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Introduction

The origin of the primordial inhomogeneities of the energy density which gave rise to
the observable large scale structure of the universe is an old and yet unresolved problem in
cosmology. In the frame of the hot Big Bang theory it is rather difficult to understand the
origin of the fluctuations from which galaxies, clusters, superclusters and voids have been
originated by gravitational collapse, because the matter which comprise a typical galaxy,
for example, first came into causal contact about a year after the Big Bang. It is very hard
to see how galaxy size fluctuations could have formed after that, but even harder to see
how they could have formed earlier.

In the past few years, particle physics models have provided some possible explanations
about how fluctuations in the energy density could have arisen during phase transitions
processes occurring at very high energy, these are quantum fluctuations in inflationary
universe models and cosmic strings. Within these theories the primordial spectrum of
density fluctuations have been computed from first principles for the first time. I will

focus here on the first of the two possibilities.
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In chapter‘l, a review of the description of the energy density fluctuations is presented.
The scale invariant spectrum of the primordial perturbations, which is predicted in most
inflationary models, together with its predictions for baryon dominated, hot or cold dark
matter dominated universes are discussed. Finally, some other proposals for the origin of
density fluctuations are presented.

Chapter II deals with the gauge invariant formalism for studying the fluctuations in
the energy density and the associated fluctuations in th¢ metric in a self consistent way. Its
application to the inflationary models and an approximate conservation law, which make
it possible to relate the amplitude of the fluctuations in different eras in a simple way, is
discussed in detail.

Chapter III is devoted to the inflationary universe scenario. Emphasis is put in the
topics related to the study of the generation of density fluctuations.

Finally, in Chapter IV the computation of the spectrum of the density fluctuations
generated by quantum fluctuations during the inflationary phase is performed. The results
are applied to the particular case of the new inflationary model for the Higgs field which
spontaneously breaks the symmetry in the SU(5) GUT with a Coleman Weimberg potential

and to the chaotic inflationary model with a A¢* potential.



I- ENERGY DENSITY FLUCTUATIONS

I-1 General description and properties

In a universe composed by matter and radiation, the fluctuations in the energy density
can be described in terms of the fluctuations of each component separately. So, we could
consider fluctuations in the radiation density, while keeping the matter density fixed or
vice-versa. Any density fluctuation will be a composition of both of them. However, it
turns out that this is not the more convenient decomposition for perturbations. There
exist a more physically meaningful one, which is generally used [1].

The two fundamental types of fluctuations considered are:

e Adiabatic fluctuations, which have the property that temperature fluctuations are
proportional to density fluctuations, i.e. % ~ 67” . In this way, the ratio of the number
of photons and baryons in a small volume remains everywhere the same. Since this
ratio is in fact the entropy per baryon, adiabatic fluctuations leave the entropy per

baryon constant everywhere, while the density may change from point to point.

e Isothermal fluctuations, corresponding to fluctuations in the matter density which
keeps the photon density constant everywhere. These are isothermal in the sense that
the temperature, as defined by photons, is constant in all the space: §T = 0. They are

also called ”entropy perturbations” because the cosmic entropy per baryon fluctuates.
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The study of the distribution of the large scale structure is in a large part done
statistically [2]. Since many catalogues list the positions of galaxies, or clusters of galaxies,
or radio sources in the sky, a useful description is to consider them as a distribution of
point-like objects and analyse it by giving their n-point correlation functions.

The probability that an object is found in the infinitesimal volume §V is

§P = néV (I.1)

where 7 is the mean number density.

The two point correlation function ¢ is defined by the joint probability of finding an

object in both of the volume elements §V; and §V, at a distance 12

(5P = TLZ(]. -+ 5(7'12))51/16‘/2 (I2)

where the hypothesis of large scale homogeneity and isotropy has been used, which im-
plies that ¢ depends only on the distance r15. This hypothesis is not necessarily true, so
also angular two point correlation functions are studied. In the same way, higher order
correlation functions can be defined but I will not focus on them here.

If the distribution of objects is described by a continuous function, associated to it

there is an energy density function p(x,t). Its deviation from the mean value < p > (t) s

defined by

f(x,t) = —="—"""-1 (I.3)

which has vanishing mean value (§) = 0.

Note that this definition is not unique, it depends on the set of spacelike hypersurfaces
choiced in which energy density fluctuations is measured. This problem will be treated in
detail in chapter II.

One convenient measure of the irregularities in the space distribution is the dimen-

sionless autocorrelation function ¢

£(r) = (6(x)6(x + 1)) (1.4)
It is usual to express density fluctuations in terms of a Fourier expansion
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5(X,t) = ﬁ_‘;/dskak(t)eﬁik'x (I5)

The physical wavelength and wavenumber associated to each mode are related to the

comoving wavelength and wavenumber, A and k, by

Aph = z—kTR(t) = AR(t) (I1.6.a)
k
ke, = 0] (1.6.b)

It is helpful to think 6y in terms of the modulus and argument

0 = |6x]e™* (I.7)

since simplifying assumptions about the statistics of the modulus |§x| are currently done.
A significative quantity used to describe the perturbations is the variance of || at a

given k

P(k) = (|éxl*) (I.8)

which is called the "power spectrum” of the fluctuation process §(x, ).
An important relation between the power spectrum and the autocorrelation function

£(r) is that one is the Fourier transformed of the other

P(k) = / dBré(r)etr (I.9.a)

£(r) = ﬁ / d3kP(k)e"3k"’ (1.9.b)

The power spectrum contains the information about the amplitude of the fluctuations.
The specification of the fluctuation process requires also to do some assumption about the
phases €. A usual one is to suppose that at early times the phases are random numbers,
uniformly distributed on the interval [0,r].

The relation between the wavelength and the wavenumber A = 27k~! enable as to

translate from the notion of power spectrum in the Fourier space to the distribution of
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mass fluctuations on the real space. A density fluctuation in a patch of universe of scale R

is made up of contributions from all the Fourier components which frequency exceeds %

The mass associated with this patch is simply

M = %”(,o)fzs (1.10)

If we assume that the power spectrum follows a power law

P(k) o k™ (I.11)

and we compute the statistics of the fluctuations § M of the mass contained within spheres

of a given radius R

(57 = [ ks (e (112)

where the window function is given by

fSR d3me—-ik.x
fSR d3z

where Sg is a sphere of radius R about the origin. Since W(Rk) ~ 1(0) if Rk < 1(Rk > 1),

W (Rk) = (I.13)

we obtain

oM
() = (167 o k™4 (114)
A quantity of astrophysical interest is (éMM)(k,tH(k)) which is the average relative
rest mass excess on a comoving length scale k~! = R when this scale enters the horizon in

the radiation or matter dominated phase at the time tg(k).

I-2 Scale invariant spectrum

A very simple hypothesis for the shape of (%)(k,tH(k)) was proposed by Harrison

[3] and Zeldovich[4], namely



é—]‘i)(k,tH(k)) = const (I.15)

< M

which correspond to take a spectral index in the power spectrum (I.11) n = 1.
A scale invariant spectrum was originally postulated because it fits the experimental
constraints fairly well and is the only power law spectrum to do so. The experimental con-

straints are twofold. First, the absence of anisotropies in the cosmic background radiation

[6] impose an upper bound on the amplitude of primordial perturbations on large scales

(6]

(2

(scales are labeled by the rest mass in a sphere of comoving radius £71).

(kytm(k)) <107* for M ~ 10" Mg (1.16)

On the other hand, clusters of galaxies can only form via nonlinear processes. Linear
perturbation theory breaks down when relative perturbations become of order unity. Thus,
knowing that perturbations on the scale of clusters of galaxies must have had time to grow
to order 1 after horizon crossing impose a lower bound on small scales [7]

oM

(ka,tH(k)) >107° for M ~ 10% Mg (I1.17)

~ This bound depends on the details of the cosmological model. In particular, the
properties of the particles forming the dark matter of the universe will determine the
length of the period during which perturbations on scales of interest grow, and those will
influence the lower bound.
We see that equations (I.16) and (I.17) make a scale invariant spectrum an obvious
candidate and restricts its amplitude to O(10~(5%1)),
We will see that the most natural spectrum predicted by the inflationary scenario is
a scale invariant one, which is a very attractive feature. The inflationary scenario will
be reviewed in chapter III. According to it, the universe underwent a very fast expansion
phase at the very early times, when its energy density was dominated by the potential
energy of a scalar field (inflaton). Such an expansion gives a possible solution for the
monopole, isotropy and flatness problems. After its invention, it was realized that it can
also give rise to primordial energy density perturbations. The first point on analysing the

resulting perturbations is to note that most perturbations which existed before inflation are
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not relevant for galaxy formation, since inflation act in the sense of washing out the initial
inhomogeneities (their comoving scales are stretched and become exponentially larger than
the comoving scale of the presently observable portion of the universe). At the same
time, however, quantum fluctuations during inflation lead to the creation of adiabatic
perturbations of the energy density with an almost flat (scale invariant) spectrum, as we

will see in detail in chapter IV. -

I-3 Evolution of the perturbations

The posterior evolution of the density perturbations in the early universe is determined
by the influence of various phenomena. There are some physically important length scales
describing the domain of influence of the different phenomena.

The Jeans length

SIS

Ay = e, [Glp] (I.18)

determines the preponderance of the gravitation or pressure effects on the evolution of
the density perturbations. For perturbation wavelengths larger than )y, the gravitational
effect dominates and the amplitude of the perturbation grows. Instead, for perturbation
wavelengths smaller than A the pressure effect dominates and the amplitude of the per-
turbation oscillates as an acoustic wave. Associated to the Jeans length there is a mass

scale

dr | As 3
My=—p|—= 1.19
R { 2 } (£.19)
During matter dominated era, before recombination, matter was coupled to radiation
via Compton scattering and p = £, the sound velocity was ¢, = %[1 + %‘—;ﬂ]% and

My ~ 10'"Mg. After recombination, the radiation pressure is of no importance and
p =nkT, M; drops to about 10° M and decrease thereafter as temperature diminishes.
Adiabatic fluctuations are also influenced by dissipative phenomena. Photon diffusion

can damp an adiabatic perturbation (Silk damping) if its characteristic wavelength is
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sufficiently small, so that the time necessary for photons to diffuse out of the perturbation

region is smaller than one expansion time [8]. The Silk damping length is given by

dy=+/H tclr (1.20)

where I is the photon mean free path, I = (¢7n.)~! with o1 the Thompson cross section
and n. the electron density.

If the initial adiabatic perturbation has wavelength smaller than d,, in one expansion
time H ! it will be transformed in an isothermal perturbation whose amplitude is much
smaller than that of the adiabatic perturbation it comes from. The mass scale associated

to this attenuation is given by [9]

Ms ~1,3-10"2(Qh?)" 7 Mg (I.21)

Typical masses are of the order of 10!® — 10'* M or larger, which correspond to
clusters of galaxies. Thus, galaxies (10! — 10'?Mg) can form only after the collapse
of large scale perturbations. These would preferentially collapse first in one dimension
(pancake collapse).

4 In the gravitational collapse model, structure form when perturbations § = %’3 grow to
non linearity (6 > 1), they cease to expand with the Hubble flow and subsequently collapse
and virialize. The problem is to understand how fluctuations of galactic and cluster size
can grow to nonlinearity by the present without violating the observational bounds on
small angle fluctuations on cosmic microwave background radiation.

I will first consider a universe with no non baryonic dark matter[10]. Fluctuations

grow linearly with the scale factor

§ox S =(1+2)"" (1.22)

once the universe becomes matter dominated, but fluctuations smaller than the Jeans mass
(~ 10'"Mg) cannot begin growing until recombination. Moreover, the growth of p slower
when an open universe goes into free expansion (z < 27!). So, in a baryonic universe §
grows between recombination time (z ~ 10®) and z = Q7! > 10, when the free expansion

begins. During this period, the scale factor expands 102 times (§SL = 10?) and so § grows by
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a factor 10%. In order to form structure at the present, we need §, > 1, which requires that

at recombination time ... > 1072. This constrains the value of temperature fluctuations

] 146
0T — 2P >3-107%  for M > Mg (1.23)
T 3 p

which correspond to fluctuations of few arc minutes today.

