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CHAPTER 1.

1.1 INTRODUCTION.

Most of the conventional wisdom on gauge quantum field theory
has been obtained by using local (renormalizable) gauges and
therefore it is of some interest to explore the general
mathemathical and physical properties of this kind of
approach. It may be shown that both in the gauge symmetry
breaking case as well as in the non-abelian unbroken case the
Wightman functions of the field algebra exibit infrared
singularities which are worse than measures and therefore
they cannot satisfy the axiom of positivity.

It 1s believed that many of the interesting features
emerging in the local formulations of gauge quantum field
theories are related to the occurrence of such infrared
singularities [1] [2].

The aim of this thesis is to consider one concrete model, the
dipole field model, which isolates one of the characteristics
infrared singularities of local gauge field theories

Actually it has been rigorously proven that this type of
singularity occurs in the abelian gauge symmetry breaking
case , and 1s the quantum field theory wversion of the

linearly rising potential in Q.C.D.




The lack of positivity that depends on the infrared behavior
of the correlation functions, is at the basis of the
possibility of explaining certain unconventional mechanisms
not shared by the standard Q.F.T. . From a more technical
point of view, giveﬁ a set of such correlation functions, the
problem is to construct the corresponding Hilbert space of
states. In the standard case this is an intrinsic content of
the Wightman functions and is provided by the reconstruction
theorem [3]. In the indefinite metric case the Wightman
functions supply only a linear space (the local states) with
an 1intrinsic indefinite inner product. A supplement of
informations is needed in order to obtain a Hilbert space of
states [4]; this is what will be called "Hilbert space
structure condition" and plays the role of the axiom of
positivity. This condition is usually given by assigning a
set of Hilbert seminorms which majorize the Wightman
functions.

Clearly there is some arbitrariness in this procedure because
to different sets of seminorms correspond different Hilbert
spaces of states. Among all the possible Hilbert structures
are of particular interest those which generate a maximal
Hilbert space,because they contain in a certain sense the
maximum of information that is possible. In this case one
recognizes that the Hilbert space of the theory has a Krein
type structure [5] [6] and it is possible to show that at
the one-particle level this structure is unique (up to

isomorphisms).




When the construction of one Hilbert space has been performed
it is necessary to identify in it a subspace in which the
inner product defined in terms of the Wightman functions is
positive and this for the probabilistic interpretation of the
theory. The elemeﬁts of this subspace will identify the
physical states and the condition that selects them is called
"subsidiary condition" . It is usual to give the subsidiary
condition as an operator condition of the type AU=0 (like
the Gupta-Bleuler condition).

One could at this point wonder whether it would be possible
to identify the physical states already at the level of the
local states and then to get a Hilbert space by completion of
this subspace in the topology induced by the intrinsic inner
product which is ©positive on this subspace. In this way
however one can at most obtain the vacuum sector; as a matter
of fact the problem of existence and construction of
charged states (confinement and Higgs phenomenon) cannot be
solved in this way because charged states cannot be local and
tﬁeir construction requires some closure of the local states
in a Hilbert topology

All these structures will be explicitely constructed for the
dipole field, i.e. a field ¢ obeying the equation

A% =0 (1.1)

2

where A is the d’'Alembert operator ai- 8%- 8%~ &
b4 v z

This field that is in strict correlation with the Froissart

model [7] has been studied in past by several people: in




particular there are the contributions of Ferrari [8],
Zwanziger [9], Narnhofer and Thirring [10]

However all the treatments known leave open non trivial
questions of principle and therefore may be interesting to
reconsider the probiem from the very beginning.

Indeed in the discussion given by Zwanziger, the choice of
the Hilbert structure is somewhat ad hoc and is not used to
discuss the physical interpretation of the model. Actually
Zwanziger concludes that there is no physical interpretation
of the model. On the other hand the CCR approach to the model
that can be found in the paper of Narnhofer and Thirring
exhibit a quantization with non implementable time
translations but it is not clear how general is this feature
since many questionable ingredients have been used in the
derivation.

