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I. INTRODUCTION.

Most of the main difficulties one encounters in General
Relativity have their origin in the nonlinearity of Einstein’s
equations. In particular, because of this nonlinearity
perturbative solutions to Einstein’s equations can not give a
full insight into Einstein theory. Knowledge of an exact solution
to Einstei;%gﬁ%igya precondition for study such phenomena like
black holes, wormholes etc. Over years a few techniques were
introduced to provide examples of such solutions [see e.g. Kramer
at al 1980 for a reviewl. One of such techniques imposes some
symmetry conditions on the space-time. Another assumes that there
exists some congruence of lines, with some special properties, in
the épace—time. As a particular example of the latter technique
one assumes that there exists a congruence of shear-free and null
geodesics in the space-time [Robinson 1961] (for definitions see
e.g. (5.2.2)-(5.2.5) of this work). This assumption, being
general enough, considerably simplifies vacuum, pure radiation
and Einstein-Maxwell equations. This work is mainly devoted to
study consequences of this assumption.

Some parts of the work presented here have the
character of a review of known results. However, there are some
parts which seem to be new.

Following this Introduction we present Chépter II
devoted to our notations.

Chapter III shows assumptions which satisfy space-times
considered in this work. In particular, assumptions Al) and A2)
of Chapter III turn out to be equivalent 'to the existence of a
congruence of shear-free and null geodesics in the space-time.
This fact has not been mentioned in the literature so far. It is

included in Corollary 5.3.1 and Remark 5.3.1, which summarize



different facts equivalent to assumptions Al) and A2).

Chapter IV presents corollaries one can deduce from
assumptions Al) and A2). In particular, it is shown :that if
space-time admits a congruence preserving two-form ﬁ=F+i*F, built
out of a real two- form F, then the congruence and F are null.
Moreover, congruence defined above satisfies so called
Robinson-Trautman condition [Robinson, Trautman 1983].

Chapter V gives the physical meaning to the constructions
given in Chapter IV. It presents null Maxwell fields and such
well known results as Robinson theorem 5.2.1 [Robinson 196117,
Goldberg-Sachs  theorenm 5.3.3 [Goldberg, Sachs 19621,
Cartan-Petrov-Penrose classification [Cartan 1922, Petrov 1954,
Penrose 1960](Section V.3) and peeling-off theorem 5.3.4
[Trautman 1958, Sachs 1962]. Also Trautman theorem 5.4.1 is
included there [Trautman 1984]. This specifies what are possible
metrics which admit the sgame congruence of shear-free and null
geodesics.

Theorem 5.4.1 introduces to the so called optical geometry
without shear - i.e. geometry associated with a given congruence
of shear-free and null geodesics (Section VI.2). Chapter VI is
devoted to the wider class of geometries, namely to optical
geometries. These geometries, introduced by A. Trautman [Trautman
1984], are the weakest structures one needs to write vacuum
Maxwell equations for a null electromagnetic field. Almost all
Chapter VI is based on [Robinson, Trautman 1985].

‘The crucial chapter for the rest of the work is Chapter VII,
which gives a one to one correspondence between a congruence of
shear-free null geodesics and a 3-dimensional CR structure. This
is called in Section VII.2 as Robinson-Trautman correspondence

[Robinson, Trautman 1985, 1989]. This correspondence has been in



the air for a long time. It is already apparent in the occurrence
of the Cauchy-Riemann operator in the process of solving
Einstein’s equations in the case of twist-free congruences of
null and shear-free geodesics [Robinson, Trautman 1962]. P.
Sommers [Sommers 1976, 1977] and J. Tafel [Tafel 1985] pointed
out the appearance of the tangential CR operator in connection
with twisting congruences.

Chapter VIII is devoted to different definitions of CR
structures. Definition 8.1.1 is given to define in the abstract
manner an odd-dimensional CR structure. Also other, more
technical definitions are given in the case of 3 dimensions.
Equivalence of all definitions in this case is proved in Section
VIII.1. Section VIII.2 defines realizable CR structures. An
important, S5-dimensional example of such structures is given in
Section VIII.3. This describes the twistor space of R. Penrose
[Penrose 1967].

_Two next chapters - IX and X are mainly original.

Chapter IX .deals with géometry of 3-dimensional CR
structures. Such structures were for the first time studied by H.
Poincare [Poincare 1907] in the cohtext of real hypersurfaces of
codimension 1 in Cz. He observed that, in general, it is impossible
even locally to find ©biholomorphic transformation which
transforms one real hypersurface of codimension 1 in c? into
another. This observation gave rise to the ‘theory of 3
dimensional CR structures, and in particular to the local
equivalence problem for them. In section IX.1 after a definition
of equivalence of such structures an argument is given that there
exist nonequivalent CR structures. This is firstly pointed out by
considering so called symmetric CR structures. These are CR

structures which admit symmetries ( definition (9.3.1)). Such CR



structures were for the first time considered by H. Poincare
[Poincare 1907] and then studied by B. Segre [Segre 1931] and E.
Cartan [Cartan 1932]. In particular E. Cartan gave a full
classification of nonequivalent CR structures admitting at least
3 symmetries, showing possible realizations of such structures in
c?. In Sections IX.3-1X.6 we generalize this classification to
all symmetric CR structures. Our method is slightly different
from this of Cartan. We extend Cartan cla551flcat10n to CR
structures admitting 1 or 2 symmetries. We also give canonical
representation for 1-forms defining symmetric CR structures (this
was not given by Cartan). Results of Sections IX.3-IX.6 were
obtained in collaboration with J. Tafel [Nurowski, Tafel 1988].
Section IX.7 combines results of E. Cartan [1932], N. Tanaka
[1962], S. S. Chern and J. Moser [Chern, Moser 19741 and D. Burns
Jr., K.Diederich and S. Schnider [Burns at al 19771, and gives
classification of all 3-dimensional CR structures. The so called
Cartan invariants of these structures are introduced there.l The
way of presentation of this section is partially taken from J.
Lewandowski’s Ph.D thesis [Lewandowski 1989]. It is worth noting
that Sections IX.3-IX.7 can be regérded as a new presentation of
all results of two Cartan’s papers [Cartan 1932]. This modern
description of these, still not very well known, papers was
achieved 1in collaboration with J. Tafel and J. Lewandowski
[Nurowski, Tafel 1988, Lewandowski 1988, Lewandowski 1989,
Lewandowski, Nurowski 1990a, 1990b].
In Chapter X we study Lorentz geometries associated with a

given CR structure. Two approaches are distinguished. The

lFollowing [Cartan 1932], we give an effective algorithm of

computing them in the Appendix (Chapter XIII).



nonstandard one [Lewandowski, Nurowski 1990b] uses Cartan
invariants of the CR structure to construct a preferred by the CR
geometry cobasis in space-time. In Section X.2 we wuse this
approach to study Weyl tensor of metrics admitting twisting
shear-free congruences of null geodesics. All results of this
section are new. In particular, Theorem 10.2.1 describes all such
space-times of type N. The theorem is not very powerful, since we
failed in finding integrability conditions of equations obtained
in terms of Cartan invariants only. However, applying this
theorem we can define Fefferman metrics [Fefferman 1976], and
prove Theorem 10.3.2 characterizing these metrics in terms of
Cartan-Petrov-Penrose type and conformal symmetries. This last
theorem was proved in very general setting for the first time by
G. A. J. Sparling [Sparling 1985], and then rediscovered by J.
Lewandowski [Lewandowski 1989]. However, the proof we present in
Section X.3 seems to be new.

Sections X.4-X.6 present known results on solutions to vacuum
and pure radiation Einstein and Einstein-Maxwell equations in the
case of space-times admitting congruences of shear-free and null
geodesics. These results were obtained in the standard approach
[Robinson, Trautman 1962, Kerr 1963, Robinson at al 1969], which
did not recognize that there was a CR structure behind such
space—times. Therefore in Section X.6 we present carefully CR
structures associated with Taub-NUT and Kerr solutions. As it was
pointed out by I. Robinson and A. Trautman [Robinson, Trautman
1985] in the first <case CR structure 1is equivalent to
3-dimensional sphere imbedded in BZ. This has the highest
possible number of symmetries. The CR structure associated with

the Kerr metric was for the first time studied in [Nurowski

1987]. In Section X.6 we present results of [Nurowski 1987] using




another arguments related to Cartan invariants of .this CR
structure.

Seétion X.7 gives the first example of pure radiation
Einstein-Maxwell solution with twisting light rays. The results
of this section were obtained in collaboration with J. Tafel
[Nurowski, Tafel 1991].

Section X.8, preceding Conclusions, discusses Kerr theorem
[Kerr UNPUBLISHED, Tafel 1985] to show, that its reformulation in

terms of Cartan invariants of CR structures is needed.



II. NOTATIONS
Notations used in this work are intended to be as
standard as possible. The following 1list of notations 1is an
adaptation of notations of [Abraham, Marsden 1978, Kobayashi,
Nomizu 1963, 1969, Kramer at al 1980]. These books can be used to
find all differential geometric definitions that we do not quote

here.

Real and complex numbers.

Real line is denoted by R; complex plane by C.

We denote complex conjugation by a bar over the symbol.
Equivalence relations.

In this work in certain places we use equivalence relations R

defined in some sets A (vector spaces, manifolds, bundles etc.)

to define quotient sets A/R of classes [a] defined by R in A.
Vectors and tensors.

If {hi}:f? is a basis in a real n-dimensional vector space V then
= #*
{hi}i " is a dual basis in a dual vector space V .

If W is a vector subspace of V then by W’ we denote these
#
elements of W which produce zero acting on all elements of W. W

is a vector space called annihilator of W.

i=n

g 2 general element of a tensorial

In terms of a basis {hi}

vector space

r * #* *
V = VeVe...eVeV oV ...V
S

————— P g e
is given by
1112” i j1 ]
T=T s h e...eh eh ®...eh " (2.1)
Jj 3 B i
172 r 1 s
Bt
where i1, j =1, 2, ...,n = dimV, and T s are
k 1 33 .3

number valued coefficients. Here we used the Einstein summation




convention. This will be also always used in the following.
Symmetrization of indices is denoted by a round bracket;

(v _+v ],

antisymmetrization by a square bracket e.g. v(ab)2 b Vba

v

v =
[ab] 2

ab Vba
Tensor product is denoted by ®, wedge product by A.

Vectors of a 3-dimensional vector space are dgnoted by an
arrow over the symbol, e. g. ;: T. Scalar product of A and T is
denoted by A-T: their vector product by AxT.

Manifolds.

Manifolds are denoted by Latin capital letters. We reserve letter
M to denote four-dimensional space-time; N = 1is reserved to
denote three dimensional submanifolds of M.

TP and T*P denote tangent and cotangent bundles to P,

respectively; TpP and T;P denote tangent and cotangent space at
the point peP, respectively.

Set of all vector fields over P is denoted by X(P); by xi(P) we
denote set of all r-covariant and s-contravariant tensor fields
over P.

AP aenotes set of all fields of r-forms on P. AP denotes the
Grassman algebra over P.

If ¢ is a diffeomorphism between P and P’ then ¢, denotes
transport of vector fields from TP to TP’; ¢* denotes pull-back
of r-forms from T*P’ to T*P. Transport of a general tensor field
is denoted by 5?

If k is a vector field then ¢t(k) denotes one-parameter group of
diffeomorphisms generated by k; we also call ¢t(k) as a flow of
k. '

Vector fields on P can be regarded as differential operators. If
k is a vector field on P then k(f) denotes valﬁe of a

differential operator k evaluated on a function f. Sometimes,



when it is obvious that differential operator interpretation of a

vector field 8 is relevant, we omit parenthesis and write 4f.

In AP three kinds of derivatives are of particular interest.
These are:
1) the exterior derivative - denoted by d - which is a derivation
of degree +1,
2) inner derivative associated with a given vector field k. This
is a derivation of degree -1, denoted by ki,
3) Lie derivative with respect to a given vector field k, which

is a derivation of degree 0. We denote this by £.
k

These three derivatives are connected by the Cartan identity:
£ = kdd + dkd (2.2)
k

£ extends to the Lie derivative with respect to k of any tensor
k

field T by the formula

4ot
=Ll M (2.3)

If weA"P and X, X,,...X €X(P) then

w (Xl,...,,x

= J J
X =X A A x e ) (2.4)

Metric and tetrads.

If {hi}:f? is a tetrad on M then in terms of its cotetrad {h}}:f:

the metric tensor is denoted by
g=g_ h" eh (2.5)
ab

where g, are functional coefficients. Inverse matrix to the
matrix (gab) of coefficients of g is denoted by (gab) i.e.
bc c ’
8,8 = Sa (2.6)
Signature of the metric tensor is (+ + + -).

If X and Y are vector fields then g(X) is a one-form defined by

g(X) = gab(XJha)hb (2.7a)




and g(X,Y) is a function - scalar product of X and Y - defined by
g(X,Y) = g_ (xIn%) (¥In°) (2.7b)

This last equality is also denoted by

g(X,Y) = XY = gabXaXb = xaxa (2.7¢)

where

a

X" = XIh

a

(2.7d)
and lowering and raising of indices is possible by means of 8.h

and gab e.g. Xa=gabXb, Xa=gabXb.

From now on we assume that M is orientable, hence we can
endow M with the volume form =m. Given 7 we define .a Hodge

dualization *w of weA'™M as a (4-r)-form satisfying

# =
w (Xr+1,Xr+2,.,.,X4) n wAg(Xr+1)Ag(Xr+2)A..,Ag(X4) (2.8)

[Trautman 1984].

Very often we use complex null tetrad {ei}:ff i.e. such
tetrad that
e =e, e =e, e =¢e (2.9a)

and

2 _ 3.4

g =2 (e'e e’e ) (2.9b)

Here we used an abbreviation

t ]

ee = ] ]

(e'oe? + eloe!) (2.10)

0|~

Convention for the volume form m is such that in the null tetrad
(2.9) this reads

n=1i el ne?aeaet (2.11)

Connection and curvature.
Connection one forms are denoted by

r° =r® n° (2.12)

i0



a . » s
where I’ b are connection coefficients.
C

Operator D denotes covariant exterior differential. On
i ... :
coefficients T 1z s of a tensor T this reduces to
j1j2"'Jr
i112 i biseeet «
D (T s ) =T s L b=
jljz Jr j1j2 Jr,
1112. i i 11 i
= [h (T s )+ T T s + ...
k j1j2 Jr He j1j2 jr
(2.13)
) iliz.. i ,
-T T s + 1 h
.k 1§ ...
2 r

As it can be seen from (2.13) we denote covariant derivative with
respect to the vector hk by semicolon. Derivatives of a function
f with respect to this vector field are denoted by

h (f) = f . (2.14)
k "

In the special case of a vector field Q—; , Where (xk)iff are

ax 8
coordinates on considered neighbourhood U, this is also denoted
by

é_k.(f)=_=akf=f = f, (2.15)
ax ax

Levi-Civita connection of a metric (2.5) is defined by
dn® + * An° = 0 (2.16a)
r =0 (2.16Db)
(ab)

If (Fab) is Levi-Civita connection then we denote by va
covariant derivative with respect to a vector field k of a tensor
T.

Curvature (Q% ) of a connection (Fab) is defined by

2R* n°an® =dr® + rarc ., (2.17)
b 2 bed b c b

R =R° (2.18a)

R = g°R (2.18b)

11




Components of the Weyl tensor are defined by

R
8,.C ea SRyt 58, .8, ~8

ae bed abed alc®db] +g R (2.19)

a[cRd]b blc dla

In terms of the null tetrad {ei}ﬁf Weyl tensor scalars are

defined by:
Y =C
o] 1414
v =C
1 3414
_ 1
Wz =3 (C3434 + C3412) (2.20)
v =C
3 3432
v =¢C
4 2323

Other mathematical symbols.

Symbol A~B means that A is proportional to B.
Symbol AxB denotes a Cartesian product of A and B.

In the following we often use the symbol # to denote that a
considered object (function, vector field, r-form etc.) is
nonvanishing in the considered neighbourhood.

As we said N denotes 3-dimensional submanifold of space-time

M. Symbol wIN denotes restriction of r-form w to N.

12



I11. ASSUMPTIONS. TWO-FORM F = F + 1i*F INVARIANT UNDER A
CONGRUENCE OF LINES k.

Let us consider space-times modeled on a 4-dimensional,
oriented manifold M equipped with the metric tensor g. The metric
tensor is supposed to be Lorentzian of signature (+ + + =).

The space-times we consider posses some additional structure.
This structure is entirely defined by the following assumptions on
M,g):

A1) ‘there exists a real congruence of lines on M,

A2) there exists a real two-form F # 0 on M such that the complex
two-form F = F + i*F is preserved by the congruence defined
in A1)

The assumptions Al) and A2) can be formalized as follows.

Let k be a nowhere vanishing vector field tangent to the

congruence defined in Al). Define a family of vector fields k<f>
by
k<f> = f-k (3.1)

where f is any real function on M. The assumption A2) means that

for any a

£ F=0 (3.2)

where ¢ denotes Lie derivative of F with respect to k<f>.
k<f>

From now on, all our considerations have LOCAL character. We
assume that we deal with neighbourhoods pf nonsingular points of
our constructions. We also assume that all vector fields
considered in these neighbourhoods are REAL ANALYTIC. Therefore we

do not encounter problems discussed by J. Tafel in [Tafel 1985].
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IV.  PROPERTIES OF F AND k.
1. Two form F is null.
Equation (3.2) is satisfied for any real function f. Taking

this function as being equal to 1 everywhere we have

e F=¢F=0 (4.1.1)
k<1> k
hence
0=¢ F=df A (kI F) (4.1.2)
k<f>

The last equality, being true for any f, implies that

kJd F=0 (4.1.3)

kd F=kdJd *rF =0 (4.1.4)

The fact expressed by the equation (4.1.4) means by definition
that two-form F is null. It is also called simple [Trautman 1986].
2. Congruence generated by k is null.
The definition (2.8) of the Hodge star implies in particular

that for any p-form w and any vector field X we have:

XJ * = *(w A g(X)) (4.2.1)

The other simple consequence of (2.8) is

~

*F = -iF (4.2.2)

Applying (4.2.1) for k, F and using (4.1.3) we have:

A}

0=-ik 4 F =k { *F = *(F A g(k)) (4.2.3)

Since * is an isomorphism between APM and A*™™M thet

FAglk =0 (4.2.4)

14



Differentiating (4.2.4) using k! we have

Fg(k,k) =0 (4.2.5)

g(k,k) = 0 (4.2.6)

Clearly equation (4.2.6) states that vector field k as well as the
congruenée generated by k is null.