This result is more than one order of magnitude larger than present observational
upper limits[11]. Note that this analysis apply only to adiabatic perturbations. Galaxies
which can be formed from isothermal perturbations are not affected by Silk damping and
avoid contradiction with present 5—T7—1 limits.

When non baryonic dark matter.is considered, the picture of structure formation is
rather different. It depends on the type of dark matter considered, as I will briefly review
now.

- Hot dark matter: It refers to particles, such as neutrinos, that were still in thermal
equilibrium after the most recent phase transition in the hot early universe, the QCD
confinement transition. In discussing the galaxy formation, I will refer specifically to
neutrinos. If neutrinos have a rest mass m, > 10eV, their contribution to the total energy
density would exceed the baryon one [12].

~ The most salient feature of hot dark matter is the erasure of small scale fluctuations
by free streaming [13]. Neutrinos of mass m, stream relativistically from decoupling until
the temperature drops to m,, travelling a distance d, ~ Mpm;?. Thus, to survive free
streaming the wavelength of the fluctuation A\, > d,. So, neutrinos exhibit an effective
Jeans length. Correspondingly, the mass in neutrinos needed for a fluctuation to survive

free streaming is

L d — ml/ o
M;(v)=1,77T-Mim;* =3,2. 1015(%;7) Mg (1.24)

which is the mass scale of superclusters.

Therefore, hot dark matter with a primordial scale free adiabatic fluctuation spec-
trum gives rise to perturbations which have a cutoff in the short wave region due to free
streaming, is peaked at A ~ d, and decrease for larger wavelengths because fluctuations

with larger wavelengths have less time to grow. This spectrum leads to pancake structure
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formation: superclusters form first and smaller scale structure, such as galaxies, form after

by fragmentation of larger structures.

Numerical simulations of dissipationless gravitational clustering originated by this
spectrum predict regions of high density forming a network of filaments, with the highest
density occurring at the intersections, and with voids between them [14,15]. The similarity
of this picture with observations is cited as evidence in favour of this model. The limits
on small angle % fluctuations are also compatible with this picture [10]. However,there
exist many problems associated with the neutrino dominated galaxy formation scenario.
Studies of nonlinear clustering indicates that supercluster collapse must have occurred
recently, for z < 2. However, the best limits on galaxy ages indicates that galaxy formation
took place before z = 3. Another problem is associated with the large scale (quadrupole)
anisotropy of the cosmic microwave background radiation. Observations constrains it to
be (45 )@ < 3-107° [16]. Theoretical predictions for the neutrino dominated universe are
at the verge of contradictions with the observational limits [17]. There is also a problem
due to the fact that the value of the dispersion of the velocities of galaxies o, ~ 103’“7""

exceeds the observed value.

- Cold dark matter: Some of the problems associated to the neutrino picture can be
alleviated by supposing that the universe is dominated by particles whose mass is much
larger than 10eV (thus reducing the free streaming damping mass, Mp < 10°Mg) and
which decouples at an earlier time (so that the density is not too large). There exist
different kinds of candidates as axions, photinos or primordial black holes. The spectrum
predicted for energy density fluctuations when one consider primordial adiabatic scale free
perturbations as in the hot dark matter case is quite different in this case . During the
radiation dominated era, fluctuations grow as § ~ 5% on scales larger than the horizon.
When the fluctuation enters the horizon, the photons and charged particles oscillates as an
acoustic wave and the non interacting neutrinos freely stream away. They are relativistic
since in the cold dark matter case their mass m, << 30eV. As a result the main driving
terms for the growth of § pps disappears and the growth stagnates as the universe continues

to expand until matter dominates.

Numerical computations of the cold dark matter fluctuation spectrum [10] show that

it is relatively flat for M < 10° Mg and then decreases for larger wavelengths. Therefore,
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for smaller mass fluctuations will become non linear and begin to collapse at earlier times
than large mass fluctuations. Small mass systems are subsequently clustered within larger
mass systems which become non linear at later time. This hierarchical clustering begins
at the baryons Jeans mass scale (M(b) ~ 10° Mg at recombination) and continues until
the present. Cold dark matter yields an epoch for galaxy formation that accords well with
observations. However, not all is completely satisfactory in this theory, also in this model
dispersion of velocities is too large, o, ~ 800%’3 [18]. Cluster- cluster correlation function
is equally difficult to understand in this scenario.

Therefore, if galaxies trace the mass distribution, none of the models seems to be
fully consistent with observations. However, if the hypothesis that galaxies formed only at
the highest peaks of the initial density distribution is done, which is called the ”biased”

clustering, some of these problems can be eliminated.

I-4 Alternative proposals

The difficulties presented in both hot and cold dark matter scenarios with adiabatic
scale free primordial spectrum have stimulated the search of an alternative source of initial
density perturbations. A rather interesting possibility is based on the theory of cosmic
strings [19,20,21]. These are one dimensional false vacuum defects which have been formed
at a symmetry breaking phase transition at the epoch of grand unification. In this theory,
galaxy formation is due to the accretion of matter around loops of strings. The starting
point is a distribution of string loops about which matter begins to accrete after pressure
becomes negligible at t., (when the universe becomes matter dominated). The idea is
that the smaller loops develop into galaxies and the larger ones into clusters. Within
this theory, two point galaxy-galaxy and cluster- cluster correlation functions are correctly
explained [22,23]. Also a mechanism to create sheet-like density enhancement by moving
infinite strings over large scales has been proposed [24]. This can give rise to a universe
crossed by sheets of galaxies with large voids between them. Recent estimations of the
string mass per unit length [22] which give rise to density perturbations sufficient for

galaxy formation and consistent with cosmic microwave background radiation constraints
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requires p ~ (2 - 10'°GeV )2, There are controversial opinions about the compatibility of

string galaxy formation and inflation due to the large value of ;[25,26].

Another alternative is to study the role of isothermal perturbations in the inflationary
cosmology [25,27,28,29]. During inflation, not only adiabatic fluctuations can be produced,
but also isothermal ones [27], and in a wide class of elementary particle theories these
perturbations can become dominating at the later stages of the universe evolution. A very
interesting fact is the possibility of obtaining isothermal perturbations with a variety of

spectrums, which can differ substantially from the flat one [25,28,29].

The mechanism of generation of isothermal fluctuations during inflation can be rather
easily understood by comparing it to the more usual theory of generation of adiabatic
density perturbations in the inﬂationiary cosmology. In this case, a single scalar field is
considered (the inflaton field) which drives inflation. As the main contribution to the
energy density of the universe during inflation is given by the potential energy density of
the scalar field U(¢), fluctuations in this field originates perturbations in the total energy
density and when the inflaton decays in light particles, these transform in fluctuations of

density (and temperature) of the created particles. So, they are purely adiabatic.

However, in realistic elementary particle theories there exist many different scalar
fields, and during inflation fluctuations in all of them were generated. In the inflationary
period, their mean energy density was smaller than that of the inflaton, otherwise they
would have driven inflation, but their fluctuations can be large. If some of them interact
very weakly with the rest of the fields, their energy density would decrease more slowly than
that of the inflaton field and its decay products during the expansion of the universe. So,
the perturbation in the energy density associated with these fields may become dominating.
As they do not originate fluctuations in the temperature, they can be called isothermal.
The existence of these fields, very weakly interacting with the other fields is a typical fact
in many theories of elementary particles. One case is that of the axion, which has been
introduced to solve the strong CP problem. Another class is the one constituted by the so
called "hidden sector” in supersymmetric theories. In many cases, they are also candidates
of dark matter, and so their contribution to the present density of the universe could be

more important than that of the matter produced by the inflaton decay.

The generation of isothermal fluctuations during inflation has been studied by many
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authors in the case of the axion field (29,30], but some other possibilities have also been
considered by Linde [29] and by Koffman and Linde [25]. The main result in the axion
case is the appearance of a cutoff of the spectrum at long wavelengths, which leads to
the suppression of large scale fluctuations of the temperature of background radiation.
The study of the other possibilities has shown that rather different kinds of spectrums of
isothermal perturbations can be obtained by a proper modelling of the underlying theory

of particle physics.

16



II-GAUGE INVARIANT PERTURBATIONS

II-1 Introduction

When we study the fluctuations in the energy density of the universe which give rise
to the observed structure, we must consider also the associated fluctuations in the metric.
If one tries to include them in the analysis, a problem arise in relation with the freedom
of making gauge transformations. Because of this, the notion of density perturbations,
for example, looses its direct physical significance due to the presence of coordinate gauge
freedom inherent in general relativistic perturbation theories. It can be seen that the
amplitude of perturbations in geometrical quantities can be comparable to or even greater
than that of a density perturbation and one can assign practically any value to the latter
by a suitable gauge transformation. In the earlier works on the subject, a particular gauge
was chosen and some scheme was proposed to treat the gauge modes (modes representing
only coordinate changes).

An entirely different solution to the same sort of problems was given by Bardeen [31].
His approach, based on previous works of Hawking [32] and Olson [33], presents a complete
gauge invariant framework for studying the time evolution of perturbations in the matter
content and in the metric, in which only variables that are invariant under the change of
gauge are dealt with.

I will present first the Bardeen formalism, which deals only with a fluid as matter
content of the universe, and then its generalization to the case of scalar fields [34,35].
Finally, I will present a first integral of Bardeen equations valid for large scales [36], which
permits to relate the value of the amplitude of the perturbations in different epochs in a

simple way.
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II-2 Outline of the method

In describing perturbations, one is dealing with two space-times: the physical per-
turbed space-time and a fictitious background space-time, which will be described by a
Robertson-Walker metric. Points in the background are labelled by coordinates z* (latin
indices ranging from 0 to 3 and greek ones from 1 to 3). A one-to-one correspondence
between points in the background and points in the physical space-time carries these co-
ordinates over into the physical space-time and defines a choice of gauge. A change in the
correspondence, keeping the background coordinates fixed, is called a gauge transforma-
tion, to be distinguished from a coordinate transformation, which change the labeling of
points in the background and in the physical spacetime together. The perturbation in some
quantity is the difference between the value it has at a point in the physical space-time
and the value at the corresponding point in the background space-time.

The unperturbed background metric may be written as

ds® = S*(7)(—dr? + 3gapdz®dzP) : (I1.1)

where ®g.5 is the metric tensor for a 3-space of uniform spatial curvature », with Riemann

tensor

®Rapys = 5(°gay *9p5 = gas *95+) (I1.2)

The stress tensor of the background matter takes a perfect fluid form:

Ti = P,6% 4 (P, + Eo)u' uy, (II.3)

where P, is the background pressure and E, the background energy density, and the four

velocity u* has components

Lets define
P, , db,
= — = Il
w EO7 CS dEo ( 5)
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The time evolution of the background is given by the usual Friedmann equations

S’ 1 o ,
(—S—)' = —E(Eo + 3P,)S5" (I1.6.a)
s, 1
(':ST)H = '?;EOSZ — K (IIﬁb)
, g
E! = —3§(Eo + P,) (I1.6.c)
where §' = %—f— and units have been chosen so ¢ = 87G = 1.

Perturbations in various quantities can be classified according to how they transform
under spatial coordinate transformations in the background space-time, as spatial scalars,
vectors and tensors. As the Robertson-Walker background is homogeneous and isotropic,
a separation of the time dependence and the spatial dependence is possible. The spatial
dependence is related to solutions of a generalized Helmholtz equation [37]. Scalar quan-
tities can be expanded by a complete set of scalar harmonic functions Q(®) satisfying the

equation

QW =, +£2Q" =0 (I1.7)

The slash denotes the covariant derivative of a 3-tensor with respect to ®g,3 and k the
wave number of the perturbation, which characterizes its spatial scale relative to comoving
coordinates in the background. Scalar perturbations have a spatial dependence derived

from one of the Q(®).

A vector quantity which is associated to a scalar perturbation must be constructed

from covariant derivatives of (0) and the metric

1
0O, = "EQ(O) " (I1.8)

And also a traceless, symmetric second rank tensor is obtained by

1 1
Q(U) aB = ’];2'@(0) |aB + § 39&[3 Q(O) (IIQ)

Similarly, divergenceless spatial vectors are expanded by a complete set of vector

harmonic functions Q1 satisfying
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QW18 5 1 k2QW =0 (I1.10)

with QD= la = 0.

