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INTRODUCTION

In this work , we study invariance and existence of periodic solutions for the
first order differential system X = f(t,x) , with f continuous .

By a flow-invariant (or positively invariant) set , for such a system ,we mean
a set for which every solution of the system , with initial value on the set , re-
mains on it for all future time .

Sometimes , when there is not uniqueness for Cauchy problems of the system ,
we can guarantee the existence of one solution , for each initial value on the set,
remainig on it ,for all the future time . This is the concept of weak flow-invariance.
Nagumo®s classical theorem (1942) is , essentially , a caracterization of such a set .
Nevertheless for the apb]ications, these concepts are not enough . For instance , if
our system means a dynamic of populations for which one wants persistence of the
species . So, we’11 also give other concepts for invariance .

Another application of flow-invariance is on the research of periodic solutions
for X = f(t,x) when f depends in a periodic manner on the time t ,kIf one finds a
flow-invariant set , with the fixed point property ( for instance if it is homeomorphic
to a retract of a closed ball in Rm) , One can éxpect to find a periodic solution on
this set. |

From the point of view of the applications , it’s of particular interest the re-
search of positive periodic solutions . This can be done reqdiring Hypothésis giving
positive invariance for the positive cone of R" , !RT = X(x],..,xm)emm | xiz,o for

i=1,..,m }, and applying a fixed point theorem on the cone.

This thesis is divided intefive sections . We begin section 1 with Nagumo’s theo-
rem, for relatively closed sets , and some original geometric interpretations based
on several kinds of tangent cones (the contingent cone, the Dubovickii-Miljutin cone,
the C]afke’s cone and the Bony’s cone) . In section 2 , we study the concepts of weak
f1ow—inVariance and of flow-invariance , with several abstract theorems , giving spe-
cial attention to the flow-invariance for open sets. In section 3, we analyse concepts
of strong flow-invariance and pérsistence, giving several examples and quoting recent
results in [18] , which solves a question raised by Gard in [ 24] , about the possibi-
Tity to obtain an anlogue of Bony’s theorem , for compaét strongly f1ow-invar1ant sets.

In the last section’, we use the theory of flow-invariant sets and combine it with the =

fixed-point index theory to get existence theorems, for - periodic solutions in the posi-

tive cone of R™ , which generalize some results contained in [ 23] and [47] .



For all this thesis we' 11 consider several concepts of invariance and their
relationships, for a differential equation of the type
(0.1) X=f(t,x)
where f:JxQ—élRm is a continuous function, 2 is an open set in R™ and J is a non
degenerate real interval, with a=inf J and b=sup J (eventually not real numbers).

By a solution of (0.1) in a non degenerate subintervall , of J,we mean a con-
tinuously differentiable function x:I-»R"such that &(t)=f(t,x(t)) for every tel.

A subset M of IR is said to be flow-invariant (or positively invariant) for
(0.1), if each solution of (0.1),with initial value in M, remains in M in the fu-
ture. In an analogous way, one can define negative invariance, if we deal with the
past time, instead of the future time. We note that results for negative invarian-
ce,respect to equation (0.1), can be obtained by studying positive invariance res-
pect to equation X=-f(-t,x) , because if x(t) is a solution for one of the two
equations,x(-t) is a solution for the other one.

By an invariant set we mean a set which is both positively and negatively in-
variant.

So, from now on, we just study flow-invariance.

For a subset Mcq ,we denote intgM, clgM and fryM,respectively the interior,the
the closure and the boundary of M respect toq . If a=R" , we’ 11 simply write int M,
cl Mand fr M.

1. Weak flow-invariance and tangent cones.

Let R_= xR | x<0} . For each (ty>%) )€R*R_. ,there exists a solution of x= /| ,
with initial condition x(to):x0 » remaining in IR_ for all future time. In fact, Tet
y(.) be a solution of i=¢??ﬁ with y(g))=§), and for which there exists vrzib such
that y(t*)=0. Taking t=min { te [t , 9| y(t)=0;,
y(t) T <t\<t]

w(t )= is a solution of >'<=,/]7‘|’1‘n [‘to , +9) ,with w(to )=xo
0 .t t-l

and w(t)eR_ ,for every t» t -

However, for some initial conditions there can exist solutions of x= /x| that
don’t remain in R.. For instance, if Q)=O=% and x(t)=t%4 , for t> 0.

This example shows a weak concept of  flow-invariance.



efinition 1.1 Mc @ s said to be a weakly flow-invariant (or positively

reakly invariant) set for (0.1) if for each (to,xo)eJxM , there is a solution x(.),
f (0.1) , with initial condition x(to)=xO and such that x(t)eM ,for every t in
che right maximal interval of existence of x(.) .

From the definition , it is cTear that it is sufficient to check the weak flow-

-invariance for t0‘<b=sup J .

With the preceding example , we showed that IR_ is weakly flow-invariant for
=V [x].

For some properties of weakly flow-invariant sets we recall the following theo-
-em in  [29] | |

heorem 1.2 Suppose J is open and let fn converge uniformly to f , on compact subsets
f JxQ, where fn:JxQ —R" are continuous functions. Let, for each neN, Xn(') be a

;olution of the Cauchy problem ,x=fn(t,x) with x(tn)=xn0 swhere (tno,xno)edxﬂ conver-

jes to (to,xo)EJ%Q . Then, there exists x(.), a solution of (0.1), with x(to)=x0 .Mo-
‘eover, being (wn_,wn+) the maximal interval of existence of xn(.), for each neN ,
ind (w_,wy) the maximal interval of existence of x(.) ,there exists a sequence of po-
iitive integers n, <n2<... with the property that, if w_(t]<t2(w+ , then

1,.,2 .
S <Lwnk+ , for k large , and xnk(.) converges to x(.) uniformly on
[t],tzj . In particular, 1im sup o . {w- Cwy LTim inf w4

The following theorem shows that, if a set is weakly flow-invariant for appro-
(imating equations, then its closure is weakly flow-invariant .

"heorem 1.3 Let f converge uniformly to f on compact subsets of Jxq, where
n.J$Q-aIR are cont1nuous functions . Then, if for each nelN, M is weak1y f]ow inva-

“iant for i=fn(t,x), c1QM is * weakly flow-invariant.

roof: Assume first that J=[a,b).In order to apply theorem 1.2, define ?3(-m%b)x9—+ Rm
4 f(t,x) , agt<b , xen

'¥(t X)= and for each neN, ?;:(-a%b)xﬂ—»WRm
fla,x) , t¢a , xQ
Y _ fnﬂmx) , a{tdb , xeq
o (tsx)= . As f_ converges uniformly to f on
fn(a,x) , tLa , xep



compact subsets of Jx@, f converges uniformly to f on compact subsets of (- eoe,b)xq

Take (to,xg)e ch] oM. Let x,,€M be such that X no =X o - By the weak flow-
-invariance of M, respect to x=F  (t,x),for each nelN there exists X -)>solution
of X=f _(t,x) with x n (tg)=x,, and such that x o (LEM, for all t> vt in its right
maximal 1nterva] of ex1stence As x,(.) is also a solution of X=f (t,x), let ?140)
be an extension of xr](.), as a so]ut1on of x=fr](t,x), over a max1ma] interval of
existence, ((%_ ,u%; ). We observe that [to >yt )< J, so that [t(y wn+) is the
right maximal interval of existencs’of xn (.). N

Applying THeorem 1.2 to f » T and (-eo,b), there exists x(.) a solution of
x=F(t,x) with X t() =X, Moreover, being ( ., y4) its maximal interval of existence,
put x(.)=% | &0, u)1|_). x(.) is a solution of X=Ff(t,x) with x to) X and right maximal
interval of existence [ty w,).Being te [ty » w4 choose tle( _,t ). Then, by
theorem 1.2, there exists xn subsequence of xn, converging uniformly to X in [ﬂ q
so that Maxnk (t)=§<“lnk (t) = X(t)=x(t) , and x(t) (c1 M) q=cl oM.

So, x(.) is the desired solution.

If J=(a,5} we extend f to (a,+e) by '? (t,x)=f(b,x) for t>b and xe Q; if J=
=[a,b ], we take f(t,x)=f(a,x) for t<a ,and f(t,x)=f(b,x) for t>b , proceeding in
a similar way. If J=(a,b), we just apply theorem 1.2.

O

As a consequence, we have that the closure of a weakly flow-invariant set is
also a weakly flow-invariant set. That is:

Corollary 1.4 If MCIRnlis weakly flow-invariant for (0.1), so it is cl gM.

Proof: Take, in theorem 1.3, f =f , for all neN.
n

]

For relatively closed sets, the next theorem gives a caracterization of weak
flow-invariance.

Theorem 1.5 Let Mc© be a closed set relative togq. Then, M is a weakly flow-inva-
riant set for (0.1) if, and only if,

(1.1) for each (tO X JE(d{b})xM, there exist T>0 and x(.),a solution of
0.1) in [t ,t +T ], with x(t )=x and such that x(t)eM, for tet ,t +T1].
( ) [ 0 o ] 1 ( 0 ) xo (t) [ 0 o ]



Proof: The necessary condition is obvious. For the sufficient one, fix (to,x in

d {b} )xM, and define

o)

9f:=§(x;I) | 1 is a non degenerate real subinterval of J, with tO€I, and x

is a solution of (0.1) in I, with x(t,)=x, and such that x(t)eM,
Vtel}

By condition (1.1),?#7;5. Define, on f,"g " by

. * 7% * *  _
(x,I)<(x I7)e&1C 1™ and x B =X
"¢ " is a reflexive and transitive relation.
Let $#c= { (%35 ) JocA} be a chain in 7 (that is, if |
_ (x‘a;lq),(xB;I B)(—:C, then (xgla)d (xglg) or (xgil B)é(x'a;h) ). Take I=

=L€}A1a and x:I—R™ defined by x(t)=x (t), if tel . As C is a chain, x is a map
Q
and (x;I) is really a supremum of C in 7.

Applying Zorn's lemma, let (X;I) be a maximal element inF. call T=sup 1. If
Tel, 'i(?)eM. By condition (1.1) there would be T»0 and z(.), solution of (0.1) in
[T,74T 7 such that z(T)=X(T) and z(t)eM, Ytel T,7+T ] .Define w:T UF,T+T) —Rm by

X(t) , tel
~d e~~~ ~ ~ o~
w(t)= . Then, (w;IU»[T,T+T} )e’;(' and (w;IU[T,T+T] )7
z(t) , te[T,T+T ]

'(')?;nf), which is a contradiction with the fact that (7(;?) is a maximal element in %.

S0,T¢1.

If ’fﬂ[to,+w) would not be the rigth maximal interval of existence of X, ?
would belong to this right interval. So, ')Z('f)e{z and, as M is a closed set in
and T=sup T, X(T)=Tim X(t)e(cl MN a=M.But, because (X;1) is a maximal element in
7”,~T€’Iv, which is impossible, as observed before.

So, X is the desired solution.

O

The next result is essentially the classical theorem of Nagumo. See a]so[sf_[
and [16] .An analogous result,for multifunctions, can be found in [5].

By a locally closed set in IRm we mean a subset F of IRm, such that for each
X EFthere exists r>0 for which FAB[xq,r] s a closed set in R™ ,being B[xy,r]
the closed ballin R" .with center xo and radius. We denote by B(xg,,r) the corres-

i



ponding open ball. _ ,
Observe that a closed set relative to 2, FeQ ,is a Tocally closed set in R™ .

In fact, if x,eFco ,asQ is an open set,choose r>0 small enough so that

B @(),ﬂ cfQ . Then, FNB &0 1 =(cl F)0'a \B [ ,r] , which is a closed set ianm
For g+ACR™ , we denote d(x,A)= 1nf Ix- ﬂ , where | . | is the euclidean norm

of R

Theorem 1.6 Let ¢#Mcq be a locally closed set in R™ . Then, condition (1.1) is
equivalent to

- (1.2) for each toe\{b} and XEMOFro M, Tim inf d(xgthf(toXe ),M)
h—0"
h

=0 .

Remark: We observe that condition (1.2) is also equivalent to condition

(1.3) for each toe\{b} and xgeM, Tim inf d(xorhf(to,xo),M)

=0 .
h—0+ h

In fact ,if xoeM\erM for all h small enought, x +hf O,xo)eM

the result
Proof: It's enought to prove in the autonomous case, that is, when f doesn’ t

depend on t. In fact, M™JxM is Tocally closed in Rm+] . If J is open, takesz =
J=<@ and, if J=[a,b) (resn. (a,bjor [a,b] ), take o*:=(-oob)xq (resp. (a,+e0)xq
or R<Q) . Put g:n* IRm+ with g(y):=(1,F(y)), where F:o*5R" is defined as in
theorem 1.3 . Then apply the theorem to the autonomous case , as for
(to>Xo)eM* and h small enough d((t 0% )+hg( O),M*)=d(x0+hf(to,xo),M).

So,considerthe autonomous case and take f( x)=f(t,x) for all xe @ and ted.

For (1.7) implies (1.2), we observe that,if t €N b} and Xg eMN fr M, being
x(.) a solution of x=f(x ), with x(t0)=x0 and x(t)eM, for all t in some interval
[t .t +T] , with T20, we have X(ty+h)=x +hX(t,)+0(h)=x +hf(x,)+o(h), for hel0,T].
So that d(xo+hf(xg),M) <]><o+hf(x0)-x(to+h)l lo(h)l . And we have (1.2).

h h h

Let us see that (1.2) implies (1.1).

