. &b, 8 8fe e
uz:l Oyi;(9(t, 1)) [#ia (v, 1)]%6;Em(n)¢m1(t’u)(e 4 Jis =0

for § =1,...d.

Multiplying by e, we obtain:

d (9'¢'w a Bfo‘ | B
3 Gy el Ul g (ds(t) =0

for [ =1,...d.
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We have now to compute % 6“"” ; let us recall that

Ep(n|det(Ay)||IF7)

Ep(ldet(Aw))|Fe) "

¢w(y) =

where 7 is a non negative smooth F} - measurable random variable and
Ay) =1 - e'yg(1)g'(&1) + 9'(&1)

(v = (9:5))-

Since A(y) is linear in y, and holds that
d(det(A)) = (detA)Tr(A'dA)

it holds :
o of«

d a¢w B
2, (o 1) (g g, ()9mallo) =

1
~ [Ep(|det(A(8(t, 1)) [1F)2

x Ep(|det(A((t, D)) F7) — Ep(nldet(A(d(t, 1)) F7) x Ep(|det(A(g(t, 1)) T(©)]F7)]

- [Ep(nldet(A(4(¢, 1)) Tr(©)|F7)x

where

© = A= )aidir(1)872(5) g g (VY (5167 (is(6) 5

Tp

(&)

Since
o of«

> Gl Dl S () =0

fort<s<1land!=1,..d. and the previous
equation holds for every non negative smooth random variable 7 that is F} -measurable

(and trivially for every non negative smooth random variable 7 that is Ff - measurable),
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then it holds for every non negative smooth random variable. We obtain:
Tr(0) - Ep(|det(A(g(t, D)IIFF) = Ep(Tr(©)det(A(¢(t, )IIFL)
It implies that (in a more compact notation):

Tr((I - e*$(1)g'(&) +g'(&)) 7 (e*d(1)¢7' (s)Vi0f (Ys)$(s)g'(¢1))

is F¢ -measurableforany ! =1,...,dand t < s < 1.
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Chapter 6

Necessary conditions

6.1 A particular class for d > 1

In the present section we shall consider a particular class of nonlinear stochastic dif-
ferential equations with linear boundary conditions. We are interested here in finding a
class of problems for which the previous measurability condition, necessary if the solution
{X:;t € [0,1]} is a Markov field, would be more tractable.

Since the set of triangular matrices d x d (i.e. the matrices A = (a;;) for which
a;j =0 Vi< j)is closed under the sum and the multiplication of matrices, and the
inverse of a non-singular triangular matrix is itself a triangular matrix, we shall prove
that, if f is a triangular function, and the boundary conditions are also triangular, the
measurability condition of Proposition 5.1 is relatively simpler.

We shall consider the following stochastic differential equation:

aX; aw,

—dt— + f(-Xt) = ‘Cﬁ" (6'1)

where ¢ € [0,1], {W, : t € [0,1]} is a standard d-dimensional Brownian motion (d > 1)
and f: IR* — IR?is a measurable function (4 =0,B = I).
We shall assume that f(z) = (f'(z),..., f'(»)) has a triangular form, i.e. ¥i = 1, ..., d,
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fi(z) is a function of zi,..., z; only and that satisfies

(H6) ‘f(ﬂ}], weey Th—1, m)’ S Lk(mla ooy mk—l)(l + l:l?l)

(H7) !f(mh teey ﬂ?k._l,il?) - f(m]J ey mk—-lay)l S Lk(mlu "'7wk—1)lw - yl

where Ly : IRF"! — IR, is measurable and locally bounded.

The boundary condition, that we consider, will be linear, i.e.
(X0, X1) = HoXo + H1X; = he R?
and we shall assume, in addition:

B.1 H, and H; are triangular d x d matrices;
g
(ie., putting Hy = (hY;) and Hy = (R};), hf =0 Vi< j,a=1,2)
(B.2) Hy + H,; isinvertibleand A% -AL >0 Vi=1,...,d

From (B.2) we obtain that condition (H.1) of chapter 2 is satisfied with
9(z) = (Ho + Hy)"'(h — Hyz)

and that
g'(2) = —(Ho+ Hy)™"H;

is a triangular matrix, with —1 < g/;(2) < 0Vi=1,...,d . Let us prove the following:

Proposition 6.1 Under assumptions (H.6),(H.7),(B.1) and (B.2) our problem admits

an unique solution.

