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INTRODUCTION

The many-body problem of interacting quantum particles has been a subject of
interest for many years. Unfortunately very few models which take the correlation into
consideration are exactly solvable ones (1D Hubbard chain and its continuous limit: the
§-function gas for particles in a continuum). Therefore several approximate techniques
have been used to treat correlation for systems of physical interest. Among this methods
it is worth mentioning the Configuration Interaction CI (which is limited to very few
electrons) , the many body perturbation theory (Hartree, Hartree-Fock ) and the Local
Density Approximation ~-LDA-. However these methods have two important drawbacks:
either they are not systematically convergent to the exact solution, even in case an infinite
computation time would be available, or they require a prohibitive amount of computer
time. As an example in the full CI method the computation costs grows exponentially as
the number of electrons in the molecule increases. Current approximation methods have
costs ranging from the third power to the seventh power of the number of electrons. On the
other hand binding energies are only a tiny fraction of total molecular energies. This makes
high precision vital creating extreme difficulties in justifying the wholesale simplifications
needed to reduce computational costs further.

Recently there has been progress,which looks very promising, in the simulation of
quantum systems, using The so called Quantum Monte Carlo method (QMOQ). The goal of
this method (Ceperley 1981, Ceperley and Alder 1984, Kalos 1984) is to obtain the exact
ground state properties of a many body system by numerically solving the Scrhodinger
equation. The imaginary time evolution |tg >= e‘ﬁtllbo > of any initial state o > is
proportional after infinite time to the exact ground state of the hamiltonian H because the
operator e~Ht filters only the ground state component of |y > with the same simmetry
property. In practice this is achieved by means of iterative algorithms, which propagate the
wave function from a suitable starting guess to the exact ground state value. Thus in the
Diffusion Monte Carlo method one is concerned directly with the evolution in imaginary
time of the wave function, which corresponds to a diffusion process in configuration space.
In the Green’s Functions Monte Carlo, on the other hand, a time integrated form of the
Green’s function or resolvent is used to propagate the wave function. Even though the
latter methods have been shown to be very promising for boson systems, there are still
heavy problems when the methods are applied to fermions. The main difficulty arises

from the antisimmetry of the fermion wave function. In fact the mentioned diffusion
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evolution in configuration space can be applied only to positive definite objects that can
be considered as density distributions. In this way the fermionic wave function, which
due to its antisimmetry has positive and negative values, must be decomposed into the
difference of two density distributions. Each one evolves with a diffusion process but the
antisimmetry of the wave function cannot be independently verified by each of the two
positive component. Then each density distribution has a small projection to the more
stable boson ground state. This clearly produce a numerical instability for long time
evolution.

New possibilities of approaching the many body electronic problem are discussed in
the present thesis using a well known method: the Hubbard-Stratonovich Transformation
(HST). This transformation has been known for long time in many branches of physics
but only very recently it has been used in computer physics (Koonin et al., Blankenbecker
et al. 1981, Hirsch and Scalapino 1986).

The imaginary time evolution e~ Ht jg numerically tractable when the Hamiltonian
contains only one body operators and no interaction term. The HST is basically a method
that allows to transform a many-body operator as a coherent superposition of one-body
operators. In this way the HST transforms the many body problem in a functional
integral over variables o. This functional integration is performed by evaluating the
propagation of a test function |9 > in a time dependent one body hamiltonian containing
the integration variables 0. As far as the functional integral is concerned, it is calculated
using a statistical method which is well established in literature: the Langevin dynamic.
Our method is similar to QMC, as far the imaginary time evolution of a trial wave function
is concerned, but at difference of the QMC it has the considerable advantage to preserve
the antisymmetric property of the fermion wave-function at any time of such evolution. In
the present thesis we also show how to preserve such property in a very efficient numerical
way (see ch. 4).

Until now the most successful application of the HST was done by Hirsch and Scalapino
(Blankenbecker and al. 1981, Hirsch and Scalapino 1986, Hirsch 1985), using a discretized
version of the HST in which the functional integration is replaced with a trace over Ising
variables (o assumes the values +1 or —1). The goal of their calculation is to evaluate
the finite-temperature partition function of a short range interacting system of electrons.
However the discretized version of the HST can be used only for such short range interaction
and has therefore a limited applicability. Moreover this method shows to be unstable for
very low temperatures, while numerical tests confirm that our method can reach the 0°K
limit without showing any instability.

Our method allows to investigate the 0° K properties of a many-body quantum system
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described by a real (unfortunately the complex case is not clear yet) Hamiltonian H acting
onto a finite Hilbert space of dimension D (computer can only deal with finite systems)
in which an HST can be performed. All the usual electronic Hamiltonians (in solid state
physics) which do not contain the magnetic field belong to this class. In order to check the
reliability of this new method, I will apply this method to a very simple model belonging
to the mentioned class of Hamiltonians: the 1D Hubbard model with periodic boundary
conditions. However it should be kept in mind that the most important advantage of the
present method is its generality:

1) it can be used for bosons as well as fermions ("

2) it can be used for short ranged interactions as well as long

range interactions;

3) as it can be found in the following the present method is

numerically stable and it is systematic. In fact we give a

mathematical argument which states the convergence of the method

under reasonable hypothesis (see ch.3).

From this point of view the method has a big advantage compared with

the QMC, where a numerical simulation is possible only with

a very good initial guess of the ground state wavefunction.

Numerical tests, using our novel technique, shows the reliability

of the results even using non-optimal trial function [ >.

As any statistical method the computer time required for its practical use is still close
to the "limits® of the technological possibilities for system size of interesting application.
Hopefully the increasing powerful of computers and the application of HST will make
possible the numerical solution of the electronic structure problem in the same footing of

a simple numerical integration.



CHAPTER I

A functional integral formulation for interacting fermions:

the Hubbard-Stratonovich transformation

As we have already mentioned in the introduction the ground state | > of a many

body system can be written in the following formal way :

. e*ﬁt W’o >
|¥e>= lim -
C7T e e At > |

(1.1)

where as usual the symbol || |¢ >| indicates the Ly norm of an arbitrary vector [ >,
and from now on we will call |1 > in expression (1.1): the trial wave function. In fact the
(imaginary) time evolution in (1.1) of an arbitrary trial wave function is easily obtained

from its expansion in terms of the eigen functions [4; > of the Hamiltonian H as:
Z N; e Bit |1bi >
7
—E; ’
1> Nie B > |]

[%(t)>= (1.2)

here E; is the energy eigenvalue corresponding to [; > and the coefficients N; are fixed by
the initial condition, i.e. by the chosen trial wave function: N; = < g |¢¥; >. Clearly for
long time (1.1) is verified, provided No # 0, with an error which is exponentially decreasing
like:

e Boart (1.3)

where Egop = E1 — Eq is the gap between the first excited energy and the ground state
energy. Thus the problem of determining the ground state eigen-function of an Hamiltonian
H is equivalent to that of solving eq.(1.1).

The evaluation of the propagator (1.7) is numerically (Fest et al. 1982, Nobile and
Roberto 1986) tractable when the Hamiltonian H contains only one body operators. In
order to overcome the latter difficulty it is worth mentioning that a very simple relation

allows to write a many-body operator

e’ 0’ (1.4)



by means of an integral containing only one-body hermitian operators O:

+oo0 “ 1
/ do e 93" :
e’0" = J=o . (1.5)

+ o0 _lg"’
do e 2
-0

The last relation can be very easily verified by expanding the R.H.S. of the previous

equation in powers of O and using the trivial gaussian averages

2k)!
2k, (2R) k!) (1.6)

Equation (1.5) is very instructive and represents the fundamental step in the HST

<o

because it allows to write a many body operator as a coherent superposition of single
particle operators. This step, as we shall see in the following, allows to write the propagator
(1.1) in a numerical feasible form. As is also clear the previous transformation (1.5) can
be applied only for negative definite two-body operators contained in the hamiltonian H
unless considering imaginary . While this property is certainly not true in general, it can
always be guaranteed to be so, as shown in app.l, for quite general two-body fermionic
operators.

However the problem of calculating
e Ht (1.7)

is not completely solved yet. In fact a general hamiltonian is usually the sum of a kinetic

operator T and a two body term V.The problem in fact derives from the non-commutativity

of V and T. Hence
e—(T-I—V)t — e-—Tt e—-f/t (1-8)

is not verified in such a case. On the other hand for infinitesimal propagation ¢ = AT
in eq.(1.8) the effect of the commutator can be neglected up to o(AT?) and for a better
accuracy:

e~HAT _ ~&FT —var -487 + o( AT?) (1.9)

Therefore, noting that e~Ht can be formally written:

Np
: ; t
~-Ht —HAT
e = I Ie where AT = — 1.10
Nt ( )
=1
we have in general all the ingredients to write the full many-body propagator in terms of a
coherent superposition of single particle ones: a more convenient form from the numerical

point of view.




In the present thesis we shall apply in detail the mentioned strategy to a model which
is simple enough, so that we can compare the numerical results with exact analytic one, but
still so interesting to contain all the difficulties for the computer simulation of interacting
fermions.