Fix (tg.xg)€JxM. As M is a locally closed set, let r»0 be such that kg:=
=Mf\B[xO,f] is a closed set in R"

For each kelN and yeM, define N(y):=$xeRm ! d(x+hyf(y),M)<‘Ex_" where, by con-

4k

-7-



dition (1.2), hy is chosen 9in such a way that O<hy<1/k and d(y+hyf(y),M) 1

<

4k
hy

As for every yeM, yeN(y), which is an open set in R™ ,there exists n_ e (0,1/k)

small enough , such that B(y, ny)CN(y) and, if z,wek, are such that | z-w| 4

9

\f(z)—f(w) |<_1_~ » attending to the uniformbcontinuity of f in the compact set ki .
N .
2k

i €
As kOcM an koc:yaKoB(y, ny), from the compactness of k, there exist VAREREVA Ko
h that K <V B(y., .
suc ) 3=1 (,YJ nyj)
Let 11 h.=h d n.= » for je {1,..,q.
et us call h; Y, and n, nyj roj { q}
So, if xekg, there exists je {1,--,q) such that XeB(Y nj)‘CN(YJ.) and then

h. .
F(y.), . s € Fly.)-x.| ¢
d(x+th(yJ) M)< J Therefore, there is X3 M such that lx+th(yJ) le

4k
h h Xy7X | o X57X ¢
d(x+h.f(y;),M) . 73 , 3 . Take wu.:= .Then, | f(y.)-u.l = |[f(y.)- &
N +‘4k <2k J h. N iy
J J
< _;I . But, as xeB(yj, nJ.), by construction of njo If(yj)—f(x)f é—# . Therefore,

ujeB [f(x),1/k] . We have also x+hjuj=xjeM.

Let h (k):=min h.> 0
0 J
1{j4q
We proved that, for every xek ., there exist he Lho(k),1/k] and ueB [f(x),1/k]
such that x+hueM.

Put M:=max lf(x)i and T:= '
xeK 1+M

As Xo 1= X €K, there exist ho (& [ho(k)>1/7k]  and Ug €8 [f(xo),1/g} such
that x

1,k ™0, k™o, kY0 kM -

TR ST = I % T g C g (o Fxo) | FOxD | )Ly (1/k) €

{T(1+M)=r . And then x]’keMﬂB [xo',r] =K, -

In this case (X],kEKO) » there exist h1,k€ [ho(k)J/k] and u],keB [f(x],k)J/k]

such that X2,k:= x]’k +h1,k u]’k eM .

If ho,k + h]’kQT, we have X2,k€Ko . And so on .

We observe that, for 1/k<T, as hn, k> ho(K)> 0, there exists m(keW ~such that

-8-




ho,k +h1,k +"'+hm(k),k<T <ho,k +h1,k +"'+hm(k)+1,k

Then, Xm(k)+],k EKO and Xm(k)+2,kc"4 .

0 P, .
Put 3 :=t =~ and 3o := to+ho,k+"'+hp—1,k , for 1{pgm(k)+2

Define for kelN, with 1/k T ,and te {to, to+T] s

p-1

‘ . p-1 P
xk(t):.—. Xp-],k +(t—zk ) u Tk if te [ak , —ékJ .

p"a

Xy is a continuous function on [to ,to +T] ;

One can easly check that | xk(s)-xk(t)] £ (s-t)(1+M) ,for every s,te [to,t0+T]
. . . . m
such that s>t . So that, {xk}k 1s an equicontinuous set in (( [ty t,tT] R )

the space of continuous functions from [to,t0+TJ into R™ . If te [ZE-]’ EE] ]

Ix, (t) <|%4*1+rb4*|%4*[<m+wunmghmm , where M, :=

=max | x| . So that, {x} is also equibounded .
xeK kk
0
By Ascoli-Arzela, if necessary passing to a subsequence, we may assume that Xpe
converges uniformly to some continuous function, X(.), in [to,to+T]
Let us see that x(t)eM, for every te [to,tO+T] > and that x(.) is a solution
of X=f(x), satisfying x(t )=x_ .
' o0 _ ) Lomkgez g
Fix te[to, tO+T] . For each kelN ,with 1/k {T , Lto, tO+TJ - bJ:'I [Zk > Zkl
; . -1
So, exists peiN, with 1< p ¢m(k)+2 , such that te [EEK ,EEk] , and | xpk’k-x(t)l <
glxpk’k-xk(t)l + lxk(t)—x(t)l 4 (@Ek -t) lupk—1,k| + lxk—x loo £
L/k(1+M) + ka-x Iw » where | . | denotes the uniform convergence norm on [to,to+T.
50, ka,k—) X(t) . As ka k&Ko » for kelN such that 1/kT , and K, 1s closed in R,

x(t)€K0c:M .

To see that x(.) is a solution of >'<=f(x) » define, for every kelN, with 1/k&T,
. -1
and te [to,to+T:| » g*(t):=f(x(t)) and gk(t):-—-f(xp_]’k) if te [EE ,EE] .



Tk
g, converges uniformly to g* on [t t +T and j¥ g ~>J(

g* , where

te [2P7, 2 Pk | nk,. ¢t +T] for every kell, with 1/k<T .

Py - .
As xpk,k —~x(t) ,as te [@ k™ s k-J I\ [toa tO+T] , for every kelN with 1/k 4T,

proving that pk, J/ Syl ( T+1  and passing to the Timit as k— +o°0, we' 11
(—

k t
have x(t) =X, :éo g* =0 .That is x(t)= x +Jzof(x(z )) de , for all te [to’to +T] .

0
So x(.) is a solution of Xx= f(x) with X(to)zxo

Therefore , theorems 1.5 and 1.6 ,imply the following criterion on weak flow-
-invariance, for relatively closed sets ([40] and [51] ) .

Theorem 1.7 Let ¢p+#McQ be a closed set relative toq . Then, M is weakly flow-in-
variant for (0.1) if, and only if,

for each toeJ\\b} and X efroM , Tim inf d(x  +h f(t .x,),M)

h—>0" - =0

We give a geometrical meaning to the tangential condition (1.2), using the
Bou]igand’s contingent cone , which derives from a concept of a contingent set
introduced by Bouligand in the 1930’s.

In order to give equivalent formulations to theorem 1.7 , we introduce other
tangent cones , like those of Bony ('[40] ) » Dubovickii-Miljutin ( [26 ] ) and
Clarke ( [15], [46]) . For a discussion of the main properties of all these cones,
see, for instance, [43]

Let F be a subset of Rm and xeRm

We define T(F,x) , the contingent cone to F at x (or tangent cone, in the sense

of Bouligand to F at x ) , by

T(F,x):= veR™ | Tim inf d(x+h v,F)

h—s0" h =0

-10-




Condition (1.2) can , then, be reformulated as
(1.2") for each toedy { b} and xo€MOFfr M, f(tg,xg)eT(M,x,)

Remark that, if x¢cl F , T(F,x)=¢>. And, if xeint F, T(F,x)= Rm

TD(F,x), the tangent cone, in the sense of Dubovickii-Miljutin, to F at x, is

defined by

To(Fsx)={ weR"|  Tim  d(x+hv,F) _,
D h-»07 h }

By T.(F,x) , the tangent cone, in the sense of Clarke, to F at x, we mean

TC(F,x)= {velRm] Tim sup d(y+hv,F)-d(y,F) go}

h—0" h
y—-)X

To define the Bony's tangent cone, we introduce the concept of outer normal in

the sense of Bony ([ 7] ,[43] ,[45])

Definition 1.8 If xecl F,veR™ is said to be an outer normal ;in the sense of Bony ,
to Fatx , if v 0 and FOB(x+v,| v|) =¢.

Observe that, ifv is an outer norma], so is Av for Ae(0,1] . And, if F is a convex

set, the same is true, for all > 0.

Remark: we point out that outer norma]s in the sense of Bony at a point x are not ne-
cessarily unique. And, in the case of a convex set F, outward normals are Bony s outer
normals (see page 23),

211-



For xecl F, we define TB(F,X), the tangent cone, in the sense of Bony, to F at

,by
Tg(F,x) = { R | (V] v € O}, for every v, outer normal in the sense of

Bony, to F at x } ,
here (.| .) means the canonical inner product of RT .

We have the following relations among the cones:

roposition 1.9 Let xecl F. Then, TC(F,x)C:TD(F,x)c:T(F,x)c:TB(F,x) .

roof: Let veTC(F,X)- Tim sup  d(x+hv,F) Tim sup  d{x+hv,F)-d(x,F) <
h-»0" ﬁ h->0% h h

Tim sup  d(y+hv,F)-d(y.F) .o . And, as 01im inf  d(x+hv,F)

3

h—>0+ h h h=0" h
y—»x
ms §£§i%!z§l = 0,that is , veTp(F.x) .

By the definitions, TD(F,x)c:T(F,x) .

Let veT(F x). If v is a Bony's outer norma] to Fat x and hy» , vl €
d(x+ v,F) | v-hv | + d(x+hv oF). Therefore, | v | (] v-hv |+ d x+hv F))?
2
| v[ +h | v l -2h(v| v)+d(x+hv, F) + 2| v-hv | d(xthv,F) . So ,

2
¢ho v |7=2(v] v), d(x+hv,F)  d(x+hv,F) L2 | v-hv | d(x+hv,F)  passing to the
h h
im inf as h—=0% | (v| v)¢0. As v was arbitrary, veTB(F,x).

Then , T(F,x)c:TB(F, X) .
o

emarks: We observe that all these cones are closed cones (that is, they are closed ,

n Rm, and for every A >0 and v in the tangent cone, Av belongs to this cone).

To(F,x) and 'TB(F,x) are convex cones, but T(F,x) and Tp(F,x) are not ne-
essarily convex, as shown in the example below. The same example shows that all these
ones can be different among them. However, if F is a closed and convex set, they coin—
dide ([46])

There are some caracterizations of these cones. For instance, for the contingent

.one (see [5],[46]),
-12-




T(F,x)={v\ism| Elhn—»O+ .:,l(yn)ncF: Yp~X
h

n

= ﬂ ﬂ U F-x +B(Oa€)) H]
0M0 5 hor h

and, for the C1arke’s cone (see [46] ,[43])

TC(F,x)={V€tR”’| .th.ao+ Vixp)pecl o J(yp)cF @ _Yn~n
X, =X hn

-n v N F- .
e¥0 A0 yeFNB(x,s) =+ 80 e)) -
§50 0<¢h <A
Example: Take in K, Fe ([-1,01= [-1, 1] (Lo, 11,01 )y
U (u [ 0,—
nENO { 20 } 2 J

and x= (0,0) . "
7
" /// o
2
We have: TB(F,O)= R

T(F,0)= {(x1,x2)em2 | x7<0 or X2<Ixﬂ}
TD(F50)={ (X],Xg)ele | ;€0 or x, QOJ

{0} (-eeu0]

T.(F,0)

The next theorem allows the equivalent formulations for Nagumo's theorem, with
the different cones.

-13-



We give the following lemma ( [16] ), for the sake of completness:

cemma 1.10 Let F be a Tocally closed set in RM and g:F—R™ a continuous function.
[f, for each xeF, g(x)eTB(F,x), then for each K<F compact in Rm’

Tim  sup d(x+hg(x),F) y_
h=>0% * xek h l

'roof: Fix KCF compact. As F is locally closed, there exists a compact set Kg=>K

uch that KOF\F is a compact set. Therefore, there is hg?> O such that, for 0<hgh,

nd xeK, d(x+hg(x),F) = d(x+hg(x),KoNF).

For >0, put Y(r) = SUp{ | 9(2)-9(y)| | z,yeKoNF and |z-y | 1)
Set L = max g(x) |
xeKOﬂ F

Fix xeK and, for 0<T<hy, Tlet y,:= x+2g(x). As KN F is closed in RM,
here exists x eK,OF such that | Yz ~Xg | = d(y4 sFNKy) = d(y4 5F).

Define £, in [ 0,h 1o by £(3) = d(y5 ,F)? . Then, for 0¢s<% <hy,

2
Fle)-f(s) C g =xa | -] ¥s57%g 12 |y -l 2 | 2

) lys'xs

= Y2 Vsl %42 (yg -vs) [lygxg) -

=(2-5)% g(x) 1% 2 (z-5)la(xs) |(ys~*))+ 2(7 ~s){(a(x)=a(xs))| (¥s~¥s)<
2 2
\<~( %-s)" L% + 2(@"5)(9()(5\! (yS'Xs)\'*' 2(% -s) ¥( IX'XS] W of(s) .
As Yo-xg s a Bony's outer normal to F at xg and Q(XS)€TB(FsXS),
(xs) ] (b’s-Xs)KO
| x-xs| |x-yS [+ ye=x1 €2 [x-yg| - 95 Ig(x)l ¢ 2L . So, as y is increasing,

(O ]x=x] )¢ v(2sL). Therefore,

4 HB)-f(s) ¢ (2-s) P+ 2 v(2sL) /5)

%-S

-14-
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Let he(0,h ] - As /(%) = d(x+%g(x),F) ,/F is lipschitz on [0,h] . The-

refore, ¥ f and f are absolutely continuous on [ 0,h] . So, there exist f' () and
(VF)' () almost everywhere in [ 0,h]
If 0{®&<{sgh, by (1.4), as Y 1is increasing, we have

2
f(z )-f(s) Q(Z—s) L™ + 2 ¥(2nL) /F(s) .
-5
Passing to the limit as st% , where f'( ) exists, it satisfies

f1(z) €2 ¥(2hL)/F(% ) . Therefore, for te [ 0,h), where it exists,
(/B (3)< Y(2hL) . As /F is absolutely continuous on [0,h] ,it follows that

A(h) ¢ Y(2hL) h . So, for every he(0,hgY , d(x+hg(x),F) ¢ Y(zn) .
h

As x was arbitrarly chosen on K, we have also, for every he(O,hO],

0 £sup d(x+hg(x),F),< v(2hL) . But, by the uniform continuity of g on the compact
xeK h = '

set k., N F, Tim ¥ {(r)=0 . So, lim sup  d(x+hg(x),F) \_
0 r-=0 h—-)0+(xeK ( El( ) )\_0 °

(]

Theorem 1.11 Let F be a Tocally closed set in Rm and g;F_;Rm be a continuous function.