Vector type components of symmetric tensors are defined by

Q(l)aB — _%(Q(l)a 18 + Q(l)ﬁ IO‘) (II].l)

which are necessarily traceless but not divergenceless.
Finally, tensor type components, namely divergenceless and traceless second rank
symmetric spatial tensors, describing gravitational waves, are expanded by a complete set

of tensor harmonic functions specified by

Q(z)aﬁ |y oyt sz(Z)aﬁ -0 (I1.12.a)

with
o= _ — ¢ (I1.12.)
Q2)eh 5 =0 (I1.12.¢)

. A perturbation on the metric or on the matter variables can be written as a lin-
ear combination of perturbations associated with individual spatial harmonics, with no
coupling between each other [38]. Hence, one can treat each type of perturbation indepen-
dently. The formalism is linearized in the perturbed quantities. The Einstein equations and

matter evolution equations become ordinary differential equations for the time dependent

coeflicients of the expansion.

I1.3 Perturbation of metric and stress tensor

A-Scalar perturbations

By a spatial coordinate transformation, the components of the metric tensor ggo, goa

and g3 transform as a scalar, a vector and a tensor respectively. Hence, for a scalar
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perturbation the perturbed metric tensor can be written in terms of independent functions
of time A, B, H;, and Hr

goo = —S(T)[1 + 24(7)Q (z*)] (I1.13.a)
goa = —S*(7)BO(1)Q1) o(2*) (I1.13.b)
dap = S*(7)[(1 + 2H(r)Q® (")) gap(a*) + 2HF (1)Q) ap(z*)] (I1.13.c)

In order to write down expressions for matter variables in terms of the harmonics, we
choose first appropriate variables which describe matter at a perturbed state. We take the
perturbed 4-velocity of matter u® as the time-like eigenvector of the stress tensor with unit

norm, and the perturbed energy density as the corresponding eigenvalue

Tiu® = —E,u’ (I1.14)
wlu; = —1 (I1.15)

The spatial stress tensor is given by

STy = P/ P Ty, (I1.16)

where

P! =80 4 uud (I1.17)

Note that 3T is orthogonal to u* from (I1.15) and (IL.17)

STipu’ = 0 (II.18)

Since FE is a scalar, it can be expressed as

E = E,(1 + §(m)Q9(z*)) (I1.19)

The three independent degrees of freedom of u* are represented by the spatial velocity

which can be expressed as
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L = () (e)

u

To first order, the normalization condition (I1.15) gives

ul? = 571 - 4 Q(0)]

And u; is expressed as

Uy = S(v(ﬂ) _ B(U))Q(U) N
up = —5(1+ 4 Q)

Using (11.17), (I1.20), (I1.21) and (11.22), *T,, can be expressed as

Ty =0
S0 = Po(v(o) _ B(O))Q(O) N
3o _ (0) H(0) «
Iy = —FP, vV Q'

K ¥y ale a
Ts =Tp

(I1.20)

(IT.21)

(I1.22.a)

(I1.22.b)

(I1.23.a)
(I1.23.b)
(I1.23.c)

(I1.23.d)

As T is a second rank symmetric tensor with respect to spatial coordinate transfor-

mations, it is expressed as

Ty = P,[é5 + WL(T)ﬁgQ(O) + WT(T)Q(O)O‘ 5]

(I1.24)

7y is interpreted as the amplitude of an isotropic pressure perturbation and w7 as the

amplitude of an anisotropic stress one.

The four functions of time v(°)| §, 77 and 77 completely describe the perturbed stress

tensor. Equation (II.16) can be written as

T; = Eo u' ug +° Ty

(IT.25)

Substituting (I1.19) to (I1.24) in (II.25), we obtain Ty ,7¢* and TP in terms of these

four quantities
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Ty = —Eo(1 + 6(7)Q'" (")) (I1.26.q)
T = (Eo + P)(v'” = BO)Q® 4(a*) (I1.26.b)
Ty = —(Eo + P,) v\ Q9 = (I1.26.c)

The perturbed isotropic pressure need not to be related to the energy density in
the same way as the background one. The difference between the fractional pressure
perturbation and that expected from the background pressure-energy density relation will
be called the entropy perturbation

E, dP, 1

U(T)Q(O) = (7 — P dE. 5)Q(O) = ;(WTL —326)QY (I1.27)

B-Vector perturbations

The description of vector quantities can be done analogously to the scalar ones, but
the spatial dependence is given in terms of fundamental vector harmonics Q') .

We obtain for the metric tensor

goo = —S5*(7) (I1.28.a)
goa = —S*(1)BO(1)QW) 4(z*) (I1.28.b)
gap = S*(7)[*gap + 2HG (1)Q™) ap(c*)] (I1.28.c)
And for the matter variables
"‘;_: = o D(r)QW(g#) (I1.29.a)
u’ = S (1) (I1.29.b)
ue = S(7)p'V(r) = BY))QW L(z*) (I1.29.c)
T = —E, (I1.30.a)
T = —(Ey + P,)oMQM= (I1.30.b)
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T — (E, + P,)(») — BW)Q= (I1.30.c)
T = Po[85 + my) QU ] (11.30.d)

Hence, a vector perturbation is described by two functions of time B! and Hf(pl) for

the metric and the two functions of time, v(*) and wg}) for the matter.

C-Tensor perturbations

Similarly, for a tensor perturbation we find

goo = —5°(7) (I1.31.q)

goa =0 (I1.31.b)

gap = S* (1)’ gap + 2HZ (1)Q® o5(z*)] (I1.31.c)
u’ = 57(7) u® =0 (I1.32)

T = —E, (I1.33.a)

o =Ta=0 (I1.33.b)

TS = P,[65 + m Q™= 4] (I1.33.c)

Thus, a tensor perturbation is described by one function of time H ;2) for the metric

and one function of time wg;? ) for the matter.

1I-4 Gauge invariant variables

The variables introduced to describe perturbations in the metric and in the stress
tensor change their values under a gauge transformation, which corresponds to a change
of coordinates in the physical space-time, leaving fixed the coordinates in the background.
In the linear perturbation theory, it is necessary only to consider first order effects of the
coordinate transformation, which can be of the scalar or vector type. There exist no tensor

type gauge transformation, as no scalar or vector can be constructed from Q(?) 5.
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Gauge transformations of each type are expanded by the corresponding harmonic
functions, and different modes are decoupled from each other. From the study of gauge
transformation properties of the perturbed variables, gauge invariant variables can be

constructed in the following way.

A-Scalar perturbations |

A scalar type gauge transformation can be expressed as the coordinate transformation

F=7+T(7)Q"(z*) (I1.34.a)
&% =z + L\ (7)) (z#) (I1.34.b)

where T'(7) and L{®)(7) are arbitrary functions of .

The change of the perturbed metric tensor under the transformation (I1.34) is given

by
ozk 9zl _
Jab(x) = 57 5ot Gri(%) (I1.35)
" The scale factors in gk and gqp are related by
S(7) = S(r)1+ 5TQ™] (I1.36)
and
. o 0
3ga/3($”) =3 gap(zh) + L(O)Q(O) 5;;[39&3(33“)] (I1.37)

To first order, we obtain for the change in the metric perturbations

1

A=A-T — T (II.38.a)
B = B L O 4 T (I1.38.5)
2" = gl _ f;-L(") - %'T (I1.38.c)
B = HY + kL™ (I1.38.d)
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Since the gauge transformation (I1.34) have two arbitrary functions of time, two in-
dependent gauge invariants can be constructed from 4,B(°), H; and Hr. One possible

choice is [31]

18 S' oy
and
1 18 15 oy |
i =Hy+  Hy + 7 ZBO - S HY (II.40)

Now let us study the gauge transformation properties of matter variables. Since

dz*® da:

5(0)(0)er _ (0) (e A1
v Q P + LV Q (I1.41)
A gauge transformation for v(%) is given by
70 = (® ¢ 0 (I1.42)
The energy density (I1.19) transforms as
E(7) = Eo(7)[1 +6Q) = Bo(r) |1+ (5 + T )Q“” (I1.43)

Since E is a coordinate scalar, the energy density perturbation change by

~ Er Sl :
6:6—EOT—5+3ST(1+1U) (I1.44)

equation (II.6.c) has been used in the last equality.

Similarly, the isotropic pressure transforms as

P =P,(F)1+#Q"] = P,(7) |1 + (71 + %T)Q“’) (II.45)

And for the isotropic pressure perturbations we obtain

2§
T = 3(1 =T 11.46
TL L + ( +w)w S ( )
The traceless part of the stress tensor is gauge invariant
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T =7 (I1.47)

§ (II.48)
F=n (I1.49)

In order to construct gauge invariant quantities associated to v and é, we must combine
them with the geometrical quantities. The simplest gauge invariant matter ”velocity”

amplitude can be constructed using (11.42) and (11.38.d)

1 '
(0 = (0 EH(T‘” (I1.50)

It is easy to give a physical interpretation to v8*) in terms of the shear of the matter
velocity field.

The shear tensor is [39]

1 1
Tab = §Pf(uk;z + wik) Py — gPabu;kk (I1.51)

where the projector operator is given by (I1.17).
Using the expressions for the perturbed Christoffel symbols given in Appendix A, we

find that the only non vanishing term for the shear is

ap = S(HY —k v(0)Q® o5 = -5 k v Q) g (I1.52)

This suggests that o{” is the most natural gauge invariant representing the pertur-

bation in the velocity. Its geometrical meaning is that it gives the time dependence of the
amplitude of the shear associated to the perturbation.

In contrast to the velocity, there exist no unique natural definition of a gauge invariant
quantity corresponding to the density perturbations. One criterion to construct it is that
the gauge invariant quantity reduce to § when we consider perturbations with wavelength
much smaller than the Hubble radius. If we limit ourselves to the simplest combinations,

there are two possible choices. The first is
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' -
€em =8+ 3(1 + w)-llg—SS—(v(o) — B\%) (I1.53)

If we use a gauge in which v(®) = B(®)| the amplitude €, equals §. This is the case
when the matter world lines are orthogonal to the T = const spacelike hypersurfaces.
The choice of ¢, to describe density perturbations is very convenient because it gives the
amplitude of the perturbations in the energy density relative to the spacelike hypersurface
which represents everywhere the matter local rest frame (comoving frame).

Another possibility is to consider

18

, 1 )
€ =8-3(1+w)r = [B(O»’ — Eﬂgw } (I1.54)

As we have seen, B'?) corresponds to the 3-velocity amplitude of world lines orthog-
onal to the 7 = const hypersurfaces, so ¢; measures the energy density relative to the
hypersurfaces whose normal unit vectors have zero shear. This set of hypersurfaces is
usually called ”Newtonian slicing”. One can also chose any linear combination of €,, and
€g or its time derivatives as gauge invariant variables.

The geometrical meaning of the gauge invariant potentials ¢4 and ¢y corresponding
to the perturbations in the metric variables becomes clear when one consider a Newtonian

slicing

1
k
In this particular case, equations (I1.39) and (II.40) reduce to

B — —g™ =0 (I1.55)

pa =4 (I1.56.a)
1
¢ = Hi + —?;H?p") (I1.56.b)

So, ¢ 4 measures the spatial dependence of the proper time interval along the normals
between two neighboring zero-shear hypersurfaces.
The geometrical meaning of ¢z is clear by noting from Appendix A that the intrinsic

scalar curvature of zero-shear hypersurfaces is given by

]. - 9 - !
SRzeroshear - E—Z_[GI& + 4(]9“ - 3K )¢HQ(O)] (II57)
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Thus, ¢y represents the amplitude of the perturbation in the intrinsic curvature.

B-Vector perturbations
A vector type gauge transformation is expressed as
F=7 : (I1.58.a)

& = 2% + LW (1) QW2 (z#) (I1.58.b)

There exist only one gauge invariant combination, given by

1 '
¢ = B — EH}” (11.60)
which represents the shear of the normals to the 7 = const hypersurfaces. The gauge

transformation law of the matter variables can be obtained as in the scalar case, but now

there exist no perturbation of energy density and the isotropic pressure

51 = M 4 (I1.61)

w0 =l (I1.62)

The amplitude of an anisotropic stress perturbation is again gauge invariant by itself.
In contrast to the scalar case, the gauge transformation laws (I1.59) and (I1.61) admits

two natural gauge invariant combinations corresponding to a velocity perturbation. The

first one, given by

1 )
oD = () EH’.(Z}) (I1.63)

represent the shear of the matter velocity perturbation.