A realistic model which takes the correlation into consideration and which is exactly
solvable in one-dimension is the short range one-band model considered by a number of
authors (Takahashi 1969, Ovchinnikov 1970, Soos and Ramasesha 1984, Anderson, Lieb
and Wu 1968, Shiba and Pincus 1972, Yokoyama and Shiba 1987, Takahashi 1977). In this
model one pictures the electrons in a narrow energy band hopping between the localized
states of neighboring lattice sites with a repulsive interaction energy between two electrons
of opposite spins occupying the same lattice site.

Cousider a crystal (one, two, or three-dimensional) of N, lattice sites with a total of
N < 2N, electrons. It is supposed that the electrons can hop between the Wannier states
of neighboring lattice sites, and that each site is capable of accommodating two electrons

of opposite spins, with an interaction energy U > 0. The Hamiltonian to consider is then:

B=T Y & +Uy &hande (1.11)

<i,3>,0 i

where 61‘1, ¢;o are, respectively, the creation and annihilation operators for an electron of

spin « in the Wannier state at the ith lattice site and the sum > is restricted to nearest
<i,7>

neighbour sites.

/117

In practice eq.(1.1) can be applied only for the ground state of an interaction-free
Hamiltonian. Let us write, after a straightforward manipulation of eq.(1.11) and, as

discussed in app.l, choosing a negative definite interaction term :

- . U
H=T+V+§-N (1.12)
where
T=T > &héo
<i,3>,0
and



where 7i2; is the magnetization density operator at the site :

i = &hén — & & S (1.13)

Therefore we can separate the potential energy from the kinetic one in the evolution

(Fest et al. 1982).

3 U AT 4 AT 4
e HAT _ ~ATFN =551 —VAT =55 T 1 o(AT®) (1.14)

When expression (1.14) is substituted in (1.10), an error in the evaluation of the
ground state of H will appear in (1.1), due to discretization in time. However formula

(1.1) will produce the exact ground state | > of the Hamiltonian

+ (1.15)

which differ by o(AT?) from the ground state of H. In the following I consider AT
fixed and then I refer to the properties of the Hamiltonian H', whose ground state can be

written analogously to (1.1)

e——H"NTAT W’o >

”¢,G > - N]:r:ll—r*loo H e—-I:I'NTAT W)O > H (116)

Now using the basic relation (1.5) the evaluation of the infinitesimal propagation is:

HR ape SOV are )
T € .

ag _u : _AT
e HAT — ¢ 2NAT/[dG,]e i=t 772 T e

where

Na do_r.
do] = 2
o - 11 52

Therefore a many body operator e~H'AT s transformed in an integral of product of
single particle operators with a considerable advantage from the practical and numerical
point of view.

However when substituting the (1.17) in the expression (1.10) a little complication
appears because now an index ¢ has to be used for the o —variables, in order to distinguish
the Ny different Hubbard-Stratonovich transformations (1.17). Using eq.(1.9):
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g | DN -
et = / [do] ™32 =2 U (1.18)
where R

1 N
Ny AT —(UAT) 2 Z o (1) h, _#AT
H 2 : e 1% (1.19)

and now [do] reads:

H dor (1) (1.20)

N7
2

..
Il

A

5

whereas formally:

N
= Z > ok(d) (1.21)

Although the last expression can appear quite cumbersome it is basically, for finite
Nr, a multidimensional integral over the N * N, variables o. Therefore there are many
different equivalent ways to get the same transformation, which correspond, for example,
to all the possible change of variables in such multidimensional integral.

Usually in the field theory formulation the HST is presented in the continuous limit
AT — 0 which surely looks more elegant. Now I prefer to remain with the time discretized
version of the HST because it is exactly in this form that it has to be used in computer
physics and the continuous limit is an unnecessary formal step. Sometime it can be even
confusing to start with the continuous formulation and try to get the discretized version
with ambiguous approximation of the continuous limit.

The first observation is that in order to evaluate the integrands in (1.24) there is a big
advantage in choosing 1o > as a product of single particle wave functions (for bosons) or
as a Slater determinant (for fermions). In these cases |tbg > can be very easily propagated
through a one-body time dependent operator U, and the calculation of |0a|¢o > can be
easily done numerically. On the other hand, although expression (1.1) makes possible to
have the ground state |G > starting from an arbitrary trial function, this is an impossible
task for size greater than N, ~ 10 because a function of N particles in a size of N, sites
require the storage of roughly (N,)V floating point numbers which are the values of the
function ¥g(r1,...,rn) in any possible configuration of r;. However many informations
about the ground state |1)g > can be achieved without exceeding the memory possibility

of available computers.



As an example consider the ground state energy Eg

d
Egz<¢G!H'Q/)G>=¥H—{n“—EZh1 < o e [4hg > (1.22)

therefore using eq.(1.10) and ¢ = N7 AT
1 d

Bo = Jim  — g gag < Yol > (1.23)

From the last expression:

1 2 d N
/[dale"fg LI RS
! dAT + UN (1.24)

_1,2 - 2
/[dcr]e 2% < Yo |Us |90 >

Feg = lim —
Nr—o00 NT

An estimation of Eg in expression (1.24) requires the numerical calculation of two
multi-dimensional integrals over A = N x N (the degrees of freedom of ¢.(z)) variables
with large enough Np. The straightforward evaluation of an integral like these by one of
the standard quadrature formulas is completely out of question except for the very smallest
values of A. To see why, suppose that the quadrature allows each coordinate to take on 10
different values (not a very fine discretization), so that the integrand must be evaluated
at 104 points. For a modest value of A = 60 and a very fast computer capable of some
107 evaluation per seconds, this would take more then 102 times the age of the universe
(). For this reason the choice of a statistical method in order to evaluate the previous

integrals is mandatory .




CHAPTER II

Stochastic approach and Langevin dynamics

2.1 IMPORTANCE SAMPLING

The problem of evaluating a multidimensional integral with a stochastic approach is
strictly connected to the idea of importance sampling.

A general integral
I= / ldo] P(o) (2.1)
can be decomposed in a product of a weight function w(c) time another function A(o):

P(q) = A(o)w(o) with/[da]w(a) =1 (2.2)

Thus the problem is the evaluation of a classical thermal average :
f [do] =PV A(0)

/ [do]e PV

where the potential V is defined up to a constant: V = —lnw(c) + const. With a

I =

(withf = 1) (2.3)

statistical method we can generate configuration of & according to the probability function
w(o). At this purpose one can use a Monte-Carlo algorithm or a molecular-dynamics
strategy: one simply consider the system with o-degrees of freedom in the fictitious classical
potential V.

The decomposition P(¢) = A(c)w(c) is arbitrary and w(o) could be chosen as
a uniform distribution. However in order to improve the efficiency of the numerical
calculation, it is important that w is large when the value of P is large. In this way
the configurations "randomly generated“ of o are concentrated about the most important
values where w, and hopefully P, is large. This strategy is usually known under the name
of "importance sampling®.

As it is well known the statistical error of I will be proportional to the inverse square

root of the number of sampled configurations p roughly like:

1
(< A2> — <A>?)?

VP

10

Al x

(2.4)



The symbol < A > stands for the classical thermal average of an arbitrary function A.
Mathematically the "importance sampling“ means that we have to choose w and A in such
a way that the variance of A is as small as possible.

The most natural choice of V for the evaluation of Eq with the formula (1.24) is

1 o
V(a)————z—o- — In <o |Us |t > (2.5)
with Ag(o) = —FI; d—g—f In < 0| Ua |0 >. In this way one can write:
UN
Eg = T+ < Ag > (2.6)

The potential V in the preceding expression (eq. 2.5) is classical and couples the classical
degrees of freedom o. It has not to be confused with the real potential acting on the true
quantum many-body system.

However the last choice of V (eq. 2.5) is affected by a considerable drawback. In
fact < 1/)0|l70|1,b0 > is not always a positive real number because U, in (1.19) which is the
product of Hermitian positive definite matrices is in general neither Hermitian nor positive
definite. For field configurations which vary slowly enough in time so that the adiabatic
approximation can be used in computing the product of positive definite matrices in (1. 19)
U, is still positive definite. However the field configurations that dominates the functional
integral are not in general slowly varying. Therefore even if we limit ourselves to a real wave
function |10 > (U, is still a real operator) < g |Us|tho > can change its sign. Consequently
the potential V(o) is not a real potential. On the other and one can consider in expression
(2.5) the logarithm of the absolute value of < o|Us|tho> :

V(o) = }2—22 —In | <o |Us o> | (2.7)
However in the surface where < ¢o|f7cr!¢o >= 0 the potential V is infinite. For any
dynamical evolution both statistical or deterministic with potential V the mentioned
surface cannot be crossed. In principle, using the L.E. in the continuous limit, the average
of A is restricted in a region with defined sign of < o|Us|ho >. A way to overcome the
latter difficulties is obtained using a new definition of the potential which is always real
and has no infinite potential barriers :

V' = — In || Us |90 > | (2.8)

Do |-

From which:
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0 .
Eq = UN+<S(0)"6AT1H<'¢’01UG|¢O>>VI

where

< o | Us |1ho >
| Us |90 > ||

Unfortunately the potential V' does not make a good ”importance sampling® in the

S(o) = (1S(e)] < 1) (2.10)

sense discussed before. In fact it does not depend on the angle that the propagated wave
function Ug|te > forms with the trial function | >. Therefore 5(o) freely fluctuates with
a variance of the order of 1. However the statistical average of many interesting quantities
(like the energy Eg) over the potential V' can converge to the exact value for NT' — oo
even with the restriction of sampling only the positive values of < z/)olﬁalzpo > .
Numerical tests confirm that the statistical error produced by the potential V' was

one or two order of magnitude larger then the one obtained with the previous potential V.
2.2 LANGEVIN DYNAMICS

According to the definition of the potential V in (2.5) the variables o are coupled by
means of a long range interaction. In fact it is enough to change only one o and the forces
acting on any degrees of freedom will also change due to the variation of < ¢0|Ua|¢o >
(see 1.19). In this case a Monte-Carlo scheme generating population of ¢ according to the
distribution e~V is not as efficient as in the case V is short-ranged. In fact a random change.
of o, using the Metropolis algorithm, will require the evaluation of the new < ¢'o|ﬁa|¢o >
by means of N Ny multiplications of matrices No X No. This requires a quite large computer
time for only one new configuration (which can be even rejected).

