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Introduction

In this thesis we investigate the coherence effects of ballistic valence electrons in semi-
conductor nanostructures. Recently coherent motion has been experimentally observed in
conduction electrons in Transverse Electron Focusing (TEF) experiments realized in het-
erojunction devices [1]. In this work we make use of a simple model to calculate focusing
spectra for a two-dimensional hole gas and interpret the results within the semiclassical
approach.

Nanostructures are semiconductor systems where carriers are confined in one or more
dimensions on a lengthscale comparable to their wavelength (reviews on the subject can be
found in refs. [2, 3, 4]). Two-dimensional as well as one-dimensional (quantum wires) or
zero-dimensional (quantum dots) systems can be realized by combining several techniques
like molecular beam epitaxy, etching and lithography.

Due to the confinement, optical and transport properties of these structures are strongly
affected by quantum effects. Since the confining potential depends on the dimensions and
geometry of the device and can generally be tuned by means of applied fields, the possibil-
ity of having quantum devices of tunable characteristics arises. Tunable optical transitions,
resonant tunnelling, quantized conductances, etc. make nanostructures of technological
interest. On the other hand, they are a test of many simple quantum mechanical models.

New areas of research opened when high-mobility two-dimensional systems were real-

ized in layered structures. In these structures, contrary to the bulk doped semiconductors,



2 Introduction

carriers can be spatially separated from the ionized impurities, leading to the suppression
of one of the most limiting scattering mechanisms at low temperatures. Among the new
quantum effects, one of the most recent is the realization of the ballistic regime, i.e. carrier
motion without incoherent scattering on the scale of the device dimensions. In the ballistic
regime the coherence of the wavefunction is maintained during the carrier motion and in-
terference effects may arise. This effect has been experimentally investigated by transverse
electron focusing [1, 5, 6], a well-known technique based on the ballistic motion of electrons
in the weak magnetic field regime. While in metals the electron focusing experiments can
be explained making use of classical mechanics only, recent experiments performed in the
two-dimensional electron gas in heterostructures(l] cannot be completely understood in a
purely classical scheme, confirming that electronic motion in semiconductors is dominated
by coherence effects [7]. The coherent nature of the motion has also been demonstrated
in semiconductor one-dimensional wires [8].

At the same time the interest increases in theoretical models to describe the electronic
structure of such systems [2]. It is now a well-known fact that valence and conduction
states in confined systems behave very differently. Valence states are the result of the
binding between the p states of the bulk host material. Their degeneracy at the I' point
complicates the problem of the calculation of the electronic structure in confined systems,
where strong non-parabolicities of the valence band and warping of the Fermi surface
appear. In this work we introduce a model effective hamiltonian which is intended to
simulate the in-plane dispersion of the topmost valence subbands of a GaAs-Al,Ga;_;As
quantum well near the T' point. Then we use the model in a semiclassical formulation of
the focusing problem [7, 10] to calculate how the focusing phenomena would modify if a
hole gas is used instead of a conduction electron gas.

We find that warping of the Fermi surface may result in an enhancement of the focusing
in some crystallographic directions. Moreover we show that focusing experiments with

holes may probe directly the valence band structure [9].
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In chapter 1 we review the experimental results concerning electron focusing both in
metal and semiconductors and in chapter 2 we state the semiclassical formulation of the
focusing phenomena in semiconductors. In chapter 3 we summarize the multiband effective
mass approximation and we introduce a model hamiltonian for the valence subbands of
a quantum well. Finally, in chapter 4 we use this hamiltonian to calculate the focusing
spectrum of a two-dimensional hole gas and we compare the results with the focusing

spectra calculated for a two-dimensional electron gas.



Chapter 1

Transverse electron focusing
experiments

In this chapter the basic ideas and experimental evidences of transverse electron focusing
both in metals and in semiconductors are presented. Also some characteristics of the
two-dimensional electron gas in semiconductors are described. The different nature of the

electron focusing phenomenon in metals and semiconductors is emphasized.

1.1 The transverse electron focusing technique: the case
of metals '

It has been shown by Sharvin [5, 11, 12] and Tsoi [6, 13] that a magnetic field can focus
ballistic electrons in metals. A typical arrangement, similar to that used by Sharvin and
Tsoi, is schematized in fig. 1.1. A magnetic field B is applied onto a single-crystal metallic
sample where two small contacts I and C are realized a distance L far apart. The distance

L between the contacts is such that
L <l

where [, is the elastic mean free path which, in metals at low temperature, can be of

the order of several millimeters; this regime is called ballistic. Electrons moving with the
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B®

Figure 1.1: Geometry of a transverse electron focusing experiment. Electrons move from I to C
under the influence of the magnetic field. Skipping orbits up to two reflections are shown. The
magnetic field is normal to the plane of the orbits.

Fermi velocity are injected at . The motion of ballistic electrons in metals can be thought

of as that of free electrons: from the classical equations of motion

mi = -g(va) (1.1)

where m and e are the mass and charge of the particle and v is its velocity, one obtains
that a charge in a magnetic field moves in circular orbits (cyclotron orbits) in a plane

normal to the field with radius

muvc

Teyel = e B (12)

and frequency
v eB

We = =
Teyel em

For an electron with the Fermi velocity vp = hkpr/m, one obtains

chkr
Teyel =
yel eB

(1.4)
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where kg is the Fermi wave vector.

Transverse electron focusing (TEF) experiments consist in measuring the voltage drop
at the collector C' as a function of the magnetic field while keeping fixed the injected
current. From the classical description above, a peak in the collector voltage is expected
when B is such that L = 2r.yy. Using eq. (1.4),

2chkp
Bfocus = oL

(1.5)

which is called focusing field. Since during the path between I and C electrons may have

Figure 1.2: TEF spectra in metals under different conditions[13]. Spectra (a) and (d) show a high
number of well-defined sharp peaks at the classical focusing fields due to specular reflections on
the boundary. Spectra (b) and (c) where taken after introducing different kinds of damage in the

sample.

gone through one or more reflections upon the boundary of the sample (skipping orbits),
higher order peaks are expected at flelds such that L is an integer multiple of 27., 1.e. at
B = iBjeus, (1 = 1,2,...), the i-th peak being caused by the orbit with z — 1 reflections.
Some of the orbits satisfying this condition are shown in fig. 1.1. The point contacts behave
as classical probes since their width (~ 1um) is large compared to the Fermi wavelength
Ar in metals, typically of the order of 0.5nm. The measured TEF spectra reported in

fig. 1.2 confirm this classical picture showing a series of equidistant well defined peaks at
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multiples of Bfocys. Since the scattering against the boundary is only partially specular,
higher order peaks decrease in amplitude due to the higher number of reflections.

