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Chapter 1

Review of Quantum Gravity
ideas

1.1 Introduction

Most conceptual problems in Quantum Gravity (QG) concern the status
of our conventional ideas on space, time and matter. Such problems are
usually linked to the technical problem of the compatibility of the standard
geometrical ideas of General Relativity (GR) and Quantum theory (QT). In
fact, the analysis of this compatibility may be the only irrefutable motivation
for doing QG [Son90]. Thus, as remarked by C. Isham, the discussion of
geometrical and conceptual issues in the same framework is justified. The
details of the ideas presented here are given in [Ish91].

The significance of the conceptual problems that stem from QG has no
consensus. In constructing the theory we have in our grasp only minimal
requirements for it: to reproduce i) classical General Relativity and ii) normal
Quantum Theory. These should hold in the appropriate domains. Namely,
for distances and times much bigger than the Planck length lp and time tp.
Here lp = \/%ﬁ ~ 10733¢cm ~ 10%eV and tp = l—f ~ 10~*2sec, where G
is the Newton’s constant, & is Planck’s constant and ¢ the speed of light in
vacuum. On the other hand, near the Planck length scale itself the views vary
according to the extent to which the conceptual and structural frameworks
of GR and QT are still applicable. There is the conservative view that
nothing changes at such a scale and the revolutionary one that suggests a
reassessment of the traditional ideas of the spacetime and quantum matter
e.g. 1) Continuum concepts (Differential Geometry) are inapplicable in this
domain and ii) Penrose’s proposal [Pen86] that QT becomes non-linear on
the Planck length scale in the way needed to explain the problem of the
reduction of the state vector of Quantum Mechanics.



The above minimal requirements on a QG theory are however not strong
enough to single it out. By using a covariant quantization method, particle
physicists have shown [Gup54, Fey63, Wei64, Wei65, BD75] that any Lorentz
invariant theory of a spin-2 massless quantum field coupled to a conserved
energy-momentum tensor will necesarily yield the same low energy scattering
results as those obtained from the tree graphs of a weak field perturbative
expansion of the Einstein Lagrangian!.

The existence of this set of “equivalent” theories comes from the fact
that no precise a priori information is known about the requirements on the
theory. Probably the main consequence is that no axiomatic formulation,

Wightman-type or C*-algebras, exists as opposite to Quantum Field Theory.

The above ideas already show that the aims of a QG theory are not well
defined. This observation is supported by the many proposals that have
appeared. However, it is through such proposals that a “feeling” can be got
about what physicists understand as QG. A rough description of them is
given below.

The different proposals can be divided into two groups relying on the
feature of gravity that is emphasized: the field properties of the gravitational
interaction is the viewpoint of particle physicists and the structure of space-
time as linked to gravity that is the approach of general relativists.

More precisely, the former group uses techniques drawn from conven-
tional, Poincare group based Quantum Field Theory. Here, the key concepts
are special relativity and gravitons propagating in a fixed Minkowski space-
time. The minimal expectation is to produce scattering amplitudes for gravi-
tons and other particles that are free of irremovable divergences, i.e. to have
a renormalizable theory or, may be, a genuinely finite theory. The great goal
is to have this theory as a part of a general Grand Unified Theory (GUT) in
which the presence of the gravitational sector is essential.

In the early stages of this approach the expansion g,.(z) = 7., +&h,.(2),
with £ = |/167G/c? and 7, the metric in Minkowski spacetime, was used;
then the field h,,(z) was quantised using the standard techniques drawn
from relativistic quantum field theory. The conception of gravitons as the
quanta of the gravitational field came about. Background field methods
were introduced afterwards, taking instead of the Minkowski spacetime an-
other solution of Einstein equations: 7,, — ¢{%(z) as the background and

Ly
then quantising® h,(z). More recently, attention has been paid to theo-

'Tt has been shown [Wal86] that there exists a consistent theory of a massless interacting
spin-2 field that is not generally covariant, that is, it is not possible to change the dynamical
field variable in such a way that the background flat metric disappears from the theory.
This implies that the equivalence of the theories mentioned above is not strictly valid.

2Note that now we have a Quantum field theory for h,,(z) in a non-dynamical curved
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ries of superstrings and other extended objects where massless spin-2 fields
(gravitons) also appear.

Among the most important problems in this approach is the lack of a
meaningful causal structure of the theory: there is no reason why it should
be the same as that of the background space. Also, it is difficult to handle
relevant cosmological issues, for example when studying the influence of QG
on the initial spacetime singularity the use of a classical cosmological model
(e.g. Robertson-Walker) as the background is not sufficient. This is obvious
if one thinks, as is done in this approach, that the spacetime structure is
_given by the background and gravitons — as defined on this background -

 are the entities that scatter between them and with the rest of the matter
particles.

The general relativists group emphasise the geometrical structure of the
theory and the role played by the spacetime structure. This can be considered
closer to the essence of GR in which the gravitational field is replaced by the
geometry of the spacetime. Quantisation adopting any special background
spacetime is not accepted. If such a spacetime has a special role it should
emerge naturally as part of the structure of the theory itself and not just put
in by hand.

The minimal expectation here is to improve the understanding of the
problems posed by spacetime singularities like those associated with black
holes and similar situations in the classical theory. In particular, one ex-
pects to recover Hawking’s results on the quantum production of particles
by classical black holes and to extend them to tackle the problems of the
back reaction of the created particles on the background spacetime as well as
the final state of the evaporating hole. A more ambitious idea is to apply the
theory to cosmological issues, especially to study the universe as a quantum
entity.

The philosophy used here is one of “back to the basics”, by relying on QT
rather than on Quantum Field Theory. The main problems are related to
i) the quantum status of the spacetime concepts of classical GR and i) the
extent to which conventional QT ideas can be applied. Thus in this approach
one is more concerned with the conceptual issues that arises in QG.

As pointed out in [Ish91], it is guaranteed that the uncertainty will be
maintained about what one is trying to do in QG until the following question
is unswered satisfactorily: is the central problem of Quantum Gravity one of
i) physics, i) mathematics or 1ii) philosophy? Moreover, how severe are the
conceptual difficulties? and is it possible that one needs to get to grips with
them before any serious technical development can be made? A brief account

background gf,o,,)(a:). This is because the back reaction is not taken into account.




of some the problems in QG is given below.

1.2 Basic problems in Quantum Gravity

Here we want to stress only the main difficulties one deals with when QG is
investigated. One of the broadest of all the problems is the extent to which a
quantum theory of gravity maintains: i) the picture of spacetime as afforded
by GR and ii) the interpretative and structural frameworks of conventional
QT. It is evident that this is a highly non trivial question and in consequence
it is worth mentioning it even if no satisfactory answer has been given so far.
Instead, more specific problems involved in the construction of a QG theory
are next touched.

1.2.1 Spacetime Diffeomorphism group and the defi-
nition of the observables

General relativity equations are covariant with respect to the group Diff (M)
of diffeomorphisms of the spacetime manifold M. In a sense the role of the
diffeomorphisms group in both classical and quantum GR is analogous to
that of the gauge group in Yang-Mills theory. For instance, in both cases
the “gauge fields” are non dynamical®. On the other hand, however, the two
groups are quite different. Diffeomorphism group moves spacetime points
around whereas the transformations involved in Yang-Mills theory are made
at a fixed spacetime point. A conclusion can be arrived at that invariance
under Diff (M) means that individual mathematical points in M have no in-
trinsic physical significance. Certainly this is related to the question of what
is an “observable” in GR [Sta87, Rov91c]. As an example let us consider the
Riemann scalar curvature R(z) = ¢g"“(z)R,.(z). It is a scalar function on
M and its value at any ¢ € M, hence, can not be regarded as an observ-
able. At the quantum level the same result follows by considering a unitary
representation of Diff(M). For instance, take f € Diff(M) and U(f) in
the chosen unitary representation. The action on the quantised metric of
spacetime would lead to the transformation law:

U(NR@)U(HI™ = R(f (), (1.1)

3Roughly, when one extendes the normal derivatives to covariant derivatives in a theory
of a free matter field say, in order to get the correspondent invariance, one arrives at a
coupling between the matter fields and the gauge fields but does not get a kinetic term
for the latter.




provided R(z) can be defined as a proper operator function of the metric
operator and its derivatives. Since a physical observable is defined as one that
commutes with the action of the gauge group, R(z) turns out not to be one.
Alternatives can be tried for generating observables. One is to construct gen-
uine invariants by integrating scalar functlons of the metric of spa.cet1me over
the entire spacetime, e.g. [y R(2)(g(z))?d*e; [y Ru(z)R*(2)(g(z))? d'z.
It is worth noting that these are highly non-local and the corresponding quan-
tisation will be very different from any conventional quantum field theory.
Another possibility is an old idea about observables in GR. The basic point
is that although R(z) is not an observable, R(X) is whenever X is a point
on the spacetime manifold occupied by an actual physical particle. That is,
we locate ourselves on the spacetime manifold with the aid of a material ref-
erence system. This implies to some extent, that simple GR is an incomplete
theory since the equations of motion do not involve the reference system,
for example, its energy-momentum tensor. Adoption of this approach is re-
lated to the so called “physical” coordinates which are used sometimes in the
canonical quantisation of gravity, that we will deal with, as well as in the
treatment of the problem of time in QG.

The diffeomorphism invariance problem can be seen as arising through
the insistence that QG should reflect the diffeomorphism group invariance
of classical GR [RS90]. Three related examples make this assertion clear.
First, in normal quantum field theory the two-point function for a scalar

field ¢ shows the behaviour:

const.

W(z,y) = (0|¢(ﬂ’3)¢(y)|0> ~ m

with @,y approaching each other (the distance is measured with the
Minkowski metric of the background). The dependence of W(z,y) on its
arguments is a direct consequence of the invariance of the vacuum state |0)
under the action of the Poincare group. If we require |0) to be Diff(M)-
invariant, and if ¢(z) transforms as R(z) in (1.1) then

(1.2)

W(z,y) = W(f(e), f(y)) V[ € Diffi(M). (1.3)

However, for any two pairs of points (z,y) and (z',3') which are suffi-
ciently close to each other —that lie in a single coordinate chart e.g.— there
exists a diffeomorphism f such that ' = f(z) and y' = f(y). It follows that
W(z,y) is a constant for any y in a sufficiently small neighbourhood of z.
When interpreting this result one has to note that the value of ¢(z) of the
scalar field at # € M is not an observable in a Diff(M) invariant theory.
The conclusion here is that the short-distance behaviour and ultraviolet di-
vergences are likely to be different in quantum gravity than in quantum field
theory. In addition, the regularisation method for the operators will have to



change since now there is not a background metric affording the measure of
nearness of spacetime points.

Second, Diff(M) invariance also affects functional integral quantisation
methods. One might try to construct a theory of QG by using functional
integrals, in analogy to standard quantum field theory, to produce vacuum
expectation values of a time oredered product of a set of fields say

G(z1, 22,0y @) = /D[g]R(a:l)R(a:g)...R(a:n)eifMR(g)‘/g‘#z. (1.4)

Here the difficulty is to recognise what “time-ordered” product means
in the absence of any background metric providing the preferred notion of
spacelike and timelike*. Even if such a background is provided there seems
to be still inconsistency since the attribute of spacelike or timelike of any pair
of points can be changed one into the other by the action of the Diff (M)
group.

Third, we have the spacetime operator version of quantisation. In quan-
tum field theory, a scalar field <$ obeys the microcausality condition

[q@(m),q@(y)] =0, V z,y spacelike separated. (1.5)

In the case of QG it has been shown [FH87] that for most pairs of points
¢,y € M there will exist at least one Lorentzian metric with respect to
which they are not spacelike separated, and hence, as far as all metrics are
summed over in a funtional integral (e.g. (1.4)), the r.h.s of (1.5) will not
vanish!

1.2.2  Background structure and the problem of time

The background structure is a key feature of any approach to QG that can
take different forms. It can consists of choosing a particular mathemati-
cal element of the theory or it can refers to the conceptual or interpretative
framework assumed a priori. In the former case we have the examples of theo-
ries that take a fixed manifold representing spacetime or in which a particular
spacetime metric is considered central. Concerning the latter case a remark
is in order. It can be argued that the conventional Copenhagen interpreta-
tion of QT presupposes as part of its background a fixed spacetime (in both
topological and metric sense) and it is therefore intrinsically incompatible
with the idea of QG. Also, the very existence of such a background is usu-
ally associated with a division of the universe into “system” and “observer”.

*Apparently this problem can be circumvented by using an Euclidean formalism
in which the functional integral is over metrics possessing a Riemannian rather than
Lorentzian signature. The problem is transformed into one of interpreting physical ampli-
tudes from Riemann n-point functions.