The other one is given by

v, = vV — B (I1.64)
and is related to the vorticity tensor
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1
Wab = in(uk;l — ul;k)Pé (11.65)

The only non zero components are

Wap = S(”v(l) _ B(l))(Q(l) olf — Q(l) [319) (I1.66)

Thus, v, gives the amplitude of vorticity of the matter velocity field.

C-Tensor perturbations

There exist no tensor type gauge transformation. Hence, all the quantities associated

with a tensor perturbation H. ,_(1;2 ) and 71'512 ) are gauge invariant by themselves.

II-5 Einstein equations for gauge invariant variables

Since a gauge transformation is formally an infinitesimal coordinate transformation in
the perturbed spacetime, the general covariance of the Einstein equations guarantees that

the perturbation of these

§G* = §T* (I1.67)

can be written only in terms of the gauge invariant combinations of the original perturba-

tion variables.

A-Scalar perturbations

Using the expression for §G* in terms of A, B, Hy, and Hr given in Appendix A, it

follows that one can construct the following gauge invariant combinations

3 5
§GYy — ﬁg(aag)ia = ——(k* — 3K)¢uQ'" (I1.68)
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and

8Gp — 050G, =~ (da+ ¢u)Q "% 5 (I1.69)

From (I1.67) and making use (II.68), (I1.24), (I1.26) and (I1.53) we obtain that

Eoem = 2(k? — 3K)(§—f (I1.70)
and from (I1.69) and (I1.24)
k2
Pl = ~53(¢a+ 6m) (I1.71)

In this simple way the gauge invariant metric perturbation amplitudes are related to the
gauge invariant perturbation amplitudes. Equation (II.71) implies that for a perfect fluid
¢4 = oH. _

The equation of motion for the matter variables v§°) and ¢,, can be obtained from the
Einstein equations (I1.67) for the components §G% and §G# and (I1.70), (I1.71). They can

be written in term of gauge invariant quantities as

S 2 3K, w
(0) A () QY A k 2 _ = o W (0)
vy’ + U ba+ 1+w(C” €m + w7) 3k(1 2 )1+w7rT (I1.72)
S’ 3K 0) 3K . S" (o)
€, — 3w§em =—(1- _l;:?)(l + w)kv(® —2(1 - 7c—2——)—§wvrT (I1.73)

The physical interpretation of these equations is the following: the second term on the
left hand side of (I1.72) represents the slowing down of the velocity due to the cosmic ex-
pansion, the first term on the right hand side represents the gravitational force, the second
term the force due to the pressure gradient and the last one represents the acceleration
due to the anisotropic part of the stress tensor. The second term on the right hand side
of (I1.73) represents the change due to the cosmic expansion, while the first term on the
right hand side, the compression due to the proper motion of the matter.

A second order form of the evolution equation is often used instead of the system
(I1.72) and (II.73). Such a second order form is obtained by eliminating 08% from (I1.72)
and (I1.73)
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i

em’ — [3(2w — %) — 1]—S—em'+

S
517 2_1 k? — 3K
+3 (gw2—4w-%+303) [‘5‘} +3w2 K+_3—3““C§ €m =0 (I1.74)
where

] kz _ -
0 = —(k*>~3K)wn+2 [(3(w2 +c2) - 2@(%—)2 + w(Bw + 2)K + ————3—%(:4 (1— ?;c_fj>ﬂgs’>
3K S’ (0)’
——-2(1 — 7€—2-')~§M7I'T (II75)

This shows that an entropy perturbation and an anisotropic stress perturbation act as
sources for density perturbations. In order to study their effects, they must be expressed

(o)

as functions of time explicitly or in terms of €, and v;

B-Vector perturbations

From the expression of §G¥ for a vector perturbation given in Appendix A, it follows

that the Einstein equation reduce to the following two gauge invariant equations

1
S - (B P (I1.76)
I
o = %(3c§ v — k5 :wwsy (I1.77)

Hence, the vorticity of matter is originated by a vector type anisotropic stress pertur-

bation.

C-Tensor perturbation

For a tensor perturbation the Einstein equations reduce to a single gauge invariant

equation

14 U !
Y + 2%1{}2) + (k? + 2K)Hy = §* Py (I1.78)
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Since ngz). corresponds to the divergenceless part of the metric tensor, it represents

the amplitude of a gravitational wave. As expected its equation of motion is of wave type.

1I-6 Perturbations in scalar field dominated systems

Up to now we have considered only fluctuations in a system which stress tensor is
given by a fluid component exclusively. Since in the early universe quantum fields could
have dominated the cosmic expansion, I will extend the formalism to deal with a scalar
field [33,34] ‘

The lagrangian determining the dynamics of a scalar field in curved spacetime is

L) = —2v=5 4 oL 1 20 () (11.79)

This lagrangian yields the field equation

oU
Vo —— =20 .
ViVadh = 3 " (I1.80)
and the stress tensor
1
Ty($) = V9Vt — o[V 9V +2U18 (I1.81)

Equation (I1.80) guarantees the conservation of T}

Vo TE() =0 (I1.83)

In actual situations, it often occurs that there are interactions of the scalar field with
some other matter, for example that it can decay in radiation. In this case, the energy

momentum tensor will have another component corresponding to radiation

Top = Tab(l/)) + Tab(rad) (II.83)

and T,,(1) will not be conserved by itself. The evolution of ¢ and p in the homogeneous

case is given by
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s, U ,
¢" + 4—§¢ + 52% +5%T¢' =0 (II.84.a)

, |
E!(rad) + 4%—Eo(rad) =T'¢"? (I1.84.b)

where T' takes into account the decay of ¢ into radiation.

The unperturbed energy density and pressure can be written as

1

E, = —T? = Eo(rad) + 553 2 1L U(9) (I1.85.a)
_ Ll YU
P, =T} = Po(rad) + 525 ¢ U(s) (I1.85.b)

Among the three types of perturbations: Scalar, vector and tensor; since the scalar
field transforms as a scalar under spatial coordinate transformations, we need only to

consider scalar perturbations because this is the only one which couples to the scalar field

P(e*,7) = ¢(7) + 86(r)Q" () (11.86)

Under a gauge transformation

F =1+ T(r)Q0(z") (I1.87.a)
5 = 2% + LO(1)QO(2") (I1.87.b)

The scalar field transforms as

b = ¢(F) + 66Q® = ¢(r) + [¢'T + 64]Q"” (II.88.a)

Since it is a scalar, the scalar field perturbation changes by

§¢=06¢p—¢'T (I1.88.b)

Comparing the gauge transformation properties of the metric perturbation variables
(I1.38) and of the scalar field perturbation (11.88.b), we can construct the following gauge

invariant quantity characterizing the scalar field perturbations

1

kH;°>')¢' (I1.89)

1
Ap=6¢+ E(B(O) -
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For describing the perturbations in the stress tensor, we need to study the perturba-

tions in the scalar field derivatives

Vo = ¢' +(66)' Q" (I1.90.a)
Vap =k 6o QW (I1.90.b)
Vo= —57%[¢ + (6¢) Q" — 24 ¢' Q'] (11.90.c)
Veh = —S72[B ¢' +k 64)Q1°) @ (11.90.d)
and in the potential
U($) =U(9) + Uy 66 Q0 (I1.91)

where Uy = %%.

Replacing them in (I1.81), we obtain

19 = S~ -147 1 (497~ (66))QV)-V(#) ~Us 86 QY (IT92)
T =k S ¢' 56 Q) 4 (I1.92.b)

TS = —S7*[B ¢'* + k ¢' 64)Q'"" (I1.92.¢)

T3 = 572167 — (A8 - ¢ (50))QNSE ~ [U(9) + Vs 69 QIS5 (I1.92.)

From this last equation, we see that the scalar field perturbations do not generate
anisotropic perturbations in stress tensor (w7 = 0). It can be seen that this result is no
more true when non minimal coupling of the scalar field with the curvature is considered]].
The absence of anisotropic perturbations in the stress tensor has as consequence that the
gauge invariant metric perturbation variables must be related when the scalar field is the

dominant contribution to the stress tensor as

¢a=—¢u (I1.93)
as can be seen from (I1.69) by using (I1.92.d) and (IL.67).
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The equations of motion for the gauge invariant variables A¢ and ¢4 can be obtained

as follows. From equation (II.68) and the Einstein equation (II.67)

(Ag)' ¢ + Ag 3——'¢' + 52 Uy| = pa2k® + ¢ — 6K] (I1.94)
S

and perturbing the field equation (II1.80)

(Ad)" + 2%’ (AB) + (k? + §% Ugy) Adp = 44!y ¢' —25% Uy b (I1.95)

which is a system of coupled equations for ¢4 and Ag.

The way in which these perturbations in the scalar field are related to the perturba-
tions in the stress temsor components,.energy density and velocity, thought as a fluid will
now be clarified. In first place, we will see which is the perturbation in the energy density
§ originated by a perturbation in the scalar field A¢. By comparing (I1.19) and (I1.92.a)
and using (I1.89) and (II.85.a) it can be seen that

Eo($) 65 = 3%% [B“” - %H‘T)} (14w)Eo(¢)— S 2ha+52¢'(Ag) +Us A (I1.96)

A gauge invariant quantity can be constructed from it, using (I1.54)

Eo(8) €g(d) = =" 572 pa+ S72¢'(A¢) + Uy A¢ (I1.97)

The perturbation in the velocity associated to a perturbation of the scalar field is

obtained by comparing (I1.26.b) and (I1.26.c) with (I1.92.b) and (IL.92.c)

1 '
¢ (v — EH,E,”) )=k A (I1.98)

where

Eo($) + Po(¢) = 577 ¢ (11.99)
has been used.
A gauge invariant velocity perturbation is obtained by using (I1.50)
¢ 0\ =k Ag (I1.100)
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Finally, by comparing (I1.24) and (I1.92.d) we obtain

mr(¢) =0 , (IT.101)
and
P,(¢)mr(9) = 3%% [B(O) ~ %Hg?Y] ! :wEo(¢S) — ¢S5 2pa+ 572 (AB) — Uy Ad
(I1.102)

which can be put in a gauge invariant form

Po(¢) 6pg(d) = —9" S72 pa+ S72¢' (M) — Uy Ad (I1.103)

The following step is to study the relation between the evolution equation of the
scalar field perturbations (II1.94) and (II.95) and the evolution equations of matter variable
perturbations (II1.72) and (II.73). The evolution equation for the matter velocity (I1.72)
looks rather problematic for the case of a scalar field dominated system, as the two last
terms in the right hand side have a term (1 + w) in the denominator. Remembering that
when we consider quantum fields, the pressure can take negative values and that just in
many theories which are considered in studying the inflationary scenario, the limit w — —1
is the usual one, divergences could arise in that equation. Note that the third term in the
right hand side vanishes in the case that we are considering, since mp = 0. The second one

can be computed

]
k ! (c§ em +wn) = 3iv§0) + k
w

T 5 —E——:—P—[—gb'z ST a+ S5 (M) + Uy Ag] (11.104)

So (I1.72) reduces to

/ S!
o 2700 <k gut

FoR [~ 572 ¢4+ S724'(Ad) + Uy Ag]  (I1.105)

By replacing (11.100) into it, it can be seen that (I1.105) is satisfied automatically. So,
equation (I1.72) does not have any divergence problem and in fact it does not impose any

new condition on scalar field perturbations.
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For analysing the evolution equation of the energy density perturbation (I1.73) in this
case, we need to obtain the expression of the density perturbation ¢,, . It can be obtained

from (I1.97) by using that

S’ 1
E, em =E, ¢5 + 31—9—(Eo + Po)k—vs (I1.106)
The result is
- 3
Eo m = S7%[—¢" ¢pu+¢'(A¢) + S*Uy Ap+ 3%¢’A¢] (I1.107)

Inserting this expression for €, in equation (II.73), it can be seen with the help of
(I1.70) or (11.94) that the resulting equation is exactly (I1.95), the equation of motion for
the scalar field perturbation obtained by perturbing the Klein-Gordon equation equation
of motion for the scalar field. So, we see that the treatment of the perturbations in the
energy density originated by a scalar field as corresponding to a fluid with gauge invariant
energy density perturbation given by (I.97) and (I1.107) and velocity perturbation given

by (II.100) is consistent with the equation of motion for the scalar field.