Due to the simple interpretation of the spectra, TEF in metals has become a well
established technique to obtain a number of informations on the shape of the Fermi surface

[11], on the surfaces of metals [13, 14] and on the electron-phonon interaction [15].

1.2 The two-dimensional electron gas in semiconductors

TEF measurements concern transport of electrons in the plane normal to the magnetic
field. This makes possible to obtain TEF spectra also in semiconductors since high mobil-
ity (and consequently ballistic regime) is achievable in the two-dimensional electron gas
(2DEG) confined e.g. at the GaAs—Al,Ga;_,As heterojunction. The enhanced mobility
with respect to bulk semiconductors arises because in this kind of structures the carriers
can be spatially separated from the donors as we will see below.

A typical semiconductor structure of this kind is depicted in fig. 1.3(2). On a GaAs
substrate a layer of undoped Al,Ga;_,As is grown with a typical value of z = 0.35 and
a thickness of the order of 100nm. On top of this, a layer of n-type doped AlGaAs is
grown. Since the bottom of the AlGaAs conduction band lies higher in energy than that
of GaAs, electrons from the donor states in the doped layer move to the GaAs substrate.
As a consequence of the Fermi level line-up, electrons remain confined in a well in the
growth direction, approximately triangular in shape, at the GaAs—Al,Ga;_,As interface,
as shown in fig. 1.3(b), while they are free to move in a plane parallel to the interface. As
a result electrons in the 2DEG move in (undoped) GaAs while impurity ions are confined
in the doped AlGaAs layer. This allows one to obtain an high mobility electron gas.
The thickness of the undoped AlGaAs layer is chosen large enough that the (long range)
Coulomb potential generated by the impurity ions is small in the 2DEG, but not so large
as to inhibit the charge transfer from the doped layer to the undoped 2DEG.

In order to realize the point contacts for the TEF arrangement, narrow constrictions
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Schottky gate >

&y
71

(a) (b)

Figure 1.3: a) GaAs—Al,Ga,_,As heterojunction device with a split Schottky gate. b) Profile
of the bottom of the conduction band in the growth direction after charge transfer from n-type
AlGaAs to GaAs. The dashed line represent the chemical potential. Dots represent impurity states
in the doped layer.

can be obtained in the 2DEG by means of split Schottky gates, an example of which is
shown in fig. 1.3(a) on top of the heterojunction. These consist of metal depositions whose
depletion regions extend under the gate into the 2DEG. With a suitable geometry, quasi
one-dimensional channels can be realized in the 2DEG which can serve to inject electrons

in the wide two-dimensional region.
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1.3 TEF in semiconductors: coherence effects

The device

The first evidence of electron focusing in semiconductors has been obtained by van Houten
et al. [1]in 1988. They obtained a 2DEG at the GaAs—Al,Ga,_,As interface with [, ~ Sum
with the distance between the contacts in the range 1.5um + 3um so that ballistic regime

was achieved. Two point contacts were defined with split Schottky gates on top of the

OB 2DEG

Figure 1.4: Double point contacts geometry for the TEF experiments in semiconductors. The
black area represents the Schottky gate defined in the zy plane on top of the device. The field is
along z. The four crossed squares represent Ohmic contacts.

heterojunction device, with the geometry shown in black in fig. 1.4. The contacts are
essentially electron reservoir separated from the bulk 2DEG. Note that the width W of

the contacts can be tuned via the gate voltage and can vary from 250nm down to pinch-off.
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The small width of the contacts is responsible for quantized conductivity [16] due to the
lateral confinement; this giustifies the name of quantum point contacts.

Coherent focusing

The focusing phenomenon in this device differs in an important way from electron focusing
in metals: the width of the point contacts is comparable with the high Ar of the 2DEG
(typically 40nm); since the distance L between the contacts is smaller then the phase
coherence length, they become sensitive to interference effects. This quantum regime
manifests itself in the spectra reported by van Houten et al. [1] shown in fig.1.5. At low
fields a series of equidistant well-defined peaks is present at the classical focusing fields,
resembling the case of metals. Nevertheless, new features appear; a strong fine structure
is superimposed to the peaks. This fine structure is reproducible in the same sample if the
gate potential is unchanged. The intensity of the fine structure increases with the magnetic
field and at high fields (> 0.47) the resemblance to the classical focusing spectra is lost.
The fine structure is smeared out if the temperature or the width of the point contacts
é.re increased. Note that the high number of classical focusing peaks observed at low fields
demonstrates that scattering of electrons against the barrier is chiefly specular.

As we shall see in chapter 2, a theoretical investigation by Beenakker et al. [7] has
shown that the presence of the fine structure is the result of the interference between the
quantum states of the problem; for this reason electron focusing in semiconductors has
been called coherent focusing.

Relationship with the Hall regime

In the device of fig. 1.4 four Ohmic contacts are shown. The actual quantity measured
in a TEF experiment is the voltage drop between the collector and one of the contacts
divided by the injected current. In this geometry both longitudinal and Hall resistance can
be measured, depending on how the Ohmic contacts are connected. The spectra shown
in fig. 1.5 are taken in the Hall configuration. For this reason the focusing peaks due to

ballistic electrons are superimposed to a linearly growing Hall resistance due to diffusively
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Figure 1.5: TEF spectra in semiconductor heterostructures at different temperatures from ref.

[10]. The vertical arrows indicate the classical focusing fields.

moving background electrons; the focusing spectrum is alternatively higher and lower of
the background Hall resistance. The Hall resistance can be singled out if the direction of
the field is reversed since electrons do not move anymore towards the collector and they
all contribute to the background. At higher fields (> 17'), when the cyclotron diameter is
smaller then the width of the contacts, the resolution for the focusing is insufficient and

the linear Hall resistance is displayed. At sufficiently high fields the characteristic platous
of the quantum Hall effects appear.

Note that TEF experiments correspond to the measure of a non-local resistance both
from a classical and quantum point of view since the distance between the probes is

lower than the mean free path and a fortior: lower then the phase coherence length. The
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manifestation of the non-locality is the presence of the focusing peaks and of the fine

structure.

So far TEF experiments have been performed in a 2DEG, i.e. in a n-type doped semi-
conductor. The problem we address in this work is how TEF spectra would be modified
in a two-dimensional hole gas, which in principle could be obtained in a p-type doped

heterojunction device.



Chapter 2

The semiclassical description of
electron focusing

Since the classical picture is insufficient to describe electron focusing in semiconductors, we
look for a quantum description of the phenomena. In this chapter we perform a theoretical
analysis of TEF experiments from this point of view, we explain what the edge magnetic

states are and their relevance to the TEF experiments and how the collected current can

be calculated in a semiclassical approximation.