This split is in fact one of the current problems in Quantum Cosmology. The
importance of the understanding of the precise background structure that is
assumed should be clear by now. The issue on the compatibility of the ideas
of QT and GR mentioned at the beginning of this introduction acquires a
defined form in the background structure here discussed.

Time is not an observable in conventional quantum physics since there
is not an operator associated to it. Instead, it is treated as a background
parameter, as in classical physics, to express the evolution of a system. This
applies to non-relativistic quantum theory, relativistic particle dynamics as
well as to quantum field theory. Hence, time can be regarded as an element of
the classical background that is essential to the Copenhagen interpretation
of the theory. We can see now that, in any particular approach to QG,
the nature of the problem of time is strongly related to the background
structure assumed. As used by particle physicists, the background Minkowski
metric provides the usual notion of time of special relativity and quantum
field theory. However, whether or not a measure of time, as given in such
an approach, is physically correct is not clear. This is an aspect of the
question about to the extent to which the spacetime concepts of GR can
be accounted adequately by a weak-field perturbation around a Minkowski
background. For instance, the behavior of the lightcones at the event horizon
of a black hole cannot be readily reproduced in a graviton-based picture. This
criticism holds also for the genaralizations in which, instead of a Minkowskian
background, another curved background is used.

In the relativists approach the issue of time is different. The background
is now the “three-manifold of space”. If it is non-compact the asymptotic
structure might be used to define an absolute time. In dealing with cosmo-
logical models, however, this three-manifold is taken to be compact and the
notion of time has to be extracted from the variables involved in the descrip-
tion: canonical variables of gravity, matter fields or particles added to the

system.

1.2.3 A minimum length in QG

A problem encountered when dealing with local quantum fields may be the
existence of a minimum lenth (or time) related to the Planck units. It has
been argued recently [Pad85b, Pad85a, Pad87] that: i)geodesic distance is in-
trisically bounded from below in QG and ii) the uncertainty relations and the
existence of the Schwarzchild radius, impose lower bounds on measurements
of both space and time. The latter being a result coming from an analysis of
“quantum clocks” as related to time in the canonical quantization of gravity.
Another possibility is that the minimum length may arise in the context of
a lattice approach to QG [Gre90]. Furthermore, there are indications that
string theory may lead to a natural minimum length.

10




Concerning the meaning of the existence of such a minimum length one
can interpret it as that length can be “measured” only to an accuracy of
the Planck value (in principle w.r.t. some background metric) and that the
underlying model of a continuum spacetime still holds. On the other hand,
it can be interpreted as a signal of the breakdown of the continuum picture
itself. Anyway, both views make more obscure the idea of quantising gravity
by quantising the point fields of classical GR. For instance, if time cannot be
measured to an accuracy greater than the Planck time, one needs to recast
the equal-time commutation relations to make them meaningful as well as
the general quantum mechanical idea of a complete commuting algebra of
“simultaneously” measurable observables.

A more difficult matter would be the breakdown of the continuum picture.
This amounts to think of the Diff (M) invariance as only a coarse-grained
feature °. This also causes problems to the Regge calculus approach to QG
in contrast to the case of the gauge group in Yang-Mills theories.

1.2.4 Quantum Topology

The framework of GR involves a pair (M, g); the spacetime manifold and
metrics on it. However, once the classical continuum picture of spacetime
has been entertained a number of possibilities may occur: in particular if
geometries are to be quantised (g or related objects) it may be possible
to consider the quantisation of M. This idea goes back to J.A. Wheeler
[Whe64]. It is far from clear what this would mean. The mathematical
framework of GR has the following symbolic hierarchical form

set — topology — differential structure — Lorentzian metric

in which each step represents a structure superimposed on the previ-
ous in the chain. A “priori” quantisation might be applied at any of these
stages. To keep M (the manifold) fixed and just quantise the metric is not
an adventurous approach. There are other possibilities, for instance, to keep
the differential structure but let the manifold become part of the quantum
structure. S. Hawking [Haw78, Haw79] and collaborators developed this idea
through the so called “Euclidean” quantum gravity program. This is based
on the use of path integrals over Riemannian, rather than Lorentzian, met-
rics. A typical quantity is:

Z = D[gleS s Bl (1.6)

M \/I;dem(./\/()

°This idea is difficult to implement in practice, partly because of the absence of any
finite-dimensional approximation to the Diff(M) group.
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where the integral is over the set Riem(M) of all Riemannian metrics
on M and the sum is over all four-manifolds® M. The current theory of
wormholes with their possible consequences in determining the constants
of nature is an application of this idea [Col88, Haw88, HL88]. The use of
certain complicated manifolds M raises intriguing possibilities, e.g. there
may exists lost of information: when particles fall into the event horizon of a
(virtual) black hole. An observer external to the black hole would interpret
this as a transition from a pure state to one that is mixed, leading to what
Hawking calls the “$-matrix”: the pure—mixed analogue of a normal S-
matrix [Haw82a, Haw82b, Haw84].

There are other alternatives not less interesting based on the quantisation
of sets, topologies and manifolds that have been developed in a number of
directions [Ish91]. However, as remarked by C. Isham himself , they are more
speculative and difficult to relate to the conventional approaches to QQG.

Finally, we want to mention other important questions appearing in the
context of QG. They are, for example, the interpretation of the role played
by complex metrics (e.g. in Asthekar’s formalism —~Chapter 3), or those that
are degenerated [Hor91]. Both have arisen in recent work on QG posing
non-trivial problems to the interpretation of the theory. The Quantum Cos-
mology issue contains several points which deserve discussion. Here we just
quote them: essentially, shadows are cast when the interpretative framework
of the quantum theory is applied to the entire universe. i)The conventional
Copenhagen interpretation of quantum theory emphasizes the role of mea-
surement and probability (often considered in a relative frequency sense).
However, an observer can not be out of the universe to measure it and, also,
we do not know what an ensemble of universes is. ii) Theories of the Quan-
tum Creation of the Universe (QCU) aspire to have a unique quantum state
based on some quantum boundary conditions “near the big-bang”. It is not
certainly kown if this is compatible with the standard notions of quantum
theory. iii)The world around us is remarkable classical. It is a main question
how to get this feature from a totally quantum mechanical description. iv)
QCU theories involve the idea of a beginning of time. It must be checked the
compatibility of such an idea with both GR and conventional QT.

1.3 Approaches to Quantum Gravity

In this section we present a brief description of several of the different ap-
proaches to tackle the quantisation of gravity. We include only the particle

61t is not quite clear what is the meaning of this since it is not possible to classify
four-manifolds in any algorithmic way.
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physicists schemes since a more complete discussion of the canonical frame-
work, used by the relativists group, will be given in chapter 2. We make a
rough description of these schemes followed by a series of remarks concerning
their conceptuals and geometrical aspects.

1.3.1 Quantisation of GR

Detailed reviews in this respect are [Ish85, Ish87, Alv89]. The analysis in-
volves several points to be discussed.

Gravitons

Gravitons are the quanta of the gravitational field. The particle is con-
ceived of as propdgating on a background Minkowski spacetime and it is
associated (like the other elementary particles) with a specific representa-
tion of the Poincaré group labelled by its mass m and spin s [SW64]. The
especification of m and s for the case of the graviton is got as follows:

i) t-channel exchange of a particle of mass m can give rise to a static force
of the form e™™" /r? where r is the distance between two particles. Thus the
usual gravitational inverse-square law can be secured only if the graviton is
massless.

ii) s cannot be half-integral because the Pauli exclusion principle makes
it impossible to construct a classical-sized field from a coherent superposition
of fermions.

iii)S. Weinberg showed [Wei64, Wei65] that a particle whose spin is greater
than two will not produce a static force. Furthermore, s = 1 gives a repul-
sive force between like particles (e.g. spin-1 photons serves this function in
Electrodynamics). We arrived at the only two possibilities that s = 0 or
s = 2.

Scalar fields, ¢(z) are associated with zero spin while symmetric Lorentz
tensor fields hy,(z) are with spin-2. They can be interpreted as correspond-
ing to Newtonian gravity and General Relativity respectively. According to
quantum field theory (based on special relativity) a free massless spin-2 field
must satisfy the field equation:

P = 1 = B s+ B + (B — B2 ) = 0. (L)

Two properties are notable of this equation: it is invariant under a)a
redefinition of the field, A, — hu, + A, k%, with X # % to avoid the new
fields being traceless, and b) the gauge transformations hpw = P +E€un+Eu,.,
where {,(z) is an arbitrary Lorentz tensor field”.

"This invariance is a consequence of the masslessness of the graviton and it turns out
to be necessary to project out the lower spin ghosts which are otherwise associated with
the tensor field h,, (z).
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Gravitons from GR

The derivation of the graviton field from GR is through the lowest order
approximation of the Einstein-Hilbert action

Slg] = — [ Rlo(e))|detgl}}d's (18)

in the expansion: g,,(z) + khy,(z). The field eq. for h,,(z) is precisely
(1.7) when the lowest order in & is considered. The two properties men-
tioned above concerning the field equation have an interpretation here. The
first corresponds to using g,,(|detg|)* as the field variable instead of g,,.
The second is just the effect induced by an infinitesimal diffeomorphism of

Minkowski space generated by the vector field €.

Advantages

The advantages of adopting such a scheme can be summarised in:

1) Short-distance behaviour, operator-product expansions, regularisation
and related topics are faced conventionally due to the existence of the back-
ground metric.

2) A fixed causal structure is afforded by the background metric that al-
lows to define a microcausal spacetime commutation relations for spacetime
fields, equal-time commutation relations for canonical fields and a good no-
tion of time ordering for use in a functional integral or other formalisms of
coventional quantum field theories.

3) Some of the difficulties with the Diff (M) invariance are translated into
into standard problems for gauge-invariant quantum field systems and then
they can be tackled with such methods.

4) The definition of observables can be approached by using the underly-
ing Minkowski structure in analysing the asymptotic behaviour of the fields.
The key point is that the gauge group generators ¢ have compact support
and therefore do not affect the fields asymptotically®.

Objections

Concerning the geometrical and conceptual objections we have:

1) There is no reason to adopt the causal structure of the Minkowski
metric as the physically correct one. In fact, it has been suggested that a
non-perturbative treatment could lead to light cones that do not coincide

8 Asymptotic observables played an important role in the seminal investigations of B.S.
DeWitt [DeW65, DeW6Ta, DeW67b] on the spacetime covariant approach to QG.
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with those provided by the Minkowski structure. The status of the initial
microcausal structure is uncertain.

2) The Minkowski background fixes also the topology of spacetime to
coincide with that of a trivial vector space. In this way any feature of classical
GR involving non-trivial topological structure is made difficult to discuss,
e.g. cosmological problems, spacetimes singularities, black holes and event
horizons.

3) The expansion which the graviton field come from is a poor one in the
geometrical perspective of classical GR. For example, g (z) will be a genuine
metric tensor (an invertible matrix with signature (-1,1,1,1)) only for small
values of h,,(z). However, in some quantisation methods, one integrates
over all values of h,,. Indeed, rather than quantising on the space of pseudo-
Riemannian metrics, we are quantising on the tangent space to the specific

Ny -

Non-Renormalizability

When the corresponding expansion, for the metric in terms of the graviton
field, is inserted in the Einstein-Hilbert action (1.8) the ensuing Lagrangian
for h,,(z) contains terms that are non-polinomial, derivatively-coupled and
with a dimensional coupling constant x. Each one of the last features is
an indication of the non-renormalisability of a quantum field theory in four
spacetime dimensions. This can be considered the major disease of the ap-
proach to QG® we are disscussing now. And that is the reason why several
schemes have been proposed to averte it. This is the case, for instance, of the
“R+ R?” theories in which to the Einstein-Hilbert action is added the square
of the Riemann curvature [Ste77, FT81, FT82] but which have not succeded
because of problems of non-unitarity and ghosts [Tom84]. The supergravity
[WB83] theory was another major program aimed at removing ultraviolet
divergences with the hope that the additional fermi loops would cancel the
infinities produced by the bosonic graviton loops. The appealing feature of
this approach is that it yields a definite prediction for the fundamental matter
Lagrangian which must be attached to GR. Unfortunately, it was found the
idea does not work for more than 2 loops in the case of N = 1 supersymmetry
and for more than 7 loops in the N = 8 case.

%In the early stages, only power-counting estimates indicated the non-renormalisability
of the theory. Due to kinematical reasons the pure gravity one-loop graphs are finite
on-shell. This is not the case when matter is included. Finally, two-loop calculations
[GS85, GS86] explicitely showed this failure.
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1.3.2 Quantisation of a theory that gives GR as its
low energy limit

The key step here is to find a system possessing a well-defined quantum
theory and which yields classical GR as a low-energy limit, even though that
is not the starting point.