Proof: Let us consider the first equation
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' T
,.,-v/"‘ d
7
7/
dX} 1/ w1 daw}

(6.2)

Ry Xo + b Xy = by

t€10,1], by € IR.
Notice that this is a closed equation. By assumptions (H.6) and (H.7) we have that
the previous equation admits, for every fixed initial value y a unique solution X/(y). By

the uniqueness theorem the function
y — Xi(y)

is strictly increasing. By assumption (B.2), Y, - A}, > 0 and therefore the linear map

hy — RS
y — Xi(w) =
hiy
is strictly decreasing. Consequently there exists a unique point y = X}(w) such that

by — b3 X (w)
hiy

X (X (w)) =

In this way we obtain that equation (6.1) admits a unique solution X! = X} (X}).
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Consider now the second equation
dX? dwv?
dtt + fz(thaXtQ) = dtt
(6.3)

R X3 + A9, XE + hiy X + hg, X7

t€[0,1], hy € RR.
Since {X} : ¢t € [0,1]} is now the unique solution of equation (6.2) and therefore is

fixed, our boundary condition is, for every w € Q:
hngg + hézXlg =hy — hngé - h%ng

For every initial condition X?, equation (6.3) has a unique solution ({X}} is now a fixed
process), again using (H.9) and (H.10). We are in the same situation as before and again
we obtain that equation (6.3) has a unique solution. It is straigthforward that the same
proof can be applied to each equation of our system and therefore the Proposition is

Q.ED.

proved.

We want now apply Propositio 5.1 of previous section.

Theorem 6.1 Under assumption (H.6),(H.7),(B.1) and (B.2), f is of class C* while g
of class C?, of {X, : t € [0,1]} s a Markov field, then¥i=1,...,d,
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Jui(zy, ..o, zio1) € CHIR'Y) and a;,b; € IR such that

fi(:lil, cey :13,') = a;T; + b, + ui(:cl, caey :l:,'_l)

Proof : Proceeding as in the previous section, let us fix ¢ € (0,1) and set

Fi=0o{Y,:0<s <t} Ff =0o{Y,Y,:t <s < 1}. From Proposition 6.1 and

Proposition 2.1 we have that T is a bijection, and since A{; - hj; > 0,

d

det(I — ¢(1)g'(&) +4'(&1)) = H(l — ¢i(1)gl; + g5) > 0

i=1

(we shall prove that ¢(1) is itself triangular ). We can therefore apply Proposition 5.1

and we obtain that

Tr((I— ¢(1)g' (&) + 9'(€2))"H(#(1)d7 (s)Vi0F (Ye)(8)g' (61)) € F7
fort<s<1

Since

Of = (—g—ﬁ )ij=1,...d

Zj

is a triangular matrix, we obtain that the solution of the differential equation:

—¢(t) = —f(Yi)e(t)
(6.4)

is itself a triangular matrix and furthermore that

¢ii(t) = exp(— /0[ gg(}'})dr) Vi=1,..,d
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To compute the previous trace, let us recall that the product of triangular matrices and
the inverse of a triangular matrix (non-singular) are triangular matrices. Therefore it
will be enough to compute the value of the diagonal elements of the matrices involved.
We have
(I —¢(1)g'(é1) + g'(&))it = [1— ($u(1) — D)gi] ™
(B(1)6™ (IVOF(Xo)8(5)g (6))is = dilig g F(ToNl
1=1,.,d, [ <7and t <s < 1.

Then our general condition will in the present case:

? iz fi(Ya) g

2 1= (u(1) — 1)gi;

1=1

€ Ft

Vie (0,1),t<s<landl=1,..,4d.
Putting
zg;;

1= [¢a(1) — 1gi;

a;(z) =

we can write

)0 0
. 55_2%2 Y, %1{)2 Y, 0
( 041(97511(1)), C‘ﬂd(¢dd(1)) ) ' ( ) 2 ( ) o ' (6'5)

02 fa (Yg) 92f4 (Ys) B’fd(yg)

Oz 0xy 8901y

is Ff -measurable.

From the last column of the matrix, we obtain that:

8 fa

2
Oz2

ca(da) ) S (Vy(w) € FE 0<t<1, t<s<1
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Let us suppose that there exists # € IR? such that

fa, -
(@) # 0

d

From the continuity of 24 , we obtain that there exists U open set in IR? such that
M Oxf

0 fa :
5 (B0 YeeU

Define
8y

" B2
Oz}

G* = {w (Yi(w)) # 0} € F7.