I1I-7 Evolution of the large scale density perturbations

In this section, the evolution equation for the gauge invariant energy density e,
(I1.74) which is a second order differential equation is shown to be equivalent for large
scales to a first order differential equation [36]. Instead of using the time variable 7 (see

(I1.1)) used up to now, I will consider the variable t

dt =S dr (I1.108)

Its associated Hubble constant is H = 5/5. Note that HS = §'/8.

For ”large scales”, I mean %f—f— > 1. The parameter ikli turns out to be very important
in the study of the evolution of density perturbations. It gives the ratio of the reduced
wavelength —i— to the Hubble distance H™!. This one is usually referred as ”effective

horizon” or also ”horizon”, even if it does not correspond neither to the particle horizon nor
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to the event one[40]. This point has created some confusion among people working in this
subject. The fact of speaking about a perturbation being larger than the effective horizon
while %H- > 1 makes sense because it is the value of this parameter, being larger or smaller
than one which determines which term in the evolution equation for the perturbation are
dominant as we will see. As during the evolution of the perturbation, %?— can be smaller
than one for early times, grew to values larger than one and decrease again to values
smaller than one, sometimes this is referred as perturbations leaving and reentering the
effective horizon. This occur for example in the inﬂatidnary models.

It will be assumed that the stress tensor remains isotropic (rr = 0), as it occurs
for example when the evolution is dominated by a scalar field minimally coupled to the
curvature or for a perfect fluid.

It is convenient to rewrite equation (I1.74), which gives the evolution of €, in terms

of the new variable

H - &
Z = %122—3%52 €m (I1.109)
It results
. 3 K P, :
Z+ZA4+EH+Z I:Eo(ci —w)+ 5(1 - w)-‘-s,—;] =-3 [77 + %j—em] (I1.110)

The quantity in the right hand side is a gauge invariant and it is given by

CZ

2
6pm:Po {7]+_sfmj| =P,
w

c 18
ht} Z 2 (0 _ o)
7rL+3w(1 +w)kS(v B'") (I1.111)

which reduces to the perturbation of the isotropic pressure in the comoving gauge.

When 2E > 1, the source term (right hand side) of (IL.111) result to be O( 511;12)

smaller than the terms in the left hand side, and the evolution of the perturbation is
essentially kinematic. This is the reason why it is usually said that for wavelength larger
than the effective horizon (%L—I > 1), microphysical processes cannot affect the amplitude
of the perturbations.

We shall see now that equation (II.110) has a first integral for large wavelengths. For
% > 1 the terms in the right hand side can be neglected, and assuming a flat background,

(I1.98) can be written as
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. 1
Z4+ (=) H Z = [(Bot Po) + 37 ol Z =0 (I1.112)

where

v=-3(1+¢c) (IT.113)

This equation posses an exact integral

15 0K
(Z+H'Z)- 7 =0 (I1.114)

2 1
AR
+3(1+w)

where 6 K is a constant.
This first order differential equation for Z becomes specially simple during periods in

which w is constant, as for example

w=0 (matter dominated) (I1.115.a)
1

w=3 (radiation dominated) (I1.115.b)

w~ -1 (inflation) (II.115.c)

In this cases, equation (I1.114) has a constant solution

Z=[1+z—" (I1.116)

plus a decaying mode, which will become negligible a few Hubble times after the beginning
of the era in question. This fact makes it possible to compare the values of Z in different
eras of constant w in a simple way, without necessity of making assumptions of what
happened in the intermediate periods except that the behaviour should not be such as to
cause the decaying mode to dominate.
Specifically, we obtain that
1

! 2
gZ(matter) = %Z(radiation) = ng(inflation) (I1.116)

This result is valid for large scale perturbations (%fi > 1). During the radiation and
matter dominated eras, this quantity decreases with time and eventually becomes smaller

than one (the scale enters the effective horizon”).
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III-THE INFLATIONARY SCENARIO

ITI-1 General description

I will present in this section a brief review of inflationary models[41,42,43] and I
will treat more carefully the topics which are more important for studying the density
fluctuations problem. The inflationary scenario is a modification of the standard Big Bang
model, born with the scope of solving the so called "horizon problem”, "flatness problem”
and "monopole problem” which arise when one extrapolates it back to the initial time[44].

The horizon problem is related to the fact that the homogeneity and isotropy of the
cosmic microwave background radiation indicates that the regions where photons coming
from different regions in the sky last scattered at recombination time were at the same tem-
perature. This cannot be explained in the standard Big Bang model because of causality,
as that regions were not causally connected at recombination time.

The flatness problem corresponds to the fact that ) parameter defined by ) = sz,
where p. = 3H? is the critical density necessary for the universe to be flat, is measured to
be of order one. It is easy to see that |1 — Q7! | increases as S? when the universe expands,
so that to have @ ~ O(1) today requires to fine tune its value extremely near to one as
initial condition.

The monopole problem is connected to the fact that in the context of grand unified

theories, the standard Big Bang model predicts a large overproduction of monopoles, which
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are topologicaﬂy stable knots in the Higgs field vacuum expectation value. This is in
contraction with observations, so an incompatibility of grand unified theories and the
standard Big Bang model arise.

The idea underlying the solution of these problems in the inflationary model is to
assume a period of very fast expansion of the scale factor S(t) in the very early universe.

From the Einstein equation

§ = —%(Eo +3P,)S (II1.1)

we see that in order that § > 0, it is necessary that

* 1
P, < -3 E, (II1.2)

Within the classical description of matter, the pressure is always positive, so this
inflationary expansion does not occur. But this is not the case when matter is described
in terms of quantum fields, as we will now see.

Consider a simple example consisting in a scalar field ¢ with a double well potential.

U(g) = Ng* — 0*)? (II1.3)

Figure 1: The potential energy density of the scalar field ¢
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This scalar field is of the type introduced in particle physic theories to induce a

spontaneous symmetry breaking [45]

From (II.81) we obtain

Bo(8) = 58 + 555 (V) + U(9) (IT1.4.0)
P($) = 58" — =z (Vo) ~ U(@) (IT1.4.8)

Assuming that at some early time ¢(x,t) = 0, thé contribution of the scalar field to
the equation of state is P,(¢) = —FE,(¢). If at this initial time, the energy density in
radiation E,(rad) is larger than the corresponding to the scalar field E,(¢), the universe
will expand as S(t) ~ t7 and E,(rad) will decrease as Eo(rad) ~ t~2, meanwhile E.(¢)
stays constant provided that ¢(x,¢) = 0. If this holds for enough time, then the scalar
field will dominate the equation of state and E, ~ —P,. So, an equation of state with

negative pressure, satisfying the constraint (II1.2) is obtained. In the particular case in

which E, = —P,, from (I1.6.b) we find H ~ const and

S(t) = S, eft (II1.5)

~ (The curvature term can be neglected after some time because it decreases exponen-
tially with respect to the energy one). This is the usual mechanism for inflation.

The question now is to explain why should the initial scalar field configuration be
#(x,t) = 0, a configuration which certainly does not minimize the potential energy. The
key point is that at finite temperature, the equilibrium state of a system does not corre-
spond to a minimum of the potential energy, but to a minimum of the free energy (which
at T' = 0 coincide with the potential energy). In quantum field theory, this means that the
equilibrium configuration of the field at a temperature T is obtained by minimizing the
effective potential Uerf(¢,T) which takes into account quantum and thermal effects [46].

The temperature dependence of Ucsf(¢,T') is given by [47]

Uess(9:,T) = Uess(¢,0) + A ¢* T* + BT + C T* (I11.6)

At sufficiently high temperature, it has only one minimum at ¢ = 0, due to the

A ¢* T? term, and thus the scalar field configuration will be ¢(x,%) = 0. There is a critical
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temperature 7. for which the minimum ¢ = 0 becomes unstable and for T < T, the global

minima are at ¢ = 4.

Figure 2: The finite temperature effective potential for ¢ at high and low temperatures

The temperature dependence in the effective potential acts in the way of producing
the initial configuration required for inflation. It also gives rise to a phase transition.
The way in which it proceeds will depend on the particular shape of the potential [43].
If the minimum of the effective potential changes continuously from ¢ = 0 to ¢ = to
as temperature decreases, the scalar field will evolve classically to the global minimum.
However, in some cases the minimum of the effective potential changes discontinuously as
the temperature decreases, as when there is a potential barrier separating both minima
in the effective potential. In these cases, the scalar field evolves to the global minimum
by quantum tunnelling the potential barrier. This is the case in the first inflationary
model proposed by Guth [44]. Bubbles of the true vacuum state expand in a sea of false
vacuum. This model has the problem that it leads to an extremely large inhénnogeneity

and anisotropy of the universe and it was discarded [48].
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III-2 New inflationary scenario

A new inflationary scenario was proposed by Linde [49] and Albretch and Steinhardt
[50] in which the phase transition proceeds by classical rolling. The idea is that the
effective potential is rather flat near ¢ = 0, so that the phase transition occurs gradually
and significant inflation can take place, producing huge regions of homogeneous space, and
we would be living today deep inside one of these regions.

In the usually accepted picture, just after the Big Bang the temperature was very large
and the stress tensor is dominated by the radiation component. The scale factor grows as
S(t) ~ t2. Thermal effects confine #(x,t) to be zero. Meanwhile, temperature is decreasing
and at some point the potential energy of the scalar field becomes the dominating term
in Tyy. So, the equation of state changes to P, ~ —FE,, the universe begins to expand

exponentially, S(t) ~ eff

* and the temperature of radiation drops exponentially, T' ~ e~ Ht,
The scalar field configuration remains near ¢ ~ 0 in the flat part of the potential. This epoch
is called the de Sitter phase and it can last for many Hubble expansion times (H™1).

During the de Sitter phase, the temperature confining effect for ¢ decays as tempera-
ture decreases. Therefore ¢(x,t) begins to roll down the potential, making a transition to
the new global minimum of the effective potential. During it, the potential energy of ¢ is
reléased as radiation. This process is called reheating. It produces a hot gas of particles
which is the initial state postulated by the standard hot Big Bang model. After the re-
heating, the stress tensor is dominated by radiation and the evolution joins the Standard
Big Bang model.

The evolution of the scalar field and radiation is studied using the energy momentum

conservation equation which leads to

¢ld +3Hd + Uyl = —E,(rad) — 4HE,(rad) (IT1.7)

This equation can be splited in a couple of coupled equations describing the evolution

of ¢ and E,(rad) respectively

E,(rad) + 4H E,(rad) = T'¢? (I11.8.a)
$+3H$+Té=-U, (IT1.8.b)
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In the last equation, the second term in the left hand side is a friction term due to
the expansion of the universe, meanwhile the third one is due to the creation of radiation.
The inflationary era begins when the temperature decrease up to a value such that

Eo(rad) < U(¢ = 0). The evolution of ¢ has essentially two different periods:

a) Slow rollover: During this period, the terms ¢ and I'¢ in (IT1.8.b) are negligible

$,T¢ << 3Ho,Uy (I11.9)

For power type potentials, the condition for neglecting them is

5

|Upg| << 9H? (I11.10)

So, during this period E, ~ U($) and U(4) is approximately constant during this first

part of the evolution and this produce an inflationary expansion.

The slow rollover process finishes when the ¢ and l"gz'S terms becomes important.

b) Reheating: it corresponds to the last part of the way of ¢ to the global minimum ¢ = +o0.
As the ¢ ~ 0 configuration has positive potential energy and ¢ = +¢ has vanishing one,
during the phase transition, vacuum energy is converted into thermal energy. During this
process of conversion of an ordered type of energy into an unordered one, the present
entropy of the universe is generated. This process is taken in account by the I' term, which
couples the scalar field and radiation. As ¢ approaches o and begins to oscillate around

the minimum of the potential, it decays in lighter particles and so, its energy is converted

into radiation.