Then,the following conditions are equivalent:

(a) meﬂfrF g(x)eT(F,x)
(b) ¥xeFNfr F g(x)eTp(F,x)
(c) WxeFNfr F o g(x)eT(F,x)
(d) ¥YxeFNfrF  g(x)eTg(F,x) .

. . m
B:e_nﬁr_ki. For XG_'lnt F, R™ = TC(F,X) = TD(F’X) = T(F,X) = TB(F’X) _So, we could also

substitute FNFfr F by F .

In [43] , theorem 3.9 , Penot proved that the same theorem holds for f:F—E
continuous ,where F is a subset of a stfong1y smooth Banach space E,and F is locally
closed and proximinal at each point xéF. We note that Penot assumptions on F and E
are always satisfied, whenever E= R™ (yith the euclidean norm) and Fcgo , with
an open set in R, is a closed set relative to q . |

-15-



roof: By proposition 1.9, (a) = (b)=>(c) =(d) . So, we have only to see (d)=) (a).
Fix xg€FNfr F and €>0. As F is Tocally closed in R and g is continuous at

o » there exists 650 such that FNB [xo,ﬂ is closed and, for zeFNB [xo,(s] s

9(Z>'9(Xo)! (/2 .
For yeB[xqy, 6 /2], let z

yEF be such that |y—zyl = d(y,FNB [x,,68 ] )= d(y.F).

As (d) implies that k/xeF g(x)eT(F,x) , by Temma 1.70 , applied to the compact
et FNB [Xo’ § ] , there exists hoy O such that, for he(0,h)),

up d(x+hg(x),F) C_E
eFNB [ Xy ] h I

So, if yeB[x,,8/2] and he0,hy) ,

(y+hg(x,),F)-d(y,F) ‘ d(zy+h9(xo)sF) + y—zyl - d(y,F) ) d(zy+hg(xo),F) .
h A h h
d(zy+hg(zy),F)
+ | a(z,)-9(xg) | { =+ E—=F 7
< h | olzym8Xe) | € ST
s lzy-xo| 4 |Zy-YI+|Y-XOK 2|y—xJ {$
As € >0 was arbitrary, Tim sup d(y+hg(x,),F) - d(y,F) <o _ That is,
h—»0+ h
y—>Xo
(XO)QTC(F,X) .
O

Combining theorem 1.7 with theorem 1.11 ,we get:

orollary 1.12 Let @#Mc® be a closed set relative to @ .Then, the following con-
itions are equivalent:

(1) M is weakly flow-invariant for (0.7) .
(2) Yted VWxefroM — f(t,x)eT(F,x)
(3) VYted Vxefr_QM £(t,x)€Tp(F,x)
(4) Veed VxefrgM  f(t,)€T(F,x)

(5) VYted VxefroMm  f(t,x)eT (F.x) .

B
-16-



Proof: Observe that as Mcq is closed relative to @ , M is locally closed in R"
and fr QM = Mnfr M. Apply theorem 1.7 for (1)& (4) and,for each teJ apply theo-

rem 1.11 to g = f(t,-) Il

This corollary also shows that Crandall (1972), Hartman (1972), Martin (1973)
and Yorke (1967) rediscovered Nagumo’s theorem (1942). Also Brézis (1970), Bony (1969)
and Redheffer (1972) formulated it , in the particular case of f lipschitz.

2. weak flow-invariance and flow-invariance.

We have already seen in section 1, that R_ is not flow-invariant for x =/ |x| ,

but it is weakly flow-invariant . However, for special differential equations, both
concepts coincide. In fact,

Definition 2.1 M<R" is said to be a flow-invariant (or positively invariant) set
for (0.1) if, for each (tg>Xp)€ JxM, each solution x(.) of (0.1), with initial con-
dition x(ty) = Xxo » is such that x(t) eM , for every t in the right maximal interval

of existence of x(.) .

Obviously, if f satisfies uniqueness for solutions of Cauchy problems, for (0. 1)
a set is flow-invariant if and only if it is weak]y flow-invariant.

From the above definition, some easy properties can be derived at once:
the intersection and the union of flow-invariant sets is flow- fnvarant
a set is flow- invariant if and only if its complementary is negat1ve1y invariant
(see [6] , [49] and [51] ).

Remark that the closure of a flow-invariant set need not be f]ow_invariant as well
as its interior . ‘ |

In the previous example, B_\{ O} the interior of,R_ﬁs not flow-invariant for k=¢7§1
In fact, for the initial condition x(0) = -1/4 ,

is a solution of X = Y| x| .

-17-



We are particulary interested in results of flow-invariance for open sets .
Indeed, the concepts of strong flow-invariance, persistence and uniform persistence,
that we shall present in the next sections, require that the interior of a set will

be flow-invariant.

If V: 9= R 1dis a scalar function, we denote by vV the gradient of V (whe-
rever it is defined)'and, for ceR [vic = | xe @ | v x)§ ¢ } . The sets [V=c| and
[Vyc ] are defined in an analogous way.
We observe that, for V continuous, fr o, [V¢c ] & [V=c] , but the inclusion
cannot be reversed. For instance, if V: R—= R is defined by V(x) = x2(x+1)(x-1) R
[v¢o]=1[-1,1] and fro Vg0 ] = {-1,1] ﬂ-],o,]} = [v=0]
It is easly seen that fr ol Vgc] fr [ V<c]=[v=c] , if V is of class C
and vV(x) #0 on [V=c] (that is, if c is a regular value for V).

1

For open sets, we have the following theorem:

Theorem 2. 2 Let G be an open set 1in R such that, for each Uefr G, there exists

a continuous function V :o->R such that V ( ) =0 and G ) fV <0 ].
Xeﬂ‘Q G

Assume

(2.1) for each uefr, G and ted, there exists e 20 such that Vu is C]

on GNB(u, €) and (f(s,y) | vV, (¥))g0 , for every sed with
t- e¢s ¢t and yeGNB(u, e).

Then, G is a flow-invariant set and c]Q G is a weakly flow-invariant set,
for (0.1).

Proof: By contradiction, suppose that there is (to,x e(J\\b} xGcd*Q  such that
there exist a solution x(.) of (0.1), with x(to) = Xgs and b>t> to verifying
x(T)4G6.

Let t; = min {te[to,t] l x(t)qt:e} . Then, t;> t, » x(t;)¢G and x(t)eG ,
for every te [to’t1) . Put U= x(t]) . So, Uefrs2 G . Defining v(t) = Va(x(t)) R
we have v(t1) = Va(x(t])) = VU(U) = 0. Moreover, v is continuous on L to,t1] with

v(t) =Vo(x(t)) <0 , for te [t ,t)) ,as x(t)eec N [v <o].
u ° Ueer ¢
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By condition (2.1) , Tet € >0 be such that (f(s,y)l Vvu(y))<(3 ,for every
sed , with 1Qfg<&<§% , and yeGNB(U,e ). As x(.) is continuous at t] ,there exists
§>0 such that ¢ (nﬁn(t]—to,e ) and, for té(t]-é ,t]) , x(t)eB(u,e ) .
Then, v(.) is continuously differentiable on (t1—5 ,t])c: [to’t]) and
vI(t) = (7 V=(x(t)) f‘i(t))

V(t]"ﬁ ) = VU(X(’C]-S )) <0

(Htm(ﬂ)!vVUU(U))QO,fmﬂ ti-s ¢t <ty . Since

v(t]) » We have a contradiction .

So, G is a flow-invariant set for (0.1).
To conclude, as G is, in particular, a weakly flow-invariant set for (0.1),
apply corollary 1.4 .

In particular, for sets of the type [ V(e ] , we have:

1 function and let ceR .Assume

Corollary 2.3 Let V:ig > R beacC

(2.2) for each xe [V=c ] » there exists an €>0 such that
(f(t,y) | vW(y))4 O , for every teéJ and ye[V<c]ﬂ B(x,€ ).

Then, [ V<c ] is flow-invariant for (0.1) .

Proof: Take W:= -c+V and let G:=[\/<c] =['w<(ﬂ,. Putting Vu:= W,for all
uefrQ G = er [V<(c] < [V=c ] , condition (2.2) implies (2.1). Apply, then, theo-

rem 2.2 .
|

Observe that cl G c Vg c] , not necessarily equal.

We point out that with the above result we cannot guarantee the flow-invariance
of «cl 9 [V<c 7] . So, not even that of clg G, in theorem 2.2 .

In fact, R_ is not flow-invariant for X =/[X[sign x , where

-1 ,x<0 0 ,t¢0
sign x = 0 ,x =0 ,» as x(t) = 5 is a solution with x(0)=0€R_
T x>0 %_ >0

Neverthdess , f(t,x) =/ [x[sign x satisfies (2.2), for Q=R =4Jd, V(x) = x
and c=0 .
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This example, also shows that the closure of a flow-invariant set is not ne-
cessarily flow-invariant , as, by corollary 2.3,!R2\k0§ = [V<0] 1is flow-invariant

for X =/"[x[sign x
A sTight modification of theorem 2.2, reads as follows:

Theorem 2.4 Let G be an open set in R™ such that, for each ueer G , there exists
. . ] : = N |

1 continuous function V :0 - R such that V (u) =0 and 6 C;efr G[ N

\ssume Q

(2.3) for each uger G and te€J, there exists €70 such that Vu is C]

in GNB(u,e ) and (f(s,y)| v V,(¥))<0, for every sed , with
t- € (st , and yeGN\B(u,e ) .

Then, G is flow-invariant and c1Q G is weakly flow-invariant, for (0.1).

>roof: Similar to the one of theorem 2.2 .Using the same notations, we point out
that  v(t) = Vo(x(t))€0 , as x(t)eG Ch (\ [ V,£0] , for te [to’t1) . So, that

the contradiction is obtained with condit1on (2.3), as O .v(t])—v(t]-S ) ) _
| {— =v'(s) =
§
=( VV(x )lf (s,x(s))) , for some se&d with t]- € <t1—5 {s <t] , being
((s)EGNB(U,e ) .
I

An obvious consequence is now the following ( (18] lemma 1, [38] theorem 7.4):

oro]]ary 2.5 Let G be an open set in R™ such that, for each ueer G, there exists

% =~ R a ¢! function such that Vv y(u) =0 and G«:&éé}g e [V,<0 7] . Assume

'2.4) for each uefrg G and te ,(f(t,u)| v vu(u))<o.

Then, G is flow-invariant and clg G 1is weakly flow-invariant, for (0.1).

We remark that the conclusion for clg G cannot be 1mproved In fact, let

(t50y) = (1,-x2ay+2[y| /%) | for teR =0 and (x.y)eR® = g .Set

G!={DQYER2| y<0<x or (-1/4 <x<0 and y(x)}
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2
G is an open set . Moreover, defining for each u = (uj»Up)efr G, V :R"— R

by
2
y=(x-up) , Uy 0 5 uy =0
V, (x.y):= y=X , -1/4 (u] <0, u, =y
~x-1/4 LU= =174, uy 174

G C

uéR* G[ vugO] and V (u) = 0 . And condition (2.4) 1is satisfied .

)

1 , as z(t) =

However, c1 G is not flow-invariant for | x
—x2+‘y+2|_y|1/2

y

= (t,tz)J , for t3 0, is a solution of this system and z(0) = (0,0)ecl G.

While in theorems 2.2—2.4 ,conditions (2.1)—(2.3) must be satisfied for
y in the open set G , the next proposition is for y outside ¢l G , and concerns
the closed sets of the type M= | vge ]

Proposition 2.6 Let V:2 — R be a continuous function and ceR. Set M =[ Vgel .
Assume and ted
(2.5) for each ueerfM\ there exists € >0 such that V is C] in

[V>c] NB(use ) and (f(s,y) | VV(y))<0 ,for every sed with
t¢s<tre and ye [V>c] NB(u,e ) .

Then, M is flow-invariant for (0.1) .
We omit the proof , since it is similar to the previous ones .
We can't say about the flow-invariance of [v {c ] . Not even if we have the

strict inequality in (2.5) .
In fact , lR_\{0} is not flow invariant for X = - / x|s1’gn X , as

: 2
:LE:El_ ;4?2
4
x(t) = is a solution with x(0) = -1 . And taking
0 , ty2
V(x) = x , lR_\{O} = [V<Q] and (2.5) is satisfied for c¢=0 and @ = iR =J , with

the strict inequality .
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Proposition 2.6 gives the following consequence:

Corollary 2.7 Let V:@ = R be of C] and Tet ceR be a regular value of V .
Assume
(2.6) (f(t,u)] v V(u)) 0 , for every te&J and ue [V=c]

Then [V<c] is weakly flow-invariant for (0.1) .

Proof: Define on JxQ , fn(t,x):= f(t,x)- i VV(x) . Then , fn converges uniformly
n
to f on compact subsets of JxQ@

As , for each nelN,(f (t,u) | VW(u))<O ,for teg and uefr, [ Vgc] <[ v=c] , it

is enough to apply proposition 2.6 and theorem 1.3 .

This corollary could also be obtained using Nagumo’s theorem . See also [ 3 ],
theorem 16.9 , for a different proof .

We point out that corollary 2.7 cannot be extended , as well as theorem 2.4
and proposition 2.6 ,as shows the last example , to closed sets .

We present,now, some consequences of the main theorems of this section, using
in a more specific way , geometrical conditions on the boundary of the considered
set .

Dealing with outer normals, in the sense of Bony, coro]]ary 2.5 has the inte-

resting consequence:

Corollary 2.8 Let G< o be an open set . Assume

(2.7) for each ueﬁ“s2 G, there exists an outer normal "y ,in the sense
of Bony , to F at u for which (f(t,u) t nu)< 0 , forevery tel .