Since in the present case the law of the random vector
Y, = g(W1) + W,
has IR? as its support, we have:
P(G%) > 0.

We have therefore:
loaca(¢ad(1)) € Ff

and, since @qq(1) = exp[— J; gi—i(}’r)dr], then

1 Ofq

1g4 : a—md(Yr)dT‘ & Ft

In the present case
Fi=a(n(h,)it << s <1)
where 7;(h) = [ h(t)dW, and h,(t) = 1;.4y(s) and so

d. . 1 Ofi. ... ..
1ea(— (D" Y de)) = s
“ (dt( "Iy 0;1:(,(‘} Jir) =0 as

39



for0<u<t,1<k<d Wehave

e [1 OFa _ [} (9
D[ sl)an)] = - [ DiG (%)
1 d azfd deorl
= [, 3 gy DA
=1
1 d (92fd , 1 d aZfd
- /0 Zam,aa:d(}/’)g’kdr+/1¢ Z@mlamd(yr)&kdr
1=1 =1
For k = d, we obtain
d. 4 [t O0fa 4 192 f,
souf By = ([ TEwe
2
_ _%_g(m:() 0<u<t

almost surely on G?. But this is possible only if P(G?) = 0 and this leads to a contra-

diction. So we have that
0% fa

—-< Yz € IR
6133 T E

(z)=0

and so , Ja(zq, -, zg-1) and (w1, -, @4-1) such that:
fd(m) - O{(Illl,' 0 7$d—1)md +ﬂ(m17' o

We have therefore that it holds:

(Y2

pl
Oy

9% fa_
03?18?5,12_3 (Y;)

O fi -
EJ.L!', g),i-,,l_l (} )

1 /’ e
Troe (YY)

(calsn), - adgu(n)) )
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Consider now the d — 1 column: we have

a2fd—l 62fd e
ag—1(Pd—1d-1) 522_ (Ys) + ca(daq) 6334_181361(}/;) eF

t<s<1.

From the previous condition on fy, we have that axfi{dazd(m) depends only on the first

d — 1 variables. Let us suppose that 3 Z € IR such that

)20 o 2T (a4,

6(13(1_1 a(Bd

0% fa—1

2
0z3_,

Defining:

G = s (azfd‘l (m(wn)z ¥ (-‘i"if‘—’——mw)))z 0}

z?_, Oz4-10zy

again from the fact that the law of Y; has IR? as its support, we obtain

P(G 1) >0
We have
(92fd_1 82fd e
1ge{ad-1(pa-14-1(1)) 522, (Ye) + Otd(%d(l))awd_lawd(yt)} € F
Proceeding as before we have:
% fa

1ga ( d Dﬁ[ad_l(qu_ld_l(l))gz—&:—l(K) + aa(daa(1)) (Yt)]> =0

E 8:13(21_1 523d_15i13d

0<u<tand1<Ek<d-1.
The first term , for k =d — 1, is:

d_. 82Fi1 ar 2F, .
D [ad_1<¢d-m_l<1>)—a%<h)} = Ega(,_.(@(y,_l.f,_‘(1))05-%(1_1&1(1)(9%]%5_:@)+
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dlBSfd— d-1vy/1
+ag-1(Pa-1a-1(1 ZB (Y,)Dy7'Y;

m[amd 1

= ay_y(Pd-14-1(1))Pa-1a-1(1) (5 > l(Yu)> (82%-1(}@))

0z?_,
where
a;_l(m) _ Ga-1d-1 T (921——1d—1)2
[1 - [“3 - 1]9;!—101—1]2
Vi <z < 1.
Since
9':1—10!—1 = - h}l—ld—l

0 1
by 1a-1 + hi14-1

we obtain that
hy 1a_ 1Py 14
(Ao—1d-1 + hg1a-1)?

9&—1d—1 -+ (9:1—1d-—1)2 = -

Therefore, by assumption (B.2),
ay_(z) <0 Vo< ez <l1.