3. One-forms k and « defined by F.

The equation (4.2.4) implies that there exists a complex

one-form s. t.

F=kaa« (4.3.1)
where
k = g(k) (4.3.2)
The important fact is that
KAaAazDO (4.3.3)
This can be seen by considering F and assuming that

KAaAo=20 (4.3.4)

In this case (4.3.4) and F # 0 implies that

1]

o = foo + hk, (4.3.5)

where f is a nonvanishing complex function and h is some complex

function. Now (4.3.5) and

*E = ig (4.3.6)
show that
f*(k A ) = if(k A a), (4.3.7)
hence
*F = iF (4.3.8)

15




The last equality contradicts (4.2.2) and condition F # 0. This
proves (4.3.3) i.e. linear independence of forms kK, «, «.

Since
k4 k=glkk) =0 (4.3.9)

then

implies that

(4.3.10)
kd a=0
Introducing complex vector field a s.t.
a = g(a) (4.3.11)
and considering
o0 =i*FAaa)=ad F=(adKka-glaalk (4.3.12)
we conclude that
adk=ada=0 :
_ o (4.3.13)
alk=alda=0
This in particular means that
gla,a) = g(a,a) =0 (4.3.14)

i.e. that complex vector fields a and a are null.
It is worth noting that as a consequence of (4.3.3) and

because of the signature of the metric
g(a,a) # 0 and gla,a) > 0 , (4.3.15)

4. Relations between forms k and o and the metric.
Since k, « and « are linearly independent then they can be
supplemented by one additional real form A s.t. Kk, «. a and A form

a cobasis in M. Moreover conditions (4.3.10), (4.3.13), (4.3.15)

i6



ensures that the real 1-form A can be chosen in such a way that

2
there exist a real vector field 1 and a real function # on M s.t.

A= g(l) (4.4.1)
Pc A AdAAXAZED (4.4.2)
g = ?z(a @ X+ 0U®a) ~KO®A-A®K (4.4.3)
and
ala=ada=142a=0 (4.4.4)
k4 a=0, k!l A<o (4.4.5)

This in particular shows that vector fields k, 1, a, a form a
complex null tetrad on our manifold.

5. Robinson-Trautman conditions

Condition (4.1.1) (F is preserved by k) and (4.1.4) (F is
simple) imply that

0 =k dF (4.5.1)

Using expression (4.3.1) for F in terms of k and « we obtain from

(4.5.1):

(k 4 dk) A a+k A (kdda) =0 (4.5.2)

This implies that

k 4 dk = fk (4.5.3)

and

k 4 da = hk + p« (4.5.4)

for some functions f (real) and h,p (complex).
Equations (4.5.3) and (4.5.4) compared with (4.3.10) show that

¥« Ak =0 (4.5.5)
Kk
Lo Ak Aa=20 , (4.5.6)
k

2By an appropriate rescaling of k and « we can always achieve P=1.

However, we prefer to keep a general function P in (4.4.3).

17



Using equations (4.5.5) and (4.5.6) and the form of the metric
(4.4.3) one sees that

g = pg + K ® W+ WO K (4.5.7)
K

where p is an appropriate real function and w an appropriate real
one-form on M.

The condition (4.5.7) is <called the Robinson-Trautman
condition [Robinson, Trautman 1983]. I will also call conditions
(4.5.5)-(4.5.6) as Robinson-Trautman conditions.

6. The freedom in the choice of k, ?, Kk and «

In section III we have chosen a vector field k as any
nonvanishing vector field which was tangent to a congruence of
lines defined by assumption Al). Such vector field is defined up

to a transformation
k » f-k, (4.6.1)

where f is any nonvanishing function on M. The assumption A2)
requires only the existence of two-form F s.t. condition (3.2) of
invariance of F with respect to the congruence is satisfied. Let
us notice that if we take new two form

F’ = hF (4.6.2)

s.t. h # 0 is a complex function and

fh =0 (4.6.3)

then

F’ = Re(hf’) (4.6.4)

also satisfies assumption A2).
Starting from this new F’ we obtain new forms k’ and «’ by
formula (4.3.1). They are related to x and « by
K’ = bk (4.6.5a)

a = % o« + CK, (4.6.5b)

where b # 0 is real function and ¢ is a complex function.
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V. INTERPRETATION

Last section was devoted to the structure which is connected
with invariant under the congruence two-forms (assumptions Al) and
A2)). Here we give some examples to understand why such structures
are relevant in physics. We present some physical problems in
which different structures from the preceding Chapter arise.

1.Null Maxwell fields
In the Maxwell theory one can consider electromagnetic fields

with electric field E and magnetic field B. The ratio

3. _ExB
2 2
%(E‘ + 8%

of the Poynting vector to the energy density characterizes the

(5.1.1)

velocity of the propagation of the field. Its magnitude is always

less or equal to unity. The equality occurs if and only if

BB=0=p -8 (5.1.2)

In this case field propagates with speed of light. In terms of the

electromagnetic 2-form

F = dt A BdZ + % d2 A (B x dD) (5.1.3)

this fact can be described by

FAF=FA*F=0 (5.1.4)

where

*F = dt A BdZ - % d ) (5.1.5)

It is matter of checking that conditions (5.1.2) or (5.1.4) imply
that the vector field

+ v 9 (5.1.6)
5]

with ¥ given by (5.1.1) is such that

k!l F=kd *F=0 (5.1.7)

This shows that electromagnetic fields for which ]3] = 1 or (what

is equivalent) ﬁg =0 = ﬁz - §2 are null fields in sense of the
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definition (4.1.4). This fields are pure radiation fields, 1i.e.

describe the situation in which all electromagnetip energy
propagates in one direction k with the speed of light.

éince we assumed that fields E and B were electromagnetic i.e.
satisfied Maxwell equations

dF =d *F =0 (5.1.8)

then, as a consequence of (5.1.7) and (5.1.8), we see that

F=F + i*F (5.1.9)

satisfies

(5.1.10)

ts

'}
1]

o

k

Hence we find the first example of manifold (M,g) (Minkowski
space-time) on which there exists an invariant under the
congruence (generated by k from (5.1.6)) two-form F (two-form
(5.1.9) constructed out of pure radiation electromagnetic field)
[Robinson, Trautman  1989]. All other examples will Dbe
generalization of this in such sense that they will describe
situations of pure radiation classical fields.

2. Robinson theorem

In this Section we study a question when a given space-time
(M,g) can admit a pure radiation electromagnetic field 1i.e. field
described by a two-form F s.t.

dF =d *F =0 (5.2.1a)

FAF=FA* =0 (5.2.1b)

Before answering this question we need some definitions.i

‘A congruence of lines in the space-time consists of geodesics
if for any vector field k generating it the following condition is
satisfied

ka = fk. (5.2.2)

Here f is any real function on (M,g) and Vk denotes the covariant
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derivation of Levi-Civita connection associated with g. To define

the so called shear-free property of a congruence of null

geodesics we choose an affine parameterization for k. Then we have

x k°=o0. (5.2.3)

Now we can define shear ¢ by

oo = = k° - Lo )2

5 Kb ak (5.2.4)

One says that congruence generated by k is shear-free iff
o =0 (5.2.5)

Now, we can give the answer to the question we addressed at

the beginning of this section.

Theorem 5.2.1 [Robinson 19611

A space-time (M,g) admits an electromagnetic pure radiation
field if and only if (M,g) admits congruence of shear-free and

null geodesics.

To illustrate how a shear-free condition (5.2.5) appears in the
Robinson theorem one considers an energy momentum tensor of a pure
radiation electromagnetic field. This has the form

T = &k k (5.2.6)
b a b

a
where & # 0. The algebraic fact

T? =0, . (5.2.7)

which is true for any energy momentum tensor originating from
electromagnetic field, shows that vectof field ka is’ null. A
covariant conservation of T b i.e.

a

T =0 (5.2.8)

ab

implies geodesic condition (5.2.2) for ka. The fact that Tab is
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constructed out of an electromagnetic field

F=LF e ane® (5.2.9)
2 ab

satisfying Maxwell equations (5.2.1a) shows that shear of ka
defined by (5.2.4) vanishes.

The physical interpretation of shear is as follows. Suppose
that we put a 2-dimensional obstacle perpendicularly to the rays
of congruence. We observe the shape of this obstacle on the screen
which also is put perpendicularly to the congruence. The property
of ¢ = 0 is reflected in the transformation ¢ between obstacle and
its shape on the screen by the condition that ¢ is a conformal
transformation.

This in particular means that the shapé can be rotated and
expanded in comparison with the obstacle, but never can be
sheared. For instance a circle will never has a shape of an
ellipse on the screen. The proof of this fact can be found for
example in [Sachs 1962].

Here we will see that if the congruence generated by k is null
and satisfies the Robinson-Trautman condition (4.5.7) for k = g(k)
then it is geodesic and shear-free [Robinson, Trautman 1983]. The
condition (4.5.7) in the language of indices can be written as

ka;b + kb;a = pgab + kawb + kbwa (52.10)

Contracting (5.2.10) with k® and using the fact
a

kKk*=0 i.e. k k* =0
a;b

a >
we obtain

-
k bk = (p + kw)ka (5.2.11)

a;
what is a geodesic condition (5.2.2) for k, where f = p + ko.

Now we can choose an affine parameterization of k. In this way
(5.2.10) will change into

k +k =pg +tko +ko (5.2.12)
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with B and @ s.t.

p+ko=0 (5.2.13)

oo =0 ) (5.2.14)

Formulas (5.2.11) and (5.2.14) show that Robinson-Trautman
condition for null congruence implies its geodesic and shear-free
properties. The converse is also true. All shear-free geodesic
null congruences have to satisfy Robinson-Trautman condition
[Robinson, Trautman 1983]. In view of the above the Robinson
theorem can be formulated as follows.

Theorem 5.2.2

A space-time (M,g) admits an electromagnetic pure radiation
field if and only if it admits a congruence of null lines
generated by the vector field k which satisfy the
Robinson-Trautman condition (4.5.7) with « = g(k) and p, w being

arbitrary real function and 1-form, respectively.

Now let us consider technical part of the Robinson theorem
5.2.2. This implies that congruence generated by k, which is null
and satisfies Robinson-Trautman bondition, defines two-form F # O
s. t.

FAF

FA* =0 (5.2.15a)

dF = d*F = 0 (5.2.15b)

It can be shown that the two-form

~

F=F + i*F (5.2.16)

is related to k by

kJd F=o0 (5.2.17)

This together with (5.2.15b) show that

fF = 0. (5.2.18)
k
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Since F satisfies (5.2.17) and (5.2.18) then it is preserved by
the congruence k. Hence as a consequence of the Robinson theorem
5.2.2 we see that Robinson-Trautman condition implies that the
space-time (M,g) is of the form considered in Chapter IV (i.e.
satisfies assumptions Al) and A2)). In IV.5) we also showed that
assumptions A1) and A2) imply Robinson-Trautman condition for the
congruence of Al). Hence we arrive at the following proposition

Proposition 5.2.1

The following conditions are equivalent:

1) Space-time (M,g) admits a real two-form F # 0 s.t. the
complex two form F = F + i * F is invariant under some
congruence.

2) Space-time (M,g) admits null congruence which satisfies
Robinson~Trautman condition.

Congruences appearing in 1) and 2) are the same.

3. Goldberg-Sachs theorem

Now let us consider space-time (M,g) which admits a shear-free
congruence of null geodesics k. It is interesting to ask what are
relations between k and curvature of (M,g). First remark 1is as
follows. Since shear-free geodesic null property of k 1is
conformally invariant it is more reasonable to consider relations
between k and conformal curvature (Weyl tensor) of (M,g) rather,
than‘ordinary curvature (Riemann tensor). Proposition 5.2.1 shows
that the metric tensor g on our space-time has the form (4.4.3).
Computing the Weyl tensor Cabcd for the metric (4.4.3) and using
the facts (4.5.5) and (4.5.6) one can see that [Debever 1959]

b, c

k[eca]bc[dkf‘] =0 (5.3.1)

We will prove this fact more explicitly in the section X.2
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The property (5.3.1) tells, by definition, that k 1is a

principal null direction of the Weyl tensor. Principal null

directions of the Weyl tensor were considered for the first time
by E. Cartan3 (I thank A. Trautman for this comment). The
following theorem is implicit in his note [Cartan 1922].

Theorem 5.3.1

Any space-time (M,g) is either conformally flat or admits at
least one, and in general four) principal null directions. The
following possibilities can occur:

1) All four principal null directions coincide. This is

equivalent to

cabcdk° =0 (5.3.2)

where k° is tangent to the common principal null
direction.
2) Three principal null directions coincide. This is

equivalent to

c

C k k=0 (5.3.3)
abcld f]

where k° is tangent to the common principal null

3Since this fact is not very much known we quote here Cartan’s
considerations from a note "Sur les espaces conformes generalises
et 1’Universe optique" C.R. Acad. Sc., t 174, p 857 (1922!):

"From a geometric viewpoint, it 1is worthwhile to note an
interesting property. At each point A there exist four privileged
null directions (i.e. those for which dsz=0). They can be
characterized as follows: Any one of these directions, say AA’, is
invariant under transport around an infinitesimal pardllelogram
one of whose sides is AA’ and the other of whose sides is along an
arbitrary null directions at A. In the case of the ds°
corresponding to a single attractive mass (ds2 of Schwarzschild)
the four privileged directions reduce to two (degenerate)
directions which correspond to null rays pointing to or from the

center of attraction.” (translation of A. Ashtekar and A. Magnon)
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3)

4)

direction.
Two principal null directions coincide. This is

equivalent to

C k kk =0 (5.3.4)
abcld f]

where k° is the common principal null direction.
All four principal null directions are distinct. This is
equivalent to the existence of four null vector fields

k, k_,

I . , kIv satisfying (5.3.1).

III

The principal null directions k from the points 1), 2), 3) and

4) of the above theorem are called principal null directions of

multiplicity 4, 3, 2 and 1 respectively.

The existence of principal null directions enables algebraical

classification of gravitational fields. Given a Weyl tensor of an

arbitrary gravitational field associated with a metric g one can

ask about the number of principal null directions. The following

types of gravitational fields can occur.

1)

2)

3)

3a)

4)

Type N = there is a principal null direction of
multiplicity 4

Type 111 & there is a principal null direction of
multiplicity 3

Type II = there is one principal null direction of
multiplicity 2

Type D = there are two principal null directions
of multiplicity 2

Type 1 = all principal null directions have

multiplicity 1.

Situations 1), 2), 3) and 3a) are called algebraically

special;

4) - algebraically general. The same terminology is

applied to the gravitational fields corresponding to particular

situations.
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The above types are called Petrov types in the literature [see

for instance Kramer at al. 1980]. However, in our opinion, their
name should be also associated with E. Cartan and R. Penrose. In
particular in the note [Cartan 1922] Cartan observed for the first
time that for any spacetime there exist in general four principal
null directions. He also noticed that in the case of Schwarzschild
solution [Schwarzschild 1916] these directions coincide in such a
way that the metric is of type D. The Cartan work was overlooked
by the relativity community. His principal null directions were
then‘rediscovered by R. Penrose in his works on spinorial approach
to gravitation [Penrose 1960]. He was also the first who spelled
out all possible degeneracies 1), 2), 3), 3a) and 4) of principal
null directions. On the other hand A. Z.Petrov [Petrov 1954] gave
a slightly different classification based on a study of
eigenbivectors of a Weyl tensor. This classification was
insufficient to distinguish some of the particular types given
above. Namely typeé N and D were hidden in types II and I,
respectively [Ehlers, Kundt 1962, Pirani 1962]. Therefore we will

call types I, II, III, N and D as Cartan-Petrov-Penrose types.

At the beginning of this section (eq.(5.3.1)) we proved the

folldwing theorem.

Theorem 5.3.2

Any shear-free geodesic null congruence is a principal null
direction of the Weyl tensor [Robinson, Trautman 1989,

Lewandowski, Nurowski 1990b].

There exists even stronger theorem for gravitational fields

which satisfy Einstein equations with the energy momentum tensor

of pure radiation (5.2.6).
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Theorem 5.3.3 [Goldberg-Sachs 1962]

Suppose that space-time (M,g) satisfies pure radiation

Einstein equations

R, =k 3 kk (5.3.5)
ab o a b

If
1) ka is shear-free and geodesic in the case & # 0
or
2) g admits a shear-free geodesic and null congruence in

the case ¢ = 0
then the metric is algebraically special.
For vacuum fields (¢ = 0) the converse is also true i.e. any
algebraically special vacuum metric admits shear-free geodesic

null congruence.

The importance of algebraically special gravitational fields

in gravitation theory is due to the following theorem.

Peeling-off Theorem 3.3.4 [Sachs 1962]

Suppose that (M,g) satisfies vacuum Einstein equations, and
that the gravitational field is asymptotically flat.
The Riemann tensor (which equals the Weyl tensor since Rab= 0)

has the form:

C = N . 111 . 11 6
r 2
r

+ Eg + 9(r ) (5.3.6)

-
w
*1‘0
S
e ]

Here indices are suppressed, letters in the numerators indicate

an algebraic type of the Weyl tensor4 (G is a subtype of I s.t.

4Here following F. A. E. Pirani [Pirani 1962] we use the name
"Weyl tensor" in a wider than usual sense, namely as any tensor

which has the same symmetries ¥hat usual Weyl tensor possesses.
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there exists a geodesic principal null direction) and r is a
radial coordinate along null rays which measures distance from the
sources of gravitational field.

The above theorem shows that the order (with respect to the
powers of r) of terms in (5.3.6) coincides with the order with
respect to the algebraical complexity of corresponding to these
terms gravitational fields. Namely, the more leading term in r of
(5.3.6) corresponds to the more algebraically special field this
describes. in particular, very far from the line r=0, which can be
considered as a world line of a particle being close to the

sources of gravitational field, the term

N (5.3.7)

r
dominates. This means that gravitational radiation observed very
far - .from the sources should behave as being of
Cértén—Petrbv—Penrose type. N. Tﬁis fact, for the first time
observed by A. Trautman [Trautman 1§581, was then generalized to
the peeling-off theorem [Sachs 1962], and gave a support for
looking for gravitational radiation as being of type N [Pirani
‘1957, Robinson, Trautman 1962]. |

Concluding what we have so far presented here we can collect

facts included in Theorem 5.2.1 and 5.2.2, Proposition 5.2.1 andk

Theorem 5.3.3 in the following corollary.