Induced gravity

Here, the Einstein-Hilbert action is not fundamental, but rather an ef-
fective action induced by the quantum structure (for a detailed account see
[Ad182]). In constructing the theory one starts with an action including only
the usual coupling of matter fields to the metric tensor and, the pure grav-
ity term will arise as a counterterm from the quantised matter fields. Such
term coincides with the weak-field expansion of the Einstein-Hilbert action.
Hence, the criticisms to the weak-field scheme apply to the present case.

String theory

This is a more sophisticated scheme in which the graviton occurs as just
one of an infinite number of particles associated with the quantised string.

The idea that a quantum theory of gravity can be constructed starting
from closed strings comes from studies of zero-slope limit of the dual reso-
nance model for non-hadrons [SS74, Yon74] (an extensive review on this link
is [Hor89]).

The main idea is to quantise certain fields appearing in the Polyakov
action

Slav X1 = o [ 49()8 ()0, (0)gu (X0 detgllF o (1)

where g;; is a metric on the two-manifold W (the world-sheet), X : W —
M are the string fields which map W into the spacetime manifold M, and
guw is a background metric on M. The constant o is related to the string
tension and is assumed to be of the order of the Planck length.

The classical system is invariant under the conformal transformations
gj(o) = F(0)gij(c), F(o)> 0 which can hold at the quantum level only in
the case in which the metric g,, satisfies an equation that is effectively the
vanishing of the trace of the energy momentum tensor of the two-dimensional
quantum field theory. The above equations have the form

1,
0=Ru+ 5o Ruap RS+ - (1.10)
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where higher-order powers and derivatives of the Riemann curvature are
not written down explicitely. Other background spacetime fields may also
be introduced (e.g. massless dilatons and 2-form fields) producing similar
equations.

Conformal invariance also constraint the dimension of M to be equal to
some critical value depending on the background fields that are present or
any two-dimensional spinor fields added to the system (like in superconformal
field theories).

The above field equations are the string theory substitute for the classical
equations of GR. The metric g,, is not considered as background structure
since it comes about as a solution of the dynamical equations. However,
it works like that once calculations of quantum fluctuations around it are
performed.

Several exact solutions to (1.10) have been found but probably among
the most interesting ones are those which contain spacetime singularities
[HS90, Hor90, Hor91]. The existence of these singular solutions may be
taken as disappointing if one thinks that quantum gravity is supposed to
remove the singularities coming from the classical framework of GR. Also, it
is often said that the existence of a minimum length in the theory imply that
quantum amplitudes should be free of ultraviolet divergences that plague
conventional quantum field theory. However, this idea does not allow one to
conclude whether the strings can only probe to a minimum length (keeping
the spacetime continuum) or this fact signals the breakdown of the entire
continuum picture. It cannot be decided adopting the Polyakov approach
since the presence of a continuum manifold M is part of the background
structure. ‘

The main problem arises when an assessment of the singular solutions
to the effective field equations is made. The next step following this line
of work involves the computation of the quantum fluctuations around the
classical background solutions; we are back to the weak-field scenario of the
old approaches to QG. Even when many of these high-energy calculations
involve non-perturbative methods for summing the various contributions, any
complete, non-perturbative alternative to the Polyakov approach is lacking.
This could help to investigate the main issues in QG: spacetime singularities,
quantum topology, quantum cosmology, etc.

1.3.3 General-Relativise Quantum Theory

Rather than starting with classical GR which is then quantised, one begins
instead with normal quantum theory and studies the extent to which it can
be made compatible with the ideas of GR. This is very intriguing but it
has not been developed much as the quantum field theory has. Remarkable
in this approach is the work of K. Fredenhagen and R. Haag [FH87] who
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study the problem of making a quantum theory invariant under spacetime
diffeomorphisms (see also [Ban88]). This seems to be the reason why C.J.
Isham used the term “General:Relativise”.

1.3.4 The semi-classical option

An idea of Moller [Mol62] in the opposite extreme to the one here exposed
is that perhaps it is not necessary to quantise the gravitational field but
only the matter to which it couples. This is in general what is meant by
semi-classical approach. The induced gravity approach mentioned above is
an example.

Originally, the idea was to study the system

Goul9) = |Tuu(mitter, g)) (L.11)
i L 1p), = H(matler, g)[4). (1.12)

where the source of the gravitational field is the expectation value of the
energy-momentum tensor in some especial state |¢);.

Several remarks are in order,

1) higher powers of the Riemann curvature appear when regularisation
and renormalisation of the energy-momentum tensor are made. These are
needed because of the quantum matter fields considered as source in the first
equation [SK80]. :

2) the system seems to be intrisically unstable [HW78, Hor80, Sue89a,
Sue89b]; the two equations are strongly coupled and the effective equations
for the metric tensor are far more non-linear than those of normal GR . The
calculations used were, however, mainly of perturbative nature and have been
recently challenged [Sim90, Ful90].

3) the effective equation for [¢), is non-linear, hence, the superposition
principle is lost. Whether or not this is a problem is related to one’s attitude
to conventional quantum theory.

It is not at all clear that quantising everything but the gravitational field
is something inconsistent. For instance, the Bohr-Rosenfeld argument [BR33]
showing that the electromagnetic field should be quantised if it couples con-
sistenly to the current generated by the quantised matter does not apply to
gravitational case. This can be seen as follows. The proof for electromag-
netism involves taking to infinity the ratio e /m of the electrical charge e to
the inertial mass m of a test particle. This is precluded in the gravitational
case by the equivalence principle since the analogue of e is the gravitational
mass [Ros63]. Several attempts have appeared [EH77, PG81, Unr84] but no
one has succeded in clarifying the situation completely (see also [Son90]).
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The semiclassical approach has been recently reappeared in the form of

a Born-Oppenheimer/WKB approximation to QG. Again, quantum matter
effectively couples to a classical gravitational field. Now, however, this is
considered as an approximation to the unknown full theory of Quantum

Gravity (see [SP89] for a clear explanation).
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Chapter 2

Canonical Quantisation of
Gravity

Now we discuss the general relativists group approach known as the canonical
Quantisation of Gravity. In order to arrive at the current description of this
approach to QG several steps have to be done. We outline them and give the
features that make this canonical framework appealing as well as its main
problems.

As summarized by K. Kuchaf[Kuc81] the canonical quantisation program
applied to any classical theory can be set as follows: 1) Translate the clas-
sical theory into the Hamiltonian formalism and identify the correspondent
canonically conjugate variables. 2) Turn such variables into operators satis-
fying the Dirac commutation relations, and substitute these operators into
the Hamiltonian in order to get the Schrédinger equation. 3) An inner prod-
uct should be defined that is conserved by this equation along the dynamical
evolution of the state. The existence of this product renders the space of
solutions a structure of Hilbert space where the probabilistic interpretation
of the theory comes from.

In the case of gravity, however, there is no Hamiltonian in the usual
sense but Hamiltonians constraints. The implementation of the canonical
quantisation approach is not straightforward and, in particular, a completely
satisfactory Hilbert space has not been constructed so far. Among the most
important consequences is that a clear probabilistic interpretation of the the-
ory is lacking. Nevertheless, an understanding of the sources of the difficulties
deserves attention for, eventually, circumventing them.

2.1 The Canonical Structure of Classical GR,

This section can be considered as the first step, mentioned above, of the
canonical quantisation program. Early studies concerning with the casting of

20




classical GR in a canonical form, that is, adopting it to a Hamiltonian struc-
ture, were developed by using a specific coordinate system for the spacetime
and the involved global aspects were not emphasized [Ber56, Dir58, RAM62].
This aspects of global character turn out to be of vital importance for the
analysis of topological structure in QG, e.g. changes of topology, wormholes,
but also a clear conception of them is needed to account for the ”conve-
nient” 3+1 foliation of spacetime. This geometrical, global view is given
in [Kuc72, Kuc76b, Kuc76c, Kuc76a, Kuc77] (see also [Ish91]). We briefly
describe it before going into the canonical approach to classical GR.

2.1.1 The foliation of spacetime and related defini-
tions

Lets consider spacetime as a four-manifold M and a three-manifold X, as-
sumed to be compact’, playing the role of physical three-space. Assume that
the topology of M admits a foliation by a one-parameter family of copies of
Y. By this we mean that there exists a set of embeddings X; : & — M, with
¢t € IR and such that the induced map

X:YxR—->M; X(z,t) = X,(z) (2.1)

is a diffeomorphism of ¥ x IR with M. The set of all embeddings of ¥ in
M, Emb(%, M), is a subset of C=(Z, M), the set of all smooth maps from
% to M. To the latter it can be give the structure of a C°°-manifold and
Emb(Z, M) becomes an open subset of it. It inherits in this way a differential
structure we will implicitly use here.

X1 M—-3ExRisalsoa diffeomorphism since X is. It can be written

as:

X7 (y)=(S@),T(y) eT xR, ye M (2.2)
where S : M — T and T : M — IR. The map T is the so called "global

time function” and provides the natural time coordinate associated to the
foliation: T'(X,(z)) =t, Vz € X. Of course, one cannot talk about ”time”
until a Lorentzian metric on M is given such that each X:(X) is spacelike.
We have to keep this in mind.

At this point three remarks are in order:

First, the requirement on M to admit foliations restricts its possible
topologies. Also the topology of ¥ must be compatible with a given topology

£ it is not but it is asymtotically flat, modifications of the corresponding expressions
are needed by adding surface terms.
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of M, hence the "quantum topology fluctuations” of T, that would amount
to consider all the topologies of X, cannot be discussed.

Second, the selected foliation is not unique, there exists many other dif-
feomorphisms of & x IR with M. Thus we have a choice of time function for
each of them.

Third, mathematically we should take in to account only those foliations
whose leaves (T(X;(X)) = t = const. can be deformed smoothly into the
leaves of the foliations X we started with. Furthermore, the set of Lorentzian
metrics g with which we want to eqquip M should be restricted to those for
which there exists at least one foliation whose leaves are all spacelike with
respect to g.

The deformation vector Xt, of a given foliation is the tangent vector to
the curve in Emb(3, M) representing the map ¢ — X,. Thus this vector
belongs to the tangent space Tx, Emb(Z, M) which is the set of all tangent
vectors to the infinite dimensional manifold Emb(X, M) at the particular
embedding X;. '

On the other hand, the map ¢t — X,(z), for any = € X, represents a curve
in M. This curve has tangent vector belonging to the tangent spaces of M.
For instance, given any t, the tangent vector associated with z € ¥ lies in
Tx,(z)M at the point X;(z) € M.

Whenever one deals with tangent spaces to function spaces, as above, it
can be established that

T C®(EZ,M) ={v:Z = TMlv(z) € TyyM}, f: T = M, (2.3)

through which one relates the tangent spaces in the different manifolds
C=(¥, M) and M. Any v € TyC=(Z, M) is "hybrid” in the sense that
to each ¢ € ¥ it associates a vector v(z) in the tangent space to M at
f(z) € M. Given a coordinate system on M this vector is written as v (z)
where 1 =0,1,2,3.

Similarly, cotangent vectors to a function space can be defined by

T;C*(Z,M) ={w:Z - TMw(z) € Tf M} (2.4)

Again, by introducing a coordinate system on M, any element w &
T;C>=(X, M) associates to each z € ¥ a covariant vector wy(z) at the point

f(z) e M.
Apart the deformation vector the normal vector, lapse and shift functions

are useful definitions in accomplishing our aim of casting classical GR in
canonical form.
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The normal vector to the foliation at the embedding X; € Emb(Z, M) is
an element of 7%, Emb(X, M) which is unique, and denoted n,, that satisfies:

Xi(n(z)) = 0 & ny(e,t) X" (z,t) = 0
g (X(z,t))nu(z, t)n,(z,t) = —1 (2.5)

where X} : r§t(z)M — T;% is the pull-back on cotangent spaces and
a = 1,2,3 refers to a coordinate system on X. Furthermore, the change
of notation (n¢),(z) — n,(z,t) has been performed. The first equation de-
fines the normality aspect of n; w.r.t. X; at the point X;(z) € M, in a way
that is independent of the coordinates. The latter supposes the existence of
a Lorentzian metric on M to define the timelike character of n as well as its
normalization.

As clearly seen from the relation between n the metric and the global
time function

T,

y=X(z,t)
the normal vector is a functional of both the Lorentzian metric and the
folation X.

An element of Ty, Emb(X, M) can be always decomposed into two com-
ponents, one lying along X, and the other parallel to n,. In the case of the
deformation vector, we have:

Xt(z,t) = N(z,t)g"(X(z,t))n.(z,t)
+ N°(z,t)X* (2,t) (2.7)

N(z,t) and N%(z,t) are called the lapse function and the shift vector,
respectively. It is evident from their definition (2.7) that they are functionals
of both the spacetime metric and the foliation.