The present work investigates some aspects of the dipole
field without special or ad hoc a priori assumption. The
general strategy will be that of keeping locality and
covariance and eventually the physical interpretation will be
obtained through a subsidiary condition. The main results
that will be obtained are:

a) the rigorous control on the Krein -Hilbert structure
associated to the Wightman functions of the dipole field.

b) a Fock-Krein representation of the field algebra and a
discussion of the uniqueness of the translationally invariant
states.

c) The existence of translationally invariant field operators




belonging to the Krein strong closure of the local field
algebra.
d) Some remarks about the breaking of the Poincare’ group and

a concrete realization of certain classes of physical spaces.

Possible future developments are a general characterization
of the possible physical spaces and a study of the symmetries

of the model and their implementation.




1.2 THE WIGHTMAN FUNCTIONS.

(The references for the general results of functional
analysis are [11] [12] [13]).

A local and covariant quantization of the dipole ghost field
is characterized by a set of Wightman functions satisfying

the following axioms:

I. COVARIANCE
For any Poincare’ transformation {a,A) the n-points functions
are invariant:

Y(Ax+a ,...., Ax+a)=¥(x ,...... ,X ) (1.2)
1 n 1 n

II. LOCALITY

If x -x = ¢ 1is spacelike then
i i+l i

¥(x_,..,X,%, ,..,x) =%¥(xX,..,Xx ,%,..,%) (1.3
1 n 1

i i+l i+l i n

ITI. WEAK SPECTRAL PROPERTIES

The Fourier transforms W(kl,....,k 1) of the distributions
-

W(gl,..;,§n1)= W(xl, ....... xn) (1.4)

have supports contained in the cones (k,)z = kH k.MZO, k >0.
1 1 1 10

The Fourier transform of test functions belonging to f(R&) is

defined
£(k) = (2n)7° f e f£(x) d'k (1.5)
where kx is the Lorentz invariant scalar product

kx = k'x - g k'K (1.6)
B Cii




with g = diag(l,-1,-1,-1)
1]

IfTe f’(Rh) its Fourier transform 1is - defined

T(f) = T(£) (L.7)
Starting from a set of Wightman functions obeying axioms

I-II-III it is only possible to recover a set of wvector
states which has a linear structure; one starts from the

Borchers algebra B whose elements are finite sequences

f = (fo,....,f s ) : (1.8)

J
where fo is any complex number, fj € f(R“), and all but a
finite number of test functions are zero.
The Wightman functional ¥ defines a linear functional on 8
through ¥(£) = ZWn(fn) (1.9)
Defining the tensor product in 8B as

(—t:Xg)n: Zk+l=n fk gl (1.10)
one obtains the following inner product

*
<f,g> =¥ (£% g) (1.11)

%

where f (xl,....,x y=f(x """X1> and the "-" means complex
. n n

conjugation. The linear space Doyis then defined as the set

of equivalence classes [f] € B/Iw where

I, = (feB : <f,g> =0 V geB ) (1.12)

is the Wightman ideal. The field operators are defined on D0

by ¢(£) [gl= [£xg] (1.13)
with feP(R') and £=(0,£,0,....).
Clearly the vector @b= (fO,O, ..... ) is non zero, is such that



<W0,@6> is greater than zero and is cyclic with respect to F,
the polynomial algebra generated by the fields ¢(f). There is
a linear representation of the restricted Poincare’ group on

D0 defined by

Ua, MRS - PE, )T, | (1.14)

where P denotes a polynomial and £ A}(X)=f(Aﬂ(x-a)).

{a,
For more details about these structures see [4].

In the present case tbe field equation (1.1) is wused to
determinate the two-point function and the truncated
n-points function are assumed to vanish (it is ever possible

to take 7(1=O).The equation (1.1) imply that the two-points

function must satisfy the equation

2
AW (x) =0 (1.15)

The most general solution of this equation which agrees with

the spectral condition is [8]
W(x)=b In[- (- ie)%+ x°] + bz(xz—iexo) +b, (1.16)

Clearly the relevant term is the first one in the
R.H.S. because the other two terms correspond to a massless
4-dimensional free scalar field and this is an uninteresting

solution of the equation (1.16). For motivations that will be

clear in the following one chooses bl= —(AW)-Za.By the
appendix 1A the Fourier transform of

-2 . N2, .2 .
W(x)=-(4mn) 1n[—(xb~1e) + x] is: (1.17)
W(k)= (2%)—1a 6(k0) ) (kz) + f£(k) (1.18)

where sz(k)=O.This again 1implies that £(k) describes a




massless free field and may be transcured.