The same calculation on the second term gives, for u = ¢:

8fis, |
oty_1(@a—1d-1(1))pa-14-1(1 ){ J:i (Yu)} +
’ 82fd 17’
Fal(Gu(Du(| G )] =0
z? i
Since
@i(1)(w) >0 a.e. on §l fors =d—1,d
and
a;(¢:i(1)(w)) <0 a.e. on S fori =d —1,d
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we have that

P (G2 o )))2 ¥ (—‘%—-—(x(w»)z —op=1.

amd_18$d

This is possible if and only if P(G4"!) = 0 and therefore both 8 fd ‘(;c) and 244 (z)

Oz 4.1 0z4

are identically zero.
It is clear that the same computation can be now done for the d — 2-th column of the
previous matrix. At the end we shall have:

0*f;

L =1,--,d;1 < 3 R
(9:21(9:1:, =0 V1 oo, dl < Ve e

and immediately that there exist a;,b; € R and wu;(z1,--,z;,—1) € C'(JR*"!) such that
filz) = asz; + b + w21, -+, i) Vi=1,---,d; ¢ € R?

Q.E.D.

6.2 The scalar case

In the present section we shall study the equation

% + f(Xy) = d;t't
(6.7)
h(]fg,)(l) == h

in thecase k=d =1, B=1.
We have already proved that {X; : ¢ € [0, 1]} solution of (6.5) is a Markov field if f(-)
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is affine, (H.1) is satisfied and T is a bijection. As an application of our general result
of Proposition 5.1 we can prove, in a different way than in Nualart-Pardoux [8], that the

converse to that property is true.

Theorem 6.2 Suppose thatd = 1, (H.1) holds, f and g are of class C?, T is bijective and
(H.2)" holds. Assume moreoverthatg' >1 Ve € R and g # 0. Then if {X,:¢t € [0,1]}
18 a Markov field, f is affine.

Proof : Since ¢’ > 1, from (H.2)” we obtain that
det(I — e*$(1)g'(&1) + g'(€1)) = (1 — e*@(1)g'(61) + g'(£1)) > 0 aus.

Putting Ff 1= o{Y},Y; : t < s < 1}, from Proposition 5.1 we have

et d(1)p~ (s)f"(Ys)$(s)g' (1)
1 —edg(1)g'(&1) + g'(&1)

e F;

Vi<s<l1.
Since g’ # 0, we can assume that Ja # 0 such that: a € Im(g’). From the fact that

the law of ¢; has IR as its support we obtain that

Plw: g'(6(w)) €la—e,a+ e[} >0.

and for ¢ sufficientily small that 0 €la —¢,a + ¢].
Let us assume that f” = o: again we can assume that 3b # 0 such that: b € Im(f")

and

Plw: f"(e7(g(&1(w)) + &(w))) €lb—€,b+ e[} > 0.

and for € sufficientily small that 0 €]b — e,b + £[. The function

(z,y) — (F'(e " (g(z) + ¥)). d'(z))

is clearly continuous. Therefore the inverse image of |a —e,a +¢[x]b—¢e,b+¢[is an open
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sunset of /R%, which does not contain (0,0). Since ({1,¢,) is a 2-dimensional Gaussian

random vector with non-singular covariance matrix, we obtain that
Plw : (f"(e7(9(€1(w)) + &s(w)), 9'(61(w))) Ela — g0+ g[x]b—&,b+ €[} > 0
Let

G = A{w: f(Yy(w)) # 0} N{w : g'(&i(w)) # O};

since G° contains the previous set, we have that
P(G°)>0

and furthermore G* € F7,t < s < 1.

Since

(1) ()" (Ys)d(s)9™ (s) € Ff t<s<1

we have

1+4'(&) ' (g 7 o-1(s .
1— edg(1)g'(&) + g'(€1) d(1)g™ (s)f"(Ys)o(s)p™ (s) € F;

Recalling that

)87 (s) =eol- [ F(V)d >0 t<s<l

we have

Lo 1+ 4'(&)
C1—elg(1)g'(&) + g(6)

e F;f t<s<1.

and more

les¢(l) € Ff

(since 1 + ¢’(€)) and ¢'(é;) are F¢ - measurable). We obtain, therefore

/

A

F, t<s

M
IN
—

1
1es / F1(Y)du
§]
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We can apply the derivation operator (with respect to ¢,) D, and applying again