Corollary 5.3.1
Suppose that space-time (M,g) satisfies vacuum Einstein
equations. |
The following conditions are equivalent
1) (M, g) admits shear—free geodesic null congruence
- 2) M, g) admits null congruence satisfying Robinson-Trautman
conditiﬁn (4.5.7)

3) (M,g) admits pure radiation electromagnetic field
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4) (M,g) is algebraically special
5) (M,g) admits two-form F such that F = F + i*F is
invariant under some congruence

Remark 5.3.1

1) As far as only equivalence of 1), 2), 3) and 5) is
concerned in the above corollary the assumption about
Ricci flatness of (M,g) can be abandoﬁed.

2) To prove implications 1), 2), 3), 5) = 4) it is enough
to assume that (M,g) satisfies pure radiation Einstein
equations (5.3.5).

Since any of the conditions 1), 2), 3) and 5) of corollary
5.3.1 are equivalent, for the characterization of space-time we
consider, we choose condition 1). Hence we can say that from now
on (as well as from the very beginning of this work) we consider
only such space-times which admit a shear-free geodesic null
congruence.

4. Metrics associated with shear-free geodesic null
congruences.

So far we have studied a given space-time M with a given
metric g and the implication of existence on (M,g) of a congruence
of shear-free and null geodesics k. Now we can extend our
considerations and ask how many different metrics g’ one can
associate with (M, g,k) in such a way that a congruence k is still
shear-free geodesic and null in the metric g’. The answer is given
by the following theorem

Theorem 5.4.1 [Trautman 1984]

If vector field k 1is shear-free null and geodesic in the
metric g then it is also shear—-free null and geodesic in the
metric g’ s.t.

g = rzg +KO®W+WweKkK (5.4.1)
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where T is a nowhere vanishing real function, k = g(k) and w is
any real 1-form on M. The form (5.4.1) of g’ is the most general

metric for which k is null geodesic and shear-free.

To prove the first part of theorem 5.4.1 it is enough to check
that g’ satisfies Robinson-Trautman condition (4,5.7) for k. This
is obvious if one notices that g satisfies Robinson-Trautman
condition (4.5.7) and applies (4.5.5). The proof of the second
part of the Theorem 5.4.1 can be found in [Robinson, Trautman

1989].
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VI. OPTICAL GEOMETRY

The theory called now optical geometry evolved from the
studies of the objects we have so far presented here. The
following abstractions which lead to the definition of an optical
geometry have obvious representatives in the examples we have
considered in the preceding sections.

1. Flag geometry and adapted p-forms

The flag geometry on a 4-dimensional oriented manifold M is a
pair (K,L) of two line bundles s.t. K ¢ L ¢ TM and fibers of K,L
are 1- and 3- dimensional respectively.

The Lorentzian metric tensor g on M is adapted to (K,L) if the
bundles K and L are perpendicular with respect to g. It is worth
noticing that since K ¢ L then K is perpendicular to itself i.e.
the bundle K is null with respect to any adapted metric tensor.

The property of being adapted to (K,L) for g can be
equivalently expressed in terms of sections of K and L° ¢ T*M -
the bundle which consists of all 1-forms on M ahnihilating L.
Bundles K and L° have fibers of dimensions 1 as a consequence of
their definitions. Therefore they can be described by any of their
nonvanishing sections i.e. a vector field k which is defined up to

the transformation

k — k’ = pk 6.1.1a)
and a field of a 1-form k defined up to the transformation

K — k' = 1K (6.1.1b)

It is easy to see that the metric tensor g is adapted to (K,L) iff

0 (6.1.2a)

k 4 g(k)

(6.1.2b)

[
(@)

Kk A g(k)

Similarly, we define an adapted to (K,L) p-form (p = 1,2,3) F
on M as such a p-form on M which satisfies

k! F=0 (6.1.3a)
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kK AF =20 (6.1.3b)

Note, that as one would expect the definitions (6.1.2) and (6.1.3)

are invariant under the transformations (6.11). This shows that

property of being adapted for p-form depends only on (K,L).
Considering k and k as above one sees that property

£ g(k) A glk) =0 (6.1.4a)

or equivalently

lin Ak =0 (6.1.4b)

is also invariant under (6.1.1). This expresses the fact that the
congruence generated by k is a congruence of null geodesic with
respect to any adapted metric g. The flag geometry (X,L)
satisfying (6.1.4) is called geodesic. Since from now on we will
consider only geodesic flag geometries we give proposition which
characterizes them from different points of view.

Proposition 6.1.1 [Robinson-Trautman 1985]

The following properties of flag geometry (K,L) (represented'
by k and k as above) are equivalent:

i) ELK Ak =0

ii) Kk A dk is adapted

iii) the lines of the flow @t(k) generated by the vector
field k define a congruence of null geodesics with
respect to any metric tensor adapted to (K,L)

iv) if F is an adapted 2-form, then k A dF = 0.

A simple consequence of Proposition 6.1.1 describes the

following corollary

Corollary 6.1.1

If the bundle L of the flag geometry (K,L) is integrable then
(K,L) is geodesic.

Proof follows directly from ii) in Proposition 6.1.1 and the
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Frobenius theorem which states that L is integrable if and only if

kK Ade =0 (6.1.5)

2. Optical geometry, isomorphism of optical geometries,
sheay-free property

The flag geometry is enough to define a congruence of null
geodesics on M and the notion of an adapted (simple, null) p-form.
In particular, this is enough to define a null 2-form F and the
first part of the Maxwell equations

dF = 0 (6.2.1a)

for the Maxwell field F defined on the Lorentzian manifold M with
any adapted Lorentzian metric tensor g. However, if the second
Maxwell equation

d F=20 (6.2.1b)

*
g
is satisfied in one of the adapted metric tensors g, it is not
necesgsarily satisfied in any other adopted metric tensor.
Therefore a given adapted Maxwell field (i.e. satisfying (6.2.1))
is not an object of the flag geometry (X,L). The weakest geometry
needed on a 4-dimensional manifold M to write the full set of

Maxwell’s equations for null electromagnetic field is called an

optical geometry. This is a subclass of flag geometries defined as

follows.

Let (K,L) be a flag geometry on M and let A be the set of all
adapted metric tensors. Suppose that F is an adapted 2-form. It is
easy to see that if g € A then ; F is also adapted 2-form. We
introduce an equivalence relation R in A by

gRg’ < ; F = ;,F . (6.2.2)

An optical geometry on M consists of the pair (X,L) together

with an element [g] € A/R and an orientation of the vector bundle

L/K with fibers of dimension 2. The last condition that L/K is
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oriented endows L/K with the structure of a complex line bundle
over M. This occurs because one can define a linear bundle
morphism

I:L/K — L/KXK (6.2.3a)

1% = -id (6.2.3b)

This is defined by the demand that on any fiber (L/K)x I
transforms any vector v € (L/K) to the vector v’ rotated by g
X

accordingly with the orientation in (L/K)x. (This 1is possible

because fibers of (L/K)x are 2-dimensional). Saying that v €

14

2

on L/K ® L/K, or, at least, conformal class of such metrics. This

(L/K)x is rotated by requires specification of the metric tensor

class can be defined by using a field of a complex l-form « # O
defined on M by the relation

*(k A ) = -1k A « (6.2.4)

where k is associated with (K,L) by (6.1.1b).
The relation (6.2.4) defines « up to the transformation

@& — o = ha + pk (6.2.5)

where h # 0 and p are arbitrary complex functions on M. The
arguments similar to those in IV.3) show that

KAQAQ=ZDO (6.2.6)

Taking k as any nonvanishing section of K and applying the
identity (4.2.1) to X = k, w = K A « We have

kda=0 (6.2.7)

where we also used the property (6.1.3a). This allows us to define

metric tensor

g Taea+ae (6.2.8)

which defines conformal class [gz] in L/K because of (6.2.7) and

(6.2.5).
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It is worth noting here that since fibers of an annihilator x°
of K are three dimensional and since (6.2.6) 'is valid, then K° is
spanned by k, Rea, Ima.

The fact that L/K has the structure of a complex line bundle
over M will be of great importance in next sections.

The following proposition is due to Robinson and Trautman:

Proposition 6.2.1

i) Relation R defined by (6.2.2) does not depend on F.
ii) Two metric tensors g and g’ are in the relation R iff

’

g’ = ng +KO®W+WeK (6.2.9)

where T # 0 is any real function on M, w is any real 1-form on M
and « is any nonvanishing section of the bundle annihilating L in
(K,L). k can also be characterized as

k = fg(k) (6.2.10)

for some real nonvanishing function f and k being any nonvanishing
section of K.

The convenient way of defining an opticai geometry on an
oriented manifold M éan be described as follows. Suppose we have a
pair (g,k) where g is a Lorentzian metric tensor on M and k is a
null vector field on M. We can define an optical geometry on M by

saying that:

i) K=+{{k’"e€ XM : k' = fkl f # 0 is a real function on M}

ii) L

{1 € X(M) : g(1,k) = 0}
iii) an element [g] € A/R is given by g or any other g’
related to g by (6.2.9).
iv) an orientation in L/K is clock wise.
Hence, to define an optical geometry (K,L) on a 4- dimensional
oriented manifold M it is enough to specify a pair (g,k), where g
is a Lorentzian metric on M and k is a null vector field on M, and

then to apply procedure i), ii), 1ii) as above. We will prefer
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this way of defining optical geometries. Therefore we will speak
about optical geometry generated by the pair (g,k) or simply
optical geometry (g,k). This last name does not introduce any
confusion if one realizes that different pairs (g,k) can give rise
to the same optical geometry as it is clear from the above
presented procedure i), ii), iii) and 1iv). Suppose now that we
have two 4-dimensional oriented manifolds M and M’ with optical
geometries generated by pairs (g,k) and (g’,k’) respectively. We

say that optical geometries (M,g,k) and (M’,g’,k’) are (optically)

isomorphic iff there exists a diffeomorphism

® : M — M’

f'k’ (6.2.11a)

S
*
~
1]

2g + glk) ® 0 + v ® g(k) (6.2.11b)

o
OQ\
i

for some real function f’ # 0 on M’ and some real function 7 = 0
and 1-form w on M.

An optical geometry (g,k) was introduced as the weakest
structure which is needed to write full set of Maxwell’s equations
for the null two-form F. So far, however, we have only exploited

the fact that

*F = *F (6.2.12)

for any g’ adopted to an optical geometry (g,k) (i.e. related to g
by (6.2.9)). If we additionally assume that it is possible not
only to write Maxwell's equations for F but also to find such
null two-form F that Maxwell’s equations

dFf = d ; F=20 , (6.2.13)

are satisfied, then we will restrict the class of optical
gecmetries. To see this let us note that in virtue of 1iv) of

proposition 6.1.1 optical geometry which satisfies (6.2.13) is
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geodesic. Moreover, the Robinson theorem 5.2.2 shows that

fkg = pE + KO W+ WO K (6.2.14)

where p, k, w are as those in (4.5.7). It is obvious that the
Robinson-Trautman condition (6.2.14) is also satisfied for any
other g’ related to g by (6.2.9) and any other k’ related to k by
(6.1.1a). Therefore this is universal condition for an optical
geometry (g,k). Since k is null the condition (6.2.14) means that
k is shear free. Hence, the optical geometry (g,k), in which one
can find a null two-form F satisfying Maxwell’s equations (6.2.13)
(or equivalently optical geometry satisfying Robinson-Trautman

condition (6.2.14)) is called shear-free optical geometry.

Before passing to the next section we present one more point
of view for an optical geometry. We know that this is generated by
the pair (g,k) where g is Lorentzian metric tensor on M and k is
null vector field. It is obviously also generated by any other
pair (g’,k’) where g’ is related to g by (6.2.9) and k’ is related
to k by (6.1.1a). The pair (g,k) defines a real 1l-form

k = gl(k) (6.2.15)

The pair (g’,k’) defines a real l1-form k'’ which relates to k by

k' = fx (6.2.16)
for some real function f # 0. The definition (6.2.4) of a complex
1-form o can be applied to x from (6.2.15). Such «a is definedbup
to the freedom (6.2.5). If one defines « starting from k’ of
(6.2.16) one sees that such a is in the class (6.2.5). Therefore
we see that the optical geometry (g,k) defines a class of pairs of
1-forms [(k,x)] s.t. k is real, « is comp%ex and (k’,a’) € [(k,a)]
iff

k' = fk (6.2.17a)

«’ = ha + pK. {6.2.17b)

Conversely if [(k,a)] constitutes a class of pairs of one-forms
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(real and complex respectively) defined up to the freedom (6.2.11)
on the oriented manifold M then one can define a class of metric
tensors [g] given by any tensor of the form

E=aA0a+a0aA-K®¢@ - @ 0K (6.2.18)

where k and « are any forms from the class [(k,a)] and ¢ is a real
ij-form s.t.

KAQGAXAGQ®D0 _ (6.2.19)

It is the matter of checking that if g is a metric tensor
corresponding to the pair (k,«) then the metric tensor g’ fof any
other pair (k’,«a’) from the class [(k,a)] is related to g by
(6.2.9) with appropriate T and w. Introducing real vector field k
# 0 by the relation

kJa=kd k=0 (6.2.20)

we see that it is defined by the pair [(x, «)] up to

k — k’ = pk (6.2.21)

Moreover k is null in any metric of the form (6.2.18). The pair
(g,k) defined by [(k,«)] through (6.2.18), (6.2.20) generates an

optical geometry.

Therefore we have another definition of an optical geometry as
a structure on a 4-dimensional oriented manifold M consisting of a
class of pairs of one-form k (real), « (complex) s.t. the pair
(k,x) is in the same class what (k’,a’) if and only if (k’,a’) is
related to (k,a) by (6.2.17).

The following proposition follows from the Robinson theorem
5.2.2 and considerations of the section III and IV (compare
(4.5.5), (4.5.6) with (4.5.7))

Proposition 6.2.2

The optical geometry [(k,«)] is shear-free if and only if

Zi «a AK=0 (6.2.223)
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1& o AKAa=20 ’ (6.2.22b)

where k is related to k, a by (6.2.20).
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VII. SHEAR-FREE OPTICAL GEOMETRIES AND  CAUCHY-RIEMANN
STRUCTURES
1. Quotient of space-time and the congruence of
shear-free and null geodesics.

From now on we consider only shear-free optical geometries. We
know that they can be represented.by the class of one forms [(k,
a)] defined on a 4-dimensional oriented manifold M up to the
transformations

kK —> k' = fk (7.1.1a)
& — o = ha + pK -(7.1.1b)

where k is real, o is complex

KAadAQ=#=D0 (7.1.1c)

and f # 0 is a real function on M, h # 0, p are complex functions
on M. The shear-free property is expressed by relations
Eix Ak =0 (7.1.2a)

2&« A AK=0 (7.1.2b)

where k # 0 is a real vector field on M defined by

kd a=kd k=0. (7.1.3)

The most general form of metric tensor g adapted to the
optical geometry in question is

g = Pz(a @A +aAO®A) - POK-—K® @ (7.1.4a)

where P # 0 is any real function on M and ¢ is any real 1-form on
M s.t.

KAQ@AO®AG®@G®HO0. (7.1.4b)

The most general form of two-form F adapted to our optical
geometry is given by

F = Re(Ak A «) (7.1.5)

where A # 0 is a complex function on M. The complex two-—form

F=F + i*F (7.1.6)
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is given by

F=Ak A« (7.1.7)

As we know equations (7.1.3) define in fact congruence of
lines which are shear-free geodesic and null in the metric
(7.1.4a). Consider now a flow wt(k) generated by the field k. The
conditions (7.1.2) are infinitesimal versions of the expressions:

¢:(k)x = fk (7.1.8a)

*
¢t(k)a = ha + pK (7.1.8b)

for some functions f # 0 (real) and h # 0, p (complex). Now let us
pass to the quotient manifold

N = M/S (7.1.9)

where S is the equivalence relation identifying points on the same
line of the congruence generated by k [Robinson, Trautman 1985].
Let

m: M — N (7.1.10)

be a canonical projection.

Since for any t a pair (w:(k)K, wt(k)a) is in the same class
as the pair (x,a) we see that a class [(k,a)] has its counterpart
[(KN,aN)] in the quotient manifold N, and n*(KN,aN) is in the same
class as [(k,a)]. Therefore a class [(k,a)] in M defines a class
[(KN,aN)] in N. It follows from the construction that two pairs
(K;,a;) and (KN,aN) are in the same class in N if and only if

k' =1 Kk (7.1.11a)
N NN

a = hNaN + pmCN (7.1.11b)

where fN # 0 is a real function and hN # 0, p, are complex
functions on N = M/S. It is also easy to see that

K Aa Ao #0 (7.1.11c)
N N N

From now on we will omit subscripts N in the expressions for Ky

and o .
N
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2. Robinson-Trautman correspondence

The construction derived here shows that with any shear-free
optical geometry we can associate a 3-dimensional real manifold N
with a class of pairs of one-forms [(k,a)] (k - real, « - complex)
on N.satisfying (7.1.11c) and defined up to the transformations
(7.1.11a-b). |

Definition 7.2.1

A three-dimensional real manifold N with a class of pairs of
one forms [(k,a)] (k - real, a - complex) satisfying

KAQAG=ZO (7.2.1)

and defined up to the transformations
Kk —> k' = fk (7.2.2a)
o« —> a' = ha + pk (7.2.2b)

where f # 0 is real function and h # 0, p are complex functions is

called a 3-dimensional Cauchy-Riemann (CR) structure [see for
example Nurowski, Tafel 1988].
Thus we have the following corollary

Corollary 7.2.1 [Robinson-Trautman 1985]

Any shear-free optical geometry defines a 3-dimensional CR
structure. |

Conversely, given a CR structure N with [(k,«)] one can built
a manifold

M=RxN (7.2.3)

and a real vector field k on M s. t.

8

k=‘6—r—:

(7.2.4)

where r is a coordinate along R in (7.2.3). One can also extend K,

« and « to M by the condition

k=%2a=0 (7.2.5)
k k

Forms k and « are defined up to the transformations (7.2.2). One
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can now supplement k, « and « to the cobasis in M by any real
1-form ¢ on M s.t.