From this global point of view one can arrive at the specific coordinate
approach of ADM (See [RAMG62]). The key point is to identify the lapse
and shift with some components of the metric. We start by taking a fixed
foliation and looking at the pull-back of the metric g, supposed to be given
also, by X : ¥ x IR — M. This provides us with a Lorentzian metric X~ g
on ¥ x IR whose components are: :

(X"g)as(z,t) = g (X(z, t) X" (2, 8) X" 4(z, t) (2.8)
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where a,8 = 0,1,2,3 correspond to a coordinate system in ¥ x IR. Next,
we choose coordinates "adapted” to the foliations, that is, z*=°(z,¢) = ¢ and
a =1, 2,3 referring to a coordinate system on ¥. Then (2.8) becomes?

(X7ga(z,8) = qap(z) = g (X (2,1)) X", (2, 8) X" (2, t)
(X"9)oo(2,t) = N°(,t)N°(z,t) ras(z) — [N (2, )]
(X"g)oa(2,t) = N°(2,t) ran(z) (2.9)

The first of these equations can be seen as the pull-back of X; : ¥ — M
of the Lorentzian metric g on M to give a Riemannian metric ;v on . We
can recognise the shift and lapse functions as the gyo and go, parts of the
metric.

2.1.2 Canonical variables for GR

Classical GR is cast in a canonical form as follows. A foliation X : ¥ x
IR — M is fixed and the case in which M carries a Lorentzian metric g
satisfying the vacuum Einstein equations, Gy, = 0, is considered and is
such that X; = X;(X) is a submanifold of M spacelike w.r.t. g. Next, a
set of canonical variables for this system and the correspondent 1st. order
differential equation describing their evolution from one leaf to another have
to be found.

All the treatment so far has been given to adopt the Riemannian metric
fy on X as the canonical configuration variable. The meaning of 5 is that,
geometrically, it is related to the intrinsic curvature of ¥,. Thus it is said
that ;y measures the intrinsic curvature of ;.

The canonical variable conjugated to ¢y can be better understood in terms
of the extrinsic curvature of ¥;. This extrinsic curvature can be interpreted
as the ”look” of X; as embedded in the four manifold M, i.e., using the
Lorentzian metric g on M. By using a coordinate system it is defined as:

Kop(z,t) = —nyp(z, 1) X7, (2, 6) X" (2, t) (2.10)

where n,,, is the covariant derivative® w.r.t. g on M. It can be transformed
further into

>The adopted coordinates allows us to identify Xﬂ,o with X*. Hence (X*g)oo =
Guv[Nghin, +NeX# ]-[Ng""n, +NbX",b] and (X*g)oa = guu[NgH'ny +NbX”’b]X"’a give
us the above results once the normality condition of n w.r.t. the foliation is introduced.

3The explicit appearance of the covariant derivative of n allows us to interpret the

extrinsic curvature as a measure of the bending of X, in the spacetime in which it is
embedded.
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1 a
Kap(z,t) = 5(= 8;;"’ + Nagp + Noja) = 55(—— 37 Y+ (Ly @) (2.11)
when use is made of the definition of 4 and N, /b 18 taken as the covariant
derivative w.r.t. gy on X. (LyecntY)as) means the Lie derivative of the metric
ry along the vector field N®. We can see that K, is an explicit functional of
Yabs Yap and N (see(2.11)). The utility of K,y just defined can be appreciated
once the pull-back of the Einstein lagrangian density by the foliation X :
L x IR — M is expressed as a function of the extrinsic curvature, the metric
7 and the lapse and shift functions:

X[R(g)(~detg)” = N(detq) (KpK™ — (K27 + BO()]  (212)
22 [(detn) 2K 7] ~ [(dety) /(K2 N* = 1N,)],

where R(®)(y) is the curvature scalar of the metric 7 on X and the label £ on
is understood. Since we assume ¥ to be compact, the spatial divergence term
vanishes. On the other hand, in order to have a genuine action principle,
the total time derivative must be dropped . One arrives at the Einstein
lagrangian for matter-free gravity.

— _1_ 1/2 ab a\2 (3) 3
L) = 5 fz N(dety) 2 [Kup K — (K,%) + RO(r)|d2
) 167G

c?

(2.13)

i

K

The canonical conjugate variable to «, as in the standard canonical anal-
ysis, is got by using the time parameter associated with the fohatlon as
follows:

w_ 0L (dety)'/?

= = — K% — 4K ° 2.14
e e (L (2.14)
or equivalently: K = —x?dety™/2(79% — 1/2y%7 °).
However, in the case of N and N*°
§L 5L
INE—==0; 1g=—==0 (2.15)
&N SN

we get the so called primary constraints of the theory. That is, the evolution
of N and N is not determined by the Einstein egs.

*In fact, we know that the Hilbert-Einstein action contains 2nd order time derivatives
and hence the equations of motion could be third order in time derivatives. However, it is
well established this is not the case because the correspondent term can be ldentlﬁed as
boundary term that vanishes when the variation of the action is performed.
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2.1.3 The constraint equations

Already from the Einstein’s equations themselves the existence of constraint
equations is noted. From the Einstein equations the G** = 0 contains only
first order time derivatives °. Thus only six of the original equations are
time dynamical equations. In fact it can be shown [Wal84] that the G, = 0
equations are equivalent to:

, N .
Yab = W(”ab = 1/29a7%,) + 2N(p/a)
103)
FEL - —~N(det7)l/2((3)Rab _ 5 R’)’ab)
1 7ab cd 1 a\2
+ gNw(chW = 5(ma)’)
2N

ac_. b ab
—_ W(TP 1/27r7r )

+ (dety)"/*(Njgy — v N¢

. (2.16)

Ncﬂ.ab b
+ (dety)? <—~————~—) —2r@ Ny
(dety)r/2 le

while the Go,(g) = 0 amount to:

Co(v,m)(2) = —m,yy(z) =0

52

Culy,m)(=) = (dety ()72 T2 ea(@) = 1/2%ac(2)oa()]7*(2)m* ()
(det’)’n(:’))l/z(s)R(,y(w)) -0 (2.17)

which are constraint equations between the canonical variables Yab(z) and
74(z). This leads us to the possibility of writing the first order action:

S(v,m, N, ﬁ) = /dt./}: Pz — NCL(7,7) — N°Calv,7)]  (2.18)

in which 74, 74N, and N are to be varied independently to produce the
above constraint and dynamical equations. Here it is evident that N and N
can be considered Lagrange multipliers and hence without any dynamics.

5This is seen as follows. The Bianchi identities R* vorn) = = 0 imply Ryrx — Ruryr +
R¥ =0and R;y = 2R",,,. Thus we get G*%, =0 & G’”0 = —G",. The r.h.s. of the

vrAip
last equation contains at most 2nd order time derivatives (eqs of motlon) and we arrive

at the conclusion that G*0 are first order in time derivatives.
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At this stage a Hamiltonian can be extracted for our system,

H[N,N] = /E (N(2)CL(z) + N*(z)Ca(z))d’s - (2.19)

which vanishes by virtue of (2.17).

Concerning the constraints several points deserve a brief explanation.
Among the most important ones are:

1) Initial value problem. In the case of GR the Cauchy data on an ini-
tial hypersurface must satisfy the constraints. It has been found that given
a Lorentzian metric g on M ~ % x IR satisfying the vacuum Einstein field
equations then the above constraints equations are satisfied on any hypersur-
face in M and conversely, that given a Lorentzian metric g on M ~ ¥ x IR
satisfying the above constraint equations on all spacelike hypersurfaces then
it will necessarily satisfy the full field equations G, (g) = 0. Thus the rele-
vance of the role of the constraint equation is appreciated.

2) The algebra of the constraints. Classically the canonical algebra of the
system is expressed by the Poisson brackets:

{7ﬂb($)’7cd(w,)} =0
{r¥(z), 7)) = 0
() m (@)} = 6,8 8(a, ) (2.20)
When he Poisson brackets among the constraints is computed, taking in
to account the above canonical algebra, one gets the Dirac algebra ([Dir65])

{Ca(2); Co(2)} = —Ci(2)8 6(z,2") + Cu()55 6(z, ')

{Ca(=z),CL(z")} Ci(z)0;6(z,2") (2.21)

{C1(2),Cu(2)} = 7*(2)Cu(2)5] 6(,2") — 1*(')Cul2')OF &(2, ')

The meaning of these relations can be better understood by introducing
their smeared versions:

C(ng) = / Cy1(z)n(z)d’z, n a scalar function on ¥ and
z

C(&) = LCa(w)fa(m)dSm, £ a vector field on ¥ (2.22)

Which substituted in the original Poisson brackets between he constraints,
produce:

-

{C(€),C(n)} = C(Lg
{C(m),C(m)} = O(E(m,m)) (2.23)
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where in the last relation, g(ﬂl,'f]g) = Y (mm2 — M2m1p) and [5,5—;] is the
commutator of vector fields 5" on X that generate infinitesimal coordinate
transformations on ¥ (see below)

Geometrically they are interpreted as follows:

a) It is well established that the infinitesimal coordinate transformations
2% — 2%+ £° on X, provide us with a representation of the Lie algebras of the
diffeomorphism group Diff(X). The Lie bracket being determined on Diff(X)
the negative of the commutator:

(61,6 = fb1§2:1b - fb2€1:1b (2.24)

The first of the smeared Poisson brackets (2.23) tells us that the map
¢ — —C(¢) is a homomorphism of the Lie algebra of Diff(X) into the Poisson
bracket algebra of the constraints. Furthermore,

{Yab(@), —C(E)} = —(Yabcl® + Yac®) + Ve’ a) = Egab(2) (2.25)

where (5570,;,(:1:) is the change in 74 () induced by a coordinate transforma-

tion generated by 5 Hence, —C (E ) can be interpreted as the generator of
spatial diffeomorphisms. The same holds in the case of 7°(z). The C,(z)
constraints are normally called the "transverse” constraints or even "momen-
tum” constraints.

b) C,(z) can be interpreted by using the result:

{Yas(2), C(n)} = n(dety) 12 (2mu(z) — 7,°(2z)7as(2)) as responsible for
the dynamics. It is thus called the "Hamiltonian” constraint. It can be
shown also to generate deformations of a hypersurface normal to itself as
it is embedded in ¥ x IR ~ M and for this reason it is also known as
"longitudinal” constraints.

Finally, a couple of observations have to be done with respect to the
smeared version of the algebra of the constraints. (2.23). The first is that
it is not the underlying Lie algebra of Diff(M) of the theory. The second
is related to the appearance of 4% in the 1.h.s. of the third eq. in (2.23);
it implies that what we have is not a genuine Lie algebra. Essentially, the
Dirac algebra turns out to be the Lie algebra of Diff(M) projected along and
normal to a spacelike hypersurface and hence the above two troubles can be
accounted.
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2.2 Canonical Quantisation

From here on we consider the first-order action (2.18) where the canonical
variables vq5(z) and 7°)(z) are related by the constraints (2.17). Whenever
constraints are involved in a canonical theory the quantisation becomes dif-
ficult. Several possibilities may be tried. The most natural perhaps is to
reduce the theory to a true canonical form by eliminating the constranits
and the correspondent Lagrange multipliers before the quantisation is car-
ried out. We have already faced the constraints equation of GR and, in fact,
they cannot be solved in a closed form the only alternative being the Ashtekar
formalism (where the correspondent constraints have a simpler structure, see
chapter 3) and the perturbative weak-field methods we critiziced in chapter
1. Further unappealing reasons, given in [Ish91, Kuc91], make this reduction
to the true canonical form a program not easy to implement.

The possibility that has received more attention is the one in which the
complete set of variables (va4(z), 7°%(z)) are given a quantum states and only
at the quantum level the problem of the constraints and other (like gauge
fixing) are tackled. The first step consists setting the form of the canonical
commutation relations:

['?ab(iﬂ),’%d(:l:l)] = 0
[’fr“b(m), fer(m')} = 0
[’A)'ab(m)a 7A"Cd(":,)] = ihﬁ(acﬁb) d5(m, z') (2.26)

Remarks in order here are:

i) The Schrodinger representation is adopted since the canonical variables
do not carry any time dependence (however, see the analysis of the quantum
constraints below).

ii) Smeared operators should be introduced in order to avoid eventual use
of the components of 4 and 7 in a specific coordinate system. That is:

B(h), #(k)] = ih/}jh“b(m)kab(m)d?’w (2.27)

where h and k are, respectively, a tensor density and a tensor ©.