Lemma 3.1 of section 3, we obtain
d 1 ,
1G5ﬁ[pu([ F(Y)dr)]=0 Y0<u<t<s<Ll
0

where

D[ £ = [ PO (6) + Lo ()l

Therefore, for 0 <u <t<s<1
d 1 / _ d ! " —Ars 7
= (ou[ sman) = S| ree @) +
1
+/ f”(Y;.)e-ATd’I‘} — _fl/(lfu) -0
We obtain that

f'(Y,) =0 ae. on G , 0<u<t<s<1

and for u = ¢ = s that
f'(Y:)=0 a.e. on G

This implies that
P(G"Y =0

and this leads to a contradiction, since P(G*) > 0. Therefore it has to be f”(z) = 0 and
the theorem is proved. Q.E.D.
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Chapter 7

A counterexample (for d>1)

We want to show, via a counterexample, that in dimension higher then one the solution
to a nonlinear stochastic differential equation of type (1.1) with boundary condition (1.2)
may be a Markov process although f is nonlinear. The example which we are going to
consider is not covered by the existence and uniqueness results of Chapter 2 (it would
be impossible to satisfy condition (H.2i) or (H.2ii)). Indeed, we want to consider linear

boundary conditions of the type:

Xék = Qa
(7.1)
Xk = b
(here 1 <1 < d) where ay,--+,a;,b1,---,by_; are arbitrary real numbers and

ir # jw Yk=1,---,land VK’ =1,---,d — . Again we shall consider the equation

dX;
dt

dw,
+ (X)) = —-

(7.2)

with f(-) triangular and satisfying (H.6) and (H.7). We have already proved that equation
(7.2), under (H.6) and (H.7), has a unique solution. completely determined by (7.1). We

have to prove that this solution is a Markov process.
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Let us start with
dx} dw’}
pralas filXy) = pre

(7.3)
Xi=a (orX] =by)

Clearly {X};t € [0,1]}, in both cases, is a Markov process and proceeding by induction

it will be sufficient to prove the following:

Lemma 7.1 Let {Y;;t € [0,1]} be an m-dimensional Markov process and let
{Vi;t € [0,1]} be an n-dimensional standard Wiener process independent of {Y;}. Suppose
we are gwen measurable and locally bounded mapping g : R™*" — IR™,

L:IR™ — IR, such that:
l9(y, 2)| < L{y)(1 + |z|)

9(y,z) — 9(y,2")| < L(y)|z — 2’|
Let {X¢;t € [0,1]} denote the unique solution of the Stochastic differential equation

X, dv;

Then the m + n dimensional process {(Y;, X;) : t € [0,1]} is a Markov process.

Proof: It is easy to prove, using the standard results about the existence and unique-
ness of Stochastic differential equation (see [3]) that equation (7.3) has a unique solution
{Xi;t € [0,1]}. To prove that the m + n process {(¥;,X;) : ¢t € [0,1]} is Markov we
shall apply the two general Propositions about the splitting o-algebras, that we stated
in Chapter 5. In fact, since Y; is a Markov process, it holds that

o(Ys;s < t) 0'(‘}1/}) o(Ys;8 > 1)

Clearly, from the independence of {Y;} and {1/}, we have that

o(Yy, Vs < 1) a(‘i}"}) oYy, Vo= Viss 2 t)
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Since o0(X;) C o(Y;, V;) it holds, by Proposition 5.2 that

o(Y;, Vai s gt);—(%j—;i—j o(Y,, Vi — Vi55 > t).

Now, by Proposition 5.1,

H
Y, Viis < t) ——— o(Ys, Vo — Vi, Xi38 > t
U( ER) ayS_t) O'(Y;,Xt)g( ’ ty <2ty 8 )

and, since

(Y, X538 <t) C o(Y;, Vas 8 < t)
o(Yy, X8 2t) Co(Y;,Viss 2 )

and, by Remark 5.1 ,if A C A;, A, C A,

&%&¢3%4
that

I
18§ <t) ——~ o(Ys, X558 28
o(Y;, X558 < t) 7, X0 o(Ys, Xs; )

Therefore the m + n process {(Y;, X;) : t € [0,1]} is Markov and the Lemma is proved.
Q.E.D.

Applying this lemma to our problem, we see that at each step k, 1 < k < d, we have
that {(X},---,XF!):t€[0,1]} is a k — 1 dimensional Markov process and conditions
(H.9) and (H.10) for f*(-) are the same of Lemma 7.1 with g = —f*. Therefore the
process {(X},---, X!, XF) : ¢t € [0,1]} is a Markov process and we can conclude that

the solution of equation (7.1) under the boundary condition (7.2) is a Markov process.
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Appendix A

The computation of the

Carleman-Fredholm determinant

Let f be an element of L*([0,1]; My) and g , A € L*([0,1]; My) ( such that
g-h € L*[0,1]; M,)) where M, is the vector space of the d x d real matrices. For every
s and t belonging to IR, , let us define the L%-kernel

K(s,t) = £(t) (9(s) + 1p(s)) h(s).