2.1 Edge magnetic states for conduction electrons

We are interested in determining the relevant quantum states for electron focusing, i.e.
the states of a free electron in a magnetic field near an infinite boundary. Let us first
determine the states of a free electron in a magnetic field in bulk [17]. The appropriate

hamiltonian can be obtained from the free electron hamiltonian by the substitution
Peierls substitution k—p+ZA (2.1)
of the canonical momentum operator p, where e = |e| is the electron charge, ¢ is the

velocity of light and A the vector potential. For a uniform field B along the z direction,

13



14 Chapter 2. The semiclassical description of electron focusing

the Landau gauge
A = (0, Bz,0) (2.2)

with B = |B| is appropriate to the geometry of our problem. From (2.1) and (2.2) the

hamiltonian becomes

2 2 2
Pi P 1 e
B I -B . 2.3
i 2m+2m+2m<py+c a:) ( )

Here and in the following the Zeeman term will be considered negligible (Zeeman splitting

is ~ 10"!meV at B = 1T'). Since the operators y and z do not appear in H, plane waves

are eigenfunctions of H in these directions. Writing the wavefunction % as
b(z,y,2) = Ve x () (2.4)

one can decompose the motion along z, which remains a free motion, from that in the plane

perpendicular to the field and obtain the Schrédinger equation of an harmonic oscillator

with frequency w. = eB/mc in the z direction, centered around z, = —chky/eB:
2 2 2
Py mwe 2 _ _ p:
o T 5 (2= 20)| x(2) = (B~ S 2)x(z) | (2:5)

Then the eigenvalues E are
1y, P2
E =hw(n+5)+ 55 n=0,12,... (2.6)

Then one finds that the magnetic field splits the parabolic energy spectrum of the motion
in the zy plane into the quantized Landau levels. We have seen in the previous chapter that
in semiconductor heterostructures it is also possible to quantize the motion along z, thus
realizing a two-dimensional electron gas. In chapter 3 we will calculate the consequences
of such confinement on the electronic structure.

Note that zp, which corresponds to the centre of the classical orbit in the z direction,
depends on the momentum in the y direction and is a good quantum number in this gauge

since it commutes with the hamiltonian of eq. (2.5). Defining the magnetic length as

Im = (%)1/2 (2.7)
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the adimensional quantities T, = z¢/l,, and Ey = kyl,, satisfy the identity T, = —Ey. The
situation is described in fig. 2.1(a). Each state is labelled by the quantum numbers n, z,
but, since the energies ¢ are independent from 2y, each level has a degeneracy equal to
the number of allowed values of z;. Consider a box in the zy plane of sides L, and L,,
much larger then the cyclotron radius, and impose periodic boundary conditions. Then
k, assume discrete values with density (L,/27). ¢y must assume values in (0, L) so that

from the definition of x4 we have Ak, = eBL,/ch. Then the total degeneracy is

LyL,eB

. 2.8
2 he ( )

v = (Ly/27)Ak, =

The separation between the levels and their degeneracy increases with increasing field,
giving rise to oscillations in the Fermi energy at high fields, when only few Landau levels
are populated, which in turn are responsible for many oscillatory behaviours in transport
properties.

Now let us put a boundary V(z) along the z direction (see fig. 1.1 for the choice of the
axis). Then z; remains a good quantum number but the degeneracy is broken. While for
zy far from the boundary the situation is similar to the free electron case, in proximity of
the boundary the condition of the vanishing of the wavefunction modifies the energy levels.
In the simple case of zy coinciding with the boundary it is easily seen that the allowed
states are those Landau levels which correspond to odd n (see fig. 2.1(b)). For arbitrary
Ty energies vary continuously. The important point is that a confining potential splits the
degeneracy and allowed states labelled by z arise between the bulk Landau levels. These
are called magnetic edge states and are the quantum analog of the skipping orbits defined
in chapter 1. Complete quantum mechanical calculations of the edge energies are available
in literature [18]. Nevertheless, since at low fields electrons are localized over a distance
much larger then the period of the crystalline potential, we are in the limit where the
semiclassical approximation applies. This has the advantage of reducing the calculation of

the edge states to a geometric problem which is suitable to be used with different shapes
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Figure 2.1: a) Free electron in a uniform magnetic field. Its energies and wavefunctions are those
of the harmonic oscillator. b) Electron in a magnetic field with 2o on the boundary (shaded area).
Only states with odd n are allowed. For arbitrary zo energies lie in between; then the presence of
a boundary splits the Landau levels degeneracy.

of the Fermi surface.
In the semiclassical model one considers electrons in a given periodic potential and
a given dispersion curve e(k). Then, with no electric field, the vector k satisfies the

semiclassical equations of motion

va(k) = %aegl({k), (2.9)
Ek(t) = - —i—vn(k)xB(r,t) , (2.10)

where 7 is the band index. Since k does not change in the direction of B, the energy and
the component of k parallel to B are both constant of motion; electrons move in k space
on a curve which is the intersection of the equal energy surface with a plane normal to

the field. Multiplying (2.10) from the left by a unit vector in the direction of the field B



2.1. Edge magnetic states for conduction electrons 17

we obtain

. . . R A A B
Bxhk(t):_i’?_Bx(fxB):~@(f~B(B-f)) :n%m (2.11)
c

Cc

where r; is the projection of the orbit in the plane normal to the field. Integrating the

last equation we get

ro(t) = —%‘;-B x k(t). (2.12)

Then the projection of the real space orbits r(t) are obtained rotating k(t) of v/2 around
the direction of the field and multiplying by /2. One the same basis, it is possible to write

the Bohr-Sommerfeld quantization condition
1
ﬁ—fp-dq: 2r(n —7), (2.13)

where q and p are conjugate variables and v is a constant to be determined later, in a

real space condition [19]; in fact, from (2.1) and (2.12),

%p-dqz%(hk—%A)-dr:Zf[(—pr)—A]dr.

Using standard vector analysis identities one can prove that

f(rxB)-dr=—-¢B-rxdr=-2[.B-do,

§A.-dr= [V XA do= [;B-do,
where 5 is the surface enclosed by the trajectory in real space. Then eq. (2.13) becomes
ﬁic/gB ~do = 27(n— 7). (2.14)

The simple interpretation is that the flux of the magnetic field enclosed by the trajectory
is quantized in multiples of % Eq. (2.14) is completely general provided the right value
of 7 is chosen, depending on the boundary conditions. 4 accounts for abrupt variations
of the phase of the wavefunction in correspondence of particular surfaces. One of these

surfaces is an infinite boundary, which causes the wavefunction to change its phase of 7
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since incident and reflected waves must cancel each other. One other surface is a caustic,
i.e. the loci of points where the density of classical trajectories becomes infinite. It can
be shown [20, 21] that passing trough these points makes the wavefunction change its
sign, bringing a change of w/2 in the phase. In the case of a skipping orbit the flux to
be quantized is that between the orbit and the boundary. The one-dimensional periodic
motion along z is comprised between the boundary and a caustic so that the right value of
7 is 1/4. Note that the motion of a free electron in a magnetic field is comprised between
two caustics and the appropriate value of v is 1/2 which gives the right value for the zero
point energy of the harmonic oscillator problem.