The hypothesis of factorization of the n-point function
implies that the one-particle space contains already all the
informations of the theory and the n-particle spaces may be
obtained by (symmetric) tensorial products. Therefore one

defines in f(Rﬁ) the inner product
<f,g> = J EG¥(x,y)g(y)d xd"y (1.19)
The Fourier transform of ¥(x,y) is

V(k,q) = (2m) 20k 6 (ktq) (1.20)

with %(k) - (2%)—2J ™ wix) d'k (1.21)

It follows that

R A

<f,g> = ra f 9(k )6 (M E)g)Aa'K (1.22)

Using the results of appendix 1.B this scalar product may

be written

X A

<f,g> = %ﬂa Jdp(k){Fl(k)Gl(k)-?z(k)Gz(k) + £(0)x(K)G (k)

R A

+ g(O)Fl<k)x(k)} (1.23)

They have been used the following definitions: x is a real

A

function of f(R4) such that 1) x(0)=1 , 2) ko X(k)LC =0 ,
o o

+

3>f R du(k) = 0 (1.24)

The integral in (1.24,3) has obviously a distributional

meaning. C+ is the mantle of the future cone V+.

A

£ (k) = £(k) - £(0)x(k) (1.25)




F (k) - Eo(k) - D%o(k) (1.26)
F (k) - D%o(k) - koa°§o<k> (1.27)
W’ =ki + K+ K (1.28)
du(k)= w "§(k_-w)d'k (1.29)

The definition(l.25) has a great importance in the procedure
that will be exploited[4][14]. It identifies the part of a

test function which is free from infrared singularities. From

(1.25) follows the splitting

FRY = fo(R") + {x) (1.30)

fo(Ra) = { £ € f(R“) : %(O) = 0 } (1.31)

and the bad infrared singular part of the theory is singled out in

the function y.

10




APPENDIX 1.A

In this appendix it will be calculated the Fourier

transform of the distribution
W(x) = -(4n) %a ln [x°-(x -ie)?]
(o]
To this aim the subsequent formulae will be used [15]

A 1n [x°- (xo—ie)z] - -4 [x°-( xo-ie)z]-l (Al.1)

f (k) § (k%) exp[-i(x_-ie)k + ixk]d'k = 4n[x2-(xo-ie)2]'1

(A1.2)
Then inserting into (Al.2) the identity [16]
§G%) + K2 6 (KB =0 (A1.3)
and using (Al.l) one obtains
A J (k) ) exp[-i(x -ie)k + ixk] d'k =
— -7 A ln [ x°- (x_-i€) ] (ALl.4)
This implies that
(27r>“zf 9k ) 5 (k) exp[-i(x -ie)k + ixk ]d'k =
-m 7 in [ x5 (x -i6)®] + £(x) | (A1.5)

where f(x) is solution of the -equation Af=0 and for this
reason it 1s an uninteresting term. Now using the Fourier

inversion theorem one has
W(k) = (47) ‘'a 9(k_) § (K*) + f£(k) (A1.6)

with K*f(k) = 0.
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APPENDIX 1.B

The aim of this appendix is to give a concrete definition of
the distribution 6(ko)6’(k2). The methods used are those of
[16].0ne exploits the following <change of variables
(k kK k)= (Pwv,¢) with

2.1/2

P=k?, w =(&)Y?y - artg(k /k ), ¢ = arcos(k /w) (AL1.7)

This change of variables has perfectly meaning in an
opportune mneighborhood of the mantle C+ of the future cone
but the new frame is not orthogonal. One has that

a‘k = §(P+w) W’ dP dw dQ (AL.8)

o) . . . . .
5p means here partial derivation with respect to P with w,y

and ¢ held fixed ; it follows that

a )
3 ~ 7k ok (A1)
o] o

If £ is such that £(0)=0 then one has

By, (%), £(k) =

- 21 & s sk £ (R W aw dn ap =

- 2 s s g‘g [£(k) (P+w)*?] & dw dg dP —

=L [%%E (%_k_).)] LC+ &’k (A1.10)

Q

With a different choice c¢< the new coordinate system one

obtains another realization:

o2 1 -1 4
(ﬁ(ko)Sz(k ),E(k)) = :J [w Em (w f(k))]c+dkodﬂ (A1.11)

A procedure to regularize these formulae in the general

case f e P(R') will be provided below.
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Formulae (Al1.10/11) may be rewritten in the following way

) i 8 £ R
(ﬁ(ko)Sl(k )Y, E(k)) = -4[ K 3% ( m ) 6(k0 w)d k (A1.12)

[e] o

(6(ko)6;(kz),f(k)) %J- Wt ki—g—E (@E(K)) §(k - w)d'k  (A1.13)

It is easy to show that these two formulae give the same
results when tested on functions which wvanish at the origin.