KAGXAGAQ@=20 (7.2.6)

The optical geometry generated by (g,k) where k is given by
(7.2.4) and g is given by (7.1.4a) with k, «, « and ¢ as above is
shear-free due to (7.2.5). Thus we arrive at the following
corollary

Corollary 7.2.2

Any 3-dimensional CR structure can be supplemented to the
structure of optical geometry over some 4-dimensional manifold.

Combining the facts given by corollaries 7.2.1 and 7.2.2 with
informations about optical geometries yields the following theorem

Theorem 7.2.1 [Robinson, Trautman 1985]

Any point of a manifold with a shear-free optical geometry has
a neighbourhood optically isomorphic to the Cartesian product of R

by a CR structure.

44



VIII. CR STRUCTURES

1. Equivalence of different definitions

In the preceding section the definition 7.2.1 was used to
define a 3-dimensional CR-structure. This definition is convenient
for our purposes but very technical. Here we present an abstract
definition of a CR structure. It defines a (2n-1)-dimensional (n =
2,3,4,...) CR structure.

Definition 8.1.1[Wells 1982]

A real (2n-1) manifold N with a subbundle ¥ c TN, where ® is a
complex vector bundle with fibers of complex dimension (n-1) is

called (2n-1)-dimensional CR manifold. CR manifold is called

integrable if

[F(3),T(H)] c I'(H) (8.1.1)
where T'(®) denotes set of all sections of H. Manifold N is also
said to possess CR structure (or to be a CR structure).

From now on we consider only integrable CR structures.
Therefore we will omit the word "integrable" in the following.
Let us show that definition 7.2.1 is equivalent to the
definition 8.1.1 for n = 2.
First, let us notice that forms k, « and «, which define a CR
structure on N according to the definition 7.2.1, define a complex
vector field 8 # 0 s.t.

8d k=084 a=0 (8.1.2)

This field is defined by (8.1.2) up to the transformations

d —> 8’ =cd (8.1.3)

where ¢ # 0 is some complex function. Since

KAOGLAXZDO (8.1.4)

then the complex conjugate vector field 3 is linearly independent
(in the complex sense) of 8. The real bundle ¥ < TN s. t.

¥ = {v e X(N)|v = a Red + bImd where a,b are real functions on N}
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has a complex structure. To see this define a real-linear operator

J in ¥ which in any point p of N acts on a basis (Rea)p, (Imap) of

H by:
P
J[(Red) ] = -(Imd) (8.1.5a)
P - 'p
J[(Ima)p] = (Rea)p (8.1.5b)
Obviously
7% = -id (8.1.6)

what shows that # is equipped with the complex structure. (The
integrability conditions (8.1.1) are automatically satisfied).

Conversely, given a complex bundle ¥ < TN, which defines a CR
structure on N according to the def. 8.1.1, one takes any
nonvanishing section X of ¥. Then one can locally define a vector
field ¥ in ¥ s.t.

Yy = -J(X) (8.1.7a)

Since J2 = -id then

JY) =X (8.1.7b)

Defining a vector field & by

g =X + 1Y ’ (8.1.8)

it is easy to see that 8 is defined by X, Y satisfying (8.1.7) up
to the transformation

d — 8’ =cd (8.1.9)

where ¢ is any nonvanishing complex function on N. Supplementing
operators 8 and its complex conjugate 8 to a basis in TN by adding
one real operator 80 we see that this basis is defined up to the
transformations:

6.3.0) — |La, L3, L5 -RPg-P3 (8.1.10)
o h o h n

where h # 0 and p are arbitrary complex functions, and f # O is an

ol
Hh| —

arbitrary real function on N. The dual basis (a, «, k) to (a8, 3,

60) is defined up to the transformations

46



(¢, @, k) —> (ha + pk, ha + pk, fk) (8.1.11)

The forms « and k given up to the gauge (8.1.11) define a CR
structure on N as in the definition 7.2.1. It follows‘from the
abové that the third definition of 3-dimensional CR structure is
possible.

Definition 8.1.2 [Chern, Moser 1974]

A three dimensional real manifold N is called a three
dimensional CR structure if and only if N is equipped with a
complex vector field 8 defined up to the transformation

8 —s 8’ = cd. (8.1.12)

8 must be such that a complex conjugated vector field 3 is

linearly independent of 4.

This definition can be also generalized for (2n-1) dimensional

CR-structures.

2. Realizability

The most important examples of CR structures are given by real
hypersurfaces of real dimension (2n-1) imbedded 1in Bn [Cartan
1932, Tanaka 1962, Chern, Moser 1974].

Let us see how such a hypersurface can be endowed with the CR
structure considering an example of a 3-dimensional real
hypersurface N in GZ. Let (zi=xi+iyi)§:i be holomorphic

coordinates 1in EZ. In any point g € CZ we can write any vector vq

€ Tq (62) as a complex linear combination of a basis

a a a a
{a‘{a—y"é‘{é‘;;] (8.2.1)

1 2
Let us introduce a linear operator J s.t.
q

Jq : Tq(@z) —_— Tq(EZ) (8.2.2a)
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a _ 8
Jq (52?) i (8.2.2b)
i i
a a
Jq [‘a—;:’] = - EX— (82.2(3)
i i
Obviously
J% = -id (8.2.3)
q q

Suppose now that the point q € N ¢ Cz. It is clear that any vector
wq E'Tq(N) is in general a real linear combination of a basis
(8.2.1). Define a vector space

¥ =T (N) nJI(TN) (8.2.4)
q q 9 q

Since H% c Jq(T;N), then it is equipped with the complex structure
Jq. This also means that N; has an even real dimension. The
dimension of %; cannot be zero because in this case Jq should send
all 3 real vectors spanning TqN into 1-dimensional vector space Vq
transversal to TqN. This would contradict the fact that Jq is
nondegenerate. Therefore the only possibility is that H; has real
dimension 2 (note that H; c T;N and dim T;N = 3). The vector line
bundle |

¥=U ¥ (8.2.5)
qEN d

is a subbundle of TN and constitutes a complex vector bundle of
complex rank 1. The integrability conditions (8.1,1) are
automatically satisfied. According to the definition 8.1.1 N is
equipped with the CR-structure.

Similar considerations can show that any (2n-1) real
dimensional manifold in €" (n = 2) is equipped with the
CR-structure as in the definition 8.1.1. CR structures which can
be considered as real hypersurfaces of real dimension (2n-1) in a

\

(2n+2) real dimensional manifold M with a complex structure J are

called realizable CR structures. Hence we can have CR structures

which are realizable in €, CP" etc. However there exist examples

of nonrealizable CR structures [Nirenberg 1973, 1974, Jacobowitz,
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Treves 1982]. Moreover, R. Penrose predicts that nonrealizable
CR-structure should have important connections with physics
[Penrose 1983].

3. Important example of a S5-dimensional CR-structure - null
twistors

Before passing to the 3-dimensional CR-structures which

will be objects of the main interest in the following, we give an
example of a 5-dimensional CR-structure. This structure was
introduced by R. Penrose as a basic object of the twistor theory
[Penrose 1967, 1977]1. This will be useful for us in next sections
when we comment on twistor description of the Kerr theorem. The
rest of this section is a summary of constructions given by R.
Penrose in [Penrose 1983].

Let us consider the Minkowski space-time M with the
coordinates

c=(t, & m, T) € R (8.3.1)

and interval between any two points k and k' given by

S(aa’) = ~(t - )2+ (€-6%+ (n-1)%+ (g¢)?  (8.3.2)
It is known that M can be identified with the space H of Hermitian
2 x 2 matrices A of the form

T+ £+ in
A= (8.3.3)

g -in ©-¢
This gives a one-to-one correspondence between k in (8.3.1) and A
in (8.3.3). The interval (8.3.2) is represented in this formalism
as

¥

S(e,a’) = S(A,A’) := - det(A - A") (8.3.4)

where matrices A and A’ correspond to @ and «’, respectively. It
is clear from (8.3.4) that two points « and «’ constitute a null

(optical) vector « - «’ if and only if the difference between

49

3




corresponding matrices A - A’ is a matrix of zero determinant.

Let us consider now a 4-complex-dimensional vector space T =

C4, called dual twistor space, whose points are

z=1(z,2,2_,2 ). (8.3.5)
177273’ "a

The point z € T is called jncident with « € M iff

1 T + £ + in
(z -z, z -2)= (z +z, z_ +2z2) (8.3.6)
3 4 2

1 2 i3 ! 4 £-in t-<

The important fact 1is that not all points z € T can satisfy
equality (8.3.6). The necessary condition for z € T to satisfy

(8.3.6) is that

=(z) =0 (8.3.7)

where ¥ is Hermitian form of signature (+ + - =) defined by
£(z) = |z,]% + |2,|° - 1z,|% - |z,|° (8.3.8)

To see this, consider scalar product of the form

(z, -z, z, - 2,) r 3 (8.3.9)

by multiplying (8.3.6) by the vector 3]. Since the matrix A
zZ +z
2 4
z +z
in (8.3.6) is Hermitian and _1 _3 is Hermitian conjugation of
z + z
2 4

(z1 + Z, z, + 24) then after this multiplication right hand side
of (8.3.6) is purely imaginary. To have also left hand side purely
imaginary one has to impose condition (8.3.7) on z € T.

Since equation (8.3.6) is invariant under the transformations

Taz —> Az €T, A € C\{0} (8.3.10)

it is reasonable to consider 3-complex dimensional projective
space PT, rather then T. This space is a complex manifold whose
points are labelled by three complex numbers given by the three

ratios
(z1 sz 1oz oz ). (8.3.11)
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PT can be split into three manifolds. Two of thenm PT_, PT, are
complex open manifolds given by the relations z(2)<0 aﬁd $(z2)>0
respéctively (here we used capital letter 2Z to denote the
direction in PT associated with the point z in T). The third

manifold given by the relation

=(2) =0 (8.3.12)

is a S—dimensionél real manifold. This 5-dimensional real manifold
PWO is by its construction imbedded in 3-complex-dimensional
complex manifold PT. Hence PTO is an example of 5-dimensional
realizable CR-structure.

The space PT is called projective twistor space and the space

PTO projective null twistor space. The space PT is important

because it gives a good description of the Minkowski space-time M.
To sée this consider points of FFO. First, note that not all
points of FU; are those which satisfy (8.3.6). However, after
excluding one complex direction Zo in PFO represented by a point

z =(z, 2z, -z, =2_) (8.3.13)
o 1 2 1 2

it is easy to see that all points Z e (PT —{ZO}) can satisfy
e
(8.3.6). Now suppose that we have fixed a point

ZePT -A{2} (8.3.14)
o o

We are looking for points in M incident with Z i.e. for points « €
M of the form (8.3.1) satisfying (8.3.6),where z = (21,22,23,24)
is any point in T which multiplied by an arbitrary A € C span the

diregtion 7. The remarkable fact is that the solution for this

problem is not unique. If

T+ £+ im
A= - (8.3.15)
g-in ©-¢

satisfies (8.3.6) for z as above, then also
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(z +2z)(z +2) -(z.+z)(z +z)
A=A+ Kk 2 42 4 2 41 31 (8.3.16)

-(z + 23)(22 + 24) (z1 + 23)(51 + 53)

where k is an arbitrary real constant, does. Since the matrix

(z +2z)(z +2) -(z_+z)(z +z)
2 42 2 4t 3 (8.3.17)

—(z1 + 23](52 + 24) (z1 + 23)(51 + 53)

has vanishing determinant then the solution for the problem
represents a null straight line (light ray) in the Minkowski
space-time. This light ray passes through « € M which is
associated with A given by (8.3.15).

Conversely, the point @ € M can be interpreted in terms of
points of PT. Fixing « in (8.3.6) we see that z is determined by
two complex numbers w4 =z + Z, and w,, = z, + z, Therefore z
which is a solution of (8.3.6) for a fixed point « € M give us a
2-complex dimensional linear subspace in T, hence a complex
projective line in PT. Clearly this line lies in PUO - {Zo} and,
moreover, all lines lying entirely in FFO - {Zo} arise in this way
from points in M. The above considerations can be concluded in the
following theorem.

Theorem 8.3.1 (Penrose’s correspondence)

Points of PFO - {Zo} represent light rays in the Minkowski
space~time M.

The projective lines lying entirely in PFO - {Zo} represent
points of the Minkowski space-time M.

Remark 8.3.1

If we replace PFO - {ZO} by PWO and the Minkowski space-time M
by compactified Minkowskl space-time M in the above theorem we
also have a true statement, which also 1is called Penrose’s

correspondence.

52



The interpretation of the CR-structure of PT - {Zo} and its
realizability in terms of physical objects in the Minkowski
space—time can be found in [Penrose 1983]. We will mention only
that it follows from the construction presented here that the
space of all light rays 1in the Minkowski space;timer is
5-dimensional and is equivalent to PWO - {Zo}. This space can be
also obtained by the following "physical" considerations:

We want to find a space of all light rays in the Minkowski
space-time. In order not to count the light rays twice we choose a

spacelike hypersurface Ur given by =T = const. Any light ray

o

intersects UT in precisely one point. This point is characterized
o]

by three coordinates z(ro) = (E(to), n(ro), Q(TO)). All light rays
which pass through the z(ro) are all light rays which comes from
the heaven sphere of an observer situated at Z(ro). Hence any ray
passing through E(To) can be parameterized by two polar angles

(@% N ). The five parameters(E(To), n(ro), C(ro), R ,
a:(v:o) ac(-ro) a:('co)

2N ) constitute a coordinate system of the space of all light
(Tt )
o

rays in the Minkowski space-time. This space coincides in a
certain sense with the realizable CR structure FWO - {Zo} and does
not depend on the choice of T,

Finally, we comment on the possible generalization of the
above presented construction to the nonflat space-time M. It turns
out that in this case with any spacelike hypersurface U in M one
can associate a 5-dimensional CR-structure - a space of éll null
geodesics intersecting U. However now, CR-structures CRu.and CRu’
associated with different hypersurfaces U and U’ will be, in

general, intrinsically different one from the other. Moreover,

taking M and U included in it as being suitably nonanalitic one
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can obtain CR-structure CRu which can be nonrealizable [Penrose

1983].
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IX. THREE DIMENSIONAL CR STRUCTURES

Because of the role which 3—dim§nsional CR-structures play in
the £heory of shear-free optical geometry and in the theory of
exact solutions of Einstein equations this chapter is entirely
devoted to their mathematics. In the following we mainly use
definition 7.2.1 of CR-structures. Sometimes the other definitions
are used.

1. Nonequivalence of CR-structures

As we know in order to impose a CR structure on a real
manifold N one has to specify two one-forms k (real) and «
(complex) s.t.

KAQdAQ=#DO (9.1.1)

The CR structure is then given by a class of pairs of one-forms

[(k’,«’)] which are related to k, « by

(9.1.2a)

’

K" = fk
a’ = ha + pk (9.1.2b)

where f # 0 is any real function and h # 0, p are some complex

functions on N.
Given two different manifold N and N’ and CR structures

[(k,x)] on N and [(k’,a’)] on N’ we say that this structures are

equivalent if and only if there exists a (local) diffeomorphism

o : N —s N’ (9.1.3a)
s. t.
. \
e (k') = fk (9.1.3b)
w*(a’) = ha + pk (9.1.3c)

for some functions f (real) and h,p (complex) on N. Two structures

[(k,a]) and [(k’,a’)] on the same manifold N are isomorphic if
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(k,a) is related to (k’,a’) by (9.1.2).

The first observation is that there do exist nonequivalent CR
structures [Poincare 1907]. This can be 1illustrated by the
following very simple example.

Example 9.1.1

Consider three-dimensional manifold N and impose on it
CR-structure CR1 by forms (Kl,al) s.t. they satisfy (9.1.1) and

K. Adk =0 (9.1.4)
1 1

The second CR-structure CR2 may be imposed on N by forﬁs (Kz,az)
which also satisfy (9.1.1) but

K Adc #0 (9.1.5)
2 2

Since equation (9.1.4) is invariant under transformations (9.1.2)
then it is obvious that CR1 and CR2 are nonequivalent.

The CR-structures satisfying (9.1.4) are called degenerate.
Nondegenerate structures of the kind (9.1.5) are known to
physicists since they correspond via Robinson-Trautman theorem
7.2.1 to so called twisting shear-free congruences in space-time.

The proof of the facts that

1) all degenerate CR structures are locally equivalent,

2) there exist nonequivalent nondegenerate CR strﬁctures
will be given in Section IX. 3.

2. Tangential CR equation.

Before passing to the notion of symmetry of a three
dimensional CR-structure we reformulate a definition of
realizability in C°.

Let (N,[(k,a)]) be a 3-dimensional CB~structure. As we know
this can be also defined by complex operator 8 # 0 (called CR
operator) which is given up to the complex factor

§d — 8’ = {8 (s.2.1)

where f # 0 is any complex function on N. Forms (k,a) are related
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to B.by
8dk=08da=0 (9.2.2)
KA@Ax # 0
It can be easily seen, that in the language of CR-operator 4,
realizability of an associated with it CR structure N is
equivalent to the existence of an embedding

¢ : N —> ¢2 (9.2.3a)

such that

L, 8 = Alz,w) gﬁ + B (z,w) gg (9.2.3b)

at each point of the image ((N) c¢ Cz, where (z,w) are holomorphic
coordinates on Ez (A,B are not required to be holomorphic).
Moreover, a sufficient condition for realizability consists in the

existence of two independent (complex) solutions of the so called

(tangential) CR equation

8f = 0 (9.2.4)

Independence here means that

df1 A df2 # 0 (9.2.5)

Given two independent solutions f1= S,(a:i), f2= n(a:i) of (9.2.4)
((mi)1=h ’ are coordinates on N) one defines an embedding by
c(a,d® ) = (E@'),n(ac)) e €2 (9.2.6)
It is also true that all realizable 3-dimensional CR structures
haveAto admit two independent solutions of CR equation (9.2.4).
Therefore the necessary and sufficient condition of realizability
of 3-dimensional CR-structures consists in the existence of such
two independent solutions of the CR equation.
3. Groups of automorphisms of dimensign D.