6The third of these equations is coordinate independent since the r.h.s. is integrated
over all 2

29



iii) Microcausality. The first equation in (2.26) might be interpreted as a
mean to guarantee that the points on X can be taken as spacelike separated,
independently tha spacetime structure that could be adopted.

iv) Affine commutation relations. By insisting in the metric character of
Yab(z) it should be investigated whether there exists the correspondent quan-
tum operator and if it is compatible with the above canonical commutation
relations. It has been argued that a positive definite smeared operator may
correspond to the notion of the classical metric v, and even more there are
suggestions that certain degeneracy should be allowed [IK84, Ash87, Wit88,
Hor91], i.e. the action of the smeared operator on non-zero vectors can give
zero. Furthermore, it turns out to be case that there is no compatibility of
the semi-definite smeared operator and the canonical commutation relation.
Affine commutation relations should substitute the canonical ones 7 [Ish84].

2.2.1 Treatment of the constraints a la Dirac

What Dirac thought us concerning the quantisation of the theories with
constraints is that such constraints should be imposed on the physical states.
In the present case we have:

Ca(4, )T =
CL(3,#)¥ = 0 (2.28)

They are the quantum analogue of the classical result about the equiva-
lence of the constraints and dynamical equation, i.e., they are the sole tech-
nical content of the theory of QG. This can be related also to the following
result. The canonical Hamiltonian (2.19) is taken with N and N regarded
as c-number function in constructing the ”Schrodinger equation”:

d n

i ¥ = H[N, N]T, (2.29)

which by virtue of (2.28) implies tha U, is time independent. Also, it
seems to be meaningless to talk about ”Schrodinger” or ”Heisenberg” picture
since matrix elements between physical states in both pictures will coincide.
These aspects of QG can be traced back to the absence of any intrinsic
definition of ”time” in GR. We have not gauge-fixed the theory and hence
no such coordinate has been selected.

The problem arising when the implementation of Dirac scheme is at-
tempted may be very severe. Probably among the most difficult ones whether

"The analogue is a particle restricted to move in JR*. Canonical commutation relation,
[, #] = tA, imply the spectrum of & is JR. However, compatibility is got by replacing the
conventional commutation relation by the affine algebra: [&,p] = k& [KAT0]
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and to what extent the classical Poisson algebra (2.22) structure can be trans-
lated into the quantum theory. Other important issues are:

1) Regularisation and renormalisation of the operators constraints (2.17).
The origin of these problem is the non-linearity of these equations in the field
operators expressed also as products evaluated at the same point. This is the
analogue of the ultraviolet divergence problem in the quantum field theory.

2) Operator-ordering. Its origin is the appearance of product operators
in the constraints and more precisely,

a) e.g. it has to be decided where to place 445(z) on the r.h.s. of the third
equation in (2.22). A restriction here can be set on that no further constraints
on the physical state vectors desired to be generated by the commutators of
the given first-class constraints.

b) the hermeticity or non-hermeticity of the constraints [HK90a, HK90b].
The non-hermeticity option comes about because of the absence of a well sta-
blished relation between the Hilbert space structure carrying the representa-
tion of the canonical (or affine) algebra and the one that should be imposed
on the physical states (i.e. those satisfying tha constraints).

c) singular operator products in the constraints seem to imply that any
ordering is likely to be ambiguous [FJ88].

d) an anomaly should, possibly, be present in the theory as a genuine
Planck length effect. The mathematical problem here is that, for example,
not much is known about central extension of the Dirac algebra.

3) The unexistent clear definition of the inner product on the physical
states to be constructed from the Hilbert space structure on the original space
H that carries the representation of the canonical, or affine, commutation
relations.

4) The recovering of the Diff(M) group. This is the converse problem
of the translation of the Diff(M) invariance into the Dirac algebra in the
canonical decomposition [IK84]. '

2.2.2 The meaning of the quantum constraints

Our aim here is to extract the information from the quantum constraints
since, as we have seen, they are all the dynamical contents of QG. We will
see that the quantum version of the vector constraints imposes a structure
on the domain of the state vectors of QG leading to the notion of superspace
while the classical Hamiltonian constraint become the so called Wheeler-
DeWitt equation which provides us with the, more properly said, dynamics
of gravity.

To achieve the above goals, however, the introduction of a given represen-
tation for the canonical algebra is needed. It is natural to adopt the analogue
of the quantum operators associated to the canonical conjugated variables in
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standard quantum mechanics, i.e.

(Hab(2)T)Y] = Yab(2)¥[7]

~cd —_ . Y4
(@) = —ihg—sh]
for the quantum operators 4 and #. They are commonly used in spite of
the following:

1) the incompatibility of the positiveness (or semi-positiveness) of the
classical Riemannian metric with the above canonical algebra implies that
the states functionals do not have domain Riem(X). This is possible only if
the commutation relations are the affine ones.

2) the problem of the measure. There do not exist Lebesgue measures
on Riem(X) of Riemannian metrics with which an hermitian inner product
between state vectors can be defined 8.

3) distributional metrics are expected to be objects around which any
measure can be concentrated. However, Riem(X) is not a vector space and
hence its dual space cannot be defined (at least conventionally). The above
distributions could live in such a dual space. On the other hand, affine com-
mutation relations do allow an appropriate distribution of a distributional
metric and, furthermore, they admit representations in which state vectors
are concentrated on distributional analogues of degenerate metrics as well as
some in which the state vector has an internal index analogously to the spin
of a relativistic particle [Ish84, IK84].

(2.30)

Now we face the interpretation of the quantum momentum-constraint.
We expect as in the classical case, to have the C’(E) as the generator of
Diff(¥). While insisting in keeping at quantum level the structure of the
classical algebra of the C’(E )'s (i.e. Diff(X) algebra) operator-ordering prob-
lems come about.

One way to avoid these problems is to force the ¢ ( -’)’ s generators to form
a hermitian representation of the algebra of Diff(¥). Thus it is assumed
that the quantum theory carry a unitary representation of Diff(¥) and the
quantum momentum constraint is translated into °:

(D(f)®)] = ¥[1] (2.31)

8There is the possibility of introducing an infinite dimensional weighted measure which
requires (#%(z)¥)[y] = _thsTf:,y(}")'h] + ip(7)¥[y] where p(v) is a function that compen-
sates for the weight factor in the measure [Ish91]

°Roughly, D(f) is an element of the group Diff(Z) and then it can be obtained
by exponentiating the generators C’(ﬁ) belonging to the Lie algebra of Diff(Z). Since
(C(E)T)[y] = 0 we get (exp(C(£))¥)[y] = ¥[v], the desired result.
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where D(f) is a unitary operator representing f € Diff(X). On the other
hand, the natural representation of the operators 4 and 7 (2.30) suggests the
action of D(f) on ¥ as:

(D()¥)[y] = ¥[f*] (2.32)

where f*v is the usual pull-back of 4 by diffeomorphism f : ¥ — X. From
the above two aspects of the action of D(f) on ¥ one is lead to the conclusion
that

U[f*y] = ¥[y] Vf € Diff(Z), v € Riem(Z) (2.33)

We see the group Diff(X) acts on the space Riem(X) by sending v to
f*v both elements of Riem(X) through f € Diff(%). Modulo metrics with
isometry groups 19, one can think Riem(X) as a fiber bundle with base space
Riem(X)/Diff(X) and fiber the orbits of Diff(X).

The base space Riem(X)/Diff(X) of ”inequivalent Riemannian metrics”
under diffeomorphisms was called superspace by J.A.Wheeler [Whe64, Whe68].
The quantum vector constraints in its version (2.33) says that the state func-
tional ¥ is constant on the orbits of Diff(X) and in consequence it is a func-
tion on superspace, namely, it is superspace the true domain space of the QG
state vectors.

Among the cautionary remarks once the above view is adopted are:

i) f-states may be present due to the possible existence of non-trivial
transformations under large diffeomorphism which cannot be continuously
connected to the identity. We have discussed here only infinitesimal trans-
formations [FS80, Ish81].

i) (2.32) contains a unitary action only if the Hilbert space measured on
the domain space is itself a Diff(X) invariant which probably does not exist.
The only alternatives are to modify the structure of (2.32) and hence the
idea that the state functional is constant on the Diff (%) orbits does not hold
anywhere.

iii) If the domain space of the state vectors is a space of distributional
metrics, the action of Diff(¥) on it would change. The bundle picture is not
longer correct.

The analysis of the quantum hamiltonian constraint is not as straight-
forward as in the case of the quantum vector constraint. Essentially, the
explicit v factor in the r.h.s. of (2.22) spoils the Lie algebra structure and as
a consequence the operator-ordering problem is far more severe. By choosing

10This problem can be circumvented by considering only those diffeomorphisms that
leave fixed some particular frame at a base point in X
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the simple ordering in which the 7°¥’s are always to the right of the v/, s the
quantum hamiltonian constraint becomes:

5§20 (det7)1/2 ~
6%ac6Vsd bl = R(y)h] =0 (2.34)

where Gapea(7) = (YabVed — 1/27acTba)(dety)~1/2. They are the Wheeler-
DeWitt equation (WDW) and the metric on Riem(X) respectively [DeW67a).

— B’6%Gapea(7)

x2

We now briefly account the main problems concerning WDW equation.
Their relevance coming from the fact that all the canonical quantisation
program has been reduced to this equation.

First, factor ordering. The WDW equation was got by using a specific
ordering inspired on simplicity. Other orderings are possible, for example one
commonly used is to express the "kinetic term” (the one containing functional
derivatives) as a covariant functional Laplacian taking the DeWitt metric as
the underlying structure. The appealing of this ordering is the invariance
under ”coordinate transformations” on Riem(X). account when deciding the
operator ordering, is whether the C 1(z) are expected to be hermitian.

Second, regularization. The second order functional derivative taken at
the same spatial point when acting on some state functionals is likely to
produce §°(0) singularities. A regularization procedure will be eventually
required.

Third, time and time evolution. These concepts should be introduced in
some way. The key idea is to consider time as an internal property of the
gravitational system, probably including matter, instead of taking it as an
external parameter of the universe.

Fourth, solutions of WDW. The immediate plan of attack may be to
handle it by using the notions on functional differential equations. The va-
lidity of this view depends on the interpretation of the constraint equation
C1(2)¥ = 0. If it is considered to be self adjoint functional differential equa-
tion with eigenvector ¥ corresponding to the eigenvalue zero, some sort of
boundary conditions should be imposed on ¥, as in conventional eigenfunc-
tion problems. The theory, however, does not give much information about
it. In addition, problems arising due to the apparent zero eigenvalue lead
to the suggestion that a renormalisation of the Wheeler-DeWitt operator is
required [Ish91]. Other ways to look for solutions of WDW are the expansion
in 1/G corresponding to a perturbation theory where the coupling constant is
the coefficient in front of R(y) in WDW and the WKB approximation, which
has been used in tackling the problem of time. There exists other possibility
that has become the most popular way of studying the WDW. This is the
minisuperspace technique, it involves freezing all but a finite number of the
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infinite degrees of freedom in Riem(X) and quantising the small number that
remain. WDW becomes a second order partial differential equation that can
be studied using the conventional methods of differential equations. Such an
approach is mainly used in the studies of quantum cosmology since the finite
degree of freedom can be chosen in a way that is adopted to the classical
models of cosmology. It must be noted that there is no way of estimating
the effect of the infinite degrees of freedom that are dropped and thus any
conclusion coming from this approach should be handled carefully. Remark-
able, however, is the utility of the minisuperspace models in the discussion
of the problem of time, interpretation of the state vector and related issues.

We end this review of methods for solving WDW by taking about the use
of functional integrals. The motivation is traced back to the result of ordi-
nary quantum mechanics that a solution of the time dependent Schrédinger

equation 0¥ /0t = HU can be given as

U(a,t) = [ Dafs]et o 1 (2.35)

where the path integral is over paths that end at the point z of the path
at the initial time ¢y,. The case of gravity was first studied in detail by C.
Teitelboim [Tei82, Tei83, CTe83], and has been recently used in the Hartle-
Hawking approach to quantum cosmology [HH83] in which the euclidianised
version of the Hilbert-Einstein action is adopted. It was formally shown that
the state function constructed in this form is in fact a solution of WDW
[Hal88, Hal90]. It is worth mentioning that all the above proposal provide
approximate solutions in the sense that the full WDW is not solved. The
situation seem to be improved by the introduction of the Ashtekar variables
(see chapter 3).