Conduction electrons in the 2DEG near the band edge have a parabolic energy disper-
sion ¢ = h%k?/2m so that the Fermi energy surfaces in two dimensions are circles. Then
the real space orbits are circles as well and the integral in (2.14) is done by calculating the
area between the circular orbit and the boundary. The radius of the orbit rcy depends

on the energy:
2me
h

(2.15)

2 2
Poyel = k=1,

Then eq. (2.14) is a condition on the allowed energies. Omne can show by simple geometry

that eq. (2.14) becomes

2?_:% {arccos{ - ¢(1- (2)1/2} =2r(n—-"7), (2.16)
where ( = —Icy/m. Eq. (2.16) is an implicit equation in the energy whose solutions
are found numerically and shown in fig. 2.2 as a function of k,, which is equivalent to the
centre of the trajectory. At fixed energy only a finite number of values of k, satisfy eq.
(2.16). For positive k, the centre of the orbit is inside the barrier and energies increase
because the electron is bound near the barrier by the field. For negative k,, the centre
of the orbit moves away from the boundary and energies tend to the bulk Landau levels

(dashed lines) even if the two solutions do not connect continuously due to the change

in 7, since the semiclassical approximation do not take into account the extension of the
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Figure 2.2: Edge magnetic state energies for conduction electrons (solid lines). The central shaded
area represent the boundary. Dashed lines represent bulk Landau levels.

wavefunction outside the orbit. Note that for k, = 0 we obtain the states corresponding
to fig. 2.1(b). The states relevant to the transport are the magnetic states only, having a

non-vanishing 3%2—

2.2 Calculation of the current

In the previous paragraph we stated that an electron moving in a TEF arrangement
propagates through the edge states at the Fermi energy corresponding to discrete values
of k,. Since we showed how the magnetic edge states can be calculated for an arbitrary
shape of the Fermi surface from eq. (2.14), we need a method to calculate the current
from the k,’s.

The number 7o, of involved propagating modes is equal to the number of occupied

Landau levels, as it can be guessed from fig. 2.2. Since the distance travelled by the
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electrons is much smaller than the phase coherence length, the current at the collector is
the result of the interference between the coherently excited n,,, modes. This becomes
clear by calculating the wavefunction at the field B in the WKB approximation [21], as the
sum over the classical trajectories (all the skipping orbits which end up at the collector) of
a phase factor e'®, where ¢ is the sum of %{ J p-dl with 1 running over the trajectory from
the injector to the collector, plus a constant term due to reflections and passages through
the caustics. The calculations where carried out explicitly by Beenakkers and coworkers
[7, 10] for conduction electrons. They also showed that this real space formulation of
the wavefunction can be translated in a reciprocal space expression by the method of the
stationary phase applied to the sum over the trajectories, thus making explicit the relation
between the wavefunction and the k,’s. The wavefunction can be finally connected to the

current, since, due to the vanishing of the wavefunction at the boundary, we have

99(0, L)[*
I x {———— 2.17
« | (217)
where (0, L) is the wavefunction calculated at the collector. The final result is
1 Nmazx 2
I 7 > etknk (2.18)
cye n=1

where k,, are the n,,,, momenta k, at the Fermi energy, 7 .e. the k, values correspondﬁng
to the intercepts between Er and the magnetic edge states. Equation (2.18) shows that
electrons move from the injector to the collector as plane waves with momentum deter-
mined by the magnetic field and that constructive or destructive interference can occur at
L.

Spectra calculated from eq. (2.18) for conduction electrons will be discussed in chapter

4 and compared with focusing spectra obtained for valence electrons.



Chapter 3

Electronic structure of
two-dimensional systems

As we have seen in chapter 2, a z-directed magnetic field quantizes the motion in the zy
plane. In this chapter we review the basic features of the electronic structure in a two-
dimensional system, i.e. a system where a confining potential quantizes also the motion
along z. In particular we analyze the behaviour of the valence band in the framework of the
multiband effective mass approximation. Then a simple model hamiltonian is presented
which is intended to simulate a realistic in-plane dispersion of the valence band in a GaAs—

Al,Gaq_,As heterostructure near the I' point.

3.1 Two-dimensional confinement: an ideal model

We have sketched in §1.2 how in a heterostructure the electron gas is confined in a layer.
From a quantum mechanical point of view, electronic states in a heterostructure are the
result of a confining potential well of asymmetric shape in the growth direction. Moreover
a realistic calculation should take into account the charge redistribution self-consistently.
In what follows we will neglect band bending (flat band approzimation) and consider how

bulk band structure modifies in a symmetric quantum well. At the end of the chapter we

21
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will discuss the effects of the asymmetry of the confining potential.

In the simplest approximation electrons in a heterostructure are free to move in a plane
normal to the growth direction (taken to be the z axis) so that the wavefunction can be
factorized as ¥(z, y, z) = eF=%e*vVx(z) and the Schrédinger equation reads

. p 21,2
[ K2 d? REZ Rk

-)x(2) (3.1)

— + V(2)

—277’1," dz? X(Z) - (E N

2m* 2m

where V'(z) is the square well potential, k, and k, are the in-plane wavevectors and m*
is the effective mass of the bulk material. The bound solutions of this problem are well

known and consist of discrete levels ¢, which, in the limit of an infinite well, are given by

n (3.2)

with respect to the bottom of the well, where L is the width of the well and n is an integer
> 1 (see top of fig. 3.1). Therefore the full energy spectrum consists of a series of parabola

in ky, ky starting from each of the ¢, edges:

21,2
AR BRK

.
*

Enkoky = €n + (33)

2m*  2m
It can be shown that a bound state is always present in one-dimensional wells, no matter
how shallow the well is. Motion in the z direction is prohibited as far as ‘transitions
between the levels are not allowed, i.e. if the level spacing is larger than the thermal or

collisional broadening. To give an order of magnitude, for the GaAs conduction band

(m*/mg = 0.067) with L = 1004, we have 5227 ~ 56meV.
For completeness we note that the two-dimensional density of states differs in a quali-
tative way from the three-dimensional one. The density of state is defined by
ple) = D 8(c = enkok,) (3.4)
kekyn
with €ns,k, given by (3.3). By imposing cyclic boundary conditions in a box of sides Ly

and L,, one can substitute Zkrky — Lely [ dkydk,. By further substituting ¢ = k* the

(27)?
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Figure 3.1: Splitting of the conduction edge (top) and of the heavy and light holes (bottom) in
a quantum well. Solid horizontal lines represent the first two heavy hole subband edges. Dashed
lines represent the light hole subbands.

integral gives

ple) = 2%—2@ > 0(e —en) (3.5)

n
where §(z) is the step function. The two-dimensional density of state therefore is constant

starting from ¢, (and not from 0 due to the confinement) and increases stepwise each time

the energy passes a new edge.