Actually it is possible to reduce the very large factor (Blankenbecker et al 1981) NT
but for numerical reasons this tricks cannot be often applied, that is U, must be computed
from scratch any ~ 10N new configurations.

If the time required for any new evaluation of V is very large the numerical advantage
of the Monte-Carlo algorithms is lost, compared with the methods which use a molecular
dynamics strategy for multi-dimensional integral as in (1.9). As an example let us consider
in detail the Langevin dynamic scheme (Parisi and Yougshi 1981, Gunsteren and Berendsen
1982) described by the following differential equations:

2958 Furgi) + maale) (2.11)
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where

ov
Fy(r;,i) = — : 2.12
(1‘3 1’) 6Urj ('L) ( )
and 7;,;(s) are random gaussian distributed variables with 0 mean and variance:
< i) my i (s') >= 2871 8550 b 8(s — &) (2.13)

( B =1 in our choice of V eq.2.7). If we impose a boundary condition at ¢ = 0 the solution
of eq.(2.11) is uniquely given in terms of 7, let us call it o7, (7, ). It is a well known from

statistical mechanics that for large s one has

<op(i,s)or, (' 8) > — < o (1) or, (') >v (2.14)

i.e. the equal time non-equilibrium correlations (the brackets in the left hand side of eq.
(2.14) indicate the mean value over 7) tend to the equilibrium one for large time s. It
has been shown (Parisi and Yougshi 1981) that the convergence in the last expression is
exponential. Hence after a long time such that the stochastic evolution lose memory of
the initial condition the dynamic will generate sample of A(c) according to the desired
probability distribution e V.

In practice the average of any stochastic variable < A > can be computed by

numerically solving the Langevin Equation (L.E.), and using the following assumption:

1 3
<A>= lim ——/ A(s")ds' (2.15)
s—0co §

0
which is a generalization of the previous equation (2.14). This assumption follows from
eq.(2.14) if the solutions of eq.(2.11) are "ergodic“, that is they cover all the phase space
of the o degrees of freedom. This is not the case in general because, as discussed before,
the phase space can contain disconnected domains separated by infinite potential barriers
(as for the potential V in eq.2.7). Indeed a Monte-Carlo algorithm or a discretized version
of such dynamical evolution can even cross an infinite potential barrier because, with an
iterative statistical algorithm, some random step can provide a jump from one side to
another side of the potential barrier.

The basic step to solve the L.E. is the s—time discretization which involves an error
depending on the time step As and on the algorithm used to discretize the L.E. (first

order, second order, ..., n'* order in As). Integrating eq.(2.11) we obtain

As+s s+As
or; (1,5 + As) — or(s) = / Fy(rj,i)ds" + / n5,i(s")ds'. (2.16)

13



It is convenient to introduce discrete stochastic variables z;“‘i
(k+1)As
/ mii(s)ds' = 25, /20s871 s = kAs. (2.17)
kAs

According to egs. (2.13) and (2.16) z;-“,i are uncorrelated normal-distributed numbers with
mean < zf‘j > = 0 and variance < zfj >=1

The first order algorithm to solve the L.E. is obtained approximating

s+Ahs
/ Fu(rj,i)ds' = Fy(rj,i) As+ o(As®) (2.18)
and neglecting terms of order As?:

or;(i,8 + As) = As Fy(rj,i) + zf,j V2Bt As + or;(2,8). : (2.19)

More accurate algorithms are easily obtained improving the approximation on (2.18):

s+As s+As .
/ Fo(rj,i)ds' = / (Fs(r;-,i) + (s' —s) Fs(rj,i)) ds' + o(As®) (2.20)
Using a finite difference expression for Fi:

Fs('l‘j,i) —_ FS-AS(Tj,i)
As

(2.21)

and straightforward manipulation, the 2" order algorithm reads :

3 1
or;(iys + As) = or,(3,8) + As(EFs(rj,i) — '2‘F,_,As('rj,i)) + 25 V2871 As. (2.22)

The algorithm requires the knowledge of the forces at the preceding step.
We indicate with sg the time necessary to reach the equilibrium distribution. the

s-time averages (2.15) are the calculated according to the following equation:

1 so+(M—1)As
<A>= o S A(s) (2.23)

In order to have an estimation of the statistical error we also calculate the variance of A:

1 so+(M—1)As .
i S [A%s) - <A = A4 (2.24)

3=38¢
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The statistical error of the variable A will behave roughly as :

A
A= 24 (225)

§ — 8¢

T

where T is the typical correlation time in the Langevin dynamical evolution (in this case
r ~ 1). From eq.(2.25) it is clear why a more accurate discretization of the L.E. is useful.
In fact it allows to work with a larger time step As so that the equilibrium can be more
rapidly reached and from (2.25) one has a better statistical error with the same number
of iterations.

In the previous iteration schemes eqs. (2.19) and (2.22) there is a basic ingredient:
k
i

" random® numbers on deterministic computers, so that these numbers are usually called

the generation of random gaussian numbers z¥.. Indeed it is not obvious how to generate

pseudo-random numbers.

An efficient way for generating normally distributed numbers is described in app.2.
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CHAPTER IIL

Positiveness of the statistical weight

In the previous chapter applied the Langevin dynamics (see eqs.2.18-2.21) to a classical
statistical system which interacts via a potential (2.7): the numerical simulation of this
classical system allows to investigate the quantum-mechanical properties of a system of
interacting particles. However it should be kept in mind that the potential defined
in eq.(2.7) is a fictitious potential, which has very few in common with the quantum-
mechanical potential acting on the real quantum particles.

The degrees of freedom of the classical system are 2N7N,, where N, is the number
of spatial lattice sites and N, the number of imaginary time steps must be chosen large
enough to guaranty the convergence. Hence the Hubbard Stratonovich transformation
allows to map (see eq.1.18) a quantum system of a finite number of degrees of freedom
(H has a finite dimension) at 0°K on a classical system, at finite temperature with large
enough number of degrees of freedom such that the convergence is guaranteed in eq.(1.22).

It is natural at this point to characterize the thermodynamic properties of this classical

system by its classical partition function

Z = /[do‘] e%a’ < ¢0!00‘¢0>=<¢0‘e‘_H,NTAT‘Q/)o> >0 (3.1)

where the equality sign holds using eqs.(1.19-1.21) and the inequality one because e~ H'Nrat

is a positive definite operator. Analogously the corresponding free energy is:

_ 1
F= lim —-InZ (3.2)

From the knowledge of this free energy F' one can evaluate many quantities important
for the quantum mechanical system. As an example the ground state energy, using eq.(1.24)
and the definition of Z in eq.(3.1), can be written as a simple derivative of the free energy
(3.2) (see 1.22): Bg = EﬁﬁdT F.

However Z is not a true partition function of any classical system because the integrand
in (3.1) is not always positive definite for any field configuration and cannot represent a

probability distribution. It is convenient to define:

Z=Z4—-7_ (3.3)
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where

7, = / (do] ™70 (< b0 T |40 > ) (3.4)
and
7 = /[da] V0 (— <o | U 0> ) (3.5)
with
V:%az—ln|<¢o|ﬁa|¢o>l (3.6)

and O is the step function. In principle, with the potential (3.6) any classical average < A >
corresponding to a suitable derivative of the free energy F (eq.3.2) can be expressed in the

following way:

Z_
<A>4 -———Z"— < A>_
<A>= s (3.7)

where the + and — sign indicate the average of the function a in a region of defined sign.
In expression (3.7) the ratio between the two partition function can be obtained by

evaluating the average-determinant sign r (with the potential 3.6):

r =< sign (< o | Us | o >) > (3.8)
from which the ratio between the two partition function is easily. obtained:

Z- _1-r
Z+ - 1+1‘

(3.9)

Although a Langevin dynamic is very efficient for the computation of averages in a
region of defined sign (< A >_ and < A >4 in 3.7) the calculation of the < o | Uy | %o >
average sign (3.8) gives some trouble. In fact, as we have already mentioned, the dynamical
evolution always remains in a positive or a negative region for a continuous Langevin
evolution. For a discrete one (eq. 2.19-2.22) the probability of a jump is smaller and
smaller as far as the time step tends to zero. This means that a very large computer time
is needed to estimate the average-determinant sign with a small enough statistical error.
It would be very convenient (as some authors guessed Blankenbecker et al. 1981) if for

large N1 only the positive sign is statistically dominant (r — 1). Actually in the following
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we can give a less restrictive condition to average only in a region of a definite sign. The
last property is not verified only when the average < Yo \ﬁg | o > sign vanishes in the
infinite N limit. Now r is —from relation (1,9) and inequality 7 = Z. — Z_ > 0 (see
eq.3.1-3.2)— a number between 0 and 1.