Let us denote by K the operator of L%([0,1]; JR?) into itself defined by:

(Ke)() = [ K(s,t)o(s)ds

¢ € L*([0,1]; ]Rd)
Let 9, be the solution of the following differential equation:

a.
S = O

l/}u = T
Then the Carleman-Fredholm determinant of the Hilbert-Schmidt operator — K is given
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by:

Lemma A.1

L(—K) = det{I+ /01 g($)A() F(1)dE} x

xexp(~ [ Tr(f(g(Oh())i

Proof First of all let us note that it will be sufficient to prove the result for f,g and h
continuous (since d, is continuous with respect to the L*([0, 1]; IR4)-norm).

For f and g continuous, the idea is to approximate K(s,t) by a sequence of finite-
dimensional operators K™(s,t), for which the computation of the Carleman-Fredholm (C-
F) determinant reduces to a classical computation of a finite-dimensional determinant.
The continuity in L? of the C-F determinant shall give us the result.

Let n > 1: define ei(t) = +/n 1p_,4(t) , 1 < i < n, an orthonormal family of
functions, with ¢; = ﬁ We define the approximating sequence of finite-dimensional

operators by:

n

K™(s,t) = -71; S f(tin) (9(tim1) + L T) ti-n)eilt)es(t)

i,5=1

and we have that

d(—K") — d.(—K)

in L2, by the continuity of the C-F determinant in L. Let us compute d.(—K"):

d(—K")=det(] + K")exp(—TrK")
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The matrix associated to K™ is:

f(to)g(to)h(to) f(to)g(t:)h(t1) o F(t0)g(Enet)A(tanr) ]
F(t)(g(to) + I)A(to) f(t)g(t)h(t1)
. f(t2)(g(to) + DA(ta)  f(to)(g(t1) + I)R(t1)
| f(Ea-1)(g(t0) + Dh(to) f(tn-1)(g(t1) + DA(t1) -+ f(tn-1)g(tn-1)h(tn-1) |
Therefore

TrK" = -71; nf Tr(f(t:)g(t:)h(t:))

1=0

When n tends to +oco this quantity tends to
1
TrK = / Tr( £(t)g(¢)h(t))dt
0

Let us write now the matrix associated to T + K™

2F(t)(g(to) + DA(to) I+ 5 f(t1)g(t1)h(t1)
2f(t2)(g(to) + Dh(to) 7 f(t2)(g(tr) + I)A(t:)

(note that every element is a d X d matrix).

We shall now assume that f(¢,) is an invertible matrix for everyi = 1, - -

I+ 7 f(to)g(to)h(to) 2 F(t0)g(t1)A(t1) e 2 f(to)g(tao1)h(ta1)

| 2 f(tae)(g(to) + Dhlto) 7 f(tat)(g(t) + Dh(t) -+ T+ 2 f(tno1)g(tnm1)h(tn) |

-,n—1(we can

replace f(¢;) by f(t;)+¢el and take at the end the limit for ¢ — o). Let Ay = det(I+ K™)
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and I + K™ = Dy: we have that

[ f(t) O
Do — 0 f(t1) -
0 0
where
[ F(to)! + Lg(to)h(t)  La(t)h(t)
L(g(to) + DA(te)  f(t1)™' + zg(t)h(t
+(g(to) + I)A(to) (g(t1) + I)h(t1)
D, =

7 (g(to) + )h(to) 2(g(tr) + 1)A(t)

Subtracting every row from the next one we have:

[ F(to) + 1g(to)h(to)  Lg(t)h(t)
Lh(to) — f(to)™ f(t)™
0 %h(tl) — ft)t -
Ay = detD, = det
0 0
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%g(tn—l)h(tn—l)

o Lg(ta1)h(ta ) |
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Since det(A - B) = det(B - A) and the above result, we obtain that:

- I+ 2g(to)h(te) f(to) Lg(t)h(t:)f(t1) -+ +9(tn-1)h(tn-1)f(tn-1) -
Lh(to)f(to) — I I
0 Lh(t)f(t) —1
AO - det
_ 0 0 I