3.2 One step further: the multiband effective mass ap-
proximation

The situation for the valence band is much more complicated. The bulk band structure
around the direct energy gap is sketched in fig. 3.2 along the k. direction. For the most
common semiconductors, it can be shown that the bulk valence states at the I' point

arise, from a tight-binding point of view, from the bonding p states. These are six states
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(including spin) which are found to be split by the spin-orbit coupling in a four-fold
degenerate state (labelled J=3/2) and a two-fold degenerate state (labelled J=1/2) at
T, the splitting being A,, in fig. 3.2. The degeneracy complicates the problem in the
sense that a single band picture, like that of the previous paragraph, breaks down. In the
following we will see how the problem can be approached in the framework of the k- p
scheme [22], a method which is useful to describe electronic bands in proximity of special
points of the Brillouin zone. This method allows to consider only Fourier components of
the wavefunction whose wavelengths are comparable to the dimensions of the confining
potential, with the crystalline potential (i.e. short wavelength variations of the potential)

only entering the problem as a renormalization of the masses.

conduction
>
band
\\\
K,
—_—
heavy hole \
- N\
band /// Aso\
light hole

N
i split—off

; \  band

band

Figure 3.2: A typical band structure around the I' point in a semiconductor in the k. direction.
The splitting A, is due to spin-orbit coupling and is of the order of .3eV.

Our approach starts by writing the wavefunction at k making use of the Bloch states

of the crystal at k = 0, which are supposed to be the known eigenfunctions of the crystal
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hamiltonian H. The basis is set up from the functions

ik-r
vk >= eﬁuyo(r), (3.6)

where u,q is the periodic part of the Bloch states at k = 0 corresponding to the v-th
band. If one is interested, say, in the X point, the corresponding u, y functions should be
used. Note that the |[vk >’s are not eigenfunctions of H. The u,y’s are orthogonal and
normalized so that

/uf,o(r)u,,xg(r)dr = by (3.7)
The method is not exact anymore when the basis set is restricted to a finite number
of bands; therefore it gives reasonable results only near the I' point in contrast to tight-
binding hamiltonians which give valid results all over the Brillouin zone. Nevertheless such
complete knowledge of the band structure is seldom useful since properties of semicon-
ductors heterostructures depends on electronic states lying few fractions of an electronvolt
from the conduction and valence edges. Since quantum wells have typical dimensions of
the order of 1004, we are interested in states around I' with k& ~ 7/1004. Thus a local
knowledge is sufficient and may lead to computationally simple schemes.

To accomplish our program, we write the Schrédinger equation
(H + U)o(x) = evbo(r), - (3.8)

where U is an external perturbing potential (e.g. the quantum well confining potential)

and expand the wavefunction in the basis (3.6):

Yo(r) = ) buxlvk > (3.9)
vk
Then (3.8) becomes
> < vk|H + Ulv'k > ¢ = ¢k (3.10)

v'k!
The basic approximations of the method lie in the calculation of the matrix elements of

U:
dr . ,
< vk|U K >= / ﬁrel(k“k)'ruzo(r)(](r)uu/:j)(r). (3.11)
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If U(r) and e!~%)T are nearly constant over a unit cell we have
! dr i(k—k')r
< vk|UVK > G / SU(x)e = 6y Uegr- (3.12)

where we used (3.7). For the calculation of the matrix elements of H, note that, from the

definition (3.6),

H|v0 >= E,o|v0 >, (3.13)

vk >= e®T[u0 >, (3.14)

where E,y is the v-th band energy at k = 0. Hence, if H = «%VQ + V. with V_ the

crystalline potential, we have

h? ;
Hivk > = [——-Vz + VC} elk'rluO >
2m0

. #2 ,
= kT [2 (k“—zik-V—Vz)JrVC} v >

my

. -h2 i v h22
_ elk'f(ﬂ—z kV, k)|1/0>

my 2m0

h2k? 1.r bk
= (Euo + ) lvk > +eXT—= . (—AV)[v0 > .

2777,0 my

Taking the scalar product with < v'k’| we obtain

h2k? Rk P,
k! k = Eui UU,6 ' _._____ﬂ ’ .
< v'k'|H|vk > ( 0+ 2mu)5 kk + - Ok (3.15)
with
Puu’ = -ih/uZOVu,,/odr (3.16)

the momentum matrix elements which are responsible for the coupling between the differ-

ent bands. Defining

th.‘z
Eyo+ Y v=v
Hy(k)=9q ,p 2o (3.17)
D Ry
my
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we have

> Hu (K)o + ) Uldo b = bk (3.18)
UI k/

Finally, we go back to the r representation by multiplying to the left by %e‘ik'r and

integrating over k. Noting that

% / e T (iV)e T dr = H, (k)60 (3.19)
we obtain the mulitband effective mass equation:

Z, Hy (—iV ) (r) + U(r)Y,(r) = e, () (3.20)

where
0le) = = [ e (3.21)

is the Fourier transform of ¢, ;. The ¥,’s are called envelope functions since they contain
only the long wavelength variations of the wavefunction. This is evident by making explicit

the relationship between ¢y and the 1,’s; from (3.9), (3.6) and (3.21) we have

e’.k'r

Po(r) = %fﬁuk“\/’ﬁuuu(r)
= Zuuo(r)¢u(r).

‘We have reduced the problem of finding the rapidly varying 1, to the problem of deter-
mining a set of slowly varying functions 1. Of course the accuracy of the method depends
on the number of edges we put in the basis.