A diffeomorphism ¢:N->N is called a symmetry (automorphism) of

a Cauchy-Riemann space iff the pullbacks ¢*K, ¢*a are related to

kK, by the transformation (9.1.2}) [Nurowski, Tafel 1988]. An

equivalent condition is ¢,8 ~ 8. We say that a vector field X is
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an infinitesimal symmetry iff

1&& = ak , l&a = ba + cK , (9.3.1)

or, equivalently,

[X,8 1 = -bd , (9.3.2)

whére fx denotes the Lie derivative along X, a is a real function
and b,c are complex functions. Note that the definition of an
infinitesimal symmetry is invariant under transformations (9.1.2).
Therefore CR structures admitting different groups of symmetries
are nonequivalent.

If a Cauchy-Riemann structure is degenerate then « Ade =0
and it follows from the Frobenius theorem that k ~ du, where u is
a real funétionl Then equation (9.2.4) admits a complex solution
£, hence a« = Bd€ + Ck. In virtue of transformations (9.1.2) we can

assume

Kk = du, a = d€ . (9.3.3)

without loss of generality. If m=u then the hypersurface in c®
given by (9.2.6) is the plane

Imm = 0.

In this case the local symmetry group is infinitely dimensional.
This consists of transformations

u > f(u), £ > h(g,u). (9.3.4)

If a Cauchy~ﬁiemann structure 1is nondegenerate then it
follows from a remark of Segre thaf ité symmetry group isia finite
dimensional Lie transformation group [Segre 1931]. In virtue of
the éalais theorem [Kobayashi 1972] this fact can be considered a
direct consequence of equations (9.3.1) énd their integrability
éonditions. They show that the exterior derivatives of aoa, b, ¢
and components of X must be linear functions of these variables
with coefficients defined by k and «. Hence, given a CR structure,

a general solution X of the symmetry conditions (9.3.1) depends at
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most on 8 real parameters (values of aoa, b, ¢ and components of X
at a fixed point,provided no further constraints follow). Thus the
Lie algebra generated by infinitesimal symmetries has dimension
D=8. The Palais theorem says that the corresponding group of
transformations is a Lie transformation group of dimensidn D=8.

'In the following we investigate separately the cases when D
is equal to 1,2 or D=3. It will turn out that there do exist CR
structures with different symmetry groups. This proves that there

are nonequivalent CR structures among nondegenerate ones.

If only one infinitesimal symmetry is present then we can
easily adjust a transformation (9.1.2) in order to get
£k =0, ? o = 0. (9.4.1)
X X

It follows from (9.4.1) that « =Ai(x,y)dxi and « =Bl(x;y)dxi in

coordinates xi=(u,x,y) such that

Condition (9.1.5) requires A1¢O. A residual freedom of
transformations (9.1.2) allows us to assume A1=1 and B1=O' Then «
becomes proportional to an exact form d&€, where €&=£(x,y). The
functions Re£&, Im€ can be chosen as new coordinates x,y. A suitable
transformation of a and u leads to the following canonical
expressions for k and «

k = du + f(x,y)dx, a = dx + idy , (9.4.2)

where ayf # 0. Particular solutions £ and 1 of (9.2.4) are given

by

+

£ =x + iy , n =u + hix,y), (9.4.3)

where Zhé = f. It follows from (9.4.3) that

Imn = F(Re&, Im€) , (9.4.4)

where F = Imh and F.z # 0 .
4 133
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Theorem 9.4.1 [Nurowski, Tafel 1988]

If a CR structure admits a 1-dimensional group of symmetries
then it is equivalent to the CR structure defined by (9.4.2) with
some f; The corresponding hypersurface in c? is given by equation

(9.4.4).

It is easy to show that the orbits of a 2-dimensional
symmetry group G must be 2-dimensional. Indeed, let us assume that
it is not so. Then the vector fields X1 and X2 representing any
two independent infinitesimal symmetries have to be proportional
at each point, 1i.e. X1= qu, where g#const (otherwise X.1 and X2
represent the same symmetry). It follows from (9.3.2) that either
a ~ X2 or 8q = 0. The first possibility is in contradiction with
(9.1.5) which is equivalent to

8, 8, [8,8] are independent at each point. (9.5.1)
The second possibility violates (9.1.5) or the assumption q =
const (since 8q = 0 implies 8q = 0 and [8,8]q = 0).

ASince Xr’ r=1,2, are infinitesimal symmetries we know that
er = a K, $ra =ba+ck, (9.5.2)

where fr denotes the Lie derivative along Xr' We now want to
transform k and o« to forms k’,a’ strictly invariant under the
action of G,

2 k=0, 2 o=0. (9.5.3)
r r

Comparing (9.5.2) and (9.5.3) yields the following equations for
the parameters A,B,C of the required transformation (9.1.2)

£f=-fa , £p=-pb , £h=-ha -pg . (9.5.4)

Solutions to these equations exist since the integrability
conditions of (9.5.4) follow from equations obtained by the Lie

differentiation of (9.5.2). Hence we can assume (9.5.3) without



loss of generality.
‘There are two nonisomorphic 2-dimensional Lie algebras.
We can choose the fields Xr in such a way that

[X ,X. 1 = ¢€X, € =0,1. (9.5.5)
1”72 1

Since the orbits of G are 2-dimensional it follows from (9.5.5)
that
X=8 |, X = ¢eud + 8 (9.5.6)
2 u X
in some coordinates u,x,y. Now it is easy to find general forms
k’and «’ satisfying equations (9.5.3). In virtue of residual
transformations (9.1.2) and a freedom in the choice of the

coordinates they can be reduced to the following expressions

k = exp(-ex) du + f(y)dx , « = dx + idy, (9.5.7)

where 8yf¢0 and we have dropped the primes. Particular solutions g
and m of equation (9.2.4) are given by

£ =x + iy , n =1u + hiylexp(ex) , (9.5.8)

where
ih + e€h = £ .
y
It follows from (9.5.8) that
Imn = exp(eRe§) F(Img), (9.5.9)
where F = Imh. By an appropriate choice of f we can obtain any
real function F satisfying the condition

F +¢eF =0 .
vy

Theorem 9.5.1. [Nurowski, Tafel 1988]
If a CR structure admits a 2-dimensional group of symmetries
then it is equivalent to the structure defined by (9.5.7).The

corresponding hypersurface in ®2 is given by equation (9.5.9).

5This case was considered by E. Cartan [Cartan 1932]. Our approach
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Our approach to this case can be described as follows. First
we observe that any Lie group of dimension D=3 contains locally a
3-dimensional subgroup. Hence in order to find all symmetrical
CRstructures with Dz3 it is sufficient to consider the case D=3.
We prove that the action of a 3-dimensional symmetry group G on N
is (locally) simply transitive and the forms k and « can be
transformed to left invariant forms on G. In virtue of the Bianchi
classification of 3-dimensional Lie groups the whole problem
reduces to the problem of finding all nonequivalent left invariant

frames on these groups.

Lemma 9.6.1
Any Lie algebra ¥ of dimension greater than 2 contains a
3-dimensional subalgebra §.

Proof. [Nurowski, Tafel 1988]

According to the Levi-Malcev theorem [Barut, Raczka
1977j Y can be decomposed into the semidirect sum of a solvable
subalgebra R (radical) and a semisimple subalgebra ¥. If ¢ is
nontrivial then it contains either the subalgebra su(2) (if ¥ is
compact [Helgason 1962, p.219]) or su(l,1) (if ¥ is noncompact
[Helgason 1962, p.245]1). If ¥ is trivial then dim R =3 and R must
contain a 3-dimensional subalgebra since any solvable algebra R
contains subalgebras of all dimensions between 1 and

dimR [Helgason 1962, p.133].
g.e.d.

The lemma has its local equivalent at the group level. Hence
it follows that highly symmetrical (Dz4) CR structures are
particular cases of CR structures with a 3-dimensional symmetry
group G.

It is easy to prove that orbits of G are 3-dimensional. It

simplifies his results.
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follows already from Section 4 that they cannot be 1-dimensional.
Let us assume for a moment that they are 2-dimensional, i.e.

X3= le + rXZ; X2¢ le , (9.6.1)

where Xf (r=1,2,3) are independent infinitesimal symmetries and
either p#const or r#const. It follows from (9.3.2) that
{ 8p X1 + dr X2 ) ~ 8. - (9.6.2)
Equation (9.6.2) and its conjugate yield

X=g5d+s 8, (9.6.3)
r r r

where s are complex nonvanishing functions. Substituting (9.6.3)
into (9.3.2) yields contradiction with (9.1.5).

Since the orbits are 3-dimensional the manifold N can be
locally identified with the group manifold G and the action of G
on N can be identified with the natural left action of G on
itself.

An analysis analogous to that for D=2 shows that the forms «
and o satisfying the symmetry conditions (9.5.2) (now r=1,2,3) can
be replaced by new forms, which satisfy the equations

£ k =0, $a=0. (9.6.4)
r T

It follows from (9.6.4), (9.1.1), (9.1.5) and the identification
of N with G that (k, Rea, Ima) is a left invariant frame on G

satisfying (9.1.5).

Theorem 9.6.1 [Nurowski, Tafel 1988]

If a CR structure admits a symmetry group G’ of dimension Dz3
then it is equivalent to the CR structure defined by a left
invariant basis (k, Rea, Ima), k A dc # 0, on a 3-dimensional
local subgroup G of G’.

The local properties of G are determined by its Lie algebra

€.Al11 the 3-dimensional Lie algebras are explicitly known
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[Bianchi 1897]. Let (') be a particular left invariant basis
related to ¥. Then k and o« are general linear combinations of o
with constant coefficients such that (9.1.5) 1is satisfied. A
number of free ©parameters can be reduced by means of
transformations (9.1.2) (with constant A,B,C) and transformations
of o preserving the Maurer-Cartan equations. Moreover we can
always obtain
a Ada =0,

hence « ~ d€ and £ satisfies equation (9.2.4). If § = su(2) or
su(1,1) (Bianchi types IX and VIII) then one real parameter
remains. It means that 1-parameter families of CR structures are
related to these algebras. For other algebras (except Bianchi
types I and V, which are excluded by (9.1.5)) there is only one
corresponding CR structure. For all Bianchi types (except I and V)
we list below the following data [Nurowski, Tafel 1988]

i) reduced forms k and « in terms of coordinates u, £, é
or u, %X, y where &=x+iy and u, %, y are real

ii) symmetry transformations generated by G (p,q,r being

constant parameters) .
iii) a second solution m of (9.2.4) and an equation of the
hypersurface in c? defined by (9.2.6)

We also give the corresponding Cartan type [Cartan 1932] in square

brackets.

Type II [Al (9.6.5)
i) k = du - i€ d€ + i€ d€ , o = d€

ii) w'=u + iqf - ig€ + p , =€ +q, qeC, peR
iii) n = u + i€€ , Imn = &£

Type IV [F] (9.6.6)

64



i) k = y '(du - lny dx) , o =y (dx + idy)

ii) W= ru + rlnr x + p , X'=rx , y’=r1y + q

p,g,r € R, r >0

iii) » = u + x + iylny , Imp = Im€ In(Im&)
Type VIh(including VIO and III) [E,B] (9.6.7)
i) vk = yb du - y—ldx , o = yal(dx + idy) , where b = 1-v-h
1+v¥~-h

ii)uw=r u+p, xX'=rXx, y=ry+dq, p,q,T € R, >0
N . -b -b
1ii) m = -bu + iy ~ | Imm = (Img) for h =-1

n =u+ ilny , Imp = In(Im€) for h =-1 (type III)
Type VIIh(including VIIO) [H] (9.6.8)
i) k = du + o (A+Du e + e(A—nu gE, x = oAU de,

where A = vh

A+
e( +i)p

iy v=u-p, £ = £ +q, peR qeC

A+i

™M Im [q + (A-1)E 1" =0

iii) n = (i-A)E +

Type IX [D,L] (upper signs) and VIII [C,K] (lower signs) (9.6.9)

iu .= -iu, . iu
i) k = du + Efzflig dE + EE:__ilé G, a-= __%S___ ae |
EE + 1 gg 1 gg £ 1
where 0=k € R, k2i 120
- - _ pE ¥ q
i1) w'=u - 1In(@+p) + ilnlgE+p) , &= ——
, A +p
where pp + qq = 1 and p,q € C
iu .
iii) 7 = §§———1—i§ : € - n] = k|1 t &n| for k > 0
e "t ik€
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0= [(gé:ne““] . mmo= |€E £ 1 for k = 0

As we have seen in Section IX 3 all degenerate Cauchy-Riemann
structures are isomorphic and admit locally an infinitely
dimensional group of automorphisms. A nondegenerate structure may
have no symmetries. If it does then they form a Lie transformation
group of dimension D=8. The action of this group is transitive if
D=3. CR structures with continuous symmetries (Dz1) are locally
equivalent to the structures defined by (9.4.2),(9.5.7) or the
forms k,oa listed in Section IX 6. We have found the cor;esponding
hypersurfaces in €® Those for D=3 are locally equivalent to the
hypefsurfaces obtained by Cartan [Cartan 1932].

Finally let us make a comment on CR structures admitting
groups of symmetries of dimension Dz4. It was proved by Cartan
[Cartan 1932] that from a local point of view they are all
isomorphic and admit the group SU(1,2). They can be characterized
by the vanishing of the Cartan relative invariant R [Cartan 1932,
we will define R by (9.7.18) 1. They are known to physicists since
they are related to the Robinson congruence [Penrose 19671, which
exists e.g in Minkowski space. On our list from Section IX & these
structures occur for the types II, III, VI_9 , VIII (k=0 or k=v2),
IX (k=0). The other structures from this list are nonisomorphic

and admit precisely 3-dimensional groups of automorphisms.

7. Cartan invariants of 3-dimensional CR structures

In last few sections we gave a classification of symmetric CR
structures. It follows from this classification that all
degenerate CR structures are equivalent and that there are plenty

of nonequivalent nondegenerate CR structures. In this section we
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address a question whether there exists an algorithm, which
enables us in finite number of steps, to distinguish between
nonequivalent CR structures. We will give a full set of invariants
which pairwise identity is necessary and sufficient for two
nondegenerate CR structures to be equivalent.

Consider a 3-dimensional CR-structure (N, [(k,«)]) which is
nondegenerate i.e.

Kk A de #0 (9.7.1)

Since (k,«,«) constitute a cobasis on N then {(9.7.1) implies that
there exists a real function p # 0 on N s.t.

K Adk = ipk A & A @ (9.7.2)

Suppose now that we have another forms (Kl,al) on N which also
satisfy relations of the form (9.7.1) and (9.7.2). We ask whether

forms (Ki,al) can be related to (Kz,az) by transformations:

K, = fK (9.7.3a)

@ = ha + pk (9.7.3Db)

where f # 0 is any real function on N and h # 0, p are some
complex functions on N. If it is so, then the CR structures
related to (k,a) and (Kl,al) are equivalent; if no - they are
nonequivalent. The strategy for the answer to this question is as
follows. We need to find some preferred forms in the class
[(k,a)], as well as an universal way of choosing them. By
universality here we mean that whatever (k, ) from the class[(k,
«)] we chose, after our procedure, we would always obtain the same
pair (@, Q1) belonging to the class [(k, «)]. We start with (k,«)
satiéfying (9.7.1) and (9.7.2). We will single out Q and Q1 by
reducing the allowed freedom

kK — k' = fk (9.7.4a)

o —> o' = ha + pk (9.7.4b)

By a suitable choice of k’ and o’ (see (9.7.4)) we always can
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achieve:
K’ Adc’ = 1o’ Ao’ A K. (9.7.5)
Without loss of generality we assume that (9.7.5) holds.
Suppose that k’ and «a’ belonging to the class [(k,a)] satisfy
(9.7.5). Let |
Q = ffk’ (9.7.6a)

Q1 = f(a’ + hk’) (9.7.6b)

where f, h are arbitrary complex functions (f # 0). It is obvious
that Q and Q also belong to the class [(k,a)] and preserve
(9.7.5) with k' and o’ being replaced by Q and Q1 respectively.

Our aim now is to single out f and h in (9.7.6). We wish to do
it in such a way that the resulting Q, Q1 will not depend on the
choice of an initial pair (k,a) representing a fixed CR structure.
First, let us quote the Cartan-Chern-Moser theorem.

Theorem 9.7.1 [Cartan 1932, Chern, Moser 1974].

Let 1-forms Q, Q1 be given by (9.7,6). There exist

complex-valued 1-forms Qz’ Qa’ a real-valued 1-form 94 and complex

function R, S which satisfy the following equations

dQ = iQ A dQ + (. + Q) A Q (9.7.7a)
1 1 2 2
dQ =Q AQ +Q AQ (9.7.7b)
1 2 1 3

d. = 2iQ AQ + 10 AQ +Q AQ (9.7.7¢c)

2 1 3 1 3 4
dQ =Q AQ +Q AQ +RQ A Q. (9.7.74)

3 4 1 3 2 1
d =10 AQ - (Q +Q) A0 -SQAQ -5SQAQ (9.7.7e)
4 3 3 2 2 4 1 1

The forms Qz’ Q3, Q4 and the function R, S are related to Q, Q1

and, as a consequence, they depend on f and h of (9.7.6).

They are given up to the freedom:

Q) =Q +pQ
Q) =Q +pQ (9.7.8)

, = 2
Q4 = Q4 + dp + p(Q2 + Qz) + pQ
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where p is any real function on N.

Forms Q, Q1’ Qz’ Q and 94 can be collected in such a way that

they constitute a matrix of one-forms w defined by [Chern, Moser

19741:
1 = = 1 i
3(292+Q2) 1Q, 5Q,
_ s - 1
w = Q 5(92 Q) 5 Q, C(9.7.9)
2Q 2iQ —l(zﬁ + Q)
i 1 3 2 27 ]

Suppose now that we have computed w for £ =1, h = 0 in (9.7.6),

then w’ which is computed for any other choice of f and h is given
by

W = AT wA + ATNdA, (9.7.10)

where A is a matrix belonging to the group SU(2,1) and is related

to £ and h by

|£]e?® iR THT - %%;T G o+ i[n]?)
A = 0 e 21?0 - %};T h . (9.7.112)
| 19 |
. 0 0 TeT 1
Here
£ = |£]et?, (9.7.11b)

9 is a real function, and p is an arbitrary function which is

connected with the freedom (9.7,8) in the choice of QZ,Q3 and QI
According to the transformation rule (9.7.10) it is natural to

associate a name connection to the form w defined in (9.7.9). It

is called Cartan-Chern-Moser (CCM) connection of nondegenerate CR

structure (N, [(k,a)]).