0<r<1 (3.10)

Moreover from eq.(1.9) it simply follows that Z can be written as:

Z_ 2r
Z =127 1——1] =2 a1
+( Z+> 147 (3.11)

Using the definition of F and the preceding relation (3.11)

1 1 1 2r
F = — In = — -
(NT) NT Z(NT) NT In Z+(NT) + NT ln(l 7')
1 2r
(I P .
= Ft(k) + . In( M) (3.12)

By taking the limit in both sides of the preceding equality one easily get that:

im Ft = lim F if

NT—oc0 NT—o0 Nl’.ll‘Eoo " # 0 (313)

The latter relation means that whenever Nl%m r # 0 it is possible to restrict the statistical
—00

averages over a region of positive < %o | Us | o > for quantities that can be expressed as

suitable derivatives of the free energy (3.2)-

JLI0 L

Analogously it is simple to show that F; tends to F_ for large N7 unless the average

determinant sign converges exactly to 1.

JULI LT

It is very simple to realize why for very small U (indeed (U AT)? < Egap(U =0) AT
the partition function 7 is prevalently positive. In fact U, acts, in this case, as an
adiabatic operator and, as well known, < ¢0|ﬁo’\¢0 > > 0 regardless for less relevant
configuration with very large 0. Indeed Z = Z4VNT in a neighborhood of U if lo| < A
and (UAT)% & EgapAT. When the HST is performed with the condition |o| < A the error
in evaluating F' is negligible if A is sufficiently large). Then F and Fy (the existence of the

thermodynamic limit for F has been shown in app.2) surely coincide in a neighbourhood
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of U = 0. If Fy is an analytical function of U (F is analytical for a finite system) F and Fy
coincide for any value of the interaction for a well known property of analytical functions.
Suppose that F' and F are different for some particular value of the interaction, then F
is a singular free energy and a phase-transition occurs for the classical system described
by the o degrees of freedom.

From the preceding discussion, after calculating the averages in the regions of defined
sign, it is important to check whether r in eq.(3.12) does not converge to 0. In this case
we can identify the total average of A with the one restricted in the positive or negative
regions. In this way the statistical error is considerably reduced. However, if the number
r is very small, the statistical error and the extrapolation Ny — oo must be performed
within a tolerance less then the value of r itself in order to be sure of its non vanishing

limit. Using the results given in app.1b and:

SNy
= —I 3.14
"= S (3.14)
Then either 7 — 0 and in this case the convergence is exponential or:
: < >?
im r > to|Ye 5 (3.15)
Np—oo 2— <o |Ype>

The latter property now allows to simplify the problem of the estimation of r in a
numerical feasible way. In fact, in the case r — 0, the convergence is exponential and a
reasonable accuracy can be achieved without a large value of Np. On the other hand if the
trial wave function |t > is a good one (when < Po|the > is large enough) the possibility
to distinguish whether (3.15) holds is easier.
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CHAPTER IV

The algorithm

4.1 NUMERICAL STABILITY AND GRAHAM-SCHMIDT ORTHOGONALIZATION

In order to build up an iterative algorithm it is convenient to choose |1g > as a Slater

determinant (or analogously the sum of few Slater determinants)

1
|¢0 > = \/]—VT det [(,Om(’l'j)] (41)
where @m,m = 1,..., N are N independent orthogonal orbitals and r; are the coordinates

of the N particles.

In fact the evolution of a slater determinant trough the single particle time dependent
potential Us, | o > is again a single particle determinant state.

Moreover U, is the product of single particle operators, then the evolution of a many
body Slater determinant through U7, simplifies in solving the evolution of the N single

particle orbitals

om(T) = Uspm(0) fori=1,...,N | (4.2)

This problem is numerically accessible by an iterative algorithm, using the time discretized

expression of U,
~ NT A
Us = HU"(i) (4.3)
=1
In fact from eq. (1.19)

=" o (k) s VUAT AT

- AT
TS e - e T (4.4)

Ucr(k) = €
is a product of a single particle operators which are diagonal either in Fourier space (T)
or in real space (). One can use the Fourier transform algorithm (Fest et al. 1982) to

evaluate:

N T
¢T+AT — Uaf(k) ‘PT wzth k — Kf ’ z = 1,... ,N (4’5)

In this way |¥:(kKAT) > for k=1,...,Nr can be computed by means of NpNNglny Ng
operations. The mentioned algorithm is obtained by going back and forth between Fourier

and real space where T' or . are diagonal operators.
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Troubles arise because Ua(i) are not unitary (oy_:thogonal) operators. Therefore after
repeating many times the step (4.5) an orthogonal basis set pi(r)i=1,...,N will no
longer remain orthogonal. This circumstance can prodiice a numerical instability of the
algorithm. The simple reason of such instability is because the fermionic ground state can
be considered as an excited state (with the right simmetry) of a many-body hamiltonian;
its true ground state being a boson-symmetric wavefunction. In fact when the orbitals
freely propagate, after long time, they they are led spontaneously to the bosonic ground
state.In this way the numerical information of the fermionic state is gradually lost until
the Slater determinant exactly vanishes because of round-off error. Therefore, in order to
have a stable propagation, we have to rewrite, any few steps, the Slater determinant which
is at the time 7"

[ >T= det o (r;) (4.6)

in terms of an orthogonal basis set. This is always possible with a transformation
T ~T
Pm = z Um‘n Pn (47)
n

where the matrix Unm,n is chosen in such a way that < etlph >= bmpn provided T are
linearly independent orbitals. This is always satisfied because |ho >7# 0 and |7 > results
from the propagation of |tpg > by means of positive definite matrices; then lpT ># 0
and {go;",;} are linearly independent functions (otherwise |4T >=0). The matrix Um,n 18
not univocally determined by the previous condition. A convenient choice is to use the
Graham- Schmitd orthogonalization scheme because, in this case, Umn is a triangular
matrix.
Now from (4.6) and (4.7) |¢T > can be written as

| >T = det [}: Umn,n @ff(rj)] (4.8)

this means that for any values of the coordinates rj,|¥ >T is the determinant of the

product of two square matrices: Upm,n and @T(r;). Therefore using that the determinant

of the product of two matrices is equal to the product of the two determinants, one easily

gets that:

19 >T= w19 >" (4.9)
where ||| = det Upm,n and |4 > is again a Slater determinant made up by orthonormal
orbitals:

' >T= det Gi (r5) (4.10)
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In this way from some time on, the propagation of the many body wave function is:

g ST = Uy 197 > 18 >T = ([>T || Vo 14" > (4.11)

Therefore we again have to propagate a Slater determinant and one can proceed as before
until the numerical stability will require another orthogonalization. Such a strategy has
been shown numerically to be very useful. One of the reasons is that in this way one easily
overcome the problem of the overflow (underflow). In fact the norm of the propagated
wave function can become very large (small) when the time T is large. We can store the
function |¢ >T by the values of In ||¢T|| and N independent single particle wave functions.

At any orthogonalization we have only to correct the storage of the norm in the
following way:

[n (19117 = o (1% 17 + In detUs (4.12)

where T+ and T~ indicates formally after and before the orthogonalization. It is clear that
it is very difficult to reach an overflow with an operation like the (4.12) and on the other
hand for many quantities (like the energy in eq. (1.24) only the knowledge ofIn |||¢ >|
is required.

Another more important reason for orthogonalizing is the following. Suppose to have
a Slater determinant |¢p > containing two functions |0 > and |1 > which propagates
under a single particle time independent Hamiltonian h. Here h is Hermitian with lowest
eigenvalues Eq, E1 (Eo < E;) and corresponding eigenvectors lf) >and |1 >. Suppose
now that |0 > coincides with [0 > and |1 > has a very small component of [0 >:
|1 >=|1 > +«|0 >. Now in principle

Jm Hf“|¢ ~ (4.13)

-]
has to give the ground state of h (see egs.1.1-1.3). The single particle evolution of 0 >
and |1 > reads:

|0 > = e !0 >

I1>% = e P 1 > +ae !0 > (4.14)

therefore suppose that the computer can store P figures and |0 > or |1 > are of the same
order of magnitude. After a time such that

PInl) — Ina
E, — Ey

(4.15)
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the information about |1 > is completely lost because:
|1>t=e‘&¢[m>>+e“%‘&”f“am:{ (4.16)

and for such computer 1 + 10~P = 1. Hence numerically the ground state of h would

become the vacuum. In fact the Slater determinant at a time

‘= Plnl) —Ina
- El——EO

(4.17)

contains two linear dependent functions.

From eq.(4.17) the mentioned instability depend on the gap between the two energy in
the single particle hamiltonian. Of course when dealing with many electrons, the statistical
gap of the instantaneous operator U/, can be very large (~ Na\/fT_A_T_) because it is the
difference between the instantaneous ground state energy of U, and the N** excited one.
So far it is convenient to orthogonalize quite frequently in order to preserve some significant
digits in the calculation.

The mentioned numerical instability has something to do with a physical phenomena.
In fact when the single particle wave functions are free to propagate they are spontaneously
led to the boson ground state just because of the roundoff error. I believe that the
orthogonalization is a necessary step if one wants to preserve the antisymmetry of the
fermionic ground state.