A final remark is necessary when eqs. (3.20) are applied to heterostructures. In fact the
appropriate boundary conditions for the ®, are complicated by the fact that the effective
masses in (3.22) are functions of z since they depend on the material [23]. Moreover, since
the u,o(r)’s are also different in different materials, in principle matching conditions on
the u,o(r)’s should be used. Nevertheless, it is generally a good approximation to take

the same functions in the different layers.
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3.3 The Luttinger hamiltonian

Instead of using an high number of bands and calculate explicitly the quantities P,,/, the
matrix elements H,,.(k) are often written as second-order polynomials whose coefficients
have to be determined by fitting the bulk band structure of the material. Luttinger [24]
proposed a widely used 6 x 6 hamiltonian which takes into account the heavy and light
hole bands and the split-off band shown in fig. 3.2. Each of them is doubly degenerate
due to the inversion symmetry of the crystal (Actually GaAs has no centre of symmetry
but the the spin-orbit splitting due to this is negligibly small on the scale of energies we
are interested in). The Kramer degeneracy is broken only in a non-symmetric potential
U(r) which, according to our initial statement of §3.1, we do not consider here. Since we
are interested in an energy range of few tenths of eV below the valence band edge, we
report here only the 4 x 4 Luttinger hamiltonian relative to the J = 3 /2 states (heavy and
light holes) and we neglect the influence of the split-off band. This approximation will
be sufficient to deduce the basic features of the valence band in a confined structure. We
label the four basis functions with |3/2,J. >, with J, = 3/2,-3/2,1/2,—1/2. Then the

Luttinger hamiltonian reads

Hup 0 M N 13/2,3/2>
_ 0 Hpp N —-M~ 13/2,—3/2>
HO=1 y- N Hipo 0 13/2,1/2> (3.22)

N* —-M 0 Hy, 13/2,-1/2>

where

H — h2 k2 k2 2 kQ
T T amg [(71 +72)(kz + k) + (11— 272) z}
o= Ty [(‘71 — ) (k2 + kD) + (71 + 272) z]

2
M = ™o [2\/573k:(k3: + Zky)]
B2 ) R

N = pr [\/572(1% — ki) + z2\/§73kmky]
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Writing the matrix elements of (3.22) we have taken E,; = 0. The parameters v; are called
Luttinger parameters. Their values are taken to fit experimental bulk band structure data
and are available for the most common semiconductors.

Now we put eq. (3.22) in (3.20) with U a square potential to simulate the quantum
well profile (bottom of fig. 3.1). For k, = k, = 0 the matrix (3.22) is diagonal and the

four multiband effective mass equations reduce to the two decoupled equations

B (11 — 272) 07

[(—gm—o“lz“) 57+ U] Yh = Enthn,
B2 + 274 0?
[—(ﬁgfm,—o‘yzﬁ + U] ¢l = Embz-

They look like Schrédinger equations except for the signs since holes must be confined in
a barrier, i.e. a region of higher potential with respect to the surroundings (see fig. 3.1).

In the limit of infinite U the energies are the same as in eq. (3.2) with the appropriate

masses:
2£2, 2
n“h'w

E, = - + 2

I rrad? (71 + 272)
n2hir?

Eyp = —— -2 .

' Srred? (71— 272)

Due to the lighter mass, the light holes confinement energies are greater then those of the
heavy holes. Following a common notation, we will indicate H H,, and L H,, the heavy and
light subbands respectively.

Now we consider the in-plane dispersion. Neglecting for the moment the off-diagonal

terms, the H H,, and L H, subbands are

2

h-
B = By — o 2 4 .
Hi, = Ei Qm()(ﬁ + 7o)k + k) (3.23)
2
fond — — 2 4 2
Erg, = Epn 2m0(71 v2)(kz + k). (3.24)

Note that the names “heavy holes” and “light holes” relate to the dispersion curves in the

k. direction while the effective mass ratio is reversed in the k,k, plane. Then the HH,



30 Chapter 3. Electronic structure of two-dimensional systems

and LH, subbands should cross somewhere. The off-diagonal terms couple the different
heavy and light subbands together leading to anticrossing. If off-diagonal terms are to
be taken into account numerical methods are necessary to solve the coupled differential
equations. Several schemes have been devised so far to this aim. A typical calculation of
the dispersion relations in a quantum well near the Fermi edge is shown in fig. 3.3 for a

GaAs—Al,Ga;_zAs quantum well structure at the I' point. The band dispersion results

o
o

(meV)

ENERGY
ENERGY (meV)

-30
0 05 1

ky (Lx10%cm™) ky (Tx10%em™)

Figure 3.3: In-plane dispersion of the first valence subbands in a GaAs—Al;Ga;_,As quantum well
from ref. [3]. Dashed lines are obtained neglecting off-diagonal terms in (3.22)

mainly from the coupling of the first three subbands, HH,, HH, and LH,. Anticrossing
between H H, and L H, causes the positive sign of the LH effective mass while the coupling
between LH, and H H; is responsible for a strong non-parabolicity of H Hy. From fig. 3.3
it is also evident the anisotropy between the (1,0,0) and (1,1,0) directions of the Brillouin

zone which leads to a warped shape of the Fermi surface.
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3.4 A model for the valence band of confined systems

As we have seen, the exact calculation of the band structure in a confined system al-
ways involves the numerical solution of a set of coupled differential equations. In view
of the semiclassical framework in which we will calculate the focusing spectrum of a two-
dimensional hole gas (see chapter 2), we develop here a simple analytical model which gives
the right dispersion of the topmost valence subband in the energy range we are interested
in.

The results we have been reviewing so far suggest that, as far as symmetrical quantum
wells are concerned where Kramer degeneracy occurs, a two band model, representing the
HH,; and HL, subbands, should be suitable to simulate the in-plane dispersion around
T' of the topmost valence subband in the confined system. In the spirit of the Luttinger
hamiltonian, we can write an effective 2 x 2 hamiltonian whose elements are second or-
der polynomials in k; = (kg, ky) whose coefficients have to be determined by a fitting

procedure. We write this hamiltonian as

_( Hy S
H(kl)-«< S Hl) (3.25)
where
R2k2
Hy, = L
th
R k2
= A L 2
H,; + Sy ) (3.26)

S = alk.k,| +pE

Neglecting the off-diagonal terms this hamiltonian gives two parabolic bands, with ampli-
tude determined by my, and m;, which represent the H H; and LH, subbands, separated
at k; = 0 by a gap A which simulates the different splitting of H H; with respect to LHj.
The H H, subband at k; = 0 has been taken as the zero of energy. In this approximation

the two subbands cross each other at finite k. The off-diagonal term § introduces an
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isotropic (a) and an anisotropic (8) coupling between the subbands. The isotropic term is
responsible for non-parabolicity of the H H; subband due to anti-crossing. The anisotropic
term then introduces a warping of the Fermi surface.