Then, G is flow-invariant, and clg G is weakly flow-invariant, for (0.1) .
Proof: For each wuefr G , define V :q=»Rby V '=~l-( | |2-|u+ -x[2) as in
' Q° u’ Rby V,(x) > Ny ’

: 1 : : _ L )
[41] .V, isaC function with Vy(u) =0 and gV, (x) = utn -x .
As for each uefrs7G, "y is an outer normal to G at u , we have

GNB(utn o In,|) =¢.So, &:{xeﬂ |]u+nwm|>|nu” =[vugo] , for each

-22.
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uefry G . Then, as condition (2.7) implies (2.4) because V Vu(u) =1y e applying co-

rollary 2.5 , we have the desired conclusion .

A significant application of Bony outer normals, is in the case of convex sets.
More precisely, let F< o be a convex set . If F is a closed set, relative toq ,
then, for each uefrgF there is a non zero vector n " (outward normal) such that

(A) Fe{xe @ | (x-u)] n,)<0}
(use separation theorems in exercise é of section 3.6 in [50] ). Moreover, each "y

verifying (A) s also a Bony outer normal . And,conversely, Bony outer normals sa-
tisfy (A) .
We also remark that,if such an F has non empty interior , then c]szint F=F

and frszint F =vf% F .
Accordingly ', we get:

Corollary 2.9 Let F<® be a convex set, with non empty interior, closed in @ .

Assume
(2.8) for each uefrg F , there exists n, an outward normal to F at u ,

for which (f(t,u)’ nu)< 0, for every ted.
Then , int F is flow-invariant and F is weakly flow-invariant , for (0.1) .

If we are only interested in the weak flow-invariance of convex bodies (that
is,closed and convex sets with non empty interior) ing , we can use a condition wea-
ker than (2.8) . For it, let us see the next Temma:

Lemma 2.10 If F is a closed convex set, in @ , then, for each xeint F, there exists
ey0 such that ((u-x) | nu)7 s , for every ueer F and Ny outward normal to F at

u, with ]nu | =1

Proof: Let xeint F . Then, there exists e >0 with B [X,e ] <F . Fix ueer F
and Tet n = be an outward normal to F at u, with | Ny [=1

By the definition of outward normal to F at u, we have ((y-u)] nu)é=0 for each
yeF . Hence, taking y = x+en €B [x,e ] CF, as | [=1 , we have

(n, | (x+ ¢ n,u))< 0 ,that is ((u-x)] ny)ze Iy [2 = e

Ny
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Theorem 2.11 Let F<q be a closed convex set, in o , with non empty interior.
Assume
(2.9) for each ueerF, there is an outward normal, Ny to Fatu, for

which (f(t,u) | n <0 , forevery ted .

Then , F is weakly flow-invariant for (0.1) .

droof: As int F #ﬂb, fix xoeint F . By the preceeding Temma, let € >0 be such
* *
that ((u-xo); ny » € » for every ueﬂjQ F and uy outward normal to F at u , with

*
]nu] =1 . We observe that, as F is convex, "u satisfies this condition .

Tyl

1
For each nelN, define g, sd* — R™ by G+ = f(t,x) +———(x0—x) .50, g, is a con-
n

tinuous function and , for UEer F and ted, (gn(t,u) | nu) = (f(t,u)| nu)+

Lgu) )& e Inyl <0

By corollary 2.9, F is, then, weakly flow-invariant for X = gn(t,x) . As g, con-

jerges unifgégky on compact subsets of J=&% , by theorem 1.3 , as F is a closed set

in @, F is{flow-invariant for (0.1) .
_ . -

An application of theorem 2.11 is the following corollary, similar to the one
»btained by Pavel and Turicini in [ 42] :
m

orollary 2.12 Let h:J=TT | ai’b1] - R" be a continuous function and a;<b. ,
' i=1"

For all 1e{1,..,m} . m
A necessary and sufficient condition that, for each (to,xo)€J>JT [ai,bi],there
~ ~ i=1

sxists  x(.) solution of X = h(t,x) with x(to) = X, and a, 4x#t)4.b1 , for every

ie&],..,m} and tegn [t ,+c0), is that
'2.10) for each 16{1,..,m} , ted and Xs€ [aj,bj] ,wWith je{],..,i—],i+1,..,m§,

hi(t,x],..,xi_1,ai,x1+],..,xn)j;Oj;hi(t,x],..,xi_1,bi,x1+],..,xm)

th

’

101ds, where hi is the i*" component of h .
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Proof: Let us see the necessary condition . Fix ie%],..,m} R téid and xjg [aj,bj],

with Jell,..,i-1,i+1,..,m} .

Let x(.) be a solution of y = h(t,y), with initial condition y(t,) =%, »

where Xoi = and Xoj = Xj for Jj#i , and akg\xk(t)é.bk , for every ke&],..,mk,

and  tedn [to,+oo) .
Then, hi(to,x],..,xi_],ai,x ,xm) = hi(to’xo) = %(to)z,o .

oi bi , we obtain

i+’
In an analogous way , taking x

fl

h-i(toax'l 3. Bx-i_'i ’b.i ,x-i"*'] ,-‘ . ,Xm)go

For the sufficient céndition , We note that f:JxR"— R™ defined by

Fo(t,y)i= h,(t,x) , with X, = a, if y.<a. , x. =y. if a.<y.<b. =p.
(Esy) ;(6x) 5 wi x5 = a5 1f ys4a; X; =y; if anngj and X; =b,

m

if yj) bj , for all ie{1,..,mk, is a continuous extension of h. So, if TT'Lai,bil
, i=1

is weakly flow-invariant for x = f(t,x), our result is proved.

m
Putting F = 77 [ai’bij and o= R" , one can easly check condition (2.9) ,
i=1

in theorem 2.11 , with condition (2.10) ,using outward normals.

m .
A sufficient condition for the flow-invariance of T (a;,b.) can be easily
i=1
deduced from corollary 2.9 , replacing the weak inequalities (2.10) by the strict
ones .

3. Strong flow-invariance and persistence.

In this section, we’11 consider J an interval open on the right, so that for

each t,€J and XE 2 > there exist a solution, x(.), of (0.1) defined on a maximal
interval to the right of to, which is open on the right, and satisfying x(to) o
(the initial condition).

- In many applications, the existence of flow-invariant sets is very important.
For instance, if (0.1) represents a model of dynamic of populations, with Xi(t)
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(the ith component of x(t)) the amount of the 1th

interested in solutions x(.) of (0.1) with xi(t)2>0. Then iRT must be a flow-inva-

population at the time t , we are

riant set. The most of the times, we are also interested in the fact that none of the
populations come into extinction(that is x:(t) >0 for every i), so that we must re-

quire that the interior of\RT is flow-invariant.

In some applications, however, this requirement is not sufficiently significant.
We have to impose further conditions in order to prevent that some positive xi(t)
come arbitrarly close to zero, as time evolves. In fact, such possibility would re-
present a practical extinction of the'considered population in a long period.

For a more general point of view, we can formulate the following problem: given
a set McQ,with non empty and flow-invariant interior, we want that the solutions
of (0.1) , with initial value in int M, do not approach the boundary fro Mas t
grows. The manner in which the solutions have to remain far from the boundary has
been described by various authors in different ways. For ihsténce, if each solution
x(.) of (0.1), with fnitia] value in int M, is such that, for all future time t ,
the distance from x(t) to the boundary of M is bigger than a certain positive va- .
lue , depending on x(.), we have persistence ([22]). And, if that positive value
doesn®t depend on the solution x(.), we have uniform persistence([11] , [12]).

See [20] and [33] ,for an exhaustive list of references concerning this pro-
>lem and ~ for more details from the point of view of the app11catidns. |

Freedman and Waltman , in [21] , considered systems of the type

3.1) Xy = X gi(t,x) i=1,..,m

vhere g; 1Jx — R™ is a continuous function .

They were interested in solutions x(.) of (3.1) , with xi(tY> 0 in the future,

ind such that 1im sup x.(t)»0 , for 1i=1,..,m , where b_ is the supremum of the
t—-—>b5 1 : 0
“ight maximal interval of existence of x(.) .
 See also [24] and [25] .
If this happens for all initial values 1in int}RT' » (3.1) is said to be weakly

ersistent fortRT .

A stronger concept in a more general setting, is that of strong flow-invariance,
ntroduced by Gard ( [24] ):
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Definition 3.1 Mcgq 1is said to be strongly flow-invariant for (0.1) if ,

(3.2) for each (to,xo) Jxint M, any solution x(.) of (0.1) , with x(to) = X, s
is such that Tim sup d(x(t),fr_M)> 0 s
t—=12" 2

for any Z‘)to in the closure of the right maximal interval of existence

of x(.).

Remark that condition (3.2) can be equivalently written as:

(3.2") x(t)eint M , for every t‘>tO in the maximal interval of existence of x(.)
and

1im sup d(x(t),frQ M)>0 , where b0 is the supremum of the right ma-
t—bg
ximal interval of existence of x(.)

If =R" , M =iRT and fi(t,x) = X gi(t,x) , for i=1,..,m ,strong flow-in-
variance implies weak persistence for‘RT , with respect to (3.1).

The next example , of May and Leonard ( [39} ) , shows that , for RT and (3.1),
these concepts do not always coincide.
Example 3.1 Consider , in R3 , the following system of the Gauss-Lotka-Volterra
type, modeling competition between three species , with densities Xy % and Xy

i1 = %7 (1=x=ax,-8 x3)
(3.3) Xp = Xp (1= B X=Xy~ a X5)

X3 = X3 (1—(xx]- sz-x3)
witha and B real constants such that 0 <o <148 and o+B>2 .

Because of the particular form of (3.3) , for each initial value Xo in the boun-

3 . Then , by the

Lo there is a solution in a coordinated plane containing x

dary of R o

uniqueness of solutions for Cauchy problems of (3.3) , each solution with initial va-.
lue in the interior of Ri cannot touch its boundary. So, inthi is flow-invariant

for (3.3) . And we have xi(t)>70 , for i=1,2,3 and t >t in the right maximal in-

terval of existence of any solution x(.) , with initial condition x(to) = xgeinthi .
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We point out that positive solutions of (3.3) are defined for te [t0,+00>,for
to an initial time . In fact , we prove that , for all k»3 , the compact set

Fk = (x],xz,x3)emf |x1+x2+x3 4k3 is flow-invariant for (3.3) . The conclusion fo-

1Tows as every xoeintfRi belongs to some Fk .
As F,, are closed and convex sets , we apply theorem 2.11 (with g =!R3) , as
we have uniqueness for solutions of Cauchy problems of (3.3)

For wu = (u],uz,u3)efr Fk ,we choose one outward normal that satisfies :

(-1,0,0) ;U0
(0,-1,0) , Uy=0
ny = (0,0,-1) , Uy=0

(1,1,1) > UptUytug= =k and u],uz,u3%0

Call f the vectorial field associated to (3.3) .

So, if for some 1e{1,2,3k ui=0 > (F(t,u)] “JF‘_fi(t’u) =0 .

. ~ . 2 B
Otherwise , (f(t,u) | nJr f1(t,u)+f2(t,u)+f3(t U) € Uyt HUg= (Ug S, Uy ) (k-5

“k(1-£)¢0, as ky3 and ksuj+uytug ¢ //;,;.;~:;;—

3
By theorem 2.11 , Fk is,then , flow-invariant for (3.3) .

May and Leonard (see also theorem 1 in [48] ) proved that all positive solu-
zions of (3. 3),w1th exception for the equ111br1um point (1,1,1)/(1+a +8 ) ,have
(x],xz,x3 eR | x +x2+x =1 and there exists ic 1,2,3\ such that x1=0 as

heir w-limit set . So that,for positive solutions x(.) of (3.3) , we have

imsup x,(t)y 0, for all ie31,2,3}
=>+00 '
Then , (3.3) is weakly persistent for IRE .

However,lRi is not strongly flow-invariant . In fact , being x(.) a positive

olution of (3.3) , with initial condition x(0) = x_€int Rs and x #-11———-)-‘5
0 + o}
T+a + B
l(x(t),FO)—aO ,as Fo is the w-Timit set of x(.). But , as Foc:frlRi » we have

Tso d(x(t), fr R2)=0 .

An easy example of a flow-invariant set, that is not strongly flow-invariant ,

s R, , for X =aXx , with «<0 .
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A stronger concept than strong flow-invariance is that of persistence.

For systems of the type (3.1) , considered by Freedman and Waltman, (3.1) is
said to be persistent forlRT , if int RT is flow-invariant for (3.1) and, for each
initial condition (to,xo)Einnt RT , lizbinf xi(t)‘>0 , for i=1,...,m , where b/

0
is the supremum of the right maximal interval of existence of the solution x(.) of
(3.1) , with initial condition X(t,) = %, -

0f course, persistence implies weak persitence . But they do not necessarily
coincide, as shows example 3.1 . In fact, this example also shows that each solution
with initial value xoeint Ri , With xot(l,],1)/(1+a + B) , is such that

Tim inf x;(t) =0 . So, (3.3) is not persistent forlRi .
to+0oe

A simple example of a persistent set is the following one:

Example 3.2 ( [8] ) Consider, in RZ, the Volterra system :

k] = Xy (a-bx,)

(3.4) with a,b,c and d positive cons-

fl

Xy = X, (-ctdxy)
tants.
Let x(.) = (x](.),xz(.)) be a solution of (3.4) , with initial condition

_ . 2 dx bx
X('to) B xoe1nth+ + Then , El—-‘( e 1, e"2 ) =0 . So that , x(.) is contained
dt % C a
1 *2
dx bx .
in some Ek:= {(x],xz)einthf | £ c] . a2 = k } , with k a positive constant .
X X
1 2

We point out that Ek is a closed and bounded set in Rz . Then , x(t) exists for

all tyt , x;(t)>0 and Tim inf xi(t)>>0 , for i=1,2 .
° ! t—>+oo

So, (3.4) is persistent forlRE .