2.2.3 Minisuperspace Model: an example

Some of the features of the WDW equation can be seen more easily in terms of
a minisuperspace model of canonical QG. We present here the homogeneous
and isotropic Robertson-Walker cosmological model whose metric is given by

ds? = —[N(t)]%dt* + [a(t)]*hapdz dz® (2.36)

where hgp is the metric for a three-space of constant curvature x. The
three possibilities x = +1,0, —1 correspond to take X as a three sphere, flat
and hyperbolic space respectively. We can see that N does not appear. This
amounts to work in the Diff(¥) gauge in which N = 0. This is a feature of
minisuperspace models which does not produce important limitations on the
information that can be extracted from them.
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The Einstein tensor G, computed with the above metric is non-zero
and, by consistency with the Einstein equations, a matter component can be
introduced. In the case a scalar field is taken to be the matter contents of
the theory, it can be shown that the dynamical equation can be produced by
starting with the first order action

Sla, Ta, &, 14, N] = / (T + T3¢ — NC)dt (2.37)
where units in which 16rG/c* = 1 have been used, and

2 2

— Ty ! ) 3
C=-— — bra + — + [/qﬁ 2.
24a 6 2a3 @ V(9) (2.38)

The variables m,,a,m, @, N are to be varied independently.

The evident problems now are two. The first concerns the possible values
for tha classical variable a : @ > 0 . The second is related to the operator
ordering problems in the term wa®/24a.

The first problem can be tackled in several ways, for instance:

1) Impose the standard commutation relation: [&,#] = i¢h. They imply
the Hilbert will be L?(IR,da), where IR means that the spectrum of 4 is all
IR and da is the correspondent measure, when the operators are defined as

(a¥)a) = a¥(a)
(7.9)(a) = —th—(a) (2.39)

the problem is reduced to the interpretation of the negative values of a.

2) Use the Hilbert space L?(IR*,da) of function with support on IR,
keeping the usual commutation relations. #° is not longer a self adjoint
operator, but it is possible to handle ¢, in a way for it to be self adjoint.

3) Perform a canonical transformation at classical level, say a = €. Q
ranges over all /R and hence the canonical commutation relations can be
used with the Hilbert space L*(IR,da). The associated conjugated variable
is Tq = e "71,; the constraint becomes

C

i

w3 wi

e3[R 4 2] _6re? + V(o) (2.40)
24 2

4) Use affine commutation relations instead of canonical ones. The affine

momentum is related classically to the canonical momentum by: p, = an,.

The constraint now is:

2

( Pa B‘z) — 6ka + a°V(4). (2.41)

¢ 24 9

1
ad
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It is possible to define a self-adjoint representation of the affine commu-
tation relations on the Hilbert space L?(IR.,da/a) with:

(a¥)(a) = a¥(a)
. ., ad¥
(Pa¥)(a) = —iha—I(a) (2.42)
da
NB. The transformation a — e is the connection between this approach
and number 3.
A WDW equation can be written now. Let us take method 3 with Q
satisfying canonical commutation relations, apart of the operator ordering,
we get

2_-3Q 1 62 1 82 Q 30

As simple as it may appear this model illustrates several features of the

full canonical QG.

2.3 Final comments

We end this chapter by noting the advantages of a canonical approach to
QG. Since canonical QG is discussed in an operator-based framework, the
involved problem appear more explicitely than in the conventional methods of
quantisation of gravity mentioned in chapter 1. In the canonical framework
several techniques are background metric- independent. This leads to the
possibility of developing non-perturbative analysis of QG and therefore the
problems of quantum cosmology, spacetime singularities and related issues
can be faced in a more suitable way. Also, as we have seen, in this approach
a strong emphasis is made on the geometrical structure of the spacetime as
viewed in GR, and thus, the extent to which it holds in the quantum theory
can be adressed as well as other deep conceptual problems like the "time”
one.
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Chapter 3

Ashtekar and Loop formalisms
of Quantum Gravity

Apart from the severe conceptual problems mentioned in chapter 1, progress
in the canonical approach to gravity has been far slowed down by the highly
non trivial structure of the field equations when expressed in the canoni-
cal variables (745, 7°). Recently, A. Ashtekar introduced a set of new vari-
ables which improved the situation [Ash86b, Ash86a, Ash87]. In terms of
the Ashtekar variables all the equations of the theory become polynomial
(at most quartic). Also, when these variables are used, a relation between
Yang-Mills theory and GR is revealed. This relation allows an exchange
of techniques between them. These two features, polynomiality and Yang-
Mills like structure, hold even in the cases where one adds to the gravity
system a non-zero cosmological constant, matter fields (scalars, spinors or
Yang-Mills fields) or considers the supersymmetric extension of the theory
[AATS88, Jac88b, Jac88a].

Shortly later, C. Rovelli and L. Smolin built a Loop formalism which,
when adapted to the Ashtekar one (without matter fields), produced the first
non trivial solutions to the dynamical equations of QG [RS88, RS90] (see also
[JS88b, Ble90]) in terms of loop-supported objects. As a consequence, based
on these two approaches, nonperturbative canonical QG is resurging.

We present here a brief description of the above formalisms, the details
of which can be found in the literature quoted in turn. Our aim is to re-
mark their appealing features but also to stress their problems w.r.t to the
conventional approach given in chapter 2.
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3.1 Classical Canonical Gravity with Ashtekar
variables

As in chapter 2 we discuss, for the sake of simplicity, the case of source free
GR. (For inclusion of the sources and supergravity extensions see [AATSS,
Jac88b, Jac88a]). There exists several approaches to arrive at the Ashtekar
variables, all equivalent, each one stressing different aspects of the construc-
tion (see e.g. [Ash90] and references there). Here, we follow Rovelli’s con-
struction [Rov91la] in which the interpretation of the new variables, as related
to the conventional entities in GR, is more clearly established. This is so,
partly, because an explicit coordinate system is chosen. The global character,
as provided by the introduction of a foliation analogue to that used in the
standard canonical formalism, is discussed in [Ash90].

We consider Ricci flat (R, = 0) metrics g,, on a real four manifold M
and fix a compact three-manifold ¥ s.t. M will have the topology ¥ x IR. The
non compact case, which we will not consider here, would introduce boundary
terms in the correspondent expressions as well as asymptotic conditions on
the dynamical variables. For the analysis of such a case see [Ash90].

The basic canonical variable in this program is not longer a three-metric
but a densitized triad on I. A triad e'(z), i = 1,2,3, is a set of three
linearly independent cotangent vectors at the point z € ¥ with components
e',(z), a = 1,2,3. The metric tensor v, is related to the triad fields by

3
Tale) = 3 €0(e)e(2)63; = Telea(w)eo)]. (3.)
ij=1

In the last equality the “z” index is taken to belong to the Lie algebra
50(3) of the Lie group SO(3). Hence, e,(z) = €' (z)A;, where };, 7 = 1,2,3,
are the generators of SO(3) normalized so that Tr(A;A;) = ;.

Whenever fermions are coupled to gravity one introduces triads and,
therefore, an extra gauge group comes about: C*(X,S0(3)), the set of
smooth maps from X to SO(3). The origin of the gauge symmetry comes
from the fact that an element A € C(X, SO(3)) acts on a triad in the way:

¢ o(2) o &, (2)Af (@) (3.2)

leaving the metric tensor 4,, invariant.

The Ashtekar canonical variables are (E%, A7), where E%(z) = (dety(x))7e%(z)

is a triad density of weight one! and A4, is its conjugate canonical momentum?.

le% is the inverse of the matrix €',
2modulo an i, see below.

39



A, is a SO(3)-connection one-form on %, where “b” is a vector index and
“7” the SO(3) internal index.

3.1.1 The canonical structure

Now we outline how the Ashtekar variables are defined starting from GR and
how they are cast in a canomnical structure.

Lets split up the construction in steps as follows. 1) Start from the Pala-
tini first-order formalism of GR and then, adapt it to a tetrad formalism. 2)
Define a convenient complex selfdual spin connection s.t. GR is reformulated
in terms of it and the real tetrad fields. 3) Split up the Lagrangian variables
in an ADM-like way to go to the canonical theory.

‘The above steps consist in the following.

1) The Palatini first order formalism of GR asserts that the Einstein
equations can be obtained from the action®

Slg,T) = [ d*a(detg)t g RyuT] (3.3)

which contains, at most, first order derivatives of the affine connections I/,
and these affine connections and the metric are to be varied independently.
Variation w.r.t. I' yields the definition of the Christoffel symbols in terms of
the metric, while varying w.r.t. the metric produces the Einstein equations
in terms of the I'’s. Everything can be expressed using only the metric by
substituting the former equation in the latter. The tetrad formalism amounts
to introduce tetrad fields s.t.

g#”(w) = eﬂl(w)euj(:z:)nu, V?D € M) (34)

where 777 = diag{—1,+1,+1,+1} is the Minkowski metric, which acts on
uppercase latin indices as usually. An internal SO(3,1) symmetry, corre-
sponding to the Lorentz group, is introduced in this way [DI76]. The ana-
logue of the above I's are now the spin connections defined via the second
Cartan structure equation

B[uel,][ +‘”[L J[e]e,,]J = 0. (3.5)

In terms of the tetrads and spin connections the Riemannian curvature
can be written as

3From here on we will use units in which ¢ = 1 and 167G = 1.
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| R”ura'[g[e]} = euJCVJRro'[J[w[eH' . (36)
When it is introduced in the Palatini action (3.3), and the rest of this action
is expressed in tetrad language, one gets

Sle,w] = / die(dete)eye”, B, [w], (3.7)

where dete is the determinant and e”; is the inverse of the matrix e/ . This
action yields as dynamical equations the second Cartan structure equa.tlon
(3.5), defining wle], and the Einstein equations for the tetrad fields, when
the correspondent independent variations are performed.

2) Next, we define the selfdual spin connection 4A“I 7 by the properties

g 17— _%EIJAIN4A“A1N (3.8)

44 1] _ [ o Loy MN _ 1] Loy AIN
A = [8 M5N"'2‘E A[N]wu =w, —‘2”5 MNYy (3.9)

where € is the totally antisymmetric tensor normalized to the unity and §
is the Kronecker delta, both in four dimensions, with indices acted upon by

nrJ-

The curvature of the selfdual spin connection® 4A#P Q@ 4iF WP @ and that of
w MV, RWMN, turn out to be related by

v

4 1 1
F[A] = B (0] = S ey R W] = (848 = 5 e hn] R ]

(3.10)
We conclude that 4F I is the selfdual part of R, J7 and, in fact, from

here, we see that it is composed by a real and an 1mag1nary part5. It can be
shown that the integral

Te,w] /d“ (dete)etre” ey v R, ML) (3.11)
is a topological quantity in the sense that

§.T'e,wle]] = 0, (3.12)

where 6, means local variations w.r.t. e, and therefore the imaginary
component of *F,, [/ (see(3.10)) will not yield any dynamical equation. This

4The selfdual connection defines a covariant derivative and hence a curvature given by
.1F#VIJ[A] —_ 63,:4”1'] —'63A#IJ +4A”IAI4AVJ 4A ]I\-lA#}lv
SR,MN[w] calculated from real w’s is a real quantity.
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allows us to substitute in (3.7) R,/ by 1F,,[7 without altering the contents
of the theory. Finally, using

Sle,w] = / dio(dete)et e, T, [ALW]

= /d%(dete)e,,mw P Alw])e™ T, (3.13)
and by going from the variables (e,w) to (e, A), we arrive at the underlying
action

Sle, A] = / diz(dete)e,re,s *F, 1[4l (3.14)

In turn, this action generates as equation of motion (3.9), with w,M"[e]
defined by (3.5), and the vanishing of the Ricci tensor. Note that ‘A is not
an arbitrary complex Lagrangian variable but it has to be related to a real w
by (3.9) (see e.g. [Rov9la]). This is the Ashtekar theory in the Lagrangian
formalism.

Originally, A. Ashtekar introduced the new variables at the canonical
framework level. The Lagrangian versions of the formalism came later [Sam87,
JS87, JS88a], among which the given by Capovilla et.al. [RCD89, RCJ90]
is notable since the only variable appearing in the action is a connection,
without any tetrad field at all.