The group G of matrices A of the form (9.7.11) defines a gauge

6See an Appendix at the end of this work.
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group G of Cartan-Chern-Moser connection

g =9 (9.7.12)

where

J={AeG: A=c -1id, o =1, ¢ = const, ¢ € C} (9.7.13)

Moreover

g < suU(2,1) (9.7.14)

and

w e sul(2,1) (9.7.15)

where su(2,1) is a Lie algebra of the group SU(Z2,1). It can be
seen  that applying transformations (9.7.10)-(9.7.11) for w one
obtains all the algebra su(2,1).

The curvature of CCM connection (9.7.9)

Q=dw +wAw : (9.7.16)

has usual transformation properties

8 = AT QA (9.7.17)

under the action of the group §. According to the relations

(9.7.7) it has a relatively simple form

0 iRQ A Q -—1-(SQ+§§]AQ
1 2 1 1
Q= 0 0 —%ﬁﬁl/\ﬂ (9.7.18)
e 0 0 ]

where functions R, S are defined by (9.7.7).
To complete the discussion let us note that the function R is

transformed by (9.7.17) to

o= L L% g (9.7.19)

£]*

and unless R = 0, R may be normalized to get

R=1 (9.7.20)

Then the second condition
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Re w° :=Re Q_ =0 ©(9.7.21)
[s)

may be imposed on A (i.e. on f,h in (9.7.6)).

It is worth noting that conditions (9.7.21) and (9.7.20) are
independent of each other. Therefore they can be imposed also in
the reverse order. If it is the case (9.7.21) subordinates h to f
in (9.7.6) and (9.7.20) determines f up to the change of the
sign:

f — -f (9.7.22)

The forms  and 91 satisfying (9.7.20) and (9.7.21) have, by
their construction, property of being invariant under the
transformation (9.7.4) of initial forms k, «. The same applies to
the forms Qz’Qa’Q4 restricted to the conditions (9.7.20);(9¢7,21).

Apart from the case

R=0 (7.6.23)

the full set of forms (Q’Qi’Qz’Qa’Q4) constitutes set of all
invariants of a nondegenerate 3-dimensional CR structure.
According to the transformation (9.7.22) two CR structures (k,«)

and (k‘,a’) on a manifold N are equivalent if and only if we have

Q =Q
Q =+ Q
1 1
Q = (9.7.24)
2 2
Q == Q
3
Q =Q
4

Note, that since Q, Q1 and 61 constitute a basis on N’ then forms

Qz, 93 and Q4 can be decomposed onto them. The functional

coefficients of this decomposition are called Cartan’s invariants

of CR manifold [Cartan 1932]. These are o, B, ¥, 9, n, & where

Q =-0 =a0 - of + iBQ
2 2 1 i
Q = iyQ + 980 + 1Q
Gt (9.7.25)
Q3 = 091 - 1791 + NQ
Q =8 =-iifQ ++ind + £
4 4 2 1 2 1
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According to the rules (9.7.7), (9.7.20), (9.7.21) forms Q and Q1
together with Cartan invariants satisfy

dQ = iQ A Q
1 1
dQ, = @ A Q + i(B - 7)Q AQ . 19) g 1 (9.7.26)

dQ1 = -an A Ql - 9Q A Ql -i(B - 7)Q A 91

Combining (9.7.7), (9.7.20), (9.7.21), (9.7.25) and (9.7.26) we
obtain also relations

Ba + 0o = 2a - B ~ 37

- 168 = -ia(f - 7) - 0@ - >
8 + 138 = 1w(f - y) -~ o + g in
8% - i8y = 208 - % in
39 + i8y = 2ad + g in
) 3 (9.7.27)
809 - 8n = 2i% + an - 1
605 - 8n = -2ip% + oan - 1
on - 18 y = an + 7o - 9% - £
an + 18 y = an + ¥ - 99 - €

where operators (60,6,5) constitute a dual basis to (Q,Ql,ﬁl). To
complete the discussion of the case R # 0 we also give commutators
of 60, 8 and 8 which follows from (9.7.26)
[,8] = 18+ a8 - ad
(6,81 = 1(B - 7)3 - 99 (9.7.28)
(a, 81 =-i(B - ¥)3 - 03
So far we did not consider the case

R=0 ~ (9.7.29)

for which we can not perform transformation (9.7.20). In this
case; however, it follows from exterior differentiation of
(9.7.7d) and from definition (9.7.7e) that also function S
vanishes. Therefore all curvature Q of the associated CR structure
is zero. This can happen exactly in one case [Cartan 1932] when

the CR structure is equivalent to
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Q = dz

oy (9.7.30)
@ = du - 5 zdz + 5 zdz

As we know this structure corresponds to the structure with the
highest possible symmetry group SU(1,2) (compare (9.6.)5 and the
comment at the end of Section IX.6). We will call this .structure

hyperquadric.

Remark 9.7.1

The forms (9.7.30) in the case of R = 0 and forms €, Si, C%,

Qa’ 94 in the case (9.7.20)-(9.7.21) are called Cartan’s invariant

forms [Cartan 1932].

The meaning of this term becomes more apparent if we assume
that the CR structure admits a symmetry. It follows from the
construction of the forms Q, Q1’ QZ, 93, Q4 that if X is a
symmetry of Cauchy-Riemann space then

SEXQ=,‘EXQ1 =2’X§22 =$‘;(% =§§(§%‘ =0 (9.7.31a)

X(a) = X(B) = X(y) = X(8) = X(n) = X(§) =0 © (9.7.31b)
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X. 3-DIMENSIONAL CR STRUCTURES AND LORENTZ GEOMETRIES

1. Standard and nonstandard approaches to the problem

Let us turn to the theory of shear-free congruences of null
geodesics in space-time i.e. to the theory of shear-free optical
geometry.

We know (Theorem 7.2.1) that any space-time M which admits a
congruence of null and shear-free geodesics defines a
3-dimensional CR structure. We also know that the converse of the
above mentioned statement is also true. Therefore taking all
nonequivalent 3-dimensional CR structures (N,[(k,a)]) and
constructing a Lorentzian manifolds

M=RxN (10.1.1)

with the metric

g=2p a0 +aA®X-KO QP - ¢ ® K) (10.1.2)

we obtain all space-times admitting such congruences. Forms k and
«, which stand in (10.1.2), are any representatives of the class
[(k,a)] and are understood as being pull-backed to M by n*, where
m is a natural projection

n: M — N ) (10.1.3)

The real function p and a real 1-form ¢ which stay in (10.1.2) are
arbitrary provided that

PK A AXAG®ZDO0 (10.1.4)

The shear-free congruence of null geodesics 1s represented by a
real vector field k # 0 s.t.

kJda=k!d a=kd k=0 (10.1.5)

The congruence defined by k can be in general twisting and
expanding. This means that if a 2-dimensional obstacle is placed
perpendicularly to the rays of a congruence, then the shape of
this obstacle on the screen which is also placed perpendicularly

to the rays, can be rotated and increased when compared to the

T4



position and size of an obstacle. In the language of CR geometry
associated with M the vanishing of a twist 1is equivalent to

[Robinson, Trautman 198. 1:

K Adk =0 (10.1.6)

This means that the presence of twist of the congruence is
equivalent to nondegeneracy of an associated CR structure.

The vanishing of an expansion of a congruence associated with
a vector field k given by (8.1.5) is equivalent to

£n =20 (10.1.7)

where 1 is a volume form

n=1ip’k A d AT AP (10.1.8)

on M given by (10.1.1).

In this chapter we study space-times (10.1.1)-(10.1.2) for
different CR structures.

Such space-times were studied in the context of gravitation
theory [Robinson, Trautman 1962, Kerr 1963, and many others. See
Kramer at al 1980 for a review]. There the metrics of the form
(10.1.2) were subjected to the Einstein equations. In that case
one of the Einstein equations ensures that the tangential CR
equation (9.2.4) for the associated CR structure is solvable
[Tafel 1985]. Therefore there exists a complex function € on N
s. t.

a = d€ .(10.1.9)

and

d& A dE€ =0 (10.1.10)

— b
The functions £ and € can be supplemented by a one real function u

on N in such a way that

du A d€ A d€ # O (10.1.11)

The set of functions (u,Z,€) constitute a coordinate system on N.
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By means of transformations (9.7.4a) we can always choose an

appropriate factor to achieve

k = du + Ld¢ + LdZ, (10.1.12)

where L is an appropriate complex function

L = L(u,&,€) (10.1.13)

on N. The metric tensor (10.1.2) takes the form

where

g = 2(ete? - e’eh) (10.1.14)
el=”~rd-f§—=€2
e’ = du + Ld¢ + LdT (10.1.15)

e = dr + WdE + WdT + He®

where T # 0, W are any complex functions on M = RxN and H, r are

any real functions on M provided that

el anelaelaet 20 (10.1.16)

Here we used a historical convention in which

eieJ 1= —;—(ei ® ej + eJ ® ei) (10.1.17)

As we said in Geenral Relativity metrics (10.1.14)-(10.1.15) are

subjected to the Einstein equations. A number of questions may be

asked at this stage. Here we list three of them:

1)

2)

3)

Do Einstein equations imposed on metrics . (10.1.14) -
(10.1.15) imply realizability of an associated CR
structures (10.1.9), (10.1.12)7

Are there any (and if so, any) physically interesting,
solutions to the Einstein equations among thé metrics
(10.1.14) - (10.1.15)7?

Given a CR structure (10.1.9), (10.1.12) is it possible
to find such I, W and H that the corresponding metric

(10.1.15) describes, for example, Minkowski space-time?

In order to answer the above questions, it is enough to work
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in the formalism described between equations (10.1.9) - (10.1.17).
However, in the context of nondegenerate CR structures, we prefer
another approach, which is coordinate free and invariant under the
allowed transformations for k and «. This approach is related to
the invariants of CR structures defined in IX. Within this
approach, which 1is suitable only for the nondegenerate CR
struétures, we have a preferred forms Q and 91 among the class of
forms [(k,a«)]. These are Cartan invariant forms defined in the
section IX 7 by equations (9.7.6), (9.7.7), (9.7.20), (9.7.21) or
by (9.7.30). Therefore we have a representation of the metric
(10.1.2) which suits to the associated CR geometry - namely:

g = 27’2[91'@1 - Qldr + WQ + WY + #Q)] (10.1.18)

where P, ¥, r are any real functions and ¥ is any complex function

on

M=RxN (10.1.19)

provided that

.‘PQ1 A's‘zl AQAdr 20 (10.1.20)

[Lewandowski, Nurowski 1990b].
The approaches (10.1.9), (10.1.12)-(10.1.17) and
(10.1.18)-(10.1.20) to the problem of Lorentzian geometries
admitting shear-free congruences of null geodesics we call
standard and nonstandard, respectively. Here, we first give
examples of the utility of nonstandard approach and then examples
of solvable problems in the framework of the standard one.

2. Weyl tensor of metrics admitting twisting shear-free
congruences of null geodesics \

As an application of a nonstandard approach to the space-times
admitting a twisting shear-free congruences of null geodesics
described in X.1 we compute a Weyl tensor for such metrics.

As we know such space-times can be considered locally a
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product

M=RxN (10.2.1)

where N is any nondegenerate CR structure described by the Cartan
invariant forms Q and Ql. In the case when the CR structure
(N,(Q,QI)]] is nonequivalent to the hyperquadric thé forms Q and
Ql satisfy equations (9.7.26) with Cartan invariants «, B-7, ¢
subjected to the conditions (9.7.27). In the case of hyperquadric
(9.7.30) one can also use equations (9.7.26) with |
a=p-y=9=20 (10.2.2)

The metric tensor has the form

4

g = 2e'e? - 2e% (10.2.3)

where (el, e2, e3, e4) denote the null cobasis on M defined by
el =P =
1
3
e =Q (10.2.4)

et = Pur + WQ +WQ + HQ)

The congruence of twisting shear-free and null geodesics 1is
tangent to the vector field

k ~e = (10.2.5)

1
4 7_.,2 r
Since we are interested in the Weyl tensor of metrics
(10.2.3)-(10.2.4), and this 1is invariant wunder <conformal

transformations then we can put

P=1 (10.2.6)

in (10.2.4).

Simple but lengthy calculations show that in this case and in

3

the dual basis (e1e2e3e4) to (el,ez,e ,e4)‘the following relations

hold:
a) 1-forms of the Levi-Civita connection associated with

the metric (10.2.3), (10.2.4), (10.2.6) are given by

r, = wel - e + i(B+ B - y)e” + % et (10.2.7a)
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—de! + iBe? + Ae® + cet (10.2.7b)

1]

i3

r =25%e24+ce’ (10.2.7¢)

14 2
o = ~iBe! - geZ + Re” + Ce' (10.2.7d)
r =-xet+ced (10.2.7e)

24 2
r, = ce' + e - De° (10.2.7g)

where functions A, B, C, D are defined as follows:

A=}€1 —w3 - 1(B - ¥)W + W8 (10.2.8a)
2iB = W1 - "@ + Wa -~ Wa + iK (10.2.8b)
2C = —w4 (10.2.8c)
D=X¥ (10.2.8d)

4
The subscripts 1, 2, 3, 4 in the above expressions denote

derivatives with respect to vector fields

e =38 - W3 (10.2.9a)
i r
e =0 - W3 (10.2.9Db)
2 r
e =3 - Ha (10.2.9c)
3 o r
8 =8 (10.2.9d)

where operators 8, 8 and 8 constitute a dual basis to Q, Q1 and
o]
51 on N and are extended to M by the demand that

8(r) = 38(r) =8 (r) =0 (10.2.10)

b) The components of the Riemann and Ricci tensors can be
computed by using (10.2.7) and the definition of the curvature

R* e® A el =dar* + @ AaTS (10.2.11)
b c b

Since they are not invariant under the conformal transformations
they are important only for computing the Weyl tensor. However,
for some other reasons we quote here the Ricci tensor components,
and Ricci scalar.

These are:
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R = -i8 - 2Ca - 2C° - 2C. = R (10.2.12a)

11 1 22
R =2B+a+a-20a +3 -3y +Ca +Ca -2CC -C-C_ (10.2.12b)
12 1 2 1 2
R T v i oime in e
R = 2t - o+ oC iC(B-7) 5 A 2iBC 181 C3+A4 R, (10.2.12¢)
R =-C =-2iC =R__ (10.2.12d)
14 4 24
R33 = -209 - 2A@ - 2AC — 2iBD + 2B® + 2A2 - 2133 (10.2.12e)
R =2C +D + 4CC - 2Cx + B+ = D - iB (10.2.12f)
34 2 4 4
=1 (10.2.12g)
44 2 T

R =2B + 2a, + 2&1 - 4o + 6Cx + 2Ca - 12CC - 261 - 6C, - 2D, +
+ ZiB4 - iD (10.2.13)
Such quantities as R33, R34 and R are real due to the identities
which follow from
de =0 (10.2.14)

These are:

K1 - A, + 2iB_+ Ax - Ao + 2(AC - CA) + 2iBD =0 (10.2.15a)

€ -C +iB +Cx ~-Cx-2D=0 (10.2.15b)
1 2 4 2
A, -2C -D - 2Co - 2iC(B - ¥) =0 (10.2.15¢)
c) The relevant Weyl tensor components are:
I (10.2.16a)
424
t __ 1@ 15 (10.2. 16b)
434 2 4 ’
3 1 — - - =
C = =(-4B - « - o« + 2ac + 3Ca - Ca +
334 3 1 2
+C -3C +D + 2iB - iD) (10.2.16c)
1 2 4 4
¢t - i(B + LD (10.2. 16d)
134 4 2 T
1 1 =
C334 = Z(4«@ - 201 + 298C - 20C(B 7)o+
+ 3iA + 2iB_ + 2C_ - 2A ) (10.2.16e)
2 3 4
c' -9 - 2iB9 + 2i0y + 2iBo + Ax + Do + A (10.2.16f)
323 3 2

All other components can be obtained from the above by applying

either symmetries of the Weyl tensor or by the fact that C:d is
(o}
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traceless in any pair of indices.
d) The first important fact we can observe in (10.2.16) is
that

¢t =0 (10.2.17)

Thish is only a consequence of the assumed form of the metric
[Robinson, Trautman 1989, Lewandowski, Nurowski 1990b]. Comparing
this with the definition of principal null direction (5.3.1)
applied to the vector field

k ~ e, = a (10.2.18)

r
we can easily see that our congruence of shear-free null geodesics
is tangent to a principal null direction of the Weyl tensor. This
is a direct proof of the statement quoted in the section V.3 in
particular case of twisting congruences.

e) Applying Theorem 5.3.1 we see that our space-times are

of Cartan-Petrov-Penrose type II iff

¢t =0 (10.2.19)
434
i.e. iff
C = ae'l (10.2.20)
W = 2iae’” + b (10.2.21)

and a, b are arbitrary complex functions s.t.

e (a) =e (b) =0 (10.2.22)
4 4

f) The important case of type N space-times with twisting
shear-free congruences is given by all space-times conformally
equivalent to (10.2.4), (10.2.6) with all Weyl tensor components
(10.2.16), except (10.2.16f) equal to zero. By simple integrations
of (i0.2.16b)—(10.2.16e) we arrive at the following theorem:

Theorem 10.2.1 [Lewandowski, Nurowski 1990b].

All space-times which are of Cartan-Petrov-Penrose type N and

admit congruences of shear-free null geodesics with twist are
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locally given by:
a) M=Rx N (10.2.23)
b) N is any nondegenerate CR structure with Cartan

~invariant forms Q and Q1 satisfying either (9.7.26)-(9.7.27) or

(9.7.30)
c) the metric tensor has the form
g = 2700 - aldr + Wg +WQ + #)] (10.2.24)
W = 2aie'” + b (10.2.25)
# = (& - iblae'™ + (A + iblae ¥ + h (10.2.26)
h =- 2(% + Ba + B - ¥) - 6aa + i(ab - b) (10.2.27)

where P # 0 is an arbitrary real function on M, the complex
functions a and b are subjected to the conditions
da db

Pl = 0 (10.2.28)

and

2iha - 28a - i8ha - d(ba) - bAa + ibba = 0 (10.2.29)

4xs - 239 + 3i(8b - ©b) + 8(Ab - Ab - 4ih) +
+ 8i(aha - 8(aa) + ibaa) =0 (10.2.30)

In the equations (10.2.26)-(10.2.30) we used an abbreviation A and

8 to denote operators

A=38-a (10.2.31)
3 = ao + 1i(B - 7) (10.2.32)
d) the twisting congruence of null shear-free geodesics 1is

tangent to the vector field

k = (10.2.33)

QJIQ)
=

If we demand that in addition to the vanishing of

(10.2.16b)-(10.2.16e) also (10.2.16f) vanishes, then we obtain all

possible space-times which are conformally flat and admit twisting

shear-free congruence of null geodesics. Hence imposing condition
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we arrive at the following corollary.