The coupling constants « and 3 and the effective masses my, and m; are determined
fitting an exact calculation, carried out in the envelope function approximation following
the scheme described in ref. [26], for a GaAs-Al;Ga;_,As quantum well 140A wide. The

parameters obtained are listed in tab. 3.1. In fig. 3.4(a) the result for the model hamilto-

mp/my  my/my a g AN
0.165 0.743 T7.7eVA? b5.0eVA? 4.5meV

Table 3.1: Values of the parameter used in eq. (3.25). myg is the electron rest mass.
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Figure 3.4: a) Valence band dispersion of a 1404 GaAs quantum well along the in-plane (100)
and (110) directions. Dashed lines: exact calculation Full lines: model hamiltonian of eq. (3.25).
Horizontal lines indicate the energies used in the calculation of the TEF spectra of fig. 4.3. b)
Equal energy contours for the H H; subband according to our model. Energies are in meV.

nian (3.25) (solid lines) is compared with the exact calculation (dashed line) for the H H,
subband. Note that with our two band model only the highest H H, subband dispersion

can be reproduced. This is because we loose the coupling with the H H, subband, whose
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effect is explained in the previous paragraph, which is not present in our model. To obtain
the right H H; dispersion, we must take an unphysical value of A, much smaller then
the real gap HH{—LH,. For the same reason our model does not reproduce the positive
effective mass of LH;.

In fig. 3.4(b) equal energy contours are reported at various energies lying between the
two subbands. Note that near the edge, except for the sign of the mass, the situation
is much similar to the conduction band, the H H; band is parabolic and equal energy
contours are isotropic, while, at lower energies, both non-parabolicity and warping of the
Fermi surface are present.

Our model is intended to simulate the in-plane dispersion in a quantum well. This
means that the effects of the asymmetry of the confining potential is neglected. These
effects amount in the splitting of the doubly degenerate levels at finite k; in systems where
spin-orbit coupling is present if no centre of inversion exists. This splitting is particularly

high in the valence band due to the highest spin-orbit coupling [25].



Chapter 4

Focusing of a two-dimensional
hole gas

In this chapter we use the two-band model conceived in §3.4 to determine the edge states
and the focusing spectrum for a two-dimensional hole gas by following the same steps
which led to the electronic edge states. We analyse the results and interpret them in
terms of the effects of warping of the Fermi surface and non-parabolicity of the valence

band.

4.1 Edge magnetic states of the two-dimensional hole gas

In §2.1 we have seen that the quantum states of a charge in a magnetic field in proximity
of a boundary, namely the edge magnetic states, can be determined in a semiclassical
approximation by means of a simple geometric condition on the area of the orbits. Here

we determine the edge magnetic states resulting from our model hamiltonian (3.25).

Diagonalization of eq. (3.25) gives a secular equation from which the equal energy
contours can be determined. We use for the moment eq. (3.25) with § = 0. Then, from

the condition det(H — I¢) = 0, where H is defined by eq. (3.25) and I is the 2 X 2 identity

34
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matrix, we have that the equal energy contour at energy ¢ is given by the polar curve

Amy—[1+E+&/n]+[(1+7~&/n)? + & + 1)a? sin? 26]1/2

— (4.1)
h? 1- %—" sin? 20

k(0) =

for the higher H H; subband, where 6 is the polar angle (see fig. 4.1) and we used the

adimensional quantities

s} _ [ m
U 6 - — = —, 4-2
h2/2mh’ A’ n mp ( )

a =

Note that (4.1) reduces to (2.15) in the no-coupling limit @ = 0. Now we scale it by [ to

N 9o

7 /Bf////,a/ T \( //

Ll

Figure 4.1: Geometrical definitions of the quantities 8y and Tj,. The left panel represent an orbit
with the centre outside the barrier (negative k,). The right panel represents an orbit with the
centre inside the barrier (positive k).

get the real space orbits. Then the flux enclosed by the semiclassical orbit is
P = / B.do =20} B/ 0)d8 — 2Ty, (4.3)
where 0y, defined in fig. 4.1, can be connected geometrically to k, by the identity

k(g()) CcOS 9() = —ky (44)
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and Ty, = [} k?(8y) sin 26y is the area of the triangular sector in fig. 4.1. Putting everything

together we have

A 2 df
& = r 20 {—[1+€+€'/n]/
[}

h? 1 — ksin?26
200 1 — gsin” 26
1+2-¢ > df - 2T 4.5
Flt+e 8/77‘/(; 1——nsin229} bo (4:5)
where we denoted
a’n a 2
= — =—EE+1)|——| . 4.6
K 1 q ez + )[L-{-E—-?/’?} (4.6)
The first integral can be evaluated directly to give
_\-1/2 /2
(1 - &) /?arctant(1 - &) L:ngo (4.7)
while after some manipulation the second integral gives
(1 — g/&)T1(200, 5, ) + (/%) F(200, 9) (4.8)

being F(p,q) and II(p, v, t) the elliptic integrals of the first and third kind respectively.

Finally, the Bohr—Sommerfeld quantization condition for the hamiltonian (3.25) with 8 = 0

reads
2 18 ) _ l+e+g/9(1- k)2 arctant(1 — n)l/zl +[1+z-2/n)
mhwé‘ t=tan 26y
(1= q/K)TI(200, &, 9) + (a/K) F (260, 4) p — 2k*(00) sin 20y = 2w (n —7) (4.9)
where w? = myc/eB.

Even if the approximation 8 = 0 allows an analytical determination of the quantization
condition, it has the drawback that the two bands intersect along the k; = 0 and ky = 0

directions, where the off-diagonal term S vanish, which is an unphysical result. The equal
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energy contour for non-vanishing 8 has a slightly more complicated form than eq. (4.1):

_ Amy—[1+E+E/n]+ [(1+2—F/n)° + 45(2 + 1)(§] sin 20| + B)°]"/*

— - 4.10
» (3] sin26) £ B (4:10)

k*(0)

where we used the adimensional quantity 8 = 8/ (5%:7) Then a numerical integration has
been used to calculate the area enclosed by this curve and find the energy bands, and the

results tested with those obtained from eq. (4.9) in the 8 = 0 approximation.

Energy/hw,

(=) (b)

Figure 4.2: Magnetic edge states for parabolic dispersion (a) and for the HH subband (b) calculated
at B = 1.2T corresponding to I, = 2.3 x 10~8m. Energies are in units of the cyclotron frequency.
The cyclotron frequency at 1.27 for GaAs conduction electrons is hw, = 2.1meV corresponding
to m* = 0.067mg and for the HH subband is Awgy = 0.84meV corresponding to m* = 0.165my
where m* is the effective mass and mg the electron rest mass. The shaded area indicates the
position of the infinite barrier. Dashed horizontal lines indicate the non dispersive bulk Landau

levels.

The valence electrons edge energies resulting from our model (3.25) are shown in
fig. 4.2(b), while in 4.2(a) the conduction electrons diagram of fig. 2.2 is repeated for
comparison. Some differences are recognized; while the parabolic dispersion of conduction

electrons results in equidistant bulk! Landau levels, bulk valence states get closer going

'In this context, bulk states are the 2D Landau levels as opposed to surface or edge states close to the
barrier.