As far as the computation speed is concerned I have to remind that the time
required for a Graham-Smith orthogonalization costs an amount of N2N, floating point
multiplications. It is therefore much more expansive than the propagation algorithm (4.5)
but one has to consider that it is not necessary at all to perform an orthogonalization at any
step. We can see in the following sections that once an orthogonalization is performed, it is
possible to have a sample of many statistical quantities with the same amount of computer

time.

/111
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4.2 FORCES

The forces in expressions (2_.19,2_.22) of the statistical system composed by the

N,—dimensional interacting oscillators o, (7) are given:

)
B, ()

F. () = — V(o) = —or, + In < %o |Us |0 > (4.18)

i 0.

J

We consider the trial wave function 1¢ made up by NT spin up orbitals and IV ! spin
down ones. As mentioned before, U, acts independently over the sets of functions with
defined spin projections

P

Therefore it is simple to show that
< to|Usltho >= det < ol |Us |l > det < ol U, ot > (4.19)

and the problem of computing the forces is completely decoupled in spin space. As a

consequence.

Indet < ok |Us |t >
(4.20)

The derivative in the last expression affects only the propagator U, at the time slice i.

F. (i) = —or, + Indet <ol |Us|pl > +

0 )
dor; (1) dor, (1)

Such derivative, if done in a non convenient way, requires the computation of at least one
determinant for each degrees of freedom N7N,. From now on we consider in detail the
calculation of the spin up term in eq.4,20 because the remaining term, concenﬁng the spin
down orbitals, can be analogously treated. For a non convenient calculation, say with
a numerical estimation of the derivatives in eq.(4.20), the calculation takes the order of

NpNo,M? operations. In order to reduce such waste of time we note that setting:
Amn(9) =< ok | Us li], > (4.21)
The determinant of any matrix can be written formally

det A = etr'lnA

Therefore the second term in the R.H.S. of eq.(4.20) now becomes:

trln A™ oA 0A 1
—_— ——— T --—-t pum .
Jor(1) i dor(7) A 2 {60,.(1')] - Anm (4.22)

m,n
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The explicit expression of 50—‘3@3 A can be worked out introducing the back and forth
propagated orbitals which are calculated at the time (i - %) AT, i=1,..., Ny because
the derivative with respect to a variables o(7;,7) affects the propagator at the mentioned
time step. These back and forth propagated orbitals can be calculated with an iterative

scheme :

-3 VUAT o, (i) &F &, X
p>m(i) = e - e AT oy m(i— 1)

- VUATo (V)& 8 pp-
p>m(l) =€ - e” 2 T o5 m(0) (4.23)

; -> VUAT o, (i) &F &,
pem(i—1) =e T e - p<,m(t)
_AT s .

p<m(NT) = € 2 Tﬂf’m(o) (4.24)

where ¢, (0) are the one particle orbitals corresponding to the given many body wave
function |to >.
Now using (4.21) and the previous definition (4.23) and (4.24):

8‘ m—— ’ " -~ .
[ Bo.() A} - = —VvVUAT < (,OT<’m(1,) c;f' Cr (pT>’n(z) > (4.25)

The previous expression for each m,n becomes very simple in real space where it is
the product of two real functions at the site point r. In order to calculate the forces acting
on all ¢ we need an inverse operation (M?® operations) the calculation of the forth and
back propagated orbitals at each time i=1,..., Np (Nr N N, In(N,) operations) and
via formula (4.22) the final expression with N2Ng N, operations.

Apparently we have got only a little advantage (a factor N) with respect to the
previous direct method. Actually a further improvement can be obtained by moving the

sum operation into the vector brackets in (4.22). Hence using (4.25):

0
do(3)

tr

A7 = 5T - VUAT <y AL o<n(DIE & losm(t) > (4.26)

Once we compute the set of states (a change of basis needs N2 N, operations) for i = Nt
-1 . — .

(Pé,'m(z) = Z Aml,n SO<('L)
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The propagation of go‘é‘—l can be performed in the same footing as in (4.23) because
the single particle operators in (4.23) are linear, then:
p2hli —1) = e bTT VIR @ & o2 (i) (4.27)
Hence we are finally left with only NN, In(No)Nz + N 2N, + N?® operations for
computing all the forces and we saved a factor N Np with respect to the first algorithm.
The last algorithm is very fast but the numerical stability, discussed in the previous
chapter, is not taken into account. At this purpose we need to orthogonalize any say I
steps (N7 = I x Ip where Ip is the number of orthogonalizations used for the back
and forth propagation of the orbitals). In this way we lose the possibility to write the
matrix Am,» in terms of the trial orbitals. However we note that the previous arguments
can be applied between two contiguous orthogonalizations because in any interval like

that the single particle wave functions propagate independently. In fact from the time
(nr — 1)Ip AT to the time npIr, AT one can write in (4.18)

ny I

< by | Uy |0 >=< tp<(n7)]| I Usiiy | s(nr —1) > N5 N2y (4.28)
i=(np—1)Ip+1

where |t (nr) > and |h<(nT) > are proportional to the back and forth propagated many
body states |s(nT) >, [¥<(nT) > expressed after orthogonalization by N orthogonal

orbitals G« m; $>,m and norms N7 _, and N3 (see sect.1)

nr Ip
|¥s(nT) > = H Usgiy |90 >= Nz, | > (nT) >
=1

np Ip—1

1ps(nr) > = ] Ueslvo >= Nz, |$<(nT) > (4-29)
i= N7

It is clear now that in the previous expressions (4.22) and (4.25) the matrix A must
be substituted with:

ny IL
Amn =<@cmnn)l [ Usyl@smlnr—1)> (4.30)

i=(np—1)Ip+1
and (4.23) and (4.24) slightly modify by changing ¢m(0) with ¢« m(nT) and @5 j(nT—

1) respectively for the initialization of the iteration scheme:
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AT 4
7 T G m(nr) (4.31)

—JUAT Za,((nT—1)1L+1)ej &,
s m((nt —1)IL + 1) =ce T

e<mnT L) = e
e T Gy m(nr —1)(4.32)
and the same propagation scheme as in (4.23) and (4,24) can be applied for (np—1)Ip+1 <
i < nrly. Therefore between any two contiguous orthogonalizations of the single
particle wave functions (see sect.1) one can compute with this algorithm the forces from
(nT — DIp+1 <1< nrly.

It is worth noting that the norm Ny, _; and Ny, do not appear in the forces because
they do not depend on each o,(i) for (n — 1)IL +1 < 2 < nlL.

I hope that the algorithm is now clear.

Firstly one propagates the advanced wave function orthogonalizing any I steps and
storing in the memory all the single particle wave functions (which at any time give a
representation of the many body state) at the time np I AT (orthogonalized wave function)
for np =1,...,Ip — 1 and at time ( — 1/2)AT,i=1,... ,Nr. Afterwards one begins the
backward propagation of 90‘2‘-1 and @<, by firstly computing the matrix (Am,n) ! between
any two contiguous orthogonalizations (g51< must be also propagated for the calculation of .
the matrix A at the next orthogonalization). Then the calculation of the forces requires
an amount of Ip(N?>N, + N %) operations which save some time if Ip <« Nr.

It is worth noting that the algorithm can be even performed if one could orthogonalize
in an adaptive way, i.e. without a fixed value of IL, each time a large fluctuation of &
require a better stability of the algorithm.

Finally we write the explicit expression of the forces using eqs. (4.18-4.26) and taking

in mind the discussed propagation scheme
. . ATE kT AT .
F, (i) = or,(i) + VUAT (Z <ol W1l &, 1ol 16) >)
k

e NTR | .
- VOB (<, (1 & 1oL i) > ) (4.33)
111/
4.3 GROUND STATE EXPECTATION VALUES OF OPERATORS

In order to have some information from the Langevin dynamic (2.14) and (2.17) about
the properties of the Ground state we are interested in the calculation of some observable

quantity in terms of time average of classical operators A(c) — called estimators.
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The dynamics of o develops according to the L.E. in which we already knows how to
calculate the systematic force (4.33) and the stochastic term app.3 As we have seen, in
such calculation, one of the most time consuming operation is the inverse of a matrix A
at each time we perform an orthogonalization of the single particle wave functions.

We now show that A~! (spin up and spin down) contains a lot of informations about
ground state expectation values of operators of physical interest.

According to the previous section we can compute any observable quantity by a
suitable derivative of the free energy

) 1
F = 1\}1}_’1100 —].\—T; an

Using that F* — F (under suitable assumptions) we easily get the answer.
In particular let O be any operator, we add to the Hamiltonian H' a term hBhatO
.Then

9
oh

d
F:ZI;

1 7! A
I < apg | e NTH AT =RO) |4y (4.34)
h=0 NT

h=0
The evaluation of such derivative must be done carefully because the operators O and H
do not commute. It is convenient (using essentially the same trick as in Ch.I) to write the

full many body propagator as:

N . A )
e(H’AT-—hé)NT — H [e"i‘!zlo e—-—ATH' €+%O] (4.35)

=1

up to o ((AT)?, R?AT, h(AT)?h®). Hence the calculation is straightforward:

_6_ ~ _1_ Ny < bo ‘e-H' ATiO 64‘1' (NT—i) AT l4po > (436)
Oh h=0 N prd : < 1/’0 |e——H' Nr AT"‘!’D >
_{-12— fort=0,N7
9 = 1 otherwise

When N7 is sufficiently large most of the terms in the preceding sum are using eq.