Therefore one may define the distribution

(8(k )8 (K, £(k))=(8(k ) (c6. (D) +(1-c)s, (K1), £(k)) =

- % J w P [f(k) - D £(k) 16 (k_-w) a'k (A1.14)
D —ck & & (-1 (A1.15)
c o 3k i 3k .

0 i

Clearly (Al.14) 1is not dependent on ¢ when £(0)=0.
Consider now the scalar product (1.22) with f,g € F (RA). It
o

follows from (Al.l4) that

<f,g> = —Z—najdp.(k) (1 - D)E(k)g(k) (A1.16)
with dpy defined in (1.29). Let now x be a real function

(o}
belonging to f(Ra) and satisfying the conditions:

D x (0=, 2) Dcxc(k)Lc=0, 3) Xj(k)d#(k)=0 (A1.17)
+

The 1integral in (Al1.17,3) has to be intended in a
distributional sense. Then given fef(R“) one subtracts the

bad infrared singular part according to
£ (k) = £(k) - £(0)x_(k) (A1.18)

and obtains the final regularized formula

<f,g> = %ﬂ'a J dp (k) [flc(k)Glc(k) - ‘1520<k)c;20(1<) +

13




£(0)x_ (KRG, (k) + g(OF _(Kx_(K)]

with

F (k) =f (k) -Df (k)
lc oc c oc¢

F (k) =Df (k)
2¢ c oc

(Al1.19)

(A1.20)

(Al.21)

Formulae (1.23,24,25,26) follow by choosing c=1. The formulae

used in [9] correspond to the choice c=1/2.

Finally, observing that

a
D =D + (b-¢) (k = +k —— )
b c [s) .
one concludes that

6(k0)5;(kz) - @(ko)s'(k§> + 2n%a(b-¢)§" (k)

14

(A1.22)

(A1.23)




APPENDIX 1.C

In this appendix it will be verified that the inner product
(1.23) is Lorentz invariant. The restricted Lorentz group is
represented on the functions of the momentum wvariable as

follows:
(UMY E) (k) = £(A K) | (A1.24)

This representation implies that the Lorentz invariance
of (1.23) is equivalent to
a’k --2 - - | -2
f — [k (k3 £(k)-£(k)] - [k (ka (k) - f(k)]}[C (A1.25)
w o o O o o 0 "
with k = A k ~ (A1.26)

(for simplicity has been chosen a £ such that £(0)=0).

One has that

k3 = (M) 3 + AAo' (k38 + k3) + Ao'Ad® k3 (A1.27)
o o o o0 o 1 1 © i 37

Taking into account that

8 £(k) Lc =8, £ + [(k/k)8 £ ]|, (A1.28)
+

+

with £(k) = £ | (A1.29)
+
one obtains
122= [ (Ao®)2+ 2Ao°Aoi(ki/ko) + AoiAoj(kikj/ki)] ki (A1.30)
k8 £(k) [ - (fci/kj)koaof(k)] L+ Ao'quik'uaif(k) L (A1.31)
+ +
The integral (Al.24) becomes
3 [T =2 -2 -2
Jd kAL (o' 8 £ /KD) + (7 EDE(R)] /e (A1.32)
+

The integrand in (Al.31) may be written

15




13- k'lfc'z)f(k)}{c - E(R) 8, [k R F(afAsk )]+
o o o i o o “

+

+ 9 [Ao“Aoikuk;lf(k)] LY (A1.33)

i
The last term of this expression is integrated to zero.It is
possible to show after some manipulations that the first two
terms in (Al.31) are equal and therefore the integral (Al.24)
vanishes.From (Al.33) one has that
(k3 - DEWI| = [k (ko - DEWI [+

+ +
kOAoiai[kofcof(kﬂ L (A1.34)
This formula will be wuseful in the statement of the

subsidiary condition.
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CHAPTER 2.