The evolution of the temperature is as follows: During the inflationary expansion the
temperature of the original thermal state decreases exponentially. Then, when the phase
transition of scalar field is produced, the vacuum energy is converted into thermal energy.
During this reheating process, the temperature increases rapidly. The temperature after
reheating is of the same order of magnitude as the temperature before inflation. Figure 3

shows the time evolution of the temperature and the scalar field.
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Figure 3: Sketch of the phases in the new inflationary scenarto. During most of the
inflationary phase ¢ remains close to zero and T decreases exponentially. At reheating, ¢

increases to its ground state value o and the universe reheats to almost the same temper-

ature as before the inflationary phase

This model permits to solve the horizon and flatness problems provided that the period

of inflation is sufficiently long, namely that e#27T > 10%°, which impose restrictions on the
g, P

shape of the effective potential [51]. It also permits to solve the monopole problem, as all
our observable universe is inside one of the homogeneous scalar field regions, there are no
topological defect inside it.

As it has been pointed out in chapter I,‘ the inflationary scenario provides also a pos-
sible explanation of the origin of the density fluctuations which gives rise to the observed
structure. However, as we will see in the next chapter, in order to reconcile the predicted
spectrum with the observational limits, severe restrictions on the magnitude of the poten-
tial coupling constant arise. This is the why the scalar field responsible for the s"*_pontaneous

symmetry breaking in the minimal SU(5) grand unified theory with a Coleman-Weimberg
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potential was discarded as possible candidate for the inflaton [34,52]. This point will be
discussed with more detail in the next chapter. There are more restrictions that must be
satisfied by the scalar field in order to obtain a successful new inflationary scenario , as for
example on the reheating temperature. The constraints come essentially from Big Bang
nucleosynthesis and baryogenesis [52,53]. Another inflationary scenario, which can occur
for a much more general type of scalar field potentials has been proposed by Linde [54,55].

I will review it now

ITI-3 Chaotic inflationary scenario

s

The starting point of chaotic inflation is the observation that the new inflationary sce-
nario is based on the assumption that the universe initially was in the state corresponding
to a minimum of the effective potential Uess(¢,T'). Such an assumption at a first sight
seems absolutely natural, since any non equilibrium configuration of the field will eventu-
ally evolve to the minimum of the effective potential. However, investigating this question
in more detail, it can be seen that it is not so.

A typical curvature of the effective potential, which arise due to high temperature
effects in a A¢* theory is
d*U A

m*(T)

The time necessary for the field ¢ to drop to the minimum of Uf¢(¢,T) exceeds

v 21
-1
T=m = —— IIr1.12
On the other hand, the age of the hot universe t is given by
1 45 Mp

where N is the number of degrees of freedom associated to relativistic particles. For the

case IV > 200, which is a reasonable lower limit for high temperatures
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t<i&
— 50 T

By comparison of t and 7, one concludes that the field ¢ can be influenced by high

(IT1.14)

temperature effects only for ¢ > 7 which implies

vay

T<T*~ 10—2—2—Mp (III.15)

or equivalently, at the moment at which the energy density of the hot matter E, becomes

sufficiently small

E, < EX ~107°\* M3 (II1.16)

However, if the effective potential Ues¢(#,T) is sufficiently flat, and if the universe
initially was in a state with U(¢) < EJ, the universe becomes exponentially expanding
and the temperature decreases considerably before it could have any effect on the value
of the field ¢. This means that in the theories in which U.;(¢) can take initially a large
value and with sufficiently small coupling constants (as required to have sufficiently small
density fluctuations), the inflationary scenario cannot proceed in the usual way, based on
the theory of high temperature phase transitions. But in those cases another scenario, the
chaotic inflation is possible.

To understand the main idea of the new scenario, we will see how the classical field
$(x,t) could be distributed in the early universe. The value of the effective potential at the
Planck time tp = Mg ! at which the classical description of spacetime becomes possible is
defined with an accuracy of O(Mp) due to the uncertainty principle. Therefore one may
expect that in the hot universe at ¢ ~ tp any value of the field ¢ such that U,;s(¢) < M3
and (0,4)*> < M} can appear in a point x with an almost ¢ independent probability.

Lets study the evolution of such an initial distribution of the field ¢ in the simplest
model U(¢) = %(,154 with A << 1. We will be specially interested in the evolution of the
domains of the universe in which the field was initially sufficiently homogeneous (on a scale
> H™1), (0,¢)* < U(4) and sufficiently large, ¢ > Mp.

The equation of motion of ¢ inside one of such domains is

$+3Hd = —Uy = —\¢? (IIT.17)
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The contribution to the energy density is essentially E, ~ U(¢), which in this case is

not necessarily constant. So, the "hubble constant”, which is given by

1 1
8T 2 2w |7 §?
H~|—U ==X — II1.1
is no more constant.
Equation (III.17) can be written as

. d)z .

b+ \/GW}\M———Qb = —\¢® (IT1.19)
P

In the cases that one can neglect ¢ against 3H ¢, the solution is

b = do exp(—y/ B%prt) (II1.20)
where ¢, = ¢(t = 0).

This condition is valid for
_M}%

2 POV, S,
¢ >> =L (ITI.21)

| Meanwhile, the domain expands with scale factor

R(t) = Ry exp V'H(t') dt'] ~ Ry exp [%wﬁ — qs?)} (IT1.22)
0 P

The expansion will be quasi exponential in the case that H2 >> H. In fact the
condition for this to be valid is essentially the same condition (II1.21) that we have imposed
on the initial value of ¢. Hence, the result is that if § >> Mp, the space inside the domain
will expand quasi exponentially.

During the time of quasiexponential expansion, the domain will expand approximately
exp( %) times. If ¢, > 5Mp, the universe expands more than ¢’ times, the value needed
to solve the horizon and flatness problems.

As stated before, the only constraint in the initial value of ¢ is the condition U(o) =
%qﬁ‘l < M3. The value ¢, = 5Mp is quite possible if A < 1072, which can be satisfied in

in many reasonable theories.
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From this point of view, inflation is not a peculiar desirable phenomenon in those
theories, but is a natural consequence of the chaotic initial conditions in the very early
universe which will arise in some domains of the universe.

When ¢ rolls down to the region ¢ < Ag—’i, it begins to oscillate around the minimum of
Uess(4) and the potential energy is converted into radiation. The reheating temperature
may be as large as O()\%Mp) or-smaller. It does not depend on the value of ¢,. Only the
ratio of the scale factor before and after inflation depends on ¢,.

In the chaotic inflationary scenario, as in the ne'& inflationary one, the most severe
restrictions on the strength of the scalar field interactions come from the spectrum of
density fluctuations predicted by the model. Also in the case of chaotic inflation, it is
necessary that the scalar field have very weak interactions, as we will see in the next
chapter.

In realistic theories of elementary particles, there exist many scalars fields ¢;, with
different values of the coupling constants. For the fields having larger values of the cou-
pling constant, the corresponding effective potentials are more curved than those smaller
coupling constant. Therefore they roll down to the minimum of the effective potential
more rapidly, and the last stages of inflation are driven by the field ¢ which has a more flat
effective potential. Thus, the chaotic inflationary scenario can proceed if the conditions

necessary for inflation are satisfied by at least one of the scalar fields.
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IV- FLUCTUATIONS IN INFLATIONARY
UNIVERSE MODELS

IV-1 Introduction

The problem of explaining how did the inhomogeneities that we observe today in the
universe on different length scales, as clusters of galaxies, galaxies and stars, arise have
proven to be a very difficult problem in cosmology.

One the major successes of the inflationary universe models, first realized by Press
[56], Sato [57], Lukash [58] and Chivisov and Mukhanov [59], and subsequently investi-
gated quantitatively for the new inflationary scenario by Guth and Pi [60], Hawking [61],
Starobinsky [62], Bardeen Steinhardt and Turner [34] and Brandenberger and Kahn [52] is
a possible solution to the problem of the origin of fluctuations. The same mechanism that
solves the horizon problem, an exponential expansion of the universe for a finite period,
naturally explains that perturbations on cosmologically interesting scales originate inside

the Hubble radius at some point in the inflationary expansion phase.
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As we have seen in chapter II, the analysis of the evolution of perturbations of the
energy density can be done in the linearized theory for each Fourier mode of the gauge
invariant quantity e, independently. Its evolution separates into two qualitatively different
regimes, depending on whether the associated wavelength A is larger or smaller than the
Hubble radius. When \,, < H™!, microphysical processes such as pressure support, free
streaming of particles or quantum mechanical effects can affect its evolution. Instead,
when A, > H™!, these processes do not affect the evolution of the perturbations.

In the standard cosmology A, and H™! crosses only once, and for early times Aph 1s
always larger than H~!. For this reason, it is not possible to create density perturbations
by processes acting at early times. Instead in the inflationary cosmology, A,, and H ™!
crosses twice, App is initially smaller than H ™!, then it becomes larger than H~! during
the inflationary era and again it becomes smaller than H~! during the radiation or matter
dominated era. This implies that microphysical processes occurring at early times can
originate perturbations of astrophysical interesting size.

The idea is that quantum fluctuations of the inflaton field during the inflationary era

give rise to the density fluctuations in which we are interested.

IV-2 Quantum fluctuations

Lets discuss briefly the nature of quantum fluctuations and its main characteristics
in the case of an inflationary scenario, as these will be the seeds for galaxy formation.
According to quantum field theory, empty space is not entirely empty. It is filled with
quantum fluctuations of all types of physical fields. These fluctuations can be regarded as
waves of physical fields with all possible wavelength, moving in all possible directions. If
the values of these fields, averaged over some macroscopically large time vanish, then the
space filled with these fields seems to us empty, and is called the vacuum. Another usual
way for visualize quantum fluctuations is in terms of particles which quantum fluctuates
between being and disappearing. They can come into existence for a small fraction of time
before they annihilate each other, leaving nothing behind. The corresponding changes

on the strength of the fields microscopically takes random directions and average to zero.
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Nevertheless, these fluctuations still carry energy and for a brief interval of time they can
create material particles, which disappear rapidly as the fluctuation dies.

In the exponentially expanding universe, the vacuum structure have some particular
characteristics. The wavelength of all vacuum fluctuations of the inflaton field ¢ grow
exponentially with the expansion of the universe. When the wavelength of a particular
fluctuation becomes greater than H ™!, this fluctuation stops propagating, and its ampli-
tude freezes at some non zero value §¢(x) because of the large friction term 3H ¢) in the
equation of motion of the field ¢. Then, the amplitude of this fluctuation remains nearly
unchanged, meanwhile its wavelength grows exponentially. Therefore the appearance of
such a frozen fluctuation is equivalent to the appearance of a classical field d¢(x) that does
not vanish after averaging over macroscopic intervals of space and time. As the vacuum
contains fluctuations of all the wavelengths, inflation leads to a continuum creation of
perturbations, as more and more wavelengths become larger than H™1.

The spectrum of the perturbations generated results to be almost scale invariant. A
qualitative argument to support this has been given by Bardeen, Steinhardt and Turner
[34]. The general idea is the following one: First, assume some mechanism that generates
the fluctuations inside the Hubble radius in the de Sitter phase. By time translation in-
variance of the de Sitter phase, the evolution of the fluctuations on two different scales
ki and k> up to the time when they leave the Hubble radius will be identical up to time
translations, and we expect a scale invariant spectrum. As when the wavelength of the per-
turbation becomes larger than the Hubble radius, the perturbation evolves kinematically,
they argue that the shape of the spectrum should remain unchanged up to the time when
the perturbation reenters the Hubble radius during the radiation or matter dominated era,
and this is the quantity in which we are interested. This qualitative argument gives the
underlying idea explaining the scale invariance of the spectrum but it has its loopholes,
for example the amplitude of the energy perturbations does not remains constant outside
the Hubble radius, so it should be proved that the amplification factor is independent of
the scale.

In the following sections, I will present a detailed computation of the energy density

fluctuations generated in the inflationary universe model.

54



IV-3 Generation of the perturbations

Lets consider a scalar field theory with an effective potential

Uess(p) = U(0) + %mz * + 211-/\ ot

in an exponentially expanding background

ds® = dt* — exp(2H1t)[dz? + dy® + dz?]