(1.1) nearly equal to:

< c|Olpe >
apart from the ones which are close to the initial and final time ¢ ~ 0 or Np. Therefore:

oF

A 1
ah =<¢G|OI¢G>+O(~]VT—> (4.37)

28



The convergence can be clearly performed if we add a field h;O where h; = h for i € {n} far
from the initial and the final time (i.e. 1 =~ Ng or 0) and h; = 0 otherwise. The important
thing is that the field h; must be different from 0 at least in a number of time steps Ip

which is a fixed factor of N¢ = I, Ip. Even in this case, in fact

oF 1

ah IL < Y| O |Ya > for Np — oo (4.38)

After the H.S.T. is performed all the calculation can be done if one knows for any n the

following quantity:

< to| H Uo(m) O H Us(my | o >

men = A%(o 4.39
<¢O|Ua|¢0> 5(9) (4.39)

from which using (4.38) and Ny = Iply,

. 1
<Pg|O|bg >= - Z < A¥(0) >  forip — oo (4.40)
P
k={n}

Hence the calculation of the ground state expectation value < Ya|Olpa > as a derivative of
the free energy (4.34) can be achieved with the statistical average of Ip different quantities
(with Ip < NT). As we will see later such calculation requires about the same amount of
computer time needed for the forces (5.16) at least for operators O which are contractions

of the 2 and 4—point Green functions. On the other hand the statistical error corresponding

. Z A*(o)

P o= {n}

to:

is about —\/LT—; less than the one of a single A™(o). Moreover using the fact that free energy
F is presumably equal to FT (see eq.3.13), one can take the advantage to sample only the
positive < g |f7(,|1,b0 > region.

Due to th e discrete Langevin time the o—configuration can jump from a positive
< o|Us|tho > region to a negative one (and viceversa). Hereafter the potential is assumed
to be V in (2.7) and the averages limited to the positive or negative < IU o >
region.The estimators corresponding to a general operator is calculated using the statistical
method described in Ch.2 sect.2 and according to eq.(3.7) we independently update the

averages over the positive and negative < Yo|Usq|the > region.
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4.4 EVALUATION OF THE FOUR-POINT EQUAL-TIME GREEN’s FUNCTION

Let us consider the 4-point equal-time Green’s function:

P 5
O=erdlet’ o (4.42)

we need in general the calculation of An (o) that for such operator O — using a single

o
particle determinant trial function - js proportional to the scalar product of two Slater

determinants with jif + 2 particles. In fact

n n-—1
AtFP e : PSP 3
< cf C;-,_ l ! Ua(m) o [c,": Cl+ l l Ua(m) Yo >
m=]

n =N.
A%(0) = = — (4.43)
< H Ua(m) ¢0 ! H Ucr(m) ¢0 >
m=Nnp m=1

¢~ (4.31) (where for convenience we don’t write the subindex n = [ L —1), one can write
the previous expression by using the straightforward formula which gives the scalar product
of two Slater determinants in (4.43). If @Y =T and 3,6 =| and Symmetric permutations:

det AT(i,1) det 4! 7.k
Ap(o) = \(‘L\_(\)

4.44
det AT det 4! ( )

where 4 (1 or 1) is a matrix (M +1) x (M +1) (for any (4,1) or (5, k)) indexed by the

single particle waye function components (with 1 or | spin Projection)

Anni) = (o 02 ") (.45)

Cm(ri) A
and A, . is a matrix i/ X M
Amn =< @557 >
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On the other hand when a = 8 =+ =6 =T (or |)

(4.46)

where A (1 or |) is now a matrix (M +2) x (M +2) for any 3,1, 7, k, indexed by the single

particle wave function components (with T or | spin projection)

6k,j Sk Pn(rr)

. 6j,1 &a @a(r)
A_m,n(17]7k)l) = ‘157<n(r.7) (ﬁfn('l‘l) (447)

: Apn

From expressions (4.45) and (4.47) the calculation of the Green’s function requires at
least the evaluation of two determinants for any fixed ¢,j,k,!.

However several interesting operators like:

1 —ig(r;i —7j - -
Sm(q) = ~A—T—Ze A(ri="i) < apg |1 ey | > (4.48)
2]
1 —ig(r; —7j ~ ~
S(q) = N—; Ze a(ri=rj) < 'QZ)G |nri Np; l'(;bG > (449)
iyJ
with A, = &t & + & &,
Spe = LS it A e er 4.5
Bos(T,q) = —N';Ze <o |épr & & & |de > (4.50)
,J

requires the calculation of the Green’s function for N2 different values and results in a
considerable waste of time.

It is worth mentioning that the previous ground state expecta tion values (egs.4.48-
4.50) allows to characterize many interesting physical properties of the quantum system. In
particular the correlation function Spcs is useful to investigate , as shown by Hirsch (1987),
the superconducting property of the ground state; the remaining ones give informations
about the density ( S ) and magnetic ( Sy ) fluctuations.

In order to improve the algorithm we simply note that the considered N2 matrices,
(4.45) and (4.47), differ one from the other (for different values of i,7,k,l) only for few
rows or columns. It is possible to simplify the problem and formulate all the calculation

in terms of the quantities:

B(j, k) = > @m(re) Anln @n(r5) (4.51)
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In fact the determinant of 4 (T or |) in case a # [ can be written using the well
known properties of the determinants (the determinant of a matrix A remains unchanged
by adding-to a column — first one — any linear combination of other columns chosen in

particular to make vanishing all the first column elements but the one in the first row):

dt(l b5,k ‘|5>(Tk)) det 8 — L en®rn(re) P37 (re)
e ) n — de n

- 4.52
GX(r))  Amn G5 - S Ammen  Amn (4:52)

where in order to have:

e (r;) ZAmncn =0 (4.53)

one has to take:

Z Am n Son (1"] (454)

substituting the last expression in the R.H.S. of (4.52) and using the definition (4.51) one

gets:
6j,k—B(j,k) 957>L(Tk)
0
. => ]
det (¢g’iij) @Z,ffﬁ)) = 0 _ det A (555 — BG,K)) (455)

Ll

0 Alm

In the calculation of Ajs(c) in (4.44) the factor detA cancels out with the denominator:

Ap(o) = [85% — B(j, k)] [6:0 — B(3,1)] (4.56)

If « = 8 =1 (or ]), after cumbersome algebra, repeating the same trick as before (i.e.
by zeroing all the elements of the first two columns of A except the ones in the first two

rows, and then by using the Lagrange expansion of a determinant) one obtain:

br; — B(j, k) i — B(i,k) &7(rk)
80— B(G,1) &1 — B(i,1)  ¢n(m)

det A, , = 0 0
0 0 Amon

i)

= [6; — B(j, k)] [8:0 — B(,1)] = [6ix — B(i,k) ][50 — B(5,1)]det A (4.57)
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Hence using (4.46)
Ag(o) = 18 — B, E)] (80 — BG,1)] = [8ix — BG: k)] (850 = B, (4.58)

The last expression is exactly the 2 x 2 determinant in the top left side of the previous
large matrix in (4.57).

Hence the ground state expectation value of any operator O which derive from a
suitable contraction of the 4-point equal-time Green’s function (4.41) can be obtained from
the statistical thermal average of a classical operator A, /0) (estimator of the operator O)
expressed in terms of the elements of two No X N, square matrices BT and Bl (4.51).

Of course the two point equal-time Green’s function:

<ypele el |de > (4.59)

can even be expressed in terms of B(7,7). In fact, following the same steps as in the

previous case:

Ao gre(0) = 8ij — BY(2,7) (4.60)

and the estimator of any one-body operator can be easily written in terms of BT and B'.

The basic operation for the calculation (5.35) of all the elements of the matrices BT
and B! is the inversion of two N x N matrices AT and Al (N?® operations), a change of basis
A~13< (N?N, operations) and remaining N multiplications for each different couple of
lattice sites (N2) for which the matrices B® (¢,7) are defined. In this way the computation
time required for updating the matrices B takes less than o( N?) operations. As we shall
see the estimators of any static structure factor defined in (4.48-4.50) takes N 2 operations
for each different ¢ , once the values of B%(4,j ) are known. ;

At this point it is worth mentioning that the estimator Ap(0) in expressions (4.4 )
and (4.46) does not depend on the norms of the propagated many body wave function
(the numerator factor cancels with the denominator one) and of course on the one
particle orbitals chosen for the representation of the given Slater determinant. Hence
it is convenient to calculate A’Of(a) for each n in which one performs an orthogonalization
because the matrix A~! needed for such operation (see sect.1) can be even used for the
calculation of B(z,j).