Corollary 10.2.1

All space-times admitting shear-free twisting congruence of
null geodesic and being conformally related to the Minkowski

space-time are given by Theorem 10.2.1 provided that

ct =0 (10.2.34)

This condition is equivalent to
(8 + a)(8h - &b + b9 - 4a(A + ib)a) - 2a(d + ib)(A + ibla +
+ §(2iB + 6iaa) +aOI§ =0 (10.2.35)
3. Important example - Fefferman metric

Let us notice that if we put

b=~§-ioc (10.3.1)

in Theorem 10.2.1 then in all cases different from the
hyperquadric (9.7.30) equations (10.2.28)-(10.2.30) are satisfied
due to the equations (9.7.27). In the case of hyperquadric, which
may be characterized by « = B = ¥ = ¢ = 0 situation is even better
- even equation (10.2.35) is satisfied. Using equations (9.7.27)
we can see that in all cases except hyperquadric (9.7.30j the left
hand side of the equation (10.2.35) is equal to -1. Therefore in
all these cases the metrics given by Theorem 10.2.1 with a, b, h
defined by (10.3.1) can not be conformally flat. Therefore we
arrive at the following theorem.

Theorem 10.3.1[Lewandowski 1988]

For any nondegenerate CR structure the metric tensor

_ - 2 . 2 . — _2
g—Zsz[QlQl Qdr + % 1eQ -5 1@ - 5 pQ)] (10.3.2)

is of the Cartan-Petrov-Penrose type N. Here forms Q and Q1 and
functions «, B are Cartan invariants defined in section IX.7.The
only case when this metric tensor is conformally flat occurs when

(N,[(Q,Ql)]) is equivalent to hyperquadric (9.7.30) (in this case
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a=B=0).

The metrics (10.3.2) are called Fefferman metrics [Fefferman

1976]. They can be considered as a recipe for associating with any
nondegenerate CR structure a conformal Lorentzian geometry of
Cartan-Petrov-Penrose type N.

The following theorem admits another characterization of
Fefferman metrics.

Theorem18.3.2 [Sparling 1985, Lewandowski 1989].

Given any nondegenerate CR structure (N, [(k,a)]) the Fefferman

metric is the only class among metrics (10.2.3)-(10.2.4) on

M=R x N, (10.3.3)

which is of Cartan-Petrov-Penrose type N,possessing a conformal
symmetry generated by the vector field k tangent to the shear-free
congruence of null geodesic associated with M by (10.2.5).

Proof

If a metric (10.2.3)-(10.2.4) is of Petrov type N then it is
described by Theorem 10.2.1. The fact that k = Br generates a
conformal symmetry, by definition, means that

28 =¢8 (10.3.4)

where g is given by Theorem 10.2.1 and ¢ is any real function on M
= R x N. This is the matter of checking that (10.3.4) imposed on

the metric from Theorem 10.2.1 is equivalent to

a = 0. (10.3.5)

To complete the proof it is enough to show that if b and h satisfy

(10.2.29)-(10.2.30) then

' =dr + bR +bQ +hQ, (10.3.6)

differs from

_ 2 2 .= 2
e =dr + 7 la Q 3 1a91 3 BQ (10.3.7)

which appears in Fefferman metrics by a differential of a real

function. This occurs (locally) if and only if
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de’ = de_ | (10.3.8)
However, this last equation is satisfied due to the fact that b, h
satisfy equations (10.2.29)-(10.2.30), as can be seen .by writing
the éxpression (@.3.8) in the basis Q, Ql and 51. This completes
the proof.
o
The Fefferman metrics were introduced since they could be used
to define an important class of curves on CR manifolds. These
curves are called chains [Cartan 1932]. They are obtained from
null geodesics in Fefferman metrics [gF] by projecting them on N
along lines of a congruence of shear-free null geodesics
associated with [gF] [Fefferman 1976]. The careful study of chains
in geometries (10.2.3)-(10.2.4)can be found in [Koch 1988,

Lewandowski, Nurowski 1990al

4. Einstein equations in the framework of standard approach

Let us turn to the study of Einstein equations on space-times
admitting congruences of shear-free and null geodesics in the
standard approach mentioned in section X.1. This approach is due
to I. Robinson and A.Trautman [Robinson, Trautman 1962]. They
succeded in reducing vacuum Einstein equations for space-times

admitting non-twisting congruences (of shear-free and null

geodesics) to one equation for one real function of three
variables. They solved this equation in certain situations
obtaining first examples of gravitational waves with spherical
wave-fronts. Their approach was then applied to the twisting case.
The first full set of sufficiently redu;ed vacuum equations in
this case was given by Kerr [Kerr 1963]. We present these

equations in a form given in [Kramer at al 1980]. They can be

described by the following theorem:
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Theorem 10.4.1

A space-time M admits a geodesic, shear-free null congruence k

exactly if the metric can be written as

g = 2(ete? - %" (10.4.1)
ol =_d__C_=e2 (10.4.2)
Pp
e’ = du + LdC + LdC (10.4.3)
e! = dr + WdC + WdT + He® (10.4.4)

If, in addition, the Ricci tensor components satisfy

R =R =R _=R_=r_ =0 (10.4.5)
44 14 11 12 34

(according to the basis (e1e2e3e4) dual to (e1e2e3e4)) the metric

functions appearing in (10.4.2)-(10.4.3) are given by

-}5 = —(r + i%) (10.4.6)
2ix = P?(3L - 8L) (10.4.7)
a=20_-13 (10.4.8)
< u -
L
W=—""4%+1i58% (10.4.9)
p
H=-r (1pp) - RC*M K (10.4.10)
u 2 2 2
r+ 2z
K = 2P° Rel[8(3 lnP - L) (10.4.11)
M = SK + P°Re[83% - 2L o5 - 28 oL] (10.4.12)

The unknown functions here, are: L (complex); P and m (real). All
of them are independent of the coordinate r (thus they depend only
on u, &, C which together with r constitute a coordinate system on
M).

The congruence of null geodesics without shear is tangent to
the vector field

k =e (10.4.13)

The metric tensor (10.1) satisfies pure radiation Einstein

equations

R =® kk (10.4.14)
b ab

a
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if and only if the functions P, L, m and M are additionally
subjected to the following conditions:

(3L u " 8)(m + iM) = 0 (10.4.15)

P*(a - 2L _+2010P)8[3(3 1P - L ) + (3 1nP - i;)zl +

- PP 3(m + iM)] =k 0°@° (10.4.16)
,u o 2 2

The complex function
9 = (u,8,2)

is absolutely arbitrary. Imposing some other conditions on this
function one can interpret what kind of pure radiation is
described by the corresponding metric. The following two cases are
of particular interest.

a) & =0. (10.4.17)

In this case the metric tensor (10.4.1) with functions P,L,M
and m satisfying (10.4.7), (10.4.8), (10.4.11), (10.4.12),
(10.4.15), (10.4.16) gescribes vacuum space—-time [Robinson,
Trautman 1962, Kerr 1963, Debney, Kerr, Schid 1969, Robinson at al
1969].

o .
b) (8 -L) 53 =0 (10.4.18a)

It can be shown that if the metric (10.4.1) with functions
P,L,M and m satisfying (10.4.7), (10.4.8), (10.4.11), (10.4.12),
(10.4.15) and (10.4.16) also satisfies condition (10.4.18a) then
it corresponds to electromagnetic pure radiation i.e. to
Einstein-Maxwell null field with all the energy propagated along
the congruence k.

The electromagnetic field F = F;bea A € has the form

F = p@Zez A e+ 55; et A’ (10.4.18b)

It can be further shown that if the metric (10.4.1) satisfies

pure radiation Einstein equations (10.4.14) (or its
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specializations i.e. ¢ = 0 or Einstein-Maxwell equations) then the

Weyl scalars are given in terms of functions P, L, m, M and p

through:
W o=y =0 (10.4.19)
o 1
v, = (m+ iM)p> (10. 4.20)
v, = -p3p%a1 + 9(p%) (10.4.21)
v, = P°pa I + 8(p°) (10.4.22)
where
, .

I = 8(81nP - Eu) + (81nP - L) (10.4.23)

u
The terms of higher order in p occurring in w3 and W4 vanish
identically if wz = 0 or wz = w3 = 0, respectively [Trim,
Wainwright 1974].

The CR structure N associated with the space-time M of the
Theorem 10.4.1 can be described as follows.

Take any hypersurface N given by the equation

r = ro(u,c,E) (10.4.24)

The CR structure on N is defined by forms

k= e’ (10.4.25)
o« = el (10. 4.26)
It is obvious that forms k and o given by
k = du + Ldg + Ldg (10.4.27)
o« = dg (10.4.28)

are in the class (k’, a’) given by (10.4.25)-(10.4.26). The
condition of no twist of the congruence k given by (10.4.13) means
that

Kk Adk =0 ’ (10.4.29)

This is equivalent to

3L - 8L =0 (10.4.30)

where the operator 8 is given by (10.4.8).

The most general coordinate transformation which leaves the
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metric tensor of the theorem 10.4.1 invariant is

¢ = £(Q) (10.4.31)
u’ = F(L, g, u) (10.4.32)
r’=r F " (10. 4.33)

, U

Such transformation change L, m + iM and P into

L’ = - 95 (10.4.34)
7
(m + iM)’ =D +3iM (10.4.35)
F
p’ = %f~l p (10.4.36)

, u
The transformation (10.4.31)-(10.4.33) [Robinson at al 1969] can
be used to simplify functions L or P in the integration procedure
of the field equations given above. In particular one can ask when

L can be transformed to

L =0 (10.4.37)

The necessary and sufficient condition for this is the existence

of a real function F = F(u,g, &) s.t.

aF = 0 (10.4.38)

(compare (10.4.34)). The integrability condition for this equation

follows from the identity

(88 - 88)F = (8L - ai)auF (10.4.39)

Applying (10.4.39) to (10.4.38) we see that:

(3L - GE)BUF =0 (10. 4. 40)

Since aF # 0 (because otherwise transformation
u

(10.4.31)-(10.4.33) would be degenerate) then the necessary and

sufficient condition for L to be transformed to L’ = 0 is

8L - 8L =0 (10.4.41)

A comparison with (10.4.29)-(10.4.30) shows the following
corollary

Corollary 10.4.1. [Robinson, Trautman 1962]
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Space-time M of the theorem 10.4.1 admits twistfree congruence
of shearfree null geodesics if and only if the function'L can be
transformed to zero value by coordinate transformation
(10.4.31)f(10.4.33).

5. Robinson-Trautman solutions

Space-times described by Corollary 10.4.1 are called
Robinson-Trautman space-times. In the process of integration of
Einstein equations (10.4.7), (10.4.8), (10.4.11), (10.4.12),
(10.4.15), (10.4.16) we can put

L=20 (10.5.1)

without loss of generality. Then equations (10.4.7), (10.4.11) and

(10.4.12) show that
M=20 (10.5.2)

The equation (10.4.15) gives m as a function of u only, i.e.

m = m(u) (10.5.3)

The remaining equation (10.4.16) has the form

AAInP + 12 m(lnP)u - 4m =k ® @ (10.5.4)

0o
,u o 2
where

A = 2P%3.8 (10.5.5)

C z :
This is the only equation to be solved. Moreover, 1if we are
interested in pure radiation solutions only, it 1is enough to
choose such m and P that left-hand-side of (10.5.4) is

nonnegative.

If in addition function @; defined by left-hand-side of

o

’ ¢
(10.5.4) 1is such that EE is holomorphic in £ then this pure

. . . . . . . o .
radiation is an Einstein-Maxwell pure radiation. If @2 vanishes we

obtain vacuum solution [Robinson, Trautman 19621].

Examples

a) Historically the first example of a solution belonging

to the Robinson-Trautman class was given (using another methods)
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by Schwarzschild [Schwarzschild 1916]. In the above formalism this
solution is determined by

m = const, P=1+ % T (10.5.6)

The solution describes gravitational field outside a spherically
symmetric mass. The parameter m is interpreted as a value of this

mass. Explicitly the solution reads:

2 —_—
g = 22289 - 2quar - [1 - %Eqdua (10.5.7)

This is of Cartan-Petrov-Penrose type D [Cartan 1922].

After a coordinate transformation:

£ =v2 e'? ctg g
_ dr
u==t J — 5
1 - &M

r

this is transformable to a standard form of the Schwarzschild

metric:

2 .

g = r2(do® + sinode?) + —I__ - [1 - gﬂ]dtz (10.5.8)

; - 2m r
r

The shear-free congruence of null geodesic is tangent to a vector

field

@

k = ET (10.5.9)

The forms « and « defining CR structure on Schwarzschild

space~-time are given by

k = du = dt - —s— (10.5.10)
L
r
@ =de = v2 e ¥lictg g de - dﬁzﬂ (10.5.11)
2sin =
2
Since k A dk = 0 we see that the congruence is twistfree.
b) An example of Einstein-Maxwell, pure radiation solution
is given by
m=20
P = LWKQK@D O + 5 &) (10.5. 12)
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o

vk

o

= V2 1(wWk(Q)k’ (T)

"Ulie‘
N

where 1 = 1(u) is any real function, and k = k() 1is any
holomorphic function [Bartrum 1967].

The explicit forms of Maxwell field and the metric ére:

F = vz 1 du A (kk’dg + kk’dQ)
‘/'ZZ (10.5.13).
2 p—
g = 2r dede - 2dudr - 1%%K%du’

12572 (1 + % co)?

The solution (10.5.12)-(10.5.13) will be used to construct
examples of twisting pure radiation Einsten-Maxwell fields.

6. Twisting solutions

The first examples of twisting vacuum solutions to equations
from the theorem48.4.1 were given by A. H. Taub (using different
methods) [Taub 1951] and then rediscovered and generalized by
Newman, Unti and Tamburino (NUT) [Newman at al 1963]. The next
very important twisting solution was given by Kerr [Kerr 1963].
This solution describes gravitational field outside a rotating
star. Both Taub-NUT and Kerr solutions can jointly be written in

the formalism of theorem 10.2.4 [Kramer at al 1980]. The solutions

read
r? o+ 3° = = =
g =2 ——— dgd¢ - 2(du + LdZ + LdT) x
P
x [dr + WAZ + WdZ + H(du + Ldg + Ld<Z] (10.6.1)
where

L= - 2iM iC(M + a)
p%c p2

Kac ‘

W+ — (10.6.2)

P —

1 - K&&
2

2 =KM - a —
k&g

L=
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mr + MZ

2

K
H=% -
2 r-+ 22

m and M appearing in (10.6.2) are constant parameters. (These are
the same m and M as in (10.4.15)). A constant parameter a is real.

The null congruence tangent to a vector field

K= 8 (10.6.3)
ér

is shear-free and geodesic.
The associated CR structure is given by forms
= du + Ld¢ + LdZ

(10.6.4)
o = dg

with L as in (10.6.2).
The congruence tangent to k is twistfree if and only if

E=0e M=a=0 (10.6.5)

The solution (10.6.1)~(10.6.2) satisfying this condition 1is the
Schwarzschild solution described in section X.S5.

All other solutions (10.6.1)-(10.6.2) correspond to twisting
congruences. |

The Taub-NUT solution is (10.6.1)-(10.6.2) with

K=1, a=0, M=0 (10.6.6)

The corresponding CR structure is given by

2iMd¢ . 21MdE

1 == —
(1 + = CQ)¢ (1 + = Q) C
2 (120 )

o = d¢

Performing a coordinate transformation

(10.6.8)

we see that
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(10.6.9)
_ V24¢’

,2
3
i.e that the CR structure under consideration is equivalent to
;= gy - B9C, _18dT
L+ge 1+& (10.6.10)

K

o’ = d
Comparing this with (9.6.9) for k=0 we see, that CR structure
associated with Taub-NUT geometry has a three dimensional symmetry
group of Bianchi type IX which can be extended to SU(2.1) (see
discussion at the end of section IX.6). Therefore this CR
structure is a hyperquadric (9.7.30) [Robinson, Trautman 1985].
The Kerr solution is a solution (10.6.1)-(10.6.2) with

M =0, K=1 (10.6.11)

It is interpreted as a gravitational field outside a rotating star
with an angular momentum a and a mass m.

The Kerr solution has two Killing symmetries: one of them is
timelike ensuring stationarity of the metric, the other 1is an

axial symmetry. These symmetries are given by vector fields

CE
1 du

X, =1 (£8

X
(10.6.12)

g - 66—6—)

A CR structure which corresponds to a Kerr metric can be given by

forms
=gy - . 1EdE  1&dE
£C,\2 £C 2
1+ 527 (1 +33) (10.6.13)
o = d

It is easy to see, that X1 and X2 from (10.6.12) restricted to a
CR manifold (N, [(k,a)]) constitute symmetries of this CR structure
[Nurowski 1987].

In order to show that these are all symmetries [Nurowski 1987]

one can use the following proposition.

Proposition 10.6.1
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If a nondegenerate CR structure N admits three (or more)
symmetries then its all Cartan’s invariants «,B,7,%,&,n are
constants.

Proof

By their construction Cartan’s invariants are constant on
orbits of é symmetry group. Since 3-dimensional group acts in
3-dimensional N in a simple transitive fashion (see a discussion
in IX.6 after the proof of Lemma 9.6.1) then Cartan’s invariants

have to be constant everywhere on N.

In section IX.7 we showed how to compute Cartan’s invariants
for any nondegenerate CR structure. Applying this for a CR
structure of Kerr geometry (10.6.13) we can see that its Cartan’s
invariants are nonconstant. Therefore CR structure of Kerr
geometry has two-dimensional symmetry group. This group is
generated by X1 and X2 given by (10.6.12). We see that since

[Xl'le =0 (10.6.14)

then this structure has to be equivalent to the one of (9.5.7)
with €=0. To see that this 1is the case let wus consider
transformation:
u-—u
£ — exp (ix-y) (10.6.15)

£— exp(-ix-y)
After this transformation forms (10.6.13) take the form

4 exp(-2y)
Kk = du + 5 dx
(2 + exp(-2y)) .