3) We proceed now with the spliting a’ la ADM of the tetrad variables.
Lets make the following definitions, using the spatial indices a = 1,2, 3,

N® = g% =e%e, (3.15)
(detg)?  dete

N = 3.16

- dety dety’ (3.16)

E* = (dety)?[e?, — N2e%)]. (3.17)

We can see from the these definitions that N and E? are densities of
weight —1 and +1, respectively. Furthermore, N differs from the ADM lapse
function given in chapter 2 precisely in this aspect. The action (3.14), in
terms of the tetrads only, contains the sixteen components of the tetrads.
The same number of variables remains when going to the N's, E variables,
as it should be. Next, we go on by introducing the antisymmetric three
indices tensor

ITK = g0 (LIIK (3.18)

and the related one index connection
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Alle] = ;4,7  e]. (3.19)

o
Once all these variables are introduced in the action (3.14), and making
use of the selfdual character of the curvature *F, WI 7 they translate it into

S[E,N,N° %= [d'z {iAJ[e]E"I + 1A, [e] DyE’
+iN°EY, F,,’ + NE*E*'F, "}, (3.20)

where D, and F,,’ have been identified with the covariant derivative and cur-
vature, respectively, defined by the one index connection (3.19). We should
remark here that in the above action, expressed in terms of ADM-like vari-
al?les, the only dynamical variable is E“I. This is because its time derivative,

E¢,, is the only time derivative that appears in the action. Of course, since
we adopted an specific coordinate system, the one in which the “global time”
is defined by the direction of €%, (orthogonal to ), the time derivative refers
to this frame. As expected, N and N?¢, like in the conventional canonical
approach, are not dynamical variables. However, now there exists extra non
dynamical variables. They are the €°; components of the tetrads coming
from the internal gauge freedom. The three non dynamical objects can be
considered as Lagrange multipliers and freely fixed.

We use in the following the internal gauge freedom to render the theory
into the canonical structure. By choosing €% = 0, i = 1,2,3, and® €}, , =
1, we are reducing the internal symmetry from the SO(3,1) to the SO(3)
group associated to a triad formalism [DI76]. We get two basic results. One
concerns the three indices antisymmetric tensor (3.18); its only non zero
components are those for which I,J, K are 1,2 or 3 and thus /7% — ¥,
The second is that the only non vanishing components of the one index
connection A, /[e] become A, ‘[e]. The important consequence of the latter
is that the dynamical variables will be Es, a,i=1,2,3 (E“U desappears)
and they have the form E% = (det'y)%e“i. In this gauge the action turns out
to be

S|B N, N, = [ at L Lo {iAJ[e]E"‘i +iA][e]C; +iNC, +y_c},
(3.21)

where

Ci[A,E] = DyE", (3.22)

6This is the normalization to the unit of the normal to the foliations as in the case
studied in chapter 2
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Cu[4,E] = E"F,, (3.23)
ClA,E] = E%E'"F,". (3.24)

From here on, the arguments of every quantity will refer to space only
as we have considered the decomposition of M in T x IR in the specific
coordinate system.

From the above action the conjugate canonical momenta are defined as

Pt = L _ia ‘[e], (3.25)

§Ee. ’
and the equations of motion are [Ash88b]

py = —NE*Fue™® +iN°F,}, (3.26)
EY% = —iD.(NE%E")ejn + 2D (NCEY). (3.27)

A, can be interpreted as the three dimensional projection of %4 ul T Tt is
usually referred as the Ashiekar connection. The complex phase space of the

theory has coordinates (p,’, Ekj) with the Poisson bracket structure

{p.'(2), 2/ (¥)} = 0
{E%(z),E%(y)} = 0
{Pai(m),Ebj(y)} = ~5ab5ij53(may)' (328)

From (3.21) we can read off the Hamiltonian of the theory, since it has
the structure [ dt[pg — H]. It vanishes weakly, as expected according to the -
discussion in chapter 2 concerning the strcuture of GR. Note, however, that
here we have introduced complex variables that could modify such a structure
but they do not. This is a remarkable feature of the Ashtekar formalism.

The canonical structure of gravity with Ashtekar variables can be seen
also from the perspective of complex canonical transformation by going from
the standard canonical triad variables to the Ashtekar ones. This is given,
e.g., in the contribution of J.L. Friedman and I. Jack to [Ash88b].

We shall follow the standard convention of taking iA' as the canonical
conjugate variable to Ebj instead of the above momenta.

3.1.2 The constraint equations

By adopting the Ashtekar approach in GR, two kind of constraints emerge
in the theory. The first kind are the primary constraints that follow from
the definiton of the canonical momenta and that turn out to be a sort of
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reality condition on the connection A;'. The second kind are the secondary
constraints, analogue of those in the conventional canonical treatment of GR
given in chapter 2, that follow either from interpreting N, N°¢, e’ as Lagrange
multipliers (as we did) or by giving them the status of dynamical variables
and then eliminating the redundant sector of phase space by a gauge fixing.

The first kind of constraints can be studied by analysing the momenta.
From the definition (3.25) we have that their real part can be expressed as

Re{Pai} = Re{ifi jk4Aajk[e]} = €§k5jkz\-1N‘-"aMN[e] = “’am[e]- (3.29)

They can be readily related to the standard canonical momenta in the
triad formalism of gravity coming from a gauge fixing of a tetrad formalism
[DI76]. On the other hand, we know that the real part contribution to the
action (3.14), associated with the real part of (3.10), is just the standard
tetrad action. Then we can interpret the real part of the momenta as just
the momenta of the standard canonical triad formalism and, as in that case,
they can be related to the extrinsic curvature. In the present case we should
write

Koy = Re{p(;eb),-}. : (3.30)

What about the imaginary part? It can be written as

Im{Pai} = Im{ieijk4‘4ajk[e]} = eijkwajk[e] (3.31)
The second Cartan structure equation tells us that w,’*[e] does not con-
tain time derivatives of e%;; indeed, it is the three dimensional spin connection

of the densitized triad £ . Namely, the imaginary. part of the momenta is
completely constrained. This is equivalent to say that the following primary
constraint holds

Im{p} — € yw *[E ] =0, (3.32)

This result can be traced back to the non dynamical character of the
imaginary part of the action (3.14), associated with the imaginary part of
(3.10), which is a topological term. It is worth noting that (3.32) can be
expressed in a way that shows the character of “reality” of the constraint:

/= A+ 2i¢ w,  [E ] (3.33)

The bar here means complex conjugated. This is why it is known as the
reality constraint. To show the polynomial character of such a constraint, as
the other constraints do, there is the alternative way of expressing it [Ash90]
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Re{D.(ELEUEY %} = 0. (3.34)

(As usual, (ab) means symmetrization while [ca] is antisymmetrization.)
Even if the structure of all the constraint equations is now similar, we will
see that at the quantum level an essential difference between the reality one
and the others comes about.

In the Ashtekar formalism then, the constraint contents of the theory
altogether is the above reality constraint and the second type, we were talking
about above:

CilA,E] =0, C.[A,E]=0, C[4,E]=0. (3.35)

It is convenient, as in the case of the conventional cononical formalism,
to understand the geometrical meaning of the Ashtekar constraints.

It is the Poisson bracket structure, we defined above, that plays a basic
role in the interpretation of the constraint equations. From the Poisson
brackets between the constraints, and with some functions, we should decode
the information they carry, as it was done in chapter 2.

1) Gauss law constraints C;. The Poisson brackets between them,

{Ci(2), Ci(¥)} = €, Cr(2)6(z,), | (3.36)

is the s0(3) current algebra. In general it can be associated to the invariance
under the rotations in the internal space to which the subindices belong.
In the present case, where the system is the spacetime geometry, it can
be interpreted as the freedom in choosing the triads in terms of which, for
instance, the three-metric can be expressed. Obviusly, this also occurs in the
conventional canonical triad formulation for gravity. The Ashtekar scheme,
however, gives further structure through the C;’s. This is seen by introducing

the smeared version of C;’s, C(}), defined by
C(A) = / Pe N(z)Ci(z). (3.37)
Its Poisson bracket with the Ashtekar connection yields

{A],C(A)} = DX = 8,4, (3.38)

which is just the transformation law of a connection in any Yang-Mills theory.
The conclusion is, therefore, that the object we called Ashtekar connection,
is a true connection defined on the hypersurface ¥ of the spacetime manifold
M. This is the origen of the “Gauss law” name for the C;’s. It is in this
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sense that the phase space of GR has the same structure of a non-abelian
Yang-Mills theory.

Note that the real part of A , being a spin connection, transforms as it
should. On the other hand, its imaginary part transforms homogeneously
since, taking the components A' € IR, the non homogeneous term 8,\* does
not affect it. This imaginary part of A is related to the extrinsic curvature
which then is well behaved.

2) Spatial diffeomorphism constraint. It has been shown, e.g. in [Ash88a],
that the smeared version of the vector and Gauss constraints combination
given by

CO(N) = [ #eN"(2)[Ca(s) - 4, (2)Ci(=)] (3.39)

yields the Poisson bracket with a function f[4 , E]

{f[A,E],C(N)} = Ly fA, E] = 63f[4, E], (3.40)

where L is the Lie derivative along N and 65 is the change of f[A, F]
under the infinitesimal coordinate transformation & — & + N(z). Thus
C (]\7 ) generates three-dimensional diffeomorphism transformations and so it
is called the diffeomorphism constraint.

3) Hamiltonian constraint. It can be shown also that given the smeared
scalar constraint

C(N) = / PeN(z)C(2), (3.41)

the Poisson bracket with f[A, E] turns out to be

{fl4, E],C(N)} = NO.f[A, E]. (3.42)

Here ¢t means the “global time function” associated with the chosen folia-
tion s.t. the time direction is that of ;. This C(XN) is then called the
Hamiltonian constraint.

3.2 Ashtekar Quantisation Program

We outline the quantisation program given by A. Ashtekar [Ash88b]. The
scheme will be given as insisting in the canonical algebra and the connection
representation even when there exists alternatives. For instance, one of them
is the T -algebra and its loop representation that will be considered in the
next section.
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Lets set the program in the following steps.

1) Introduce operator-valued distributions, E%(z) and A,7(z), subject to
the canonical commutation relations

A=), Al (y)| = o,
Ee(2), Eb(y)| = 0, |
-ﬁai(fc)’/ibj(y)- = h5ab5ej53(m,y)- (3.43)

2) On the algebra generated by these operators, introduce a x-operation
by requiring that E~“i be its own *-adjoint as well as its “time derivative”,
yielded by the commutator with the Hamiltonian, be its own *-adjoint. Thus
the reality conditions are incorporated at the algebraic level.

3) Choose a representation for the algebra. The most convenient choice
is to use for states holomorphic” functions of the complex connection A/,

represent Ab as a multiplication operator and E“ as a differential operator,
RETT' At this stage the #-relations are ignored. This is so because to incor-
porate such relations requires the availability of a Hermitian inner product.
An unambiguous inner product is expected to exist only on physical states
and thus it is appropriate to postpone the incorporation of these “ quantum

reality” conditions until after the physical states have been extracted.

4) Solve the quantum constraints. Since at the classical level the con-
straints involve only A4,” and E"i and not their complex conjugates, we can
continue avoiding to use the x-relations in the algebra. The space of solutions
is the complex vector space of physical states. The operators of interest will
be those in our algebra that map this space to itself.

5) On this space of physical states, introduce a Hermitian inner prod-
uct that now incorporates the %-relations. The operators E“,- and its “time
derivative” themselves will not be observables. Nevertheless, the *-relations
of the initial algebra induce *-relations on the space of observables, which
maps the space of physical states onto itself, and these relations are to be
faithfully reflected in the Hermitian adjointness relations by the appropriate
choice of the inner product. Thus, in the quantum theory, the secondary
constraints (Gauss,vector and scalar) and the reality conditions are not on

"In simple examples as the harmonic oscillator this requirement is equivalent to choosing
the Hilbert space L?(IR,dz). In more general cases the situation is not clear.
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the same footing; the former determine the space of physical states (step 4)
while the latter constrains the inner product on this space. In practice, the
introduction of an inner product may require that we isolate “time” from
among the various components of 4,” and interpret the scalar constraint as
a Schrodinger equation.

6) Select physically interesting observables and make predictions.
Several remarks are in order here.

a) The variable which is diagonalised is A, the analogue of the canon-
ical momentum in the conventional theory, whereas the triad variable acts
through a functional derivative. The A-representation is analogous to the
functional Fourier transform of the representation used in the conventional
canonical program, and thus the geometrical interpretation of the functionals
on which the above operators act is very different from the familiar function-
als ¥[y].

b) When imposing the constraints a’ la Dirac it is necessary first, to
choose an ordering for the operator version of the constraints. Jacobson and
Smolin [JS88b] chose the expressions

A )

Ci(z) = Dam (3.44)
Gole) = Fu'e) s (3.45)
. i §

Clz) = e "F“”kaAaf(m)aAbf(z) (3.46)

which have the virtue that é’i and C'a correctly generate the Lie algebras
of the gauge group C°°(X,S0(3)) and Diff(¥), respectively. Remarkably,
Jacobson and Smolin were able to find a number of exact solutions to the
WDW equation in the present case: C¥ = 0. Among them there is the
functional ¥[A] = 1 that satisfy all the constraints. The lack of knowledge
about measures in the space of connections does not allow any physical in-
terpretation of this result. Another, formal, solution to the WDW equation
is given by

Yial4] = I] Ho (4 | (3.47)

where the product extendes over the finite set I of indices s.t. {n,]a € I} is
a set of smooth non intersecting loops, and
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H,[A] = Tr(Pezp }{7 A) (3.48)

is an element of a class of holomorphic C*(X, SO(3)) gauge invariant func-
tionals. The P means that the line integral is a path-ordered one and 7 is
supposed to be smooth in ¥. Further solutions exists which include inter-
secting curves; they involve linear combinations of states corresponding to
the different ways in which such curves can be spliced.