Finally let us summarize the explicit expressions for the three considered quantities
(4.48-4.50) in terms of B*. They can be obtained ,after a straightforward and cumbersome
algebra, using equation (4.56-4.58) and the canonical commutation rules for the é;,¢; in
the expression of the 2 and 4-point Green’s function (4.60) and (4.41)
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1 —1q(7T T e
As(q)(O') = —]V'—_ Z 5 k J) [Blk Tk BT‘; Ty BIL )T Bljﬂ‘{ + Blk L Bij,rj + 6kv] Blk,rj“*— ’]‘_"Jf]
* kg

1 —1g{r T —
Asi(lo) = 3= D& ) (Bl BLy = Bl Bl = Bln By + 605 Brn,+ +1=l)
* kg

Asges(a) = N Z [(5k.1 Blg rj)(ékaj - Bij"i‘l,"‘k'{‘i)] e talmei) (4.61)

111/

4.5 CALCULATION OF THE GROUND STATE ENERGY

In addition to expression (1.24) one can calculate the ground state energy by a suitable
contraction of the two and four point Green’s functions. In this case the correspondent

classical operators for the energy is from eqgs.(1.11) (4.56) and (4.60).

"(o)=T > BlL. +Bi.+ UZB"M‘» (4.62)

<1,7>

Actually the first term in the R.M.S. of the preceding equation gives the average kinetic

energy while the second one the average potential energy.
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4.6 CONJUGATE VARIABLES

In chapter we performed an H.S.T. using the Ising scheme. In this scheme the o,
variables for a given site r; are conjugate to the local magnetization operator i, in the
same site. To see why (suppose Nr fixed) we add an infinitesimal field h.(¢) linearly
coupled to the local magnetization operator in the Hamiltonian H so that the partition

function (3.1) reads up to o(h(AT)?):

N
__<¢0 H

~V AT+ he(i) s .
, eS| o > (4,63)

‘ﬂ)

A_
2

After using the H.S.T. the single particle operator U, in (1.15) become now:

“

Nr >
-1 ~ALT ~VUBT Y or(i) 4+ he(D) e~ ST (4.64)

34



This means that after the change of variables

ol (i) = o:(7) -I—--—%% [do'] = [do] (4.65)

the dependence of U, from the field h.(i) disappears. Therefore Z reads:

T

3% [0 - L8] A
7 = / [do'] e < tho | Tor |0 > (4.66)
By differentiating expression (4.64) and (4.66) with respect to h.(i) one easily gets
relations between ground state average of operators containing 7i, ‘and corresponding
classical averages of the conjugate variables o, (over the potential V(o) in the positive
and negative < ¥o|Us|the > region). In particular (all the static and imaginary time

dynamical correlation function are easily obtained) the magnetic correlation function:

8*Z
h ™
< g |1 T, |Ye > = NEI—n»oo 0 r(NT/z)ZBh (N7/2)

1 Nt N
= TAT [< Tr; ( 5 ) Or; ( 5 ) > —6,~,.,,~j] (4.67)

The latter equation also shows that the on-site fluctuations of o are larger
(< Ye|milpe >> 0) than the corresponding gaussian fluctuations (< o2 >=1). In this
sense the method is not very convenient for quantities which depend on the same site o~
correlation. Actually we obtained a better statistical error by computing such quantities
(like energy, Sp(g) etc.) with the direct evaluation of the Green’s functions (method b)
i.e. without the change of variables (4.65) before differentiating Z.
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CHAPTER V

Testing the algorithm

In this chapter we present some numerical calculations we made using the algorithm
described in the preceding sections for the 1D-system of fermions coupled by a short range
positive interaction term. Before considering all the results it is worth mentioning that
the algorithm was tested using non optimal trial functions and large number of variables.
This was done in order to check the numerical stability and show the advantage of the
orthogonalization scheme (Ch.IV).

The half-filled 1D Hubbard-model was exactly solved by Lieb and Wu (1969). It
turned out that the ground state of the Hamiltonian shows a tendency of antiferromag-
netism for any U > 0 (without long range order). Thus we choose as a test function
|ho > the simple paramagnetic one which is made up by single particle real plane wave
functions (sin kr; or cos kr;) with IV /2 spin up and N/2 spin down. This many-body wave
function gives the exact ground state of the Hamiltonian for U = 0. Therefore we tested
the algorithm for large U. In fig.1 it is shown a typical Langevin dynamics evolution of
the instantaneous ground state energy. Such instantaneous energy converges very fastly
close to the exact value (the central line drawn in the fig.1). In figs.2-6 we analyse the
size dependence of the Ground state energy and the static structure factors as defined in
(4.48-4.50). The exact results for the energy were taken from ref.5,8 and in this case we
used a first order Langevin algorithm eq.(2.19).

Although the computation time required for small systems was relatively large it was
really surprising that the algorithm gave reasonable results under such bad conditions
(he importance sampling depend on the chosen test function). Moreover the algorithm
showed to be very stable even for large Nt that is very small effective temperature
(kT =~ N—ﬁ ~ 10 times less then the minimum temperature reached by Hirsch).
Numerical results are reported for two different effective temperatures. Apart for the
very encouraging ‘quantitative calculations of the ground state energy we can also see
that the qualitative behaviour of Sn(w) is reasonable because it shows an enhanced
antiferromagnetism. In fact Spr(m) is considerably larger than the corresponding S Bcs(0)
(see fig.3, 6) correlation function (such function is used to describe the Cooper-pair
correlations). However the very large difference between the results at the two different

effective temperatures shows that the convergence with respect to temperature has not
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reached yet. To better display this feature we fixed U = 4 in an 8-site Hubbard ring
(eq.1.1) and we made calculations for several values of Nr. The convergence of Sp(w) is
reached after twice the time (NTAT) needed for the ground state energy (fig.13) and the
other correlation functions (fig.14-16).

As shown in Ch.ITI eq.5.12 the convergence of F'™ behaves like !/NT (if » # 0) while
the convergence of F' is exponential in time NTAT.

Let us call from now on the error due to a finite NT, the systematic error. As
mentioned in sect.4.3, the statistical error which derive from any estimator decrease like the
inverse square root of Nr. Therefore it is clear that when N7 is very large the systematic
error become negligible with respect to the statistical one.

It is not possible to understand with the available data if the convergence is exponential
or follows a power low. On the other hand we found configurations with negative
determinant as frequent as the positive determinant ones, even for very large Nr.

The ground state energy has shown to be a monotonic function of U , this is in
agreement with the results drawn in fig.7.

In figs.12,14,16 it is also shown that the averages on the positive determinant region
coincide within the statistical error with the negative determinant avérages provided Nt
is large enough. A

As a further test of the reliability of the algorithm, we calculated Sps(q) and the static
spin susceptibility xs:- It is easy to show that:

Xst = SM(q-——‘O)ZO

In fact Spr(q = 0) (an analogous argument holds for xs¢) can be written as:

Smlg=0) = 3 <¥o| I |Ya >

and Sps(g = 0) = 0 is a consequence of M = 0 for the 1D ground state. The results
(figs.4,7 ) are consistent within the statistical error.

In the last figs.13,15 we made a comparison between the two methods (a) and (b) used
for the calculation of the energy. The method (a) is calculated by a numerical estimation
of the derivative in eq.1.24 for a fixed configurations o, while the method (b) follows from
the direct evaluation of the Green’s function (eq.4.62).

Similarly the magnetic structure factor is calculated either by means of the conjugate

variables or as for the energy with the 2 and 4-point Green’s function

Method (a): using the conjugate variables.(eq.467)
Method (b): eq. (4.51)
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In both cases the estimators of E and Spr(w) by means of the 2 and 4-point static
Green function produce smaller statistical error than the ones related obtained with the

method (a). The reason of this has already been explained in the previous sections.
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CHAPTER VI

Conclusions and perspectives for the future

In the last few months remarkable attention have been devoted to the study of the
9D Hubbard model in order to understand a possible superconductive behaviour of the
ground state for large positive U, close to the half-filled density N < N,.

In this sense it is interesting to study the BCS correlation functions defined in
eq.(4.50). If there is a superconductive phase the expectation values of operators 0 =
S e
le <0 >
must be finite for N, — oo (if 7 = 0, Tvl‘ < O > is proportional to the gap in the
ordinary B.C.S. theory).

However with the present method we cannot measure non-zero values of < O >
because we can only deal with a system with a fixed number of particles. Therefore it would
be impossible to characterize a superconductive phase by examining the expectation value
of O without adding a breaking symmetry term in the Hamiltonian (hO as an example)
which in this case makes the problem prohibitive.

On the other hand, consider the expectation value of:

1 R o
N < g |O+ O |¥e >= SBcs(0) see eq.4.50

The latter quantity is different from zero even for finite N, and h = 0 because the operator
OO" commutes with the particle number operator and is invariant under phase rotation
symmetry (& — €%°¢;) which is broken in the superconductive state. Hence for each h and

N, one has:

1<¢GIOI¢G>| << O0ve|0vc >3

from the Schwartz inequality. Thus

1 . 2 1 iy s
— <9c|O0|pe>| No < =— <9a|0" Ol¢e >
N, N,

Supposing that the R.H.S. in the previous inequality does not depend strongly on A (the two
limits N, — oo, h — 0 can be interchanged for symmetric operator) then it easily follows
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that whenever a spontaneous breaking phenomena occurs (Nl—a < ¢G|O+O|¢G >t

0, forN, — oo). Then the expectation value of

le—a“ < e | 0T 0| v >n=0

grows at least as the size of the system. In this way our method can be applied even for
studying a possible superconductive phase in the 2D Hubbard model. In my opinion the
latter possibility is one of the most interesting application of the present method provided
200-300 hours of Cray can be used. Further application of this nethod may be found in
the electronic structure problem. In fact the LDA calculations, which nowadays can be
even performed for relatively large systems (Car and Parrinello 1985), can be used ,n a
very natural way, as a starting point of the present method (|t > made up by the one

particle orbitals deriving from the LDA).
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APPENDIX 1

a)
Consider the matrix U for a fixed NT":

(j = ‘/[dd]e‘%gza’ < ﬂ’ol[}crl?,bo >0

then: U = Ut.