38 Chapter 4. Focusing of a two-dimensional hole gas

to lower energies because, due to the non—parabolic behaviour of the HH subband, the
effective mass (and consequently the cyclotron frequency w,) is not well defined anymore.
The energy dispersion is therefore similar in the two cases for energies near to the HH;
edge, but is modified at lower energies. Note that, due to the anisotropy of the Fermi
surface, different crystallographic directions of the boundary are not equivalent. Fig.

4.2(b) is obtained for a boundary in the (1,0,0) direction.
4.2 Coherent focusing in a two-dimensional hole gas

We are now in the position to calculate focusing spectra for a two-dimensional hole gas
from eq. (2.18). We must choose a Fermi energy, determine at each field the allowed
Nmas edge states at that energy, as explained in chapter 2, and put them in eq. (2.18).
Spectra calculated from (2.18) with different values of E are shown in fig. 4.3. Focusing
spectra were obtained averaging for L over a range of 100nm around 3um to simulate the
combined width of the injector and the collector [T7].

Fig. 4.3(a) shows the spectrum obtained at Er near the band edge (higher dashed-
dotted line in fig. 3.4), where orbits are isotropic, as shown in the corresponding inset,
and the HH; subband is parabolic. For this reason the results are independent of the
crystallographic direction of the barrier and are expected to resemble those obtained in [7]
for conduction electrons. This is in fact the case; a fine structure appears superimposed
onto the peaks at classical focusing fields Bfocys due to the interference between different
magnetic edge states, with an amplitude which increases with the field, in agreement with
the experimental results. At the highest fields the maxima in the current do not occur
anymore at multiples of Bfoeys even if at this energy the cyclotron frequency is still well
defined (see previous paragraph).

The above results can be explained as follows. We have already noted in chapter 2
that the number nqy of modes k, at Er is equal to the number of occupied Landau levels

at the same energy. At low field, where Landau levels are dense in energy, many k, are
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Figure 4.3: Calculated TEF spectra at different Eﬁn s with different orientations of the bar-
rier. a) Er = —0.9meV; b) Ep = —3.15meV with the barrier along the (100) direction; c)

Ep = —3.15meV with the barrier along the (100) direction. The resulting focusing fields are: a)
Bjocus = 0.027T, b) Bjocus = 0.054T and c) Bjfocus = 0.0597. The insets show the shape of the
relative quasi—classical orbits.
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allowed at E with positive and negative values. On average, therefore, the different terms
in eq. (2.18) cancel each other, except those around Nmaz/2 of ky ~ 0. In metals, due to
the small Ap, a very high number of k, is occupied even at high fields so that the only
contribution to the current is obtained from constructive interference at Bfocys of states
with k, ~ 0, which correspond to the classical skipping orbits centered on the boundary.
In semiconductors, on the contrary, due to the higher Ag, few states are allowed at Ep
so that superposition of waves may lead to fluctuations in the current even at low field
where, in fact, the fine structure appear in spectra. With increasing field, the separation
between Landau levels increases as well and n,,,, decreases. Due to the small number of
contributing states, the interference manifests itself with large oscillations in the collected
current. These results confirm that the fine structure and the strong oscillations with
non-monotonic intensity observed in experimental spectra are the effect of the coherent
nature of electron focusing in semiconductors and they clarify the role played by the edge
magnetic states.

Fig. 4.4 shows the influence of the dimensions of the quantum point contacts. Spectra
have been calculated at the same energy of fig. 4.3(a) with a simulated width W of 100nm
(top) and of 400nm (bottom) of the collector. In agreement with the experimental results
[10], the spectrum relative to the larger collector has broader peaks with monotonously
increasing intensity, while the fine structure is strongly reduced. The structure of the
peaks therefore compares to that of spectra taken in metals. Note that at B > 0.27
the focusing peaks disappear completely since the cyclotron radius become smaller of the
collector width and the resolution for the focusing is lost.

Our calculated TEF spectra are strongly modified at lower energy if the barrier is taken
along the (100) direction as shown in fig. 4.3(b): peaks at the classical focusing fields are
sharper and Bj,cys remains well defined in a wider range of fields so that the spectrum
is more similar to the classical case observed in metals. Since we are still in a quantum

regime, the reason for this behaviour must be sought in the shape of the quasi-classical
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orbits. In fact, as shown in the insets of figs. 4.3(a) and 4.3(b), two orbits corresponding
to different &, leaving a point-like injector, reach the collector in a narrower spatial range
in the case of warped orbits (fig. 4.3(b)) with respect to the case of the isotropic ones
(fig. 4.3(a)). This effect is completely due to the warped shape of the Fermi surface, i.e.

the crystalline potential helps the magnetic field to keep the electrons focused onto the

collector.
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Figure 4.4: Focusing spectra calculated at the same energy of fig. 4.3(a) with two different widths
W of the collector. Top: W = 100nm. Bottom: W = 400nm. The focusing field is 0.0277".

The situation modifies again if the barrier is placed along the (110) crystallographic
direction as shown in fig. 4.3(c). The resulting spectrum, obtained at the same Fermi
energy as fig. 4.3(b), displays again the fine structure because different orbits are not
focused anymore onto the collector by the crystal, as shown in the inset.

The non—parabolicity of the valence band shows up also in the behaviour of the focusing
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Figure 4.5: Focusing fields vs. Ef obtained from calculated TEF spectra with the barrier along
the (100) direction (solid points) and the (110) direction (open points). Full lines indicate the
focusing field calculated from Bjocus = 2hk(Er)/eL in the two directions from the function k(e)
resulting from eq. (3.25). Dashed line indicates the same calculation for a parabolic dispersion
with m* = 0.165m,.

field as a function of the Fermi energy as shown in fig. 4.5. The focusing fields, calculated
for several Er’s and for barriers along the (100) and (110) directions, deviate from the
square toot behaviour ensuing from a parabolic dispersion (see eq. (1.5)). Once we plot
the HH subband along the two (100) and (110) directions by scaling k(¢) according to
(1.5), it can clearly be seen that the calculated values of Bocus fall onto the dispersion in
analogy to the electronic case. It should be noted that only the dispersion in the direction
of the barrier contribute to define Bous so that, at least in principle, TEF experiments

in a 2D hole gas could probe directly the band structure.

To summarize, we found that the details of the band structure strongly affect the
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calculated TEF spectra. In particular the anisotropy of the valence band influences both
the intensity of the fine structure and the periodicity of the TEF spectra. We believe that
these effects should be observable since the use of the semiclassical approach is appropriate

in the low magnetic field regime of our calculations, where an high number of edge states

is occupied.
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