Its evolution is governed by the lagrangian

£ = S — 2 (V) — U (o)

The equation of motion is given by

ViVag = —Us(¢)

or more explicitly

.

$+3H ¢ — e V2 = _m2¢ _ \p®

To quantize the system lets introduce the canonical momentum density

m(x) = in9~ _ ihelHtg
o

and impose the canonical equal time commutation relations

[ﬁb(xat)’w(y?t)] = 63(}{ -Y)

(IV.1)

(IV.2)

(IV.3)

(IV.4)

(IV.5)

(IV.6)

(IV.7)

This interacting quantum field theory is not exactly soluble. A usual approximation

63] is to consider A very small and neglect the A¢* term in the potential. Note that
g

the interaction X is taken into account in the mass term m which includes the leading

temperature correction to the effective potential %Tzqﬁz

A A
9 2 T2 o —2H(t—t,
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where T' = Tpe H(t=1) has been assumed.

So, the problem has been reduced to a free field theory. We can use a Fourier decom-

position in order to obtain decoupled degrees of freedom

66,0) = — [ PKlapr(e* + a* (g (t)e

(2m)z

The equation of motion for the Fourier components is

[0/ +3HO, + (k* + %) ?H(=t) —m2i(t) = 0

where I have defined-

By defining

z = i
9 m2]?
)
equation (IV.10) can be written as
0? 0 ” 5 9
[Zza—zz“ —225; + 2z —v° 4+ ?‘;] (Pk(t) =0

Which has the form of a Bessel equation. Its solutions can be written as

pr(t) o 23 HM) ()

(IV.9)

(IV.10)

(IV.11)

(IV.12)

(IV.13)

(IV.14)

where Hﬁ” and HL(,Z) denote the Haenckel functions (some useful properties of these are

listed in Appendix B).

The general solution will be a linear combination of both of them with coefficients 1

and ¢, satisfying

le1]? = Jea]? =1
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Different choices of the constants c1 and c; leads to different choices of the positive
and negative frequency modes and can be interpreted as different choices of the vacuum
state of the quantwin field theory.

The choice of the initial quantum state of the field is based on the following consider-
ations of the behaviour of the quantum field for early times. The mode ¢ k(t) describe the
evolution of a perturbation of physical wavelength ( %)eH ¢, and thus, for sufficiently early
times the wavelength is very small compared to H ~1 and at such short distance scales,
the de Sitter space is indistinguishable from the Minkowsky space. This short wavelength
limit corresponds to large values of z. The behaviour of the Haenckel functions for large z
is given in Appendix B. For early times, equation (B.2) says that the Haenckel functions

behave as

HY?)(z) oc e (Fliwat (IV.16)
where
w=(k? +~7)2 (IV.17)

The choice of the initial state which corresponds to positive frequency modes in the
flat space limit corresponds to ¢; — 1, ¢; — 0.

- The normalization of the solutions follows from requiring that

8802 « 0Pk .y —3H
Nk — h i
PeTor T PrTgp T the

(IV.18)

from which we obtain

LT sHt—e,) mr(1)
t) = -4/ =€ 2 ° z .
pr(t) 5\ I H,'(2) (IV.19)

If it is assumed that before the inflationary phase the universe was in a hot radiation
dominated Friedmann phase, a reasonable assumption [63] is that the initial state of the sys-
tem can be described by a thermal state at the background temperature T = T, e~ H(t=to)
It will be denoted [¢, >. The expectation value of the number of particles operator in this

state is given by

< Polat (k)a(k')|yho >=

o _153(k—k') (IV.20)
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where

Eoo, 1
O = —(k* + 42)3 (IV.21)
Ty

Note that if the temperature Ty is taken to be zero, the resulting state would be the
standard de Sitter space vacuum proposed by Gibbons and Hawking [64] and by Bunch
and Davies [65].

Now we can proceed to compute the spectrum of fluctuations of the scalar field

166(x — Y)I* =< told(x,1)d(y, 1) ltp0 > (Iv.22)

Replacing (IV.9) and using that the expectation values of the products of two creation

or annihilation operators a* (k) and a(k) are given by (IV.20) and

< dvo,a(k)a(kl)hbo >= 0 (IV23(L)
< Yolat (k)aT (k') >=0 (IV.23.0)
we obtain that
16p(x — y)|* = L7 —sHt—t) / d*k eik-(""y)1H<11>(z)|2coth.(fﬁ) (IV.24)
3272 H v 2 '

The asymptotic behaviour for large times corresponds to the limit z — 0 and using

equation (B.3) of Appendix B we find that

LA ey T20) [(B2 1928877 g,
_ 2 o v _—3H(t—t,) d3 ik.(x—y) Yk
|6p(x —y)| e / ke {: Vi coth( 5 )

T 3272 2

(IV.25)
In the limit m? << H?, we have that
L3 IV.26
=0T 3 (1V-26)
and

Y. 0,3 T
= ~T“(=)= — 27
) 2 13() = ] (1v2)

So, the scalar field fluctuation takes the form for x = y
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L2 AT 57 0
L-iﬂl)—} coth(~)  (IV:28)

:_ 1 7 2m? / 2
sl ey (t—1to)| [ dk k

In the limit T, — 0 (after several Hubble times the thermal contribution to < ¢? >
becomes negligible), it reduces to the generally used result [66,62]

HEH(z_.tO) 2m2

h 2m? k | =m?
2 __ " g2 — — —_— =
o = 47T4h ea:p[ 3 (t to)} /H d Ink [ ]
3 H* 2m?
S . - —t, .
92 2 [1 e:cp[ 3 (¢ )H (IV.29)

The upper integration limit is fixed by the last wavelength which crosses the Hubble
radius at time t. The lower integration limit, being different from zero, takes into account
that inflation starts at time ¢,; and so it must correspond to the first wavelength which
crossed the Hubble radius when inflation began. From (IV.29) we see that the contribution

to < ¢* > from fluctuations in the logarithmic interval of k, Alnk = 1, is given by

H [Fk]3az 2m?
(k)= — | —= — t—t, V.
o) = 75| eon |-t - (1v.30)
~ An important feature of 6¢(k) is that it is scale independent for m?® << H?Z, dp(k) ~
H
Var®

IV-4 Classical evolution of the perturbations

In chapter II, the evolution of the perturbations in the energy density have been
discussed. An approximate conservation law (II.115), which is valid for wavelength larger
than the Hubble radius was derived. By applying it, we can easily relate the amplitude of
the energy density fluctuation at the final Hubble radius crossing ¢ #(k) in the radiation or
matter dominated era with its amplitude at the initial Hubble radius crossing at ti(k) in
the inflationary phase. In order to use equation (I1.116), we need to compute the quantity
(1 +w(t;)) in the inflationary era. From (II.85) and neglecting the radiation contribution

it results
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Po(t:)  $*t:)
Eo(ti) - Eo(ti)

If the perturbation wavelength crosses the Hubble radius in the radiation dominated

1+

(IV.31)

phase, we have

§Z(racl) = g———————EO(ti)
3 $2(¢;)

5 Z(nf) (IV.32)
From it, we can deduce the amplitude of the perturbation in ¢,, at the Hubble radius

crossing in the radiation dominated era at ¢

emli(ty) = %%—)@ (1V.33)
The fluctuation in the energy density e, (¢;) at the Hubble radius crossing in the
inflationary era are those generated by the fluctuations in the scalar field. Quantum
fluctuations in the scalar field during the inflationary era have been computed in the
last section. The hypothesis is that they give rise to classical fluctuations in the energy
density when the physical wavelength associated to the fluctuation become larger than the
Hubble radius. As the quantization of the scalar field has been carried out by imposing
commutation relations to the field and its canonical momentumin a ¢t = const hypersurface,
the result obtained for the amplitude of quantum field fluctuations corresponds to its value
in a synchronous gauge. So, I will compute the fluctuations in the energy density during
inflation €, (?;) in terms of the fluctuations in the scalar field §¢ in a synchronous gauge
(A =B =0). |
From (I.26.a) and (I1.91.a) we have that

E,§=6¢6¢+U, 8¢ (IV.34)
and from (I1.26.c) and (I1.91.c)

k.
E,(14 w)p'® = AL (IV.35)

Replacing these expressions in (I1.53) we obtain that

Eyem=¢6p+Uy 8¢+ 3§¢3 §¢ (IV.36)
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and using the equation of motion for the scalar field

Eyem=0¢6p—d6p (IV.37)
Thus, from (IV.33) we obtain that
_ 4 e(t) 64(t:) — B(t:) 84(t:)
) ¢*(t:)
When the slow rolling approximation is valid, qf)(tz ) is negligible and the first term in

(IV.38) dominates and we obtain

emlr () (IV.38)

4 84(t:)
9 o(t:)
In order to estimate §¢, we look for the equation of motion of §¢
; .2
¢ +3Hé¢p = 53696 —Ugpéd (IV.40)

In the slow rolling approximation, the term §¢ is negligible. When we specify the right
hand side at the time of Hubble radius crossing , we obtain that the first term becomes

H?§¢, so that the second term is negligible in the slow rolling approximation (Ugp << H?)

9

and
- H é6o(t;
§¢(t;) = ————f( ) (IV.41)
Thus, the amplitude of the energy density perturbation at Hubble radius crossing
becomes

4 Hég(t:)
9 3¢(t:)

When the slow rolling approximation is not valid and the second term in the right

em|u(ty) = (IV.42)

hand side of (IV.38) dominates, we have

_ 4Us[(t)] 6¢(:)
9 $2(4;)

For perturbations which wavelength crosses the Hubble radius in the matter dominated

em|E(ts) (IV.43)

era , the factor £ in the right hand side of (IV.42) and (IV.43) must be replaced by a factor
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. These equations allow us to compute the spectrum of the perturbations at Hubble radius

crossing in a variety of inflationary universe models.

IV-5 Density perturbations in Coleman Weimberg SU(5) GUT
model

One of the first models of new inflationary scenario considered was the SU(5) model
with a Coleman Weimberg potential for the scalar field which spontaneously breaks the
symmetry . This model was then disgarded; one of the main reasons was that it predicts
a spectrum for the energy density perturbations nearly scale invariant, but of a too much
large amplitude [34,52]. As a first example, I will apply the results of the last section to
evaluate the fluctuations in this model.

In this case, the zero temperature effective potential including one loop radiative

corrections can be written as [67]

25 2 4 ¢2 1 4 4
Uess(9) = za” | 9% In(=) + - (0 — ¢*) (IV.44)
16 o 2
The true vacuum is at ¢ = +o, o = % ~ ., where g is the gauge field coupling

constant and ¢ ~ 1,2 - 105 Gev.

The equation of motion for the scalar field becomes

25

3 » 2
¢+3Ho =-Uy = —Za2¢3[ln(;é—)l (IV.45)

The logarithm is a slowly varying function compared to ¢* and the coupling constant
a is "running”, that is to say that its value depends on the choice of the renormalization
scale, which is in principle arbitrary. By taking the renormalization scale equal to @, it
can be seen that the dependence on ¢ of a is also slowly varying compared to #*, so the
term aﬂln(f—i)l may be approximated by a constant and the equation of motion for the

scalar field, neglecting the acceleration term is written as

3H$ = a ¢° (IV.46)
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where a ~ % for ¢ ~ H. Its solution is

3H

2 __ .
= 2a(tRH —t)

(IV.47)

where #,, denotes the reheating time, representing the final time for the inflationary era.
In order to apply the equation (IV.42) of the last section to evaluate the spectrum of
perturbations generated, we need to compute the time of Hubble radius crossing during

the inflationary era t;. It is defined by

ke Hi =@ (IV.48)
From which we obtain
1 H o,
tRH In {i 5 € ] (I[/ 49)

In order to use this relation, we need to express the wavenumber k in terms of the

physical distance scale measured at the present time \,.