Remark: As for xeR" , d(x,fr\Rm ) = min X
Bl + 4 .
1¢igm

following definition generalizes the concept of persistence already given forlRT
(with 9= R") . ~

i, where X = (X1""Xm) , the
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Definition 3.2 (0.1) is said to be persistent for Mc @ if , for each (to,xo) in

Jxint M , any solution x(.) of (0.1) , with x(to) =Xy o is such that

(3.5) Tim inf  d(x(t), er M)> 0 , for z'>t0 in the closure of the right
t—Z"
maximal interval of existence of x(.) (see [11] ) .

It is clear , by the definitions , that persistence implies strong flow-inva-
riance. But the reverse is not true in general, as shows the following example :

Example 3.3 Modifying slightly Volterra system , we can get an example of strong
flow-invariance which doesn’t give persistence . In fact , take

»

X = x[ahy+—iL74-udxH
(3.6) T+x
y =y [-crdx- —E— (a-by)]
T+y
with a,b,c and d positive constants and &= min (—3— ,~5~
2c 2b

As we have uniqueness of solutions for Cauchy problems of (3.6), according to
the particular form of (3.6) , the x and y axes are invariant sets . So, int R,

is flow-invariant for (3.6) .

3 €
The determinant Of ] 1+x2 is diffetent from zero, so
- € ]
T+y
that, for (a-by)+ —=—r (-c+dx) = 0 we have the only solution
‘ T+x

- —= (a-by)+(-c+dx) = 0
T+y

x = c/d
a/b
For x,y>0 , as we choosed €, we have

<
It

€

a + —— (-ctdx) 3y a - ce a-cey 2
T+x 7 1ex2 * 7 5

ind
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¢ - = (a-by) { -c + —EX—Z—— e (-c+be (&
T+y T+y
So, 1in mf , the equilibrium points , of (3.6) , are (0,0) and (£~ , & ).

d b

Let H , defined 1in inthz , be the energy function considered in the example 3.2,

S dx by ;
H(x,y) = ec . ea . So M (x,y) = ﬁ—-(-c + dx) and ~3ﬂ—(x,y) - - B (a-by) ,
X y X X N Y

for x,y>0 . £

The minimum , in intR_, of ¢(s) = E§--, where f and g are positive constants,

S
is attained at g/f , so that , H attains its minimum at (E—-, E—J .
d b
As Tim + ¢(s) = +oo= 1im ¢(s) ,we have that [fiQuJ is a compact set con-

s—0 : S=>+oo
tained in int RE , for every a eR .

If oG-, &), [Hyal = intRr? = [Hyal .
If a‘;H(%— ,~%~) , applying corollary 2.3 with V = -H , as
((x [a-by + Tf(-z.(-cﬁdx)] .y [(-c+dx)- —%;52 (a-by)] )| v V(x,y)):

=-(x(a=by),y(-c+dx)) | T H(x,y) )-((—=— (~ctdx)- —— (a-by))| 7 H(xy)) =

T+x T+y
9H € 9H € :
= —(X,y) ——y (-cHdx) + (x,y) —— (a-by) =
X T+x N T+y
_ H(X,Y) ” (—C+dX)2 + H(Xsy) 52 (a_by) <0 , for (X,y)€ [H) u:l , we have
X 14X y T4y

the flow-invariance of [ H>o ] and [ii}a 1, for (3.6)

Then, for each @ eR ,[ H( a] s compact and negatively invariant .So that ,
every solution z(.) , of (3.6), with initial condition z(to) = zoeinthE » exists
for all t.<to and , by LaSalle” s theorem ([ 37] ) , Tim z(t) =(c ’a ) tThere-

t—-o0 d b
fore, system (3.6) cannot have non trivial periodic orbits and , in particular, Timit
cyé]es. | | | '
Let us see that the positive solutions of (3.6), different of the equilibrium
point (%-,g—) » curn around it for all future time. |
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For such a conclusion we divide intaRf in four open regions , according to
the behaviour of X and y ,bounded by the curves y = o(x) and x = B(y) , for
x,y >0 , where

Q = __ﬁa £ - d __.a.__
o b ! b(1+x2) (e (>/2b )
e B £ ~——2—*€ (a-by) (y<—)
= — + a-
v d d(1+y7) / 7 2d

We have the following phase portrait:

Suppose z(.)=(x(.),y(.)) a solution of (3.6), with initial condition z(to) =

. 2_.¢,C a
X Ly )eint REN{(=—, 20 .
If xO€I , while z(.) remains in I,say for te,[to,t*) , we have X <0 and
y>0 and for some positive constant k , O(}-QQX <‘ky . So that, y(t)< Yo ek(xo_x(t)),
d x
as x(.) is decreasing on [to,t*) . So, z(.) s bounded on [to,t*) . Being (5;73—0
d b

repulsive (as fH; a] are flow-invariant) and as there are no more equilibrium points
in inth+ and no 1imit cycles, by Poincaré- Bendixoh theorem, z(.) cannot remain in
[, for all time t in the right maximal interval of existence. So, x(t*) = B(y(t*)) .
ind , as X(t*) <0 , there exists ty> t* with z(t,)ell.

If Xo IT , as y40 and x(.) is bounded , as Tong as z(t) belongs to II , say

for te [to,t*) , z(.) is bounded on [tO,t*) . By the repulsivity of (%—;-%~) and,
1s there are nu more equilibrium points in the closure of II, nor limit cycles,
/(t*) = a(x(t*)) . Being y(t*)<0 , there exists ty> t* with z(t)elll .
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If XOEIII ,as y<0 and x(.) is bounded, as long as z(t) belongs to III,
say for t¢ [to,t*) , z(.) s bounded on _ to,t*) . As k(t);>0 for te [to,t*) R
x(t);»x0 on [ to,t*) . So, z(t) cannot approach (0,0) as t approaches t* . As
(§~7 %—) is repulsive and there are no limit cycles in cl ITI,x(t*)=B(y(t*)) .

Being i(t*)j>0 »there exists t1> t* with z(t,)eIvV .

. 1
Finally , if xoeIV , while z(.) remains in IV , say for te [to,t*) , we have

x>0 and y>0 , and,for some constant k>0 , O(ﬂékx .So, x(t)éxoek(y(t)"yo),
. dy

as x(.) increases in [to,t*) . Then, z(.) is bounded on [to,t*) . By the repulsi-
vity of (%—7 %—) , the only equilibrium point in ¢l IV , which contains no Timit cy-
cles, y(t*) = a(x(t*)) . As y(t*)> 0 ,there exists t, 7t with  z(ty)el

So, for all future time, positive solutions of (3.6) go around (%—}«%—) .

. . 2 _cC a
(3.6) is not persistent for R, .In fact , let X T4 and O<1y0<ﬁg— . If

z(.) = (x(.),y(.)) s the solution of (3.6) , with initial condition z(to) =(x0,yo),

as z(.) goes aroundk(é—Q{%-) in its tight maximal interval of existence, say [to,to),

there exists t strictly increasing converging to t% , with x(tn)‘=-%— and y(tn) decrea-
sing . Then, y(tn) converges to some Yy -

Suppose , y]> 0 . By Poincaré—Bendixon theorem, z(.) cannot remain, for the fu-
tdre, in ﬂ14H(§—-;y])] , as this is a compact set and.(%—}~%—) is repulsive . As
(M QH(%—J,y])] is also a negatively invariant set for (3.6) ,there exists t£7ﬁo such

that H(x(t),y(t)))kﬂ%}w y]) , for t*<t:<t° . But then , forn large enough ,

as yp¢y(t)<a/b and ¢(s) = ebs/sa is decreasing for sca/b ,

by | :
(&l o that H(x(t).y(t)) = K sy(t,))<H(G» yq) » which

gives a contradiction .
SO,”;{;6'~~566 we have Tim inf ‘d(Z(t),fPIRf) = 0 , which shows that (3.6)
0
t—=>t

. . 2
is not persistent for%R+
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URE is strong flow-invariant for (3.6) . As a matter of fact , every positive

solution z(.) of (3.6) , not coinciding with (%—, %—) , 1s such that

1im sup d(z(t),frlRi) = +9 , where b0 is the right hand side of the maximal inter-
t—=b”

0
val of existence of z(.).

In fact, being cxo,yo) = z(to) an initial condition for z(.) = (x(.),y(.)) »

as z(.) turns around (%_.;%a),as t->b there exists t converging to b, and stric-

. . . d
tly increasing , with y(tn) = %—‘+ %E""(X(tn)_ %_) and x(tn)>-%— . So, y(tn) and

x(tn) are increasing functions . If one of them would be bounded (so would be the

a .
other one), there would be Xf>'5— with (x(tn),y(tn))—>(x],y]) , for 2 =.%_ +

ad ¢

+'EE"(XT_ EFJ . Reasoning in a 51m11ar way , as for the non persistence, with the ener-

gy function , for n big enough we should have H(x(tn),y(tn))‘>H(x],y]) , but this

contradicts the fact that ed X(tn) % ed X1 and eb y(tn) ¢ eb I as
| : A a a
(x(t, )¢ x© (y(t,)) ¥y
X(.tn)<x] and .Y(,tn)<y]
So, both x(tn) and y(tn) converge to +oco, which means ,
d((x(t,).y(t).Fr RS ) = min (x(t,).y(t,))=>+°
i

For properties on strong flow- 1nvar1an¢e and pers1stence see , for instance,
[24] and [18] . We just quote some results in the last one.
The main result, in [18]‘ ,is the following theorem, for compact sets:

Theorem 3.3 Let McQ be a compact set in R™ , with non empty interior, such that,
for each wuefr M, V .0 >R is a C1 function , with Vu(u) =0, and

Mc 0N O] Assume (with J= la, b)
uefr M
(3.7) for each uefr M and (t, Jk)\b} *(MN [V =0] )
Tim sup  (f(s,y) | ¥V (y))40
S=»t~
int My-=x
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Then, (0.1) 1is persistent for M and, hence, M is strongly flow-invariant for
(0.7) .

As observed in [18] , condition (3.7) is satisfied whenever both

(3.8) (f(t,x)] v V, (x)) L0, for tzj , uefr M and xeM F\[Vu=0]
and
(3.9) Tim sup  (f(s,y)| V Vu(y))éNO , for ted, uefr M and xeMn [ Vu=O]
S—> .
int May—x
hold.

Being (3.7) equivalent to (3.8) and (3.9), if (3.7) is supposed to be satis-
fied for xe Wu=O](\ cl int M.

We remark that , in the autonomous case ( f(x) = f(t,x)) condition (3.7) is
satisfied if
(3.10)  (F) | Ty (x)<o , for xen Ly =0l and uerr
holds.
For the autonomous case , theorem 3.3 gives theorem 3 of Gard’s paper [24]
We also note that condition (3;8) is not enough to guarantee persistence and ,
not even , strong flow-invariance, as the next example shows.

Example 3.4 Take f: [0,+c0)xR-> R defined by  f(t,x) = -x + arctan t and set

M=[ -2, W2] . For ue{-T/2,T/2} = fr M, letV :R—R be such that V,(x)=

= xz-(“T/Z)2 . Then , M= ) v, ¢ 0] is a compact set and condition (3.8) is sa-

uefr M
tisfied, because (f(t,x)| Vv Vu(x)) = -2x(x + arctan t)<0, uefr M and xe [Vu=O]ﬂM=
t

s
= e
=fr M . Nevertheless, x(t)= arctan t -e't}g 1452 ds is a solution of x=-x+arctan t

in [0,400) , with x(0)=0 and Timit x(t) =7T/2 efr M . So that, M is not strongly
t—>to0

flow-invariant for this equation .

Also compactness cannot be dropped in theorem 3.3, neither in the autonomous ca-

se. In fact,
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Example 3.5 Take fﬂR2—> R2 defined by f(x1,x2) = (1, =X, + arctan x1) and M=
= (x],x2 aR ’ Xo 4'“/2& . For uefr M =R x{TVZ% , let VuﬂRZ-alR with Vu(x)=

-T2 . Then M= 0N [Vu4 0] , which is not a compact set in IR?

uefr M
tes
x(t) = (t, arctan t - e_t }; 1452 95y s a solution of x=F(x) in [0,+)
vith x(0) = (0,0)eint M But d(x(t),fr M)=
= larctan t - &~ }/ ]+52 ds | 3%—1 =0 as t=>+o2. So that, M is not stron-
gly flow-invariant for Xx=f(x) . Nevertheless, condition (3.10) is satisfied as ,

for x,uefr M =M [v =0] , (f(x)] v V,(x)) = ((1, - T+ arctan x7)| (0,1)) =

sow
= >— + arctan x]<0 .

Theorem 2, in [18] » shows that , in the non autonomous case, no condition

m - f(t,.) e m
r

;0 that, condition (3.7) in theorem 3.3 cannot be substituted by the more natural

mne

sup (F(t,x) | v, ( (x))<0 ,  for ucfr M and xeM N [v,=0]
tya

In the autonomous case, and for compact sets, we have, with the same condition
2.6) of corollary 2.7 , a result for persistence, with outer normals in the sense
'f Bony (corollary 2 in [18] ) . This corollary answers a question raised by Gard’s

aper [24~](page 289) and is the following one:

orollary 3.4 Let McQ be a compact set in(Rm, with non empty interior. Suppose
(tox) = f(x),for all ted and xegq, and assume
3.11) for each uefrM there is an outer normal ny »in the sense of Bony ,

to M at u , such that (f(u) | n,) <0 .
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Then, X = f(x) s persistent for M and, hence, M is srongly flow-invariant
for x = f(x) .

Remark that, if h is aut%nomous and satisfies strict inequalities in(2.10)

X = h(x) is persistent for 1 [a;,b.]
=1

We point out that compactness is, also, essential in corollary 3.4, as shows
example 3.5 . In fact, in this example, for each uefr M =R x{WZ} s NS (0,1)

is an outer normal, to M at u, and (f(u) | nu) = ((1,-7/2 + arctan u])l (0,1))=

= - /2 + arctan u]<0 .