3) The main problems raised by following this line of work are: a) The
loop based solutions given above comes from exploting the antisymmetry
properties of Fyp. It is surprising they capture the full content of the WDW
equation. b) The operator products in the quantum constraints are ill-defined
since they contain factors of §°(0). The regularisation method is still subject
of debate (a point-spliting regularization necessitates of a backgroun metric
and curve, the ultimate effect of this unwanted background is notclear) c)
The dependence of the functional solutions on loops in ¥ amounts to their
non Diff¥ invariant character. The Diff¥ constraints seem to be intractable
here whereas in the conventional approach they are considered as innocuous.
A way to get round this difficulty is given below in the loop formalism of
QG.

The problem of finding physical states, and hence also of implement-
ing the %-relations, remains open in the connection representation. Conse-
quently, as far as full quantum gravity is concerned, so far, the connection
representation has not led to qualitatively new insight about the dynamics
of the gravitational field in the Planck regime. At present, its importance
lies mainly in the fact that it provides a suitable general framework to ad-
dress certain conceptual issues of QG in a concrete way. Among these are
the issue of time and the large gauge transformations as related to 6-vacua
and CP-violation. They are discussed in [Ash90]. Also using the connection
representation some solutions to the quantum minisuperspace models have

been found [Kod88, Kod90].

3.3 Loop formalism

The motivations leading to this construction were the Ashtekar reformulation
of GR and the Jacobson and Smolin’s discovery of a class of solutions to the
WDW equation, in terms of the Ashtekar variables, related to loops in three
dimensions. No solution was found to the spatial diffeomorphism constraint.
The loop representation was invented to solve this problem by introducing
a representation space on which the spatial diffeomorphism group acts nat-
urally, whereas the simplicity of the action of the Hamiltonian constraint in
the selfdual representation is preserved.
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Once the loop representation is introduced, the complete set of solutions
to the constraints that generate diffeomorphisms of ¥ are readily found.
They can be related to a countable basis, whose elements are in one-to-one
correspondence with the knot and link classes of ¥ (More properly said, the
elements are in one-to-one correspondence with the generalized link classes,
which allows the loops to intersect and be kinked). The basic tool to handle
the structure of the space of physical states of nonperturbative QG will be
knot theory [Kau83, Kau87a, Kau87b, Kau87c]. The action of the Hamilto-
nian constraint on elements of the loop representation gets simplified. Thus,
a large class of solutions to the Hamiltonian constraint is got which con-
tains, in turn, a set of states that are also annihilated by the diffeomorphism
constraints. It may happen that they are not the most general solutions
to the combined set of constraints but they are exact physical states of the
gravitational field.

3.3.1 The Dirac quantisation procedure

The strategy followed in the case of the loop approach is the Dirac method
whose steps we give now.

1) Choice of a preferred subalgebra A of the classical observables to be
the elementary observables of the quantum theory.

2) Choice of a linear space S, on which there exists a completely regulated
algebra of linear operators A that is a deformation of the classical algebra of
the elementary observables, 4.

3) Definitions of the constraints and the Hamiltonian of GR in terms of
the elements of A.

4) Solution of the quantum constraints by finding the subspace Sppy, of
S that is in the kernel of the regularized constraints in the limit that the
regularization is removed.

5) Definition of the physical observables that constitute the operator al-
gebra on the space Sppy,. At this stage, we arerequired to do two things;
first, find the algebra, and second, give its elements a physical interpretation.

6) Definition of the physical inner product on Sppy,. This choice must
implement both the reality conditions of the classical theory and the physical
interpretation of the physical observables in the sense that operators that
correspond to classical physical observables that are real must be Hermitian
w.r.t. the physical inner product.

The first three steps have been completed in the loop representation,

whereas 4 and 5 are still under study. We sketch the progress that has been
made in this approach.
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3.3.2 Classical loop algebra

Quantisation of any classical theory consists of the association of classical ob-
servables, defined as functions on the phase space of the theory, with linear
operators on some representation space such that the commutator algebra
of the latter goes over into the Poisson algebra of the former in the limit
fi — 0. Due to the operator ordering and regularisation problems in any
quantisation of a field theory most of the classical observables will not have
an unambiguous representation in terms of the operator algebra of the quan-
tum theory. What we can do is to choose a subalgebra of classical observables
that will be represented unambiguously in terms of the operator algebra of
the quantum theory. These are called the elementary observables. We can
say that the rest of the quantisation procedure is constrained by the choice
of these elementary observables in the following sense. The set of elemen-
tary observables should form a closed algebra under the Poisson brackets.
This set must be small enough so that every element in its algebra can be
represented in terms of a well defined linear operator on the representation
space (regularisation). Also, the set must be large enough so that the con-
straints, Hamiltonian, and a large enough set of physical observables must
be expressible at the classical level through limits of sequences of elementary
observables. When this happens it is said that the algebra of the elementary
observables is complete.

In what follows it will be convenient to use the spinorial character of
the Ashtekar variables, as originally introduced. The translation is straight-
forward. Take the Pauli matrices divided by v/2: 7,4, A4,B = 1,2 and
let

Aty = Alr 7, (3.49)

2

E*y = E%r. (3.50)

The uppercase indices of the connection A5 take values in the spin one-half
representation of the so(3) Lie algebra.

To construct the loop representation we choose a set of elementary ob-
servables based on loops in the three-manifold . The phase space of GR will
be coordinatized by the Ashtekar variables (A4, F). The loops are assumed to
be piecewise smooth and parametrized, with non vanishing tangent vectors.

Given a loop v, and two points on it given by the parameter values, s
and t, one defines the parallel transport to be

A

Uy (s, )], = [pef: du-%(ﬂum“(u)] i (3.51)

where P means path ordered. The trace of this parallel transport all around
the loop is known as the Wilson loop of the Ashtekar connection. In fact
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another symbol is used for it

Tly] = TeU, = TrPe ™, (3.52)

and it is one of the loop variables we will define that form a closed algebra
under Poisson brackets which is called the classical 7-algebra. It is found
necessary to introduce observables corresponding to unordered sets of loops
in ¥. Such a set is called a multiloop, and is denoted {y} = {v1,72,.- -}
Corresponding to each multiloop {7}, we have also a T observable

T°l{7} = HTrU.,‘.. . (3.53)

Under Poisson bracket, the 7°’s form an overcomplete set of commuting
SU(2)-gauge invariant observables. This result comes from certain relations
that hold because of the involved SL(2,C) matrices and their definitions in
terms of parallel transport. They include

i) Invariance under reparametrisation of the loop parameter s.

ii) Invariance under inversion

Ty = Tl (3.54)
iii) The spinor identity:

T [ TO[B] = T°[a#B] + T°[e#87Y], (3.55)

where the loop a#/is defined as follows. If a and g intersect in a point p, it
is the loop obtained starting from p, going through «, then through (3, and
finally closing at p. This equation only holds if alpha and 3 intersect.

iv) The “retracing” identity:

(o] = T%a - 1-17] (3.56)

where [ is a line with one end on @ and «-!-I™! is the loop obtained by going
around a, then along the line, and then back along the line to a.

In order to have a complete algebra of observables we need some ob-
servables that also depend on the conjugate E fields. Looking ahead to the
problem of regularization, at quantum level, we should require that the el-
ementary observables not include any that involve more than one F at any
point of . A T! observable is defined by inserting a conjugate E field into
the trace of the parallel transport around the loop at some given point s:

T'[7)%(s) = Te[Us () B*(4(s))]. (3.57)
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This definition can be extended to the T™ observable, and to multiloops
also. Such insertions of the E variable is called a “hand”. The important
consequences relevant to the quantization are :

1) The T™’s form a closed algebra under Poisson brackets.

{T[a], T™[B]} =1 Y Ale, B]T™ ™ ![result of the grasp] (3.58)
grasps
the grasps are the resulting loops by considering the possible combinations
of the initial loops at the “hands”.

II) Completeness on the gauge invariant observables. Any gauge invari-
ant and local functions of F,;,, E° may be constructed in terms of limits of
sequences of T observables.

IIT) The loop algebra is closed under the action of the spatial diffeornor-
phisms. The esasiest example is the T°. Given ¢ € Diff(3)

$o T la] =T [poal. (3.59)

IV) The distributional singularities appearing in the loop algebra may be
removed by an appropriate smearing procedure.

3.3.3 Loop representation construction

The key idea in the programme is to use the above algebra as the basic
algebra whose representations determine the quantum theory. In particular,
it is possible to construct a type of Fock space quantization in which the
analog of a “n-particle” state is a function (51,7, .. .7n) of n loops. The
T° acts like a creation operator, for example

(To)lE] = pln, €], (3.60)

while the T operators map each n-loop sector into itself. By this means a
deformation of the classical 7T -algebra is succesfuly constructed:

[T, T™] = RAT™™ ' L BZAAT" 4. £ &AL AT™, (3.61)

The next major step is to construct the quantum constraints as a limit
of sequences of these T variables. Rovelli and Smolin showed that the
WDW equation, U = 0, can be satisfied provided the Fock space func-
tions 9(71,72,...7,) are concentrated on smooth, non intersecting loops.

Evidently, these states are not Diff(X) invariant because the diffeomor-
phism group moves the loops around. Nevertheless, Diff (¥) invariant states
can be found by requiring the n-loop functions ¥(n1,7,,...7.) to be constant

on the Diff(X) orbits, which are the lnk classes of the manifold X.
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3.3.4 Advances and perspectives

So far, it is possible to summarize the advances in the loop representation as
follows.

1) The loop representation can be considered as a complete quantisation
of the phase space of GR. It is completely regulated and diffeomorphism
covariant since the operators involved, once regulated, carry arepresentation
of the spatial diffeomorphism group.

2) The diffeomorphism and Hamiltonian constraints may be expressed in
the loop representation, the former by their natural geometrical action on
the loop space, the latter in regulated form.

3) The general solution to the diffeomorphism constraint is found in the
loop representation, and expressed in terms of a countable basis. This count-
able basis is in one-to-one correspondence with the generalized link classes
of the manifold.

4) An infinite, but not complete, set of states that are in the kernel of
the Hamiltonian constraint is also found. These states consist of all loop
functionals with support on loops that are smooth and non intersecting.

5) The Hamiltonian and diffeomorphism constraints are compatible, in
the sense that an infinite set of physical states that are in the simultaneous
kernel may be constructed. This space has a countable basis, which is in
one-to-one correspondence with the ordinary link classes.

6) A functional transform taking states in the selfdual representation to
states in the loop representation may be constructed formally.

7) For free field theories this transform may be explicitely constructed,
and gives a construction of a loop representation for the Fock space of free
photons and free gravitons [AR91, AAL91].

The perspectives, on the otherhand, can be set as follows.

1) Completness of the solution space of the constraints. The set of solu-
tions to the Hamiltonian constraint mentioned above is almost certainly not
a complete set. There are two reasons for that. First, a large set of additional
solutions has been found in the self dual representation associated with in-
tersecting loops [JS88b, Hus89]. We expect that those solutions will exist in
the loop representation as well. The second is that the mentioned solutions
are constructed using only the antisymmetry of the indices of the operator.
So, it is not impossible that there exists other operators whose continuum
limit classically is not the Hamiltonian constraint that also annihilates these
states.

2) Physical interpretation of the physical operator algebra. Given a de-
scription of the solution space to the constraints in terms of a countable basis
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implies that one knows how to construct the general operator acting on that
space. Thus given the results about states, we have the general diffeomor-
phism invariant operator, and a large class of completely physical operators.
What we do not have is any correspondence between these operators and
difeomorphism invariant or physical observables in classical GR.

3) The Physical inner product. We already mentioned that the choice
of an inner product is related to the reality conditions. This means that, if
anyone proposes an inner product on the space of physical states, one must
be able to check that any operator on the physical states whose classical
limit is real when the reality condition are imposed is Hermitian. However,
this condition requires that we have a correspondence between classical and
quantum physical observers, which, as we have just mentioned, we do not
have. Thus, at present, while there are candidates for the physical inner
product (e.g. the L? norm given the countable basis of link classes) it has
not been possible to check whether any of them correctly expresses the reality
condition.
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