(since f,g and h are matrices, g+ h- f # f - g-h in general).
Let us now define the (d x d) matrices By, -+, Bn,_2 by:

By, = f—%h(tO)f(tO)

B, = (I - %h(tl)f(t1)> B

Bz = (I=Zh(tu)f(tn-s)) Baca

For n large enough, all the matrices By, -, B,_, are invertible and we have

I——leh(to)f(to) - B

I—%h(tl)f(tl) - BB

1
I—;h(tnﬂ)f(tn—z) = Ba2Bl,
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Therefore it holds that:

I+ Lg(to)h(to)f(to) Lg(ti)h(t:)f(t1)
— By I
0 —B,B;!
Ag = det
0 0
Again we can write
I 0 --- 0
0 By
AO = det
0 0 B, |
where
I+ Lg(to)h(to)f(to) +g(ti)h(t:1)f(t1)
—I B;!
0 — B!
D, =
0 0
and it holds that )
I 0
0 By
Ay =det | D, -
0 0 B!,
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I+ g(to)h(to) f(to)
—1

0
= det

0

~g(t)h(t1) f(t1)Bo

0

I

%g(t”“l)h(tn—l )f(tﬂ—l )Bn—2

0
0

Replacing the n — 1 column by the sum of itself and the last column (and the same for

the n — 2 column and so on) we obtain that:

I+ Lg(to)h(to)f(to) + 1 0 g(ti)h(t:) f(t:)Bicy 0 -+ 0
0 ] e ()
0 0 --- 0
Ao = det
i 0 0 I

and therefore

o = det (14 Lafenh) (i) + 52 60 0B |

Recalling that we have denoted by ¢, the solution of

o,
dt

= —h(&) f(t):

— Lh(t;)f(t;) = B;B;Z; can be approximated ( for n — o) by ¥;,,,%;"; in fact
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R B R OF O

1

Ri(n)

= I- ‘i‘h(ti)f(ti) +

where

sup |R(n)] — 0 for n — oo

Therefore
By can be approximate by ¥, " = iy,

B, can be approximate by ¥, "y, ¥t = i,
and the generic B; by ¢, for 0 <1 <n — 2.
We obtain that

Ay ~ det (I + %g(to)h(to)f(to) + % ng(ti)h(ti)f(ti)’abt;)

o et (I+ / " g(t)h(t) f(t)1ptdt>
QED.

Corollary A.1 If g(-) is constant, then :

4(~K) = det{T — s + ghexp |- [ Tr(F(O)R(D)g(t))dt
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Proof Proceeding as before, we obtain that:

A = det

[ 1+ 2gh(to)f(to)
-7
0

+9h(t1)f(t:1)Bo
I
~I

Lgh(tn_1)f(tn-1)Bn_2

0
0

e

Assume that g is invertible (if not we shall make the same for g. = g+ €/ and at the end

let £ tends to 0). We have

= det

Ag = det(gI . Dg) = det(Dg . gI) =

.,
0

0

[ I+ Lh(t)f(to)g Lh(t1)F(t)Bug

I
~I

0

I

1

n

h(tns) f(tnr)Baezg |

0
0

Proceeding now as in the previous proof, at the end we obtain:

Ay —> det (I + / 0 f(t)wtgdt> — det (I — 419 + g)

1
0
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Corollary A.2 Let:
f2) = PO

g(s) = g'(&1) (constant)
h(s) = e

In this case we have

do(~K) = det(I ~e*¢(1)g'(el)+g(el>)

€Xp (-/ [f( ) —-M 4tdt]>

where

d !
240 = —F(X)H)
#0) = I

Proof We have to prove that e'¢(t) is solution of (A.1) i.e.

%::

— _e4t “/(Y;)e-—Atd]t

Yo = 1

In fact:

| e

(eM0(t) = 4(e"6(0) + "2 a(t)
= A(eMo(t)) + e (F1(¥)4(2))
— A (el—ltd)(t)) + e‘“f/(Y;)em"“ (6‘4t¢(t))

Recalling that :
F1(37) = A4+ F1(1)

61



we obtain:

and it holds that: e*°¢(0) = I.
Therefore e“t$(t) is solution of (7.1) and so:

d(—K) = det (I—e'd(1)g +7)
o (_ /01 - [f,(y;)efxse—,ug,emdt])

Q.E.D.
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