In practice, the strict inequality in condition (3.7) of theorem 3.3, is not
good to apply because in many applications frym is a piece of some invariant set
and therefore, the field is tangent to fr M. To avoid this difficulty, we give the
next theorem (which generalizes theorem 1' in (18] ) that combines arguments of
theorem 3.3 and similar ones presented in papers [30] and [32] .

Theorem 3.5 Let M<Q be a compact set in R" , With non empty interior, such that,

for each uefr M, V8 =~ R is a C1 function with Vu(u)=0 and v Vu(x)#O, for all

xeM N [VU=O] . Moreover, M < N [Vus;O] . Assume that, for each uefr M, there
uefr M

are ¥ :JxM> R and ¢u:(R+—>lR+ continuous functions, with ¢ (s)>0 for s>0,

such that

(3.12) (f(t,x)| v Vu(x)) 4 ¢u(|vu(x)f)wu(t,x) , for every uefr M, teJ and
xeM
and
(3.13) lim sup y (s,y)<0 , for every ucfr M, teJVUib} and xeM r\[Vu=O] .
s>t ‘ '
int M3 y->x

Then, (0.1) is persistent for M and, hence, M is strongly flow-invariant for
(0.71) .

Proof: The proof is essentially the same as the one presented in theorem 1 of [18].
Wé only prové the different parts. | |

To see that int M is flow-invariant, we apply theorem 2.6 . In fact, as assumed
in the proof of theorem 1 in [18] , M =cl int M . So, fr int M= fr M . By (3.13),
with x - uefr M (ue [VU=O] M, M compact) , and teJ , exists €>0 such that, if

yeB(u,e )Nint M and lsmt| Z €, wu(s,y)é.O . So, according to (3.12), as yeint M
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<[V, €0] (see Remark 1 in [18] ) implies 0,0 V) 1) >0, (F(say) | v V() 2
¢u( qu(y)! ) Wu(s,yj'(o . Then, condition (2.3) in theorem 2.4 is satisfied and

therefore, int M is flow-invariant for (0.1) .
For the proof of the claim
Vuefr M e, 0 2 (Flty)| TV (y))0, ¥
ted  yeint M [V y- e ]
. u u
we suppose , by contradiction , that it is not true . So, there exists uefr M such
that , for every neN , exists teJ and y eint M N [Vuz,- 1/n] , with

(f(t >y )] VvV (y))»0 .As y eint McM, M compact , there are subsequences t
n>n u‘’n n N

and Yy » of tn and Yy o converging to some ceJU|bl and zeM .
k

yeint McMc 0 [v éO] » S0 =1/n<V (y )0 . And, by continuity of V
n xefr M % umn u

V,(2)=0 . Then zeMn [Vu=0] . As y eint M= Mn( N [VX<iO] ) (by Remark 1
xefr M

in [18] ) , we have V,(y,) L0 and , therefore, ¢u(| Vu(yn)l )>0 . Applying
(f(ty )l Vy(y,))

(3.12) , Tim iyp Wu(s,y) > 1im Wu(tn,yn) > 50,
s> n—>-+oo o, Vv 1)
int M3y—>z
a contradiction with (3.13) .
0
Remark that , for ¢u(s)=1 , for every s»0 and uefr M, and Wu(t,x) =

= (f(t,x)]| v Vu(X)) ,» for every ted, uefr M and xeM , theorem 3.5 becomes theo-

rem 3.3 .
The choice ¢u(s) = s may be useful for systems of the type (3.1) . In fact,

Corollary 3.6 Let b]""bm be positive real constants and g:IR%Rm—+ R™  conti-

nuous and p- periodic in the first variable. Assume that

(3.14) for each 16%1,..,m}, teR  and xje [Q?bj] Cwith §=1,..,0-1,i+1,...m .
gi(t,x],..,x1_1,bi,xi+],..,xm)<.0<1g1(t,x],..,xi_],O,xi+],..,;m)

Then, system X, = x.g:(t,x) , with i=l,...m ,is persistent for T [O’bi] .
- i=l
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m
Proof: Let M =TT [O,bi] ,J=R and 2 =R™ . To apply theorem 3.5 , Tet us de -
i=1

fine, for each uecfr M, Vu’ ¢u and ¥,

If uefr M is such that there exists i€}l,..,m} with u;=0,let i, = min \1&{1,..,m%[

ui=0§ - If u;>0 for every ie%],..,m% , take 1 := min\ie&],..,m\! u; = b, k.

Define for uefr.M , V : RT— R, o, R R,y RxM— R by

-x. , if there exists ie%],..,mi such that u;=0
Tu
v (x):=
X; 'bi , otherwise .
u u
S S , if there exists ie%1,..,m¥ such that u1=0
¢u(s):-
Z 1 , Otherwise
-g. (t,x) , if there exists 16\1,..,m§ such that u,=0
u
lPu(t’x) =

x; gs (t,x), otherwise

Let xeM . If wuefr M is such that exists ie{],..,m} with u1=0 » V (x)=—xi <0,
as xeM . If wuefr M is such that ui>0 for every 1e{1,..,m§ s Vu(x)=x. -b. €0,

as xeM . So, Mc 0O v 4.0] . By construction of V. , vV (x)#0 , for every
uefr M Y u u

uefr M and xeR™ .

Call,for each ie{],..,m} , F5(tax)=x; g.(t,x) , where teR and «R" . Condi-

tion (3.13) is verified . In fact, let uefr M, t¢R and xeM . If there exists
16{1,..,m} » with u.=0 , (f(t,x) | v Vu(x)):—fi (t,x)=—x1 g; (t,x)=- [Vu(x) | 9; (tsx)=
: u u u u

= ﬁ# 'Vu(x) 1) ‘%(t,x) - If u;> 0 for all i6{1,..,m} , (f(t,x) |V Vu(x))= f. (t,x)=

u

g 93 (807 QLTG0 D ()

suppose, by contradiction, that condition (3.13) is not verified . Then, there
are uefr M, xe Wu=0} and téER U{+<w§, for which there exist, for neN, s&JR and

ypeint M, with sn-ato and Y rX ,and liz+u)¢;u(sn,yn)=h;>0 . Taking
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t=s5-r pe_fo,p] with r €7 , there exists a subsequence of t , t » converging
n “n n°-k n n Ny

to some t*e [0,p] . Then, as ¢, ¥s p-periodic in the first variable, v (t, oy, )=
k 'k

- 1 7 * -
= Wu(snk,ynk)—ah . And , as Wu is continuous , wu(t ,X)=h>0 .

If there exists ieﬁl,..,m} such that ui=0 » then, according to (3.14), as
Xs =0 , O0¢h = wu(t*;x) =-g; (t*,x)<0 , a contradiction .
u u

If u.>0 , for every 1e\1 m} > again by (3.14) , as x; =b, , 0¢h =
u u :

= Wu(t*,x)= bi 9 (t*,x)L0 , a contradiction.
u u

4. Some remarks. onuniform persistence .

Recently, it has been considered a stronger concept . That of uniform persis-
tence. In the Titerature, there are several versions involving this concept .

Let J be as in section 3 .
Considering a system of type (3.1) , one can say that (3.1) is uniform]y per-
sistent for IRT if intIRT is flow-invariant and there exists § >0 such that

im inf x;(t)>6 , for every i=1,..,m and x(.) solution of (3.1) , with initial

)
0

:ondition x(to) =xoeintiRT » having right maximal interval of existence [ to,bo)

As, for x:(x],..,aneRT , d(x,fr RT) = min X; » one can generalize this
1¢igm
otion, for more general sets and equations , in the following one :

efinition 4.1 (0.1) is uniformly persistent for M if int M is flow-invariant

nd there exists §>0 such that Tim inf d(x(t),fr M)> s, for every x(.) solu-

t-»ba
ion of (0.1) , with initial value x(to)eint M and right maximal interval of exis-

ence [to,bo) .

This definition has been considered in very recent papers by Butler and Waltman
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( [12] ) and by Butler, Freedman and Waltman ( [11] ) . In the last one , conditions
are given under which strong flow-invariance implies uniform persistence.

Another version , which is also called cooperativeness ( [30] , [19] ) or per-
manent coexistence ( [32] ) asserts that:

Definition 4.2 (0.1) is cooperative on M if int M is flow-invariant and there
exists a compact set in R™ » Kcint M such that , for every solution x(.) of (0.1),
with initial value x(to)eint M, there exists t]EJ with t]z t , for which x(t)ek ,

)
for all ‘t}iﬁ in the right maximal interval of existence of X(.)

We point out that , if M is a compact set , both definitions coincide .

5. Application to the existence of periodic solutions .

In this section , we are 1nterested in finding solutions of equation
(5.1) x = f(t,x)
satisfying the boundary condition

(5.2) x(0) = x(p)
where p>0 and f: [0,p[xQ — R" s a continuous function, with @ a nonempty
open subset of R™ .

We observe that a solution of (5.1)-(5.2) ,in [O,Q] ,is not necessarily the

restriction of a p- periodic (that is x(t+p) = x(t) , for all t) C] function, be-
cause x(0) = x(p) is satisfied only if f(0,x(0)) = f(p,x(p)) . However, for bre-
vity , solutions of (5.1)-(5.2) will be called p- periodic .

There are several methods to prove existence of periodic solutions. One of them
is proving the existence of fixed points for the translation operator, that is , for
T defined by

T(z) ={ x(p) | x is a solution of (5.1) , in [0,p] , with x(0) = z}

where zeMc @ , being M such that T(z) #¢.
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If f has no uniqueness for solutions of Cauchy problems for (5.1), T is a mul-
zivalued map ( [13] ) . And, a fixed point for T will be a point ze&T(z) . Then

he existence of a p-periodic solution is equivalent to the existence of a fixed
oint for T.
A fixed point, Zy for T, is such that zOEMﬂT(zO) . For M compact and weakly

3

‘Tow-invariant for (5.1) , we’1l have, for every zeM, T(z)M#¢ . In fact, by the
leak flow-invariance of M, for each zeM, there exists a solution, x(.), of (5.1)
lefined on a maximal interval of existence, with initial condition x(0)=z and such
hat  x(t)eM, for every t in the interval of existence of x(.), which is [ 0.p]
s M is a compact set . Then , X(p)eMO\T(z) . So that, T(z)N M%¢L

Our problem was reduced to the application of a fixed point theorem to the trans-
ation operator, which can be found , for instance in [5] . |

For oUr applications, however, we will approximate the continuous function f by

funétiohs,with the uniform cohvergence over compact subsets of [ 0,p]xq . In

act, for C] functions, we Have unidueness fof Cauchy problems , so that the transla-’
ion opekator will be a continuous andone valued map. So, we’ll apply a fixed pdint
heorem to each approximating problem to find an approximating solution.

5

We begin with the continuity of the translation operator:

roposition 5.1 Let M be a subset of 2 and g:[O,p]x 2 = R" be a continuous
iction . Assume that, for each zeM, there exists one,and only one , solution
1 [ 0,p] for the Cauchy problem

(5.3) X = g(t,x)
(5.4) x(0) = z
vich will be called x(.;z) .
Then the translation operator T:M-> Q - is a continuous map on M.
| z=>x(p;z)

'0of: Suppose , by contradiction » that T is not continuous on M . Then,there
ist a sequence (zn)nQ;M and zOEM such that z, converges to Z, ,but x(p;zn)

es not converge to x(p;zo) . Therefore , there exist &> 0 and z 52 subse-
. R ‘

ence of z_, such that | x(psz, }-x(psz,) |8 , for every kel .
) 4 .

Define %?JRxQ —»lRm bv
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q(0,x) , t<0 , xen
F(tx) = | og(t,x) , 0<t<p , xeo
g(p,x) » typ ., xeq
and take fn = ? for every keélN . Applying theorem 1.2, as x(.;zn ) are solutions
k k
of x=f_ (t,x) on .[0,p] , with x(0;z_ ) =z -»>zEMcq , there exists y(.) ,
Ny Ny n, o

a solution of X = ?kt,x) , with y(0) =z, and defined on a maximal interval of

existence (w_,wt) . But according to the definition of f , y(.) is also a solution
of X = g(t,x) on [O,p] N (woswy) with y(0) = ZSEM . By hypothesis, it follows

that (w-,wy) D [0,p] and y(t) = x(t;zo) for all t E[b,pl . Being [ O,p] a com-

pact subinterval of (w_,wy) , by theorem 1.2 , there exists a subsequence x(.;zn )
, K

converging uniformly on [0,p] to x(.;zo) . So, in particular, x(p',zn ) converge
. k|
to x(p;zo) » Which is a contradiction as lx(p;zn )—x(p;zo)l >8>0, for every
k' ‘
keIN .
O

A subset M of R" has the fixed:'point property if for every continuous map
h:M=M , there is a fixed point for h (that is ; there exists‘ xeM such that
h(x) = x ). Every subset homeomorphitto a retract of a compact

v and convex set ofIRm, has the fixed point property.

For such sets , we have the following existence theorem on periodic solutions:

Theorem 5.2 Let McQ be a compact set with the fixed point property and flow-
—invariant for (5.3) , where g: [0,p]><9 — R™ 4is  continuous and such that,
for each zeM', there exisfs one and only one solution , x(.;z) , of (5.3)-(5.4),
on [0,p] . |

Then, there is a p-periodic solution , y(.) of (5.3) , with y(t)eM , for eve-
ryteD.pl. |

Proof: We observe that , as M is a compact set which is flow-invariant, solutions,
x(.), of (5.3) with initial value x{0)M , exist in all [O,p] . Therefore,
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he translation operator T:M— g applies M into M . By proposition 5.1, T is
‘ z—>x(p;2)

1 continuous map . Then, as M has the fixed point property, there exists a fixed
oint szM , for T. Therefore, x(;;zo) is a solution of (5.3) with x(O;zO) =z =

0
: T(zo) = x(p;zo) . And this solution remains in M for all t e[0,p] , as M is flow-
“invariant .
Take, then, y(.) = x(.;zo) .
|

An application of theorem 5.2 is the following existence theorem, for compact
nd convex sets:

heorem 5.3 Let M<H be a compact and convex set, with non empty 1nterioh .

ssume v

5.5) for each uefr M, there exists n, an outward normal to M at u,
such that (f(t,u) | nu)g,O (resp.3 0) for all t c[0,p]

Then, (5.1) has at least one p-periodic solution, x(.), with x(t)eM , for eve-
y te[0,p]

roof: As we deal with a convex set , we can assume |nu| =

at us consider first that (f(t,u)] nJ<0 .