It is sufficient to note that after the operation of time-reversal

o(1), (2), -+, o(NT) — o'(NT), ¢'(NT — 1), -+-, o' (1)

(A1.1)

the ¢' satisfying < d)o!ﬁgldig >> 0 remains in the same ensemble. In fact after the latter
transformation U, — U7 and if < ¥o|Us|thg >> 0 then < ¥o|UF |1y >> 0 again (and

viceversa). Therefore:

U=0"
/117

b)

Z% (k)
Zo(k+1) =

In fact consider:

D
Z2(k) < Z3(K) + 3 Z(k)

i=1

where:

- Zi(k) = / [do] e~ 32" <ol Uolbe>
<to|Us | 10> >0

=< o|U|hi > (from(a) becauseU = UT)
=< ‘(/),'lﬁllb0>
= /[dcr]e_%g‘2 < i | Us [ o >

41
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(A1.3)

(Al.4)

(A1.5)



and | > {|¢i >} is a complete set in the given (D + 1 dimensional Hilbert space.

Therefore:

- D‘ D -
—- —Ll(o? 42 8 J
72 + Y 23 (k) = / [doy] [doz) e 3@ 2D > < oo |Usy | 9i > < i | Usa| 0>
i=1 ‘

- 1=0

B / [do]e™ 3% < tho|Us |tho > (A1.6)

o

where the domain of integration D, is defined by:
< ¢0|(j0'1l77b0 >> 0and < '§b0|ﬁaz"l/)0 >>0

Now Z4(k + 1) from definition (3.6) is the integral of the same function (with 21N,
variables) as in (A1.6)

02

e T <o |Us|tho> (A1.7)

but the integral is extended over all the region in which the function itself (A1.7) is positive.
Hence from (A1.6):
Zi(k) = Y ZH(k) < Z4(k+1) (A1.8)

Finally putting together the inequalities (A1.4) and (AL.7)
Zi(k) < Zi(f%) + > ZHk) < Zy(k+1)
one obtains the desired result (A1.3).
c)

The absolute maximum of

V@) = 73 < oy | Uy |90 > (A1.9)

and

‘ (A1.10)

coincide if |tho > is the ground state eigenvector of the Hartree
solution, where o(r,7) is independent of time ¢ at this
maximum.

The Hartree solution is defined in the following self
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consistent way:

o(r;i) = S P lAT(O)h(r;) Ai(o) [y > Lo .
(rj,i) = W(UAT) (Al.11)

o > is determined to be an eigenvector of A+ 4.

and |

AT Alpy >= Elypy >

i AT
Ai(o) = ¢ j e~ TS (A1.12)
([vo > and E does not depend on 7).
PRrROOF:
e V() < =V'(0)
is a consequence of the Schwartz inequality. But ¢~V'(o) can be written as:
NT
e = 1] B(o,) |90 >
i=1
where
=3 2 0%(rs1i) 4} (o) A(o)
B(oyi) = e i (Al1.13)
Bt = B is evident Then we can use in an iterative way the following property, valid for
any symetric operator and any state |§ >
max | B(o,0) [% > < max { Au(0)} 14 > || (A1.14)
where )i are all the eigenvalues of the matrix B(a,i) for fixed i and configuration o.
Therefore:
NT
e V() < H max max { \(i) } (A1.15)
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product give an Hartree solution (A1.11) which

But the maximization of any factor of the
[tho > and this eigenvector E>0

is evidently independent of i. Therefore for this state

(B(o,1) is always positive definite)

V'@ < ENT (A1.16)

and for such o,(i) independent of 1

V(@) = V') = ENT (A1.17)

Therefore from the two previous equations, the absolute maximum both of e~ V() and

e~ V'(9) coincide for a a(r,i) independent of .
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APPENDIX 2

F+(k) is bounded by a function independent of k.

In fact:

24 (k) < /a.llspace [do] s Uo o> H

do 1.2 1
< e~ATErNT [/_____e—-z-g_ 4+ N(UAT)?

NTN,
2m ]

We have used in an iterative way:
max ||A®| < max{X;}
1

When \; are all the eigenvalues of A (symmetric matrix) and for

_ATq _g. AT
e ZT-—-)ma,x)\izeETz

(A2.1)

(A2.2)

(A2.3)

where E7 is the ground state energy of the kinetic operator in the considered Hilbert space.

-3 o(i,r) (nT—nt) VUAT +3 leiym) | VUAT

e —s max \; < e T

Using the fact that the eigenvalues of nl, ndownarrow are 1 or 0. But

“+oco
/ C_l_ie—§gz+N VUAT
2w

—_0o0

— 2/00 (_lze—%gz-{—N VUAT
o 27

A

+°°d
g _1l,2 2
9 e 22 UATN
2

_—c0
JUAT N*4In /7

Then x
Zo(k) < eNT[—ETAT+N2UATN,l+—§‘Lln1r]

and finally: .
Ft(k) < —Er AT + N, N2U AT + 3 In(7) Ng
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(A2.5)

(A2.6)

(A2.7)



REMARK
From (A1.3) F¥(k + 1) > F*(k), therefore from (A2.7)

lim Ft(k)

k—o00

exists and is finite. F't is then a well defined free energy.
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APPENDIX 3: THE H.S.T. FOR A GENERAL FERMIONIC OPERATOR

Consider a general interaction term :
> vijhif (A.3.1)
1,J
where #; is the density operator of a fermion at a given site and for a defined spin projection.

Then, using that #? = 7; for a Fermi-operator one can write:
Z”i,j nin; = Z [vij — A6ij) iy + AN (A3.2)
i’j i:j

where NV is the total density operator. For A sufficiently large the matrix v} ;= Vi — Abi;
in the preceding equation (A1.2) is negative definite. Therefore one can apply the
transformation (1.5) even in this case. In fact, diagonalizing the symmetric negative-
definite matrix (the matrix v can generally be chosen symmetric in. a quadratic form like

A3.1)
'U;’j = ZU"”" ai Uk,; (A3.3)
k

one can decompose the quadratic form

S vl hid; = > -0} (A3.4)

1,7 k

where

Or = Y Uk, #j (A3.5)
J
are single particle commuting operators satisfying
[06,05] =0 and [0, 8] =0 Vhyj (A3.6)

Therefore the calculation of

——Z v:‘j g nj .
e = H ek Ok using (43.6)
ke

_Z ok Or —% 022

= /Hda;ce k (A3.7)
k
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Finally with the further change of variables:

O = Z U]c’j (T; (A3.8)
J
using eq. (A3.7) and definition (A3.3)
Zve.j f; g ; j . .
e = /Hda}ce kg ek e MV (A3.9)

In practice it is convenient to choose A equal to the maximum eigenvalue of the matrix v.

In this case, in fact we need one less integration variable in the previous transformation.
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APPENDIX 4

An efficient way for generating normally distributed variables is to consider a gaussian
distribution in two dimensions (z1,z2) for which the number of points in a differential area
is proportional to:

e~ 312D do day (A4.1)

In terms of the usual polar coordinates

r=(z+23)2, 0= tan~! 2 (A4.2)

Ty

N

the distribution is

e~ 37T dr dé

or,if u = e~ %’"2, v = 51;0, the distribution is constant for 0 <u <land 0 <v <1.
Hence if we generate U and V uniformly between 0 and 1 then the corresponding

values of

©; = cos(2mv)(—2 Inu)% €y = sin(27v)(—2 lnu)%

will be distributed normally. The routine for generating a pseudo-random sequence:
of numbers between 0 and 1 is standard in any computer and therefore we have all the.

ingredients for computing the iteration in egs. (2.18) and (2.21).
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APPENDIX 5

Consider Ny = 2F with & — oco. Define

Z(Nr)
Sk = A5.1
* 7 Z4(N7) ( )
From (A5.1) S is such that Vk, 0 < S <1 (from Z = Z4 — Z— being Z4,Z,Z_ positive).
1
ag = 5 <’l/)gl”gbg> (A52)
then: o "
kL 2 Qg

{ Sr — 0  exponentially in Nt (A5.3)

PROOF:

< 1bo|thg > can be written as:

>0

* .
C <wole® ATH g >

<'¢0|¢G> = kli? —oF AT H
> e |0 > ||

_k 2
. <¢0|62ATH|1/)0>

k _ok+1 2 1
'—*°°<¢0|62 ATH|¢0>2

—00 73 ( 9 k+1)
The convergence in the previous limit means that for some k > kg , using the definition
(A5.1), the following inequality holds:

ap < 22 _ Sk 242D (A5.5)

T oz (ok+1 ek
Z2(2 ) S’?-i-l Z_%_(Z +1)

>0

(A5.4)

Hence from app.lb

Sk

. aﬂ
By iterating the preceding inequality:
2N ’
SkeN Si
Qo Qo

Therefore if for some k > kg Sk < ap then Sk — 0 in an exponential way with respect to
Np. Hence the relation (A5.3) holds.
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