_ Tre ., |H i

Ao =S, k 1 — H 1|22 Htpy i
S —To [ p e } (IV.50)

Thus

H Htry Ao .

e ~ 3 (IV.51)
where
T

b= —jfﬂﬂ—l ~ 10781y (IV.52)

A galactic scale corresponds to about 1081y, so ’\T" ~ 102,

So, from (IV.46) we can compute

, 3 ., 1
¢(ti):\/‘—8—;H m (IV.53)

Replacing (IV.53) into (IV.40) and using the results of section IV-3, we obtain that

8 Ao
ml () =~ Inz(—) ~
emlalts) = oo tnd () = 1,3 (IV.54)

W
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This value is much too large (four orders of magnitude larger than the observational
limits) to be acceptable. So, it seems clear that this theory is inconsistent with the observed
universe.

Another point against this model is the fact that it has been shown that the scalar field
would not remain at the top of the potential hill for long enough to provide an adequate
amount of inflation [66,68].

Both problems are due to the fact that quantum fluctuations of the scalar field are too
large. As these fluctuations are determined by general principles of quantum field theory
and are not much dependent on the detailed shape of the potential, what is needed to solve
them is a potential for which the classical solution gives a value of qS(z‘) large enough to
suppress the effect of these fluctuations.

Once the failure of the minimal SU(5) model was discovered, efforts turn towards the
construction of particle theories that have the properties necessary for the new inflationary
cosmology. Some conditions that must be fulfilled for a successful new inflation have been
listed in reference [51]. Lots of models can be found in the literature, but none of them
have been generally accepted up to the present.

Another approach has been the proposal of a different version of the inflationary
scenario: the chaotic inflation, which have been discussed at the end of the last chapter. I

will analyse the density fluctuations in this case.

IV-6 Density fluctuations in chaotic inflation

In the chaotic inflationary scenario, an inflationary era occurs for a rather general type
of potentials for the scalar field. However, we shall see that if we want that the amplitude
of the resulting perturbations in the energy density be compatible with observations, we
need to impose constraints on the strength of the scalar field interactions. To this end, I

will apply the formalism of section (IV.4) to the case of a scalar field with a potential

A
U(¢) = 7¢° (IV.55)
In the chaotic scenario, H is no more nearly constant during inflation, but is given by
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2 87T

- mU(qs) (IV.56)

By another hand, from the slow rolling condition we have

h= Uy = ——A\d> -
o ¥ei Uy 5H @ (IV.57)
At Hubble radius crossing
k 21 3(t;) .
=H(t) =4 ——— 1V.
Sy " E®) =V 530 (IV-58)
A typical wavenumber associated with a galactic scale corresponds to
TreaSRH 1
Ao = —HORH 2 (IV.59)

T, k
So, the value of the scalar field corresponding to the time at which galactic scales

crosses the Hubble radius is given by

#(t)eap ;,-V}’—g(&(tm)-—d#(ti))} = T . (1V60)

with A, ~ 106ly,TRH = 1014Gev,To =3- 10_13Gev,¢RH ~ 3Mp

Now we can apply equation (IV.42) to evaluate the magnitude of the energy density

fluctuations predicted, with the help of (IV.57) and (IV.30)

8 [mh ¢

In order that the predicted amplitude be compatible with observations, the expression
in (IV.61) must take a value of order O(107*). This condition and equation (IV.60) form
a system of coupled equations for the variables ¢(¢;) and the coupling constant \. By

solving it ,we obtain that

é(t;) ~ 5,3Mp (IV.62)

and

A~5.10712 (IV.63)
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So, we see that the requirement of having sufficiently small density fluctuations restrict

the coupling constant of the scalar field to be very small.

IV-7T Remarks

I have presented in this chapter a sketch of the computation of the energy density fluc-
tuations originated by the quantum fluctuations of the inflaton field during the inflationary
phase. This is a very important result because it gives the possibility of making quantita-
tive predictions about the spectrum of the fluctuations generated by a given model. This
feature is attractive by one side because the fluctuation spectrum can be computed without
doing any assumption about its initial value, and by other side because the comparison of
the predicted results with the observed values provide a test for the inflationary models.

Nevertheless, some remarks need to be done about the methodology used. In first
place, there is no general agreement about how the ”classical field”, that which roll down
the potential hill following the classical equation of motion, is related to the real quantum
field. Hawking and Moss [69] have pointed out that if the system begins in a thermal
state which has an exact symmetry ¢ — —¢ and the dynamics is also consistent with
this symmetry, (¢(x,t)) will be zero for all times (the field will roll down the hill, but as
the probability is the same in any direction, the expectation value will remain zero). A
number of authors [69,70] have suggested that \/Wm can play the role of ¢(t), but
this identification is problematic, as it is not evident why it should evolve following the
classical equation of motion. Guth and Pi [63] instead proposed to ”smear” the quantum
field over some finite volume in order to obtain a measurable operator, then decompose
the Fourier expansion into the contribution of wavelength larger and smaller than the
size of the observed universe and identify ¢(#) with the term corresponding to the larger
wavelengths, as they can be considered homogeneous for astronomical purposes. In the
last years, a different approach to the study of the dynamics of scalar field phase transition
has been developed by several authors [71,72,73]. The idea is to consider inflation as a
stochastic process. The realization that stochastic processes can be applied to the theory of

inflation came in part from the observation that the equation of motion for the scalar field
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in the slow roﬂing approximation yields a Langevin equation. The scalar is decomposed in
a ”coarse grain” and a "fine grain” contribution, which correspond to wavelengths larger
or smaller than H~'. The equation of motion of the coarse grain field is of the Langevin
type (or Fokker-Planck type) with a noise term given by the fine grain field (corresponding
to quantum fluctuations). In this way, the dynamics of the large scale quasi homogeneous
scalar field producing the inflationary stage is affected by small scale quantum fluctuations
which can produce classical perturbations as they expand beyond the Hubble radius.
Another point which need to be examined in more detail is the hypothesis that quan-
tum fluctuations of the scalar field give rise to classical fluctuations when their wavelength
become larger than the Hubble radius. Such kind of hypothesis is unavoidable in the frame
of the semiclassical theory considered: Guth and Pi [63] have shown that the product of
the quantum uncertainties in the scalar field and its canonical momentum becomes much
smaller than the product of the variables themselves for wavelength much smaller than the
Hubble radius. Lyth [36] has shown that a few Hubble times after the field fluctuations
leave the Hubble radius, they can be considered ”classical” in the sense that it becomes
possible to form a wave packet in the field variable which does not spread appreciably.
These results have been criticized by Sasaki [74] because they are based on the study of
the behaviour of the scalar fluctuations for long wavelengths, but neglecting the fluctua-
tions in the metric. He argue that the criterion for the validity of the classical description
of a quantum system, as the product (¢|X?|¢)(p|P?|p) is not invariant under canonical
transformations of the dynamical variables X and P is problematic and, due to the arbi-
trariness in the choice of coordinate gauge on which the perturbation variables depend,
there is no natural choice for them. He suggested that it would be necessary to extend
the quantum mechanical analysis up to the reheating era. Another proposal was made by
Boucher and Trashen [75], who suggested to modify the usual semiclassical theory used
to study the dynamics of the gravitational field (treated classically) and of the quantum
matter fields. In this one, the gravitational field couples to the quantum fields only through
the expectation value of the stress energy tensor in some quantum state. They proposed
to modify it in such a way that quantum fluctuations acts also as a source for the classical

variables. But no results are yet available within this scheme.
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Conclusions

Inflationary universe models provide a mechanism which, for the first time, explains
from first principles the origin of the primordial energy density fluctuations required as
initial conditions in theories of galaxy formation. Quantum fluctuations of the scalar field
which drives inflation during the inflationary phase give rise to adiabatic energy density
fluctuations which spectrum at the time at which the perturbation wavelength cross the
Hubble radius is roughly scale invariant. In order that the amplitude of the perturbations
be compatible with the observations, the scalar field must be very weakly coupled. The
prediction of a scale invariant spectrum is considered a nice feature in inflationary models,
because this type of spectrum has been widely used well.

~ Nevertheless, in the last times, some problems associated to the use of a primordial
scale invariant spectrum have been pointed out, and it seems very difficult that the multi-
tude of different objects in the universe can be constructed exclusively from it. For some
time, no other perturbation of a sufficiently large magnitude generated during inflation
was known, but recently some other processes, as for example strings models of galaxy for-
mation and isothermal perturbations during inflation, have added new possibilities. Each
of these processes generate different kinds of fluctuations, and one should not necessarily
expect that all the structures originate from any single effect. The largest scale features
(such as giant voids and filaments) and the galaxy correlation function may well derive

from completely different mechanisms.
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APPENDIX A

Perturbation formulae for geometrical

quantities

1- Scalar perturbations

e Christoffel symbols

§THy = A'Q®
8T, = —[kA+ £ BIQ® ,
8T, = —[kA + B' + < BjQWe
6T'gs = Hy, ‘SSQ(U) + HLQO= 5
6T% = [-2($)4 + 5B + CHY] 39,50 + [-kB + EHL]| ) o
6T, = —kHy [55Q 5 + 650 5 —* 95,QV%| + T B ng‘-")"‘
+Hr [Q(O)a Blv T QU= Y8 Q) ﬁ"r[a]

e Finstein tensor

§GY = & [3(5)?A - ZkB - 35 Hy — (k* — 3K)(HL + %—T—)] QU
6L = b5 A-K Bk B, - ERE] Q0

565 = & [REA+(F) — ($71B +k Hy + E5 Ay QO

6Gg = H(TA' + 25 - ()14 - 54— 4B +2%B) - §(5 H)'-

—SHY - Lk - 3K)(Hp + 52)1650' 0+
3 [~R2A— k(B + $B)+ 4(5 Hy) + S(Hy - kB) = K (Hy + 42)| Q0= 5
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2- Vector p'erturbations

e Christoffel symbols

679, = 0

670 = =5 BQY &

6T = ~ [B' + $B| Q=

6Tg, = HpQW= 5+ 3B [QM) 1% — Q)% 5]

§T% = |-kB + ‘—S——S’—"ﬁ"—)] QW ap

§TS = £ B 3g5,QM* + Hy [QU= g1, + QW 15 — QW) 4,17

e Finstein tensor

§GY =0
o= a0
665 = & [ [252 +21-(5) + ($)°)] B - 2z Hy| @V

57 S
565 = & [-h(B' + B) 1S Hy) + S(Hy - kB)| QW= 4

3- Tensor perturbations

e Christoffel symbols

ST, = 6T = 6T =0

6Fa - H! Q(z)cx

EI‘O“@ — (s? HT) Q(Z)

6T, = Hr [QW’ sl + Q7% 45 = QP 5,1°]

e Finstein tensor

G0 = 5G° = 6G = 0
5G% = & [L(5 Hy) + SHy + (K + 2K)Hr| QP 5
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4- Intrinsic curvature perturbations

For each time slicing, there is associated an intrinsic scalar curvature *R of each
constant time hypersurface. From the perturbed intrinsic metric g, the perturbed spatial
Riemann curvature tensor and Ricci tensor can be computed for general perturbations. The

result obtained for this last one is

"RS = & [2K + $( - 3K)(Hy + 1HY)Q®)] 8
2 2
~ S (Hy + JHE Q™ 5 + R HT QO

Contracting indices, we obtain for the intrinsic scalar curvature

*R= 45 [6K +4(k* — 3K)(Hy +3H)Q)]
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APPENDIX B

Some useful properties of Bessel functions

I summarize here some properties of Bessel functions [76], which are useful in chapter
IV computations.

Bessel functions of the first kind are denoted J,(z), Bessel functions of the second

kind (also called Neuman functions) are denoted by N,(z) and Bessel functions of the
third kind (also called Haenckel functions) are denoted by H & (z) and H ,(,2)(2).
The Haenckel functions are related to J,(z) and N,(z) by

HY(2) = J,(2) +iN,(2) (B.1.a)

H®P(z) = J,(z) —iN,(z) (B.1.b)

The behaviour of the Haenckel functions for asymptotically large z is given by

1
212 ™ ™ 1
(B) () ~ | = (y — —p— — —
H,"(z) [ﬂ_z} exTp [:{:z(z 5V 4)] [1 + 0O Lle (B.2)
where the plus and minus signs holds for k£ = 1 and k = 2 respectively. For small z, one

has the following asymptotic forms

Hik)(z) = F-T0) [2] (B.3)

where the minus and plus signs holds for ¥ = 1 and k = 2 respectively.
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