) Suppose f is c!

. Then, as we have uniqueness for Cauchy prob]ems, applying theo-
am 2.11, M is flow-invariant for (5.1). As M has the fixed point property, apply,
nen, theorem 5.2.

) For the general case, with f only continuous, let for ke, fk: [O,p}><g —R™M
> such that fk converges uniformly to f on compact subsets of [0.p] and fk is c]

For each keN , let F,5: R*2 >R™ be defined by

'S
L (0,x) 40 £(0,x) , t<0

f(tx)= { £ (tx)  ,0Lt<p and Flt,x)= { f(t,x) , 04t{p

f(p.x) . t>p f(p,x) , t>p .

Choose x eint M. By lemma 2.10 , Tet ¢>0 be such that ((u—xo)lnu)zze ,for

rery uefr M.
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Take , for each k,nelN , Iy nﬂRXQ - R" defined by 9y n(t,x):=

-7

k(t,x)+

(xo—x) S T is a C] function and, for every teR and uefr M,

:'-—-4

= 1 |
(g (s Iny) = (Fltsud [ny)+ 3-((xg-u) In ) L (Fltsud n )= ——
For each nelN , choose jnaN large enough , so that jn is strictly increa-

sing with n and %—-({%- . And, as fk converges uniformly to f on the compact
n

set [0,p]x fr M , choose kN strictly increasing with n and such that
1

sup [ (t,u)-f(t,u)| {—
te%o,pj Kn In
uefr M

Then, for te[0,p] and uefr M, using (5.5)

z 1 €

(gk’n(t,wlnu)g((fkn(t,U)-f(t,U))Inu> + (F(tsu)[n )= — éj’; - ﬁ—<0 .

By case 1) , there exists xn(.) , a p-periodic solution of X = 9y n(t,x)

n,

in [0,p] , with x (t)eM , for every t<[0,p] .

As M is a compact set and xn(O)eM , for every nelN , suppose that xn(O)

converges to xdsM . As 9, . Cconverges uniformly to ¥ , on compact subsets of
n’

~

IR=q, applying theorem 1.2 , there exists a non trivial solution x(.) of x=f(t,x)
with x(0) = x_ , and , if te[0,p] belongs to the maximal interval of existence
of x(.) , there exists Xy (.) . a subseguence of of xn(.) , such that X (t)

r r

converges to x(t) . So thaf, x(t)EM , as X, (t)éM , for every relN .As , for eve-
. - , _ ,

ry tel0,p] in the maximal interval of existence of x(.) , x(t)eM , which is a

compact set , x(.) is defined in all [O,Q] . Being [O,p] a compact subinterva]

of the maximal interval of existence of x(.) , there exists a subsequence - (),
' ‘ S

of xn(.) , converging uniformly , on [0,p] , to x(.) . So that - (0) =
' S

Xy (P) = X(0) = x(p) .
S

Then, x(.) 1is a p-periodic solution of X = f(t,x) , on [0,p] , with values
inM.
4 Consider, now, that (f(t,u)}nu)*;o , for te€[0,p] and uefr M.

-f(p-t,x) . g satisfies (5.5) , as

t

Define g: [O,p]=0a = R™ by a(t,x)
(g(t,u)[nu)é,o for all te[0,p] and uefr M.
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So that , applying what just proved , there exists y(.) , a p-periodic solu-
tion of X = g(t,x) with y(t)eM , for every t E[O,p] . But then , x(t)= y(p-t)
is a p-periodic solution of (5.1) with x(t)eM , for te[ O,p] .

i

m
corollary 5.4 Let f: [O,DJX’TT {ai,bij—élRm be a continuous function , where
. i=]

‘or ie§1,..,m} a,{by . Assume

5.6) for each ie{],..,m% , T E[O,p] and  x. E[a.,b.] for jei],..,i—],i+],.qm}
J JJ
fi(t,x],..,xi_1,a1,x1+],..,xm)> O)'fi(t,x1,..,xi_],bi,xi+],..,xm)
where fi is the ith component of f .

Then, there exists,at least , one p-periodic solution , x(.) , for (5.1)
i th a1<x1(t)<bi , for ie{],..,m} and te[0,p] .

m

roof: Take in theorem 5.3 , M =TT [a;,b,] and 2 =R" , as (5.6) implies (5.5)
i=1

(=

We can apply successfully this corollary to obtain the existence of a positi-
e and p-periodic solution for the competing two species model of Lotka-Volterra:
x(a(t)-b(t)x-c(t)y)

y(d(t)-e(t)x-f(t)y)
ith continuous, positive and p—periodic coeficients a,b,c,d,e and f , defined
n R, provided that bL> ey fL> Cy o 3 chM/fL gnd dt) aMeM/bL , wWhere

X
5.7)

y

or a continuous function g: [O,p] -> R we denote

L= min g(t) and gy = max g(t)
t e[0.p] t[0.9]

To prove this result with coro]]ary 5.4 , we must find a rectangle .
[A],B]]x~[A2,82] , for which (5.6) is verified , with A;,A» 0 . To obtain it,
e proceed Tike in [1] and [17] , getting first estimations for the solution .

n fact , we prove that , if (x(.),y(.)) {is a p-periodic and positive solu-
ion of (5.7) , then
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a, f - c,,d a,f, - c d

UL "y M A
byfL - cweL b, fiy - c ey
(5.8) for t e|0,p]
b d - ayey bydy - a e
—_— \<Y(t)\<—-—~————~
b fy - ¢ ey by - e

Observe that by hypothesis aLfL7’CMdM , deL> ey > dL> aMeM/bLz aLeM/bMt>
> chMeM/beLz,chMeL/beL , S0 that «be£>cMeL , and , in an analogous way ,
bLfM>'CLeM . So, the lower bounds in (5.8) are really positive.

Let t],t2 e[O,p] be such that x(t]) = Xy and y(tZ) =y -

We have 0 = X(ty) = x(t;) [a(ty)-b(ty)xmc(ty)y(t)] - As x(t;)»0 ,
beM<tNt])xM = a(t1)-c(t])y(t])éaM—cLyL . In an analogous way , using that
0 = }(tz) R fMyt; dL-eMxM . Combining these two results , one has

d, -e,,x a,f., - c d
by xy Cayepyp Layey L MM pnich implies mg¢ MM L L and, similarly
i fM bLfM - CLeM
0y, b d - ayey
" b f
L'™ ~ CL%m

In a similar way , for X, and Yy we obtain

a, f, - c,d ' bydy - ae
Xy, 2L T W and Yy (MM O

by - cye byfL - cMeL

So , we have (5.8),as x ¢x(t)<xy and y y(t)Cyy, , for te[0,p] -
Call

Ao aLfL - CMdM - aMfM - chL
1i= 1:°
byfL = cyeL b, fy - ¢y
. ,='deL - Ay 5 . bydy = 2,8
2. e 2.— N
by iy = ¢ ey byfL = CpeL

Then , for y<a[A2,BZ] and t e[O,p] , we have
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f](t,A1,y) = A](a(t)—b(t)A]—c(t)y); Al(aL'bMA]_CMBZ) =0

f(tsBysy) = B](a(t)—b(t)B]—c(t)y)<Bl(aM-bLB]—cLA2) =0
ind for x e[A],B]] and t €[0,p] ,

fz(t,x,Az) = Az(d(t)-e(t)x—f(t)Az)yfAz(deeMB]-fMAZ) =0

fo(t.x,B,) = Bz(d(t)—e(t)x—f(t)Bz)é:BZ(dM-eLA]-fLBZ) =0

So, (5.6) is verified , as we wanted .

We point out that in [11 and [ 17] , the existence of such a solution is
roved with topological degree tools , as those also permit , in this case,to gua-
‘antee uniqueness and stability for the solution we want .

Another consequence of theorem 5.2 is the following existence theorem on the
one R" .
+

For x = (x],..,xm)emm , we note x30 if xizbo , for every 16{1,..,m% .

heorem 5.5 Let f:[o,ﬁ}dRmame be a continuous map . Suppose there exist r,ReR,
ith 0<{r<R , and such that , for x>0 , one has

1) x| = ro= (F(t,x) I x)»0 , for te[ 0,p]
1) x| = R = (f(t,x)| x)¢0 , for te[ 0,p]
ii1) r<lxl <R and x30 = 31e{1y.,m} tox;=0 and Yte[0,p] f.(t.x)30

Then , there exists at least one p-periodic‘solution x(.) of (5.1) , with
()30 and r<lx(t)[<R , for every telo,p]

Moreover , if (i) (resp. (1f) ) has a strict inequality , [x(t)|< R (resp.
Ix(t) |> r ) for every %[0,p] -

roof: We will apply corollary 28 to get invariance for an approximating problem.

Define q: R,—> R by q(p ):=Ry/m - RV - (r/Y/m ) (p-r) .
' R=-r

is a decreasing function with q(r)= R/m and q(R)=r/v/m .
Take  P(x):=q([x]) (1,...1) , for xeR"
As f is continuous , Tlet for kelN , fk:[:O,p]lem - Rm be C] functions such

1at fk converges uniform]y on compact subsets of [:O,p]ﬁRm , to f .
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Define f and F% as in the proof of theorem 5.3 . And take ,for k,neN,
1

m__pm . =
9y nﬂRwR —R" defined by gk,n(t,x):= fk(t,x) +—ﬁ—(P(x)—x) .

b

Set G:= {xaRm | r <le<iR and x:>0§ . As fk converges uniformly to f on

the compact set [ O,p]><fr G , choose , for each nelN , k_ strictly increasing

n
with n and such that sup Ifk (t,x)-f(t,x)| < min ( Rr  r ) -
.+ tel0,p] n 2n n/m

uefr G
We verify condition (2.7) , in corollary 2.8 , for each 9

If uefr G is such that |u| =r , n,=-u/r s an outer normal to G at u .

Then . using (1) . for te[.p] . (g (tu)lny) - (fk (t.u) [n,)+ +((P(u)-u) |n,)=

3 n m
=((£(80)-fy (50D )= (10| - %—E Wy - 4 908 uy)-r)
é%ﬁ _%_( QHUDV%__ r) = - _2_;]_£<0 )

If uefr G is such that |u|=R , n,=U/R s an outer normal to G at u .

Using (i1) , for te[0.p] . (g, ,n(t,u)|nu)4%']l +(F(tu) | ) +((P(u)-u) )<
: n

(Rr %_ [q(éul) R] Br, Ly Q(l ul) /% R - R)

S = - 300

Finally, if Uéfr G is such that r<|u|/<R and te[0,p] , by (iii) , let
ja%],..m} be such that uj=0 and fj(t,u)y,o . nu=—ej , the unitary vector with

component j equal to -1 , is an outer normal to G at u . And , (Qk n(t’u)[“u)‘<
n’

S ~(F(tu)eg)= ((PCu)-u) [e) Km - F5(t00) - 3=(allul)- u)<0

Applying corollary 2.8 , for J= [O,p] and o =R" , ¢1 G is weakly flow-inva-
riant for X = 9y n(t,x) . But , as 9% n is a C  function, c1 G is flow-inva-
riant for x = Iy (t,x) .

‘ ‘ n

Then , by theorem 5.2 ,there exists a p-periodic solution xn(.) , of R=gk (t,x),

in [0,p] , with x (t)ecl 6 for every tel[0,p] .

Using theorem 1.2 , as 9 _p converges uniformly on compact subsets of Rxgq ,

~

to f , as in the final part of the proof of theorem 5.3 , we get the solution we
want.
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Suppose that (i) satisfies a srict inequality . By contradiction , assume there

xists se [0,p] such that |x(s)] = r . Then "%f fx(t)l 2[ =2(x(s)| f(s,x(s))> 0,
t=s
y (1) - But , if se(0,p) , S |x(1)] 2{ =0 . And ,if sg(0,p), as x(0) = x(p) ,
t=s
re should have g-f»[x(t)lzI £0 , as Ix(t)lzl r for all téiﬂo,p]. In any case,we

t=p
ave a contradiction. -
In an analogous way , if (ii) has a strict inequality , one can prove that
|x(t)| <R, for every te [0,p] .
)

The following coro11ary contains , for a=0, a generalization of a Santanilla’s
esult (theorem 4.1 in [47] ):

orollary 5.6 Let f: [O,hI*IRm —~ R™ be a continuous map. Assume that there exist
»RER , with 0 <r<R and a constant a0 such that , for every te [0,&] and x>0,
ne has

i) [x =r = f(t,x)»0
i) Ix |=R = (f(t,x)|x)<0
i) r¢lx IR = Ff(t,x)y-ax .
Then , there exist at least one p-periodic solution , x(.) , of (5.1) ,with
(t)»0 and r <[ x(t)| <R, for every telo0,p]

Moreover, if (i) ( resp. (i1))has a strict inequality , |x(t)|> r ( resp.
[ x(t)|<R) , for every te [0,p] '

roof: As x»0 , (i) implies that (f(t,x)| x)>0 , for every t elo,p]l ,if |x |=r .

Forefx<R and x3%0 , but x»0 , choose by (iii) , icil,...m such that x;=0
1d fi(t,x) - aX, = 0, for all te[0,p] . So, all conditions of theorem 5.5 are
1tisfied.