2.1 THE HILBERT SPACE STRUCTURE CONDITION.

As briefly stated in the introduction it is necessary, for
the physical interpretation of an indefinite metric Q.F.T.,
to extend in some way the set of the local states DO, as well
as the local field algebra F. The topology that seems the
most mnatural to obtain these extensions 1s the so called
Wightman topology T it is defined by the following set of

seminorms:

p,(¥,) = |<g ,£>| , ¥,€ D, geB. (2.1)

This topology is 1locally convex and separated on DO [5],but
unfortunately cannot be wused to extend D0 and F because
the inner product (1.11) is not jointly continuous w.r. to it
and it would be problematic to extend (1.11) to the
eventually obtained completion BZTW.

This should not be a surprise because also in the standard
case the T topology is too weak and does not identify a
Hilbert space. The thing that seems the most natural at this
point is to associate to the Wightman functions a Hilbert
majorant topology with whose help one completes DO into a
Hilbert space. In any case the topology T is the weakest one
and can be used as a guide to define extensions of Doand F

(for more details on this argument see the illuminating

17




discussion in [14]).
The following condition replaces the standard axiom of

positivity:

IV HILBERT SPACE STRUCTURE CONDITION
There exists a set of Hilbert seminorms {(p ), p defined on
n n

?(R*™) such that

V(S x g1 < p (8) P (g) (2.2)

For reasons discussed in [4] the seminorms are required to be
F-continuous. Given the seminorms {p } one may easily define
n

a Hilbert seminorm p on D e.g. by putting
[e]
(£,8) =1 ()’ (£,8) (2.3)
n n nn

where ( , )n is the Hilbert scalar product defined by the
seminorm P and £ and g are representatives for [f] and [g].
The closure of D° in the Hilbert topology induced by p
defines an Hilbert space £ and a metric operator n such that
<f,g>=(C£, ng) (2.4)

Without loss of generality one may assume that p vanishes on

the Wightman ideal Iw:
<f,g>=o0V ge8 implies p(f) =0 (2.5)

It is worth to point out again that different choices of the
seminorms P give rise to different Hilbert spaces and
whereas in the standard case the Wightman functions uniquely
fix the closure of D, in the indefinite metric case

o

18




different closures are available corresponding to different

Hilbert topologies.

2.2 THE KREIN TOPOLOGY.

Among all the possible Hilbert closures of Do, those which
associate a maximal set of states to the given set of
Wightman functions are of particular interest

A Hilbert space structure { n , # )} associated to a set of
Wightman functions , with non degenerate metric operator n ,
is said maximal if there is no other Hilbert space structure
{ ; , X } such that ; is non degenerate and X contains ¥
properly. This happens if and only if the operator n‘l is
bounded; in this case one may redefine the metric operator in
such a way that zf=l [4]. Inner product spaces with the
property that n2=l are called Krein spaces [5][6]. In the
case under examination it is possible a simple solution of
the condition (2.2) and this again thanks to the hypothesis
of factorization of the n-point function.

The first step consists in finding a seminorm P, which

majorizes the two point function. To this aim consider the

scalar product (1.23) with f,g € fo(R“):
<f.g> = f du(l) { F ()G (k) - F,(K)G,(k) } (2.6)

The constant in front of the integral in (1.23) has

been set equal to one because its value is irrelevant in this

19




discussion. A Hilbert product majorizing (2.5) is immediately

given by
[£.8] = j du(k) { F ()6 (k) + F (k)G (k) } (2.7)

One easily obtains that

1/2[ 1/2

I<f,g>| = [£f,f]

g8l f£,g €’ (R) (2.8)

In the general case in which fEf(Ra) one exploits the
splitting (1.25) and defines the Hilbert scalar product
(f.8) = [f.g ] + <f,x><x,g> + £(0)g(0) (2.9)

If one rewrites (1.23) in the form

<f,g> = <f 8>+ £(0)<x,g> + g(0)<f, x> (2.10)
o
easily obtaines

I<f.g>] < |£] |&l (2.11)

with [£] = (£,6)"* = p (£) (2.12)

Now it is possible to show that there exist constants G such
n

that the seminorms
pn(fl ..... f;) = Cn pl(fl) ..... pl(fn) (2.13)

satisfy the condition (2.2). Using (2.12) and the T topology
it is possible [14] to introduce the creation and
annihilation operators and a Fock type realization of the
theory. It is also possible using the so constructed Fock
structure to improve the already simple topology defined in
(2.12). One introduces the following set of vectors which

generates the Borchers algebra:

20



v - @) ”1’2:¢(f1>...¢<fn): v (2.14)

1 n
where I denotes the Wick ordered product defined in
terms of the Wightman functions . The intrinsic scalar

product of two such vectors is given by

m _ i -1
LT e \Ifg ...g> (nt) 6n’m Zvr<f1’gi >.,..<fn,gi>
1 n 1 m 1 n

(2.15)
One then may introduces the following set of seminorms on

this kind of vectors:

n

p (¥ ) = (aDTL (£,E ) (£,E) (2.16)

1 n 1 n

(2.16) defines the following Hilbert product:

m -1
:1If - ) = 6n’m(n!) z,,r(flsgi )' ° '(fnygi )
n 1 m 1 n
(2.16b)
The main result of this chapter is the proof that the closure
of D with respect to the topology induced by the seminorms
o]
(2.15) is a Krein space. In order to achieve this result
several intermediate steps are mneeded. In the following

paragraph it 1is described an iIntermediate structure of a

great utility.

21



2.3 THE SPACE Xo.

Consider the following Hilbert space:

11 I

ts = ;:z;?;A /r @ @D (2.17)
where

1£] = [£,£]Y7 , (2.18)
¥ (;:Zgz;]{ ) ={fe ;ZZE:;][ (JEf =0} (2.19)
Theorem 2.1 : It is possible to extend the inner product

(2.6) to the whole #s and there exists a bounded and

self-adjoint operator nl such that
<f,g>=[f,n g] (2.20)
o

Proof: it 1is an easy consequence of (2.8) and the

representation theorem of sesquilinear forms [13].##

Theorem 2.2: (nH? =1 (2.21)
0

Proof: consider the linear space

£
2

: il
PPRY = {F = { ! } c fer RY , i-1,2} (2.22)
o 1 o
Define in fz(RA) the following inner products
[s]

(F,G) - J ap(k) (£, (g, (k) + £,(k)g, ()] (2.23)

A A

< F, G>>-= J de(k) [£f (Kg (k) - £ (kg (k)] (2.24)
It immediately follows the identity

<F,G>»=(F, 0C] (2.25)

22




with o, = diag (1,-1). (2.26)
In fz(R4) define the following subspaces

D, = { Fer®RY : %l(k) - (A-DYE) %z(k) ~ & DECK)

with f € fO(R“) ) (2.27)

Besides define the following operators :

. (1-D)£(k)
Ui : fO(R‘) — @i , Uif = A (2.28)
+ Df(k)

The following identities are easily obtained
(Uf,Ug)=[f,g] (2.29)
<< Uif , Uig > =<f , g> (2.30)
Consider now the following Hilbert spaces

2,4 ][z 2,4 ][z 2,04 2
PR /4 TR T = LR, C, du) (2.31)
o -0 byl (2.32)
* + + ’
with]F[z——-{F,F}l/z

Let f € #5 and f a sequence in F (Rb) such that

n (o]
lim Jf - £f[ — O (2.33)

One has that the sequences U,f are Cauchy’'s sequences;
PLEGE +§

indeed
] Uifn- Uifm{2= ] f;— fm[ — 0 (2.34)
Then they exist F_ € 5+ such that

lim U,f = F, in D (2.35)
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Therefore it is possible to extend the operators U, to two

1 = .
operators U,: #o — D, in such a way that

+-

Ui f = Ft (2.36)

As a consequence of (2.36) one has that it is possible to

extend (2.29) to the whole 4o -

(U,£,0g)=1f,g], f,get (2.37)

Therefore ﬁi are isometric operators. It is clear that the
form (2.24) may be exténded. to the whole LZ(RA,Cz,du) and
there exists a bounded and self-adjoint operator, that
coincides with o, itself , such that for F and G in

LZ(Rﬁ, Cz, dup) one has

<<F,G>>=(F,o00C) (2.38)

Then (2.20),(2.35) and (2.37) imply that for f,g & e
l —
[ £, g ] =<1t , g>=<<U, 1, Uig >> = Uif . aSUig )

(2.39)
Before concluding the proof it is necessary to enunciate and

demonstrate the important

Lemma 2.3 : D =D =10 (2.40)