(10.6.16)
o~ dx + idy

Another approach to the determining of a symmetry group of a
CR structure (10.6.13) consists on explicit solving of symmetry

equations
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¥k = fx
X

fa = ha + pk
X

for an unknown vector field X, and functions f, h and p [Nurowski
1987]. This approach is very general and can be used‘ to find
symmétries of any CR structure. However, in some particular cases
it is better to use methods similar to those presented for the
Kerr metric. In particular, the fact that Killing symmetries
generate symmetries of an associated CR structure is almost always
(i.e. apart from some pathological cases) true (for more detailed
discussion see [Lewandowski, Nurowski 1990b}).

To close this section we remark that nowadays many other
twisting solutions of vacuum Einstein equations are known [see
Kramer at al 1980 for an overview]. However, it 1is interesting
that only few of them have applications in physics. Moreover CR
structures corresponding to all known physically iﬁteresting
solutions are equivaleﬂt either to hyperquadric or to a CR
structure of the Kerr metric [Trautman 1991].

7. Example of pure radiation Einstein-Maxwell solution with

a twisting congruence

Many vacuum solutions of Einstein equations with a metric
tensor admitting a congruence of twisting shear-free and null
geodesics can be found by putting

L =P = (m+ iM) =0 (10.7.1)
u u

u
in the equations (10.4.12), (10.4.15) and (10.4.16) [Kramer at al
1980]. As it was shown by I. Robinson and J. Robinson {[Robinson,
Robinson 1969] the vacuum Einstein equations can be reduéed to the
field equation (10.5.4) for non-twisting vacuum solutions with m =
0 and @; = 0 and for an additional equation for L. This additional
equation can be solved for certain cases.

The similar method can be applied in order to find an example
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of a pure radiation solution of Einstein-Maxwell equations
admitting a congruence of twisting, shear-free and null geodesics.
Indeed, if in equations from the Theorem 10.4.1 we put

L =P =(m+ iM) =0 (10.7.2)
u u

u
then the Einstein-Maxwell equations (10.4.7), (10.4.8), (10.4.11),

(10.4.12), (10.4.15), (10.4.16) (10.4.18) reduce to

m + iM = A(E) (10.7.3)
AAINP = 4k 3°%° (10.7.4)
o 2 2
¢2
d|z-| =0 (10.7.5)
M = SAInP + % AS (10.7.6)

where A = A(£) is any holomorphic function in &

A = 2P°%8 5 (10.7.7)
NS
_ 2 38L - 8L
T=p (10.7.8)
8=28_-13 (10.7.9)
¢ u '

Here (10.7.6) corresponds to (10.4.12); (10.7.3) corresponds to
(10.4.15); (10.7.4) corresponds to (10.4.16); and (10.7.5)
corrésponds to (10.4.18). The important fact is that the equations
(10.7l4) and (10.7.5) can be solved independently of (10.7.3) and
(10.7.6). Moreover, these are the same equations as in the case of
pure radiation Einstein-Maxwell solutions admitting nontwisting
congruences of shear-free, null geodesics with m = 0 (see section
X.5b). In section X.5b we gave an explicit example of solution of
the equations (10.7.4) and (10.7.5). This is given by equations
(10.5.12) with

1(u) = const ' (10.7.10)

The restriction (10.7.10) is a consequence of an assumption
(10.7.2). This solution of equations (10.7.4) and (10.7.5) will be
used in the following. However, we can perform more general

considerations.
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Suppose that we have solutions of equations (10.7.4) and
(10.7.5). Then, the only condition we have to impose on functions
L and P is a condition of antiholomorphicity of the function A =
A(T) appearing in (10.7.3). This is equivalent to the condition of
harmonicity of the function M given by (10.7.6) i.e. to the
equation

A(SAlnP + % AZ) = 0 (10.7.11)

This equation is a linear equation for Z, hence a lineap equation
for L (see (10.4.7) for Lu = 0).

éiven a solution to (10.7.4) and (10.7.5) this is the only
equation to solve, in order to find a solution of pure radiation
Einstein-Maxwell equations with twisting and shear-free light
rays. Many solutions can be found assuming the solution (10.5.12)
for (10.7.4) and (10.7.5) [Nurowski, Tafel 1991] and harmonicity

of Z i.e.

T = f(€) + f(&) (10.7.12)

A particular one is given by taking

k(z) = % and 1(u) = const (10.7.13)

in the solution (10.5.12). Then the explicit expressions for a
metric tensor g and electromagnetic field F read (see Theorem

10.4.1 and (10.4.18))

2 2
g =2 _r__+_2_z__ dEdT - 2(du + Ld¢ + Ld¥) x
P . (10.7. 14a)
x [dr + WdZ + WdZ + H(du + LdZ + LdQ)]
3° 8°
F = (du + LdZ + LdZ) A P—2 de + ?E dE (10.7.14b)
where:
P=21 (27 +1b%) R > b = const (10.7.14c)
ZzZ
QO
2 b
Vi 2=-22 (10.7.14d)
o P —3
Z
2 -2
z= a[z + z ] R > a = const (10.7.14e)
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4

L = 2ai[zzz - __Lf’-;_z. - 2b°zln(zz + bz)] (10.7.14f)
zzZ + b
W = 2aiz (10.7. 14g)
M = 2b%a [1- + 1—] m = 2b%ai (1— - L] (10.7.14h)
2 —2 —2 2
A z Z z
2
H=_mC*me D (10.7.141)

2 2 2—2
r+ zZzZ

The solution presented above seems to be the first solution of
Einstein-Maxwell equations with pure radiation electromagnetic
field propagating along twisting congruence of shear-free and null
geodesics. Further solutions can be found in {[Nurowski, Tafel
19911].

8. Kerr theorem

In section X.1 we addressed few questions about relation
between CR structures and gravitational fields. The formalism we
described in section X.4 1is enough to answer for the question
whether vacuum Einstein equations 1imposed on a metric tensor
admitting a congruence of shear-free and null geodesic imply
ggai bility of an associated CR structure. This answer is given by
the following theorem

Theorem 10.8.1

If a metric tensor admits shear-free congruence of null
geodesics and satisfies vacuum Einstein equations then a CR
structure associated with g is realizable.

Proof of this theorem can be found in [Lewandowski at al
1990]. It wuses functions and equations of Theorem 10.4.1 to
construct solutions to the tangential CR equation (9.2.4). Because
of the very technical character of the proof we do not quote it
here.

Instead, we give a more careful answer to another question
posed in Section X.1, namely to the question of lifting of a given

CR structure to the Minkowski space-time.
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As we know from section VII.2 given a CR structure (N, [(k,a)])

such a lifting is defined by constructing a spacetime

M=R xN (10.8. 1a)
and a metric
g = 2(Foa - k) (10.8.1b)
where
Pc A Ao AgzD0, (10.8.1c)

P is any real function, and ¢ is any real one form on M. Here we
require a lifting to a Minkowski space-time i.e. we want to know
when for a given (N, [(k,a)]) we can find such P and ¢ that g given
by (10.8.1b) is the Minkowski metric.

Only a partial answer to this question is known.

A first remark follows from Theorem.10.8.1. This theorem shows
that only realizable CR structures can be lifted to space-times
satisfying vacuum Einstein equations. Therefore a CR structure
which can be 1lifted to the Minkowski space-time has to be
realizable.

Theorem 10.4.1 shows that any spacetimes being of the form
(10.8.1) and satisfying Einstein equations can be transformed to a
form (10.4.1)-(10.4.12). It also shows that forms k and « defining

a CR structure on N can be transformed to

k = du + Ld€ + Ld<C (10.8.2a)
a = d€ .(10.8.2b)
where the function L = L(u,c,f) is subjected to the vacuum

Einstein equations (10.4.12), (10.4.15) and (10.4.16) with @; = 0.
If we want the metric to be Minkowskian we, in addition, wish all
Weyl scalars (10.4.19)-(10.4.22) to vanish. It is easy to see that
all this conditions are equivalent to

m+ iM =0 (10.8.3a)

31 = 0 (10.8.3b)
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a1

i
(@

where

I =3(3InP - L) + (31nP - Eu)z (10.
u

These are equations for m, M, P and L. Using the identity

- 3L +L1°=-38L (10.
u u u

we see that a particular solution of (10.8.3) is

m=M=0 . (10.
P=1 (10.
3L = 0 (10.

(10.

8.3c)

8.3d)

8.5a)
8. 5b)

8.5c)

The only restriction on the CR structure (10.8.2) is hidden in

equation (10.8.5c). Therefore any CR structure (N, [(k,a)])

which forms k and « can be expressed as

k = du + LdC + LdC (10.
a = dg (10.
where L satisfies
L = 0 (10.
with
4 = BE - LBU (10.

for

8. 6a)

8.6Db)

8.6c)

8.6d)

lifts to Minkowski space-time. If (10.8.6c) is satisfied then the

lifting is given by a metric

g = 2(r° + £9)dedT - 2(du + Ld¢ + LdT) x

x [dr + Wd¢ + WdC + H(du + LdZ + LdZ)] (10.
wﬁere
2iz = (3L - 8L) - (10.
W= -L(r+i%) + o (10.
H = -Redl \ (10.
u

8.7a)

8.7b)
8.7¢c)

8.7d)

The Kerr» theorem [Kerr UNPUBLISHED, Tafel 1985] states that CR

structures (10.8.6) are the only ones which can be lifted to the

Minkowski space-time. More formally this reads:
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Theorem 10.8.2 [Kerr UNPUBLISHED]

Any CR structure (N, [(xk,a«)]) which 1lifts to the Minkowski
space-time is equivalent to one of CR structures given by
(10.8.6).

The theorem requires a few comments.

Suppose that we have a CR structure (N, [(k,«)]) defined by

forms
Kk = du + Ld¢ + LdZ (10.8.8a)
o« = dg : (10.8.8b)
s. t.
3L = 0 (10.8.8c)

Does this mean that such a CR structure can not be lifted to
Minkowski space-time? The negative answer to this question is
obtained if we notice, that Kerr Theorem 10.8.2 says, that CR
structure (10.8.8) has only to be equivalent to (10.8.6) in order
to be liftable to Minkowski space-time. Therefore (10.8.8) will
not be liftable to Minkowski space-time if we show thaﬁ neither
possible transformations of forms k and «
k —> fk

o« —> ha + pk

nor possible coordinate transformations transform (10.8.8) to the
desired form (10.8.6). This is usually almost impossible to be
shown in practice. Therefore Kerr theorem does not constitute an
effective algorithm for checking whether a given CR structure
lifts to Minkowski space-time [Lewandowski 1986].

Such an effective algorithm does pot seem to have been
established so far. We believe that in order to obtain it, it is
necessary to apply Cartan invariants of CR structures and find
integrability conditions for Einstein equations in terms of Cartan

invariants. This was the main motivation of introducing
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nonstandard approach to #iie problem described in sections X.1 -
X.3. However, we have nd:been able to realize this programme, so
far. It seems to be quitedifficult one.

A geometrical interpetation of Kerr theorem is worth quqting
[Penrose, Rindler 1986, Tafel 1985]. This can be achieved by
reinterpretation of the zmation (10.8.6c) which is equivalent to

dL A (du +WC + Ldf) A d€ =0 (10.8.9a)

or

dL A d(=+ LE) A dE =0 '(10.8.9b)

This last equation showsthat if L is analytic then L satisfies an
equation

F(L,z+ LE,E) = O, (10.8.10)

where F is an arbitrarg function analytic in the three complex
variables L,u + L§,E.

This allows for a réarmulation of Kerr theorem 10.8.2 to the
following form.

Theorem 10.8.3

Any analytic CR strmture which lifts to Minkowski space~timé
is either degenerate or muivalent to a CR structure with forms

&= du + LdZ + LdC
(10.8.11a)

a = dg
where L satisfies an equiion

F(L,u+ LE,E) =0 (10.8.11b)

for any function F analyfic in the variables L, u + Lg, £.
Equation (10.8.11b) mn alsc be written as

A}

u+I = £(L,Q) (10.8.12a)

where f is an analytic Zmction of the variable L, . This shows
that CR structure (10.8.%} is realizable as a hypersurface

Im[LE-F(L,L)] =0 (10.8.12b)
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in @? with coordinates (€,E,L,f). The twistor theory enables to
show that any such hypersurface can be obtained by the following
construction. Let us take a projective twistor space PT described
in section VIII.3 and its five dimensional real submanifold PFO
given by equation

z(2) =0 (10.8.13)

(see (8.3.12)). The twistor form of the Kerr theorem says that any
analytic shear-free congruence of null geodesics in compactified
Minkowski space corresponds to the intersection N of FFO with a
complex surface of equation
h(zl,zz,z3,z4) =0,

wheré h is holomorphic and homogeneous function of its arguments
[Penrose and Rindler 1986], which are homogeneous coordinates in
PT. The submanifold N of PFO is in one-to-one correspondence with
the hypersurface given by (10.8.12b). This is a 3-dimensional CR
structure. Penrose points out that the freedom in defining N
involves one complex holomorphic function of two variables whereas
a general, realizable CR structure may be defined by an analytic
function of three variables. Therefore mgg; of realizable CR
structures do not 1lift to Minkowski spacetime.

As we have already said no effective procedure is known to
distinguish this majority of realizable CR structures which do not

lift to Minkowski space-time.
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XI.CONCLUSIONS AND OPEN PROBLEMS.

Gravitational fields admitting a congruence of shear-free
and null geodesics (CSNG) have been studied for more than thirty
years. In this work we tried to give an overview of known results
in this matter up to the present date.

We payed a particular attention on still not very well known
relations between space-times with CSNGs and 3-dimensional
CR-structures. In the case of space-times admitting twisting
CSNGs we proposed a new approach. It uses the fact that CR
structures associated with such space-times are nondegenerate and
their invariants distinguish a certain tetrad. One of possible
applications of this fact is a method of comparing whether two
metrics admitting twisting CSNGs are equivalent.

‘The distinguished by CR geometry tetrad was used to express
the Weyl tensor of an associated metric as being invariant under
the gauge transformations of the CR structure. In the future we
are going to extend these considerations. We want to express
Einstein (and Einstein-Maxwell) equations for metrics with
twisting CSNGs to be invariant under gauge transformations of
their CR-structures. The solution to this problem seems to be
easy to achieve. [Lewandowski, Nurowski 1990b, Lewandowski at al
1991a]. Difficulties arise when integrability conditions for
Einstein equations in terms of Cartan in&ariants of the
CR-structures only have to be found. Even in the simplest case of
finding such conditions for the metric to be Minkowskian we have
not Eeen able to give a satisfactory solution, yet. Such solution
would constitute an invariant characterization of the Kerr
theorem and would definitely solve the problem of lifting of a
given CR-structure to the Minkowski space.

An application of the distinguished by the CR geometry

tetrad to construct new Einstein and Einstein-Maxwell fields
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admitting twisting CSNGs seems to be promising. In particular
this new method can be used to study vacuum Einstein equations
for the twisting type N. The class of known solutions in this
case consists only of one—paramgter Hauser’s family of metrics
[Hauser 1974]. Only type D vacuum metrics with twisting CSNGs are
knowﬂ completely [Kinnersley 1969]. Most of known vacuums of
other types either possess high symmetries (if the dimension of a
(conformal)group of motion is grater than 2 all solutions are
known [Kerr, Debney 1970, Lewandowski, Nurowski 1990bl) or are
generated from non-twisting ones by a procedure given in
[Robinson, Robinson 1969; see also a new application of this
method in Section 10.7 of this work]. We believe that in order to
extend known vacuum classes of solutions the standard approach of
Section 10.4 is too weak. Therefore it is worth checking whether
nonstandard approach in which the metric has the form (10.1.8)
gives some new solutions. In [Lewandowski, Nurowski 1990b,
Lewandowski at al 1991a, 1991b] we applied this method obtaining
many new pure radiation solutions. Application to the vacuum case

has not been performed so far.
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XII. APPENDIX. ALGORITHM FOR COMPUTING CARTAN INVARIANTS.

Here we present an algorithm for computing Cartan invariants
for a nondegenerate CR structure (N, [(k, «)]) in the most
important case when the CR structure admits at least one complex

solution to the tangential CR equation (9.2.4) [Cartan 1932].

Suppose that a complex function z 1is a such solution i. e.:
dzakAa = 0 (12.1.1)
In this case we can always achieve
o« = dz (12.1.2a)
de’ = i’ Ad’ + b kK’Ax’ + bk’ Ad’ (12.1.2b)
by means of transformations (9.7.4). Here (12.1.2b) can be
considered a definition of a complex function b.
After this preparations the algorithm is as follows:
1. Given any function f let us define symbols fl, f;, fo by
df = f k" + f o« + fro (12.1.3)
2. Let real functions c and g be defined by
c = b- k (12.1.4a)

g=c:- % c, (12.1.4b)

and complex functions 1, r be defined by

1= c, - bc - Zib0 (12.1. 4c)
r = % (T,- 2b1) (12.1.4d)
3. Let us compute forms
w_ = -ba’ + ! cK’
2 4
i , 1 =,
w = - co + = 1k (12.1.5)
3 4 6
1+4ib_ T—41€O a4 a2 1o
w, = -1 —5  + i + [Zg ¢t + = (bbc+bl+bl-g) Ik

Ql =f (¢ + ha’)

Q, = dlogf + w, - 2iha’ - iha’ + (p - gihﬁ)n’
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[dh + v, + ho_ + (p+%hH)a’ + ke + h(p+%hE)K’]

Q = 1
f
1 1oy o . I 1=
- [ dp + E(hdh hdh) + w, 1hw3 + 1hw3 + (p+2hh)w2 +
ff
+ (p2+%h252)x’]

+ (p—%hﬂ)az - iH(p+%hE)a’ + ih(p—-hh)a’

and function R of (9.7.7d) is given by
r

R =1

5

r =20

then forms Q and 91 satisfying (9.7.21) are given by (9.7.30).

6. If
r #0

then Cartan invariant forms §, Ql, Qz’ 93, Q4
(9.7.21)) are given by the forms of Point 4.

(9.7.20),
algorithm with functions f, h, p defined as follows:

(satisfying
of this

=1 Ty- - 3B
h 1 (logrr)1 ib

1 —
-3 (logrr)O

1]

p

where r and b are defined by (12.1.4).
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