O
We can get an analogous , of theorem 5.5 , reversing inequalities in conditions

') and (i1) . For such a proof we use , not only invariance theorems , but also the
‘xed-point index theory in R" .
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To present the fixed-point index ,as given in {27] , let us see some definiti-

nitions:

Definition 5.7 Let f:X—=Y be a map between the topological spaces X and Y . f is

called a compact map if f is continuous and c1 f(X) is a compact subset of Y .

Definition 5.8 If U is an open set of a topological space X and f:U - X 1is a con-

tinuous map , we’11 say that f is admissible if %er [ x=f(x)% , the set of fixed
points of f , is a compact set .

Definition 5.9 If U is an open subset of the topological space X and

H: [0,p]» USR»U = X s a continuous map , H is said to be an admissible homotopy
if {er] dte[0,1] : H(t,x) = x } is a compact set .

Definition 5.70 A metric space X is said to be an ANR (absolute neighbourhood retract)

if for each metric space Y , each closed subset C of Y and each continuous map f:C—=X,
there exist an open subset A of Y , with ADC , and f:A =X a continuous extension
of f to A .

We observe that a closed convex subset of a Banach space is an ANR ( [31] ) .
With an existence theorem,we give an axiomatic definition for the fixed-point

index:
Theorem 5.11 To each (X,U,f) , with X an ANR , U an open subset of X and f:U =X

a compact and admissible map , we can associate an intégernumber . 1X(f,U) , called

the fixed-point index of f respect to U, satisfying the following axioms, where
X :=%er [ x=f(x)}

1) Excision:
If U ds an open subset of U such that Xfc:U', then the restriction of f to

u', fl : U =X, is a compact and admissible map , with
UI
ix(flw,u') = 1y (f,0)
2) Additivity:
k-
If U=V Uj , with Uj open subset of X , and Xf are mutually disjoint,
J=1 U,
J
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k
1x(faU) =7 1)((1:[ »Us)

3) Existence of fixed-points:
If 1y (f,U)$0 , then x.#@, that is f has a fixed point in U .

})  Homotopy:
Let H: [O,T]x U= X be an admissible homotopy and a compact map . Then ,

) Multiplicativity:
If f: U] —eX] and for U2 —»XZ are compact and admissible maps , then so is

the product map f]xfz: U]XU2 -> X]xX2 and
(x7%5) = (£(x7)F(x,))

1X]xX2(f1xf2’U1xU2) = ix](f],U])-ixz(fz,Uz)

as X]1X2 is an ANR for the product topology .

) Commutativity:
Let U<X and U'cX' be open subsets of X and X' and f: U =>X' and g:U'=>X
be continuous maps . If one of the maps gef: V=f°](U') > X
feg: V‘=g—](U) - X'
is a compact and admissible map , then so is the other one and

iy(geF,V) = iy (Fog,V")

) Normalization: (see [27] )
If U=X and f:X = X 1is compact and admissible , then
(*) f is a Lefschetz map
(**) ix(f,X) = 7 (f) , the Lefschetz number of f .

An easy consequence of 3) and 7) is the following one:

roposition 5.12 Let U be an open set of the ANR X and f: U - X be a constant
ap , f(x)=xO . Then , f is a compact and admissible map and
1 . XoéU

0 , x0¢u

iy(f,U) =

-52-

o




Remark: We will apply fixed point index with : X a closed and convex set of R™ :
U a non empty,open and bounded set in X ; f:cl U — X continuous and such that
f(x)#x , for every xefryU 5 and  H: [0,1]=xcl U = X continuous and such that

H(t,x)fx , for every t e[@,]} and xéerU . In fact , in such conditions both f

and H are compact maps, as they are continuous on their compact domains . If, for
every neN , x el and xn=f(xn) , being x,€cl U , which is compact , there are

xecl U and x_ , subéequence of x_, such that x_ -»x_ . So, by continuity of
0 Ny n n, "o

fooncl U, x =f(x ) = x =f(x_) . As, by assumption , x#f(x) for xefr,U , it
N N 0 0 : . X

must be xer . So f is a compact and admissible map . In an analogous way ,

ly
if,for neN, xneU is such that there exists t €[0,1] with xn=H(tn,xn) »there

k
tnk-+ to and xnk-a Xy - SO, x0=H(to,x0) and it must be xO€U . And then ,
H is a compact and admissible homotopy .
| 0,17~ U

will be t, €p,1] , xgcl U, tnk and x  subsequences of t,and x_, with

Lemma 5.13 Let f: EJ,p]xiRm > R" be a C] map . Assume that there exist r,ReR
with 0 «r«R and such that , for every te[O,p] and x3»0 , one has:

(1) X =1 = (F(t.x)] x)<0

R = (f(t,x)| x)>0
(ii1) rfx|[<Roand x;=0 = fi(t,x)>0 , for all iedl,...m

—_~
—
e
~r
>
1]

Then there exists at least one p-periodic solution x(.) , of (5.1) , with
x(t)»0 and r|x(t)| <R, for every te[0,p]

Proof: Let f*: [0,p]xR" - R" be defined by

f(t,Rx/ |x] ) s x| >R

f(t,x) » I Ix|<R
f*(t,x) = 4 -

x| f(t,rx/|x]) » 0 <|x|<r

r

0 , x=0
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As f is a C] function , f* is C1 in a small neighbourhood of the origin . For
all x,ydRm\{O} , we have ;TéT-— T%Tlé-rg— |x-y| . So, one can easlly conclude that

v i
Xi

f* s Tlocally Tipschitzean 1in all [O,pyém . Extending f* to RxR™ , with Fkt,x)=
£%(0,x) , if t<0 , and F(t,xy=F*(p,x) , if t>p , the map F: RR™ >R" is stil]
Tocally lipschitzean . So, we have uniqueness for solutions of Cauchy problems of
%= F(t.x) .

If we find a solution , y(.) , of X = F(t,x) , with y(t)>0 and r<|y(t)| <R,
for all te[0,p] , y(.) is also a solution of (5.1) , as F(t,x) = f(t,x) for te[0,p]
and  r<|x|<R . And we are done . . !

Because of the definition of f , ¥ also satisfies conditions (i) and (ii) , for
a1l teR and x>0 . And , for ie{l,..m} and xﬂRm\{Oﬁ » with x.=0 , F;(t,x)>>0,
if teR . This last property implies with theorem 2.11 , taking @ =R™ and J =R R

the flow-invariance of 1RT for X = f(t,x) .

As T is bounded , solutions of X = f(t,x) exist in all [0,p]

So, the translation operator T: R™ —g" applies !RT 1ntolRT and is a con-
z =>x(p;z)

:inuous map .

. m .o : m
Take G].— \xaR+ | ]x]g‘r} and GZ.- {xe1nt4R+ ||x[>vR} .

By theorem 2.11 , G1 is flow-invariant for x = f(t,x) . And , by corollary 2.7,

~

1 G, s also flow-invariant for % = f(t,x) .
Take K:#RT , which is a closed convex cone in R™ . Then, K is an ANR .

Set Uj:= Kr\{xaRm,| x| <r } and U,:= K(\{xéRm ] [x|<.R%

U] and U2 are non empty open and bounded sets in K . If we prove that 1K(T,U])=

1 and iK(T,U2)=O , by additivity property of fixed-point index , TK(T,Ué\c1 U])=

-1#0 . Then , there exists xeré\cl U] , with x0=T(xO) . So, y(.) = x(.;xo) is a

. ® >y . m
olution of x = f(t,x) in [0,p] , as XER, » and r <[x [ <R . As G, and cl 6,

re flow-invariant , for x = ?Yt,x) , and y(0) = y(p) , it must be r <|y(t) | <R,
dr all t e[p;p] . And we got the solution we wanted . |
To see that 1 (T,U;)=1, define H: [0,1]=cl Uy =R" . H

( A%x) —> A T(x)

is a compact
Iy

ap and if it is an admissible homotopy , by homotopy property 1K(H(O,.),U]) =
1K(H(1,.),U]) . By proposition 5.12 , 1 = iK(O,U]) = 1K(T,U ) , as OeU] . According

) the previous remark , Wwe just have to see that H(t,x)#x , for all t e[D,p] and
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xeer U]=

X, E(fr U])\U

(fr U1Y\U] . By contradiction , suppose there exists AO E[b,]] and
1 such that x*=AOT(x*) . Then , |X4|= r . Therefore , AO#O » 85 X,=

=2 T(xe) - S0, [T(x) [=]xx| gy r 5 @5 Ay (0,1] . But , as Gy is flow-invariant,

0 & d ‘x(t;x*)I2 = 2(x*l f(p,x4)) <0 , as [Xx|= T > which is a contradiction .
dat— ‘t=p

To see that 1,(T,U,)=0 , define F: [0,1] x el U, — R" , Where
(A,x) —> T(x)+A]AP

P=(1,..,1) and > R+u , Wwith u= sup |T(x)l
M 1P
x| <R

F is a compact map and , if it is an admissible homotopy , by ho-
[[0,]1><U2

motopy property , 1K(F(O,.),U2) = 1K(F(1,.),U2) , that is 1K(T,U2) = 1K(T+A]P,U2) .

If i, (T+r,P,U,)#0 , there would be x*eU2 such that x* = T(x*)+A;P . And then ,

R+u
STPT
tradiction by definition of Ao By the previous remark , to prove that F is an

K 1
Ry [x*| = |>\]P+T(x*)|2 A IP| - |T(x*)‘>/ A”P! - u . So that A

, & con-
admissible homotopy , it is enoughto verify that , if xeer U2 we cannot have

x = F(x,x) , for some x€ ﬂ3,1] . In fact , suppose ;by contradiction , that there
exists y eer U2 (fr UZ)\U2 and A*’e[p,1j such that y* = F()\*,y*) . So ,

| ¥*|= R and y* = T(y*)+A]X*P . As ¢l 62 is flow-invariant for X = ?}t,x) R
‘T(y*)‘Z/R =|y*| . So, there exists jE\T,..,m} such that 04;y§ L(T(y*)) . -But

) J
then , 0>/y3? - (T(y*))j= MAF P AA* . So that , a* = 0, which implies y*=T(y¥).
As cl G2 is flow-invariant for X = ﬁkt,x) , we have 0 %f_'!x(t;Y*)l T =
. tep
2(T(y*)| f(p,T(y*)))>0 , as |T(y*)| = |y*] = R, a contradiction .
jm}

Condition (iii) in lemma 5.13 can be weakened . So , the following theorem is
a generalization for a result of Gairesand Santanilla (theorem 3.1 in [23] )

Theorem 5.714 Let f: [O,D]x R™ — R™ be a continuous map . Suppose that there
exist r,ReER , with 0 «4r <R , such that , for every te[o,p] and x30 , one
has:
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1) x| =r = (f(t,x)] x) <0
ii) x| =R = (f(t,x)] x)3»0
'H'I) Y‘<|X]<R and X_i-_—O ’—-‘9 fi(t,x)zo 5 for all 16%],..,"1}

Then , there exists at least one p-periodic solution of X = f(t,x) , with x(t)>0
nd rg|x(t)|<R, forall t €[0,p] .

Moreover , if (i) (resp. (ii) ) has a srict inequality , r<|x(t)| (resp. |x(t) >R,
or all te [O,p]

. 1 .
roof: Take , for kel , fk: [O,p]%!Rm g" C’ maps such that fk converges uniformly

o f on compact subsets of [Q,p]%iRm . Let FL and Flbe as in the proof of theorem 5.3 .
r . 2R/ - r/(Z/”m) (p-r) .
2/ m R-r '

is an increasing function , with q(r)=r/(2/m) and q(R)= 2R/m .
Put P{x):= q(|x|)(1,..,1) and , for k,neN , take 9 n:!Rme — Rm defined by

G (%) = F(£.X)+ 1(P(x)-x) -

For each neN , take .kﬁJN strictly increasing with n and such that

Define q: R, =R by q(p) =

up | (£:x)=F(t,x) | min ( i , R ) , as f,  converges uniformly
X|4<R n 2n/ m n
é[osp] ‘
o f on compact subsets of [O,p]x1Rm .
For every nelN , 9% n is a C] function and for x30 and t e[O,p},
"l o,p< R"
e have:

x| = = (g (E8x)] x) =((f (£.x)-F(£,x)) | x)+(F(t.x)] $<)+—;——((P(><)-><)[ X)
n n

__Y‘_.Y‘_I__—L(‘Y‘ an'r-rz)=O
2n n 2 Jn

1 2

: R R
x| =R = (g (t,x)| x) D= —-R+ —( 2R/ — - R =0
R (g (8] 0> TR e BT - )
LIX|ER 5 x=0 = (gkn,n)i(t,x)=(‘fkn-f)i(t,x)+f1(t,x)+—;—(q({X|)—xi)>
>- " + T =0 .
2n/m 2n/m

Applying lemma 5.13 to each 9 n o we get xn(.) , @ p-periodic solution of
nS

= gkn,n (t,x) , in [O,p]- , With xn(t)Z'O and r <¢xn(t)|<:R ,» for all t e[O,p] .
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As converges uniformly to ?over compact subsets of RxR" , we have ,

g
kn,n

as in the proof of theorem 5.3 , x(.) , a solution of (5.1) in [0,p] , with x(t)» 0
and r < x(t) <R , for all t e[0,p]
Suppose , that (i) verifies a strict inequality . By contradiction , let se [O,p]

be such that [x(s) =r . Then , %f— Ix(t) 2! = 2(x(s) | f(s,x(s))) <0 , as
t=s
| _ . d 2 ; d 2 ¢
X(s) | =r . But, if se(0,p) , af_|x(t)5 1 =0 . If s¢(0,p) , af—[x(t)l | £0
t=S t:p
as | x(t) |yr for t eP,p] and | x(p)|=r . In any case , we have a contradiction .
In an analogous way , there is no se[0,p] such that [ x(s)|=R.

]
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