Proof: let F = {fl , fz}T be an element of 5;. It will be
shown that it is possible to construct a sequence of elements

of D  converging to F. Consider indeed the following

1
sequences of elements of #o
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A

g (k) = -DE (k) Kk (2.41)

h (k) = -2Df (k) + D°f (k) k*k ° (2.42)
n n n [o]

with

lim ] U, £ - F [ — 0 (2.43)

One has that

;n(k)l_c =0, D;n(k)lc = -2D§n(1<)[c (2.44)
+ + +

h (k)| = -2Df (k) , Dh (k)| =0 (2.45)
0l - Bl ool
From these identities it follows that

lim ] U (f +g +h ) - F [ — 0 (2.46) ##
- n

End of the proof of theorem 2.2:

let £,g € 5. One has from (2.37) and (2.39) that

[£,n7g]l=(U0f,0 (e )= (Tf,c0g) (2.47)

3+
It is clear that GJL = D . By lemma 2.3 one then obtains
that cGD+ - ﬂ+. This allows to exploit the formula (2.47)

twice and to obtain

1.2 = o 1.2 = 2 =
(£, (n)gl={(UEf,Um)g)=(Uf, o Ug)}-=
(Uf,Ug)l=-[f,g] V£ge . (2.48)
This implies that (nl)z =1 i
o]
= 1 2,4 2

Corollary 2.4: The spaces D, o and L"(R, C7, du) are

isomorphic.
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Proof: the isomorphism of %5 has been already shown with the
construction of the operators ﬁi'

The inclusion D C IF(RA, Cz, dp) is obvious. The opposite
inclusion may be proved in the same way of lemma 2.3 by
showing that V F € LZ(RA, C2, du) there exists a sequence

of elements of D converging to F. The completeness of D then

obtains the desired inclusion. ##

Therefore the space ﬁg may be concretely realized as
IF(RA, Cz, dp), that 1is space of complex two-component
functions depending on the momentum variables Lk |
square-integrable with respect to the measure dp; this is
the same of the space of complex two-component functions
defined on C+ with its tip deleted, square-integrable with

-3 .3 .
respect to the measure w d'k, denoted with

Lz(c+,cz,w‘3d3k) i

Corollary 2.5: a possible explicit representation of the

. : 1 . . 4 . .
action of the operator n on test function in F (R') is given
o) (o]

by the formula

A

(ni £y —f(k) - (2 + kzk;"‘)D%(k) + kzk;z D2F (k) (2.49)

Proof: again one follows the proof of lemma 2.3. Besides it
is easy to verify the correctness of (2.49) exploiting it on

the formula (2.20). ##
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2.4 The one-particle space Kland the Fock-Krein-Hilbert space

I~

The one particle space K is given by

kb= P /¥ (PRY ) (2.50)

Using (2.11) one gets that the scalar product (1.23) may be
extended to the whole Kl and it exists a bounded and

self-adjoint operator nl such that V f,g € K' one has:

<f,g>=(f,ng) (2.51)

The special role played by the function x becomes evident in

some of the subsequent lemmas.

Lemma 2.6: the linear functional defined on K by
FX(f) = <x,f> (2.52)

. . 1 .
has norm equal to one; therefore it defines a v € K” which

has norm equal to one and such that
(v, £)=<x, £> (2.53)
Proof: it is immediate that
| Fx(f)l / If]l = 1. (2.54)
Consider now a sequence £X in P (RQ) such that
n o
£ (k) = 9 () x(k) (2.55)
n
with © a real,infinitely differentiable and non decreasing
n
function such that

0 if w=<0
ﬁn(w) = (2.56)

1 if w 1/n

v
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It follows that

I<x, 5127 %= 1+ £7% |<x, g5 (2.57)
n n n n
One has that [14] £X 2 |<X,fX>|—{=
n n

cfdak w8 ()" () ) () J kw0 (@) X)L D 0 (2.58)

It follows that the expression (2.57) tends to one. The
assertion (2.53) is now a consequence of the Riesz theorem.
HH

An important consequence of lemma 2.6 is that the space k' is
not a functional space and indeed it contains an infinitely
delocalized state that is v. This is seen in the following

corollary

Corollary 2.7: the sequence v = (<X,fX>)_l £X (2.59)
o n n

. 1
converges strongly in K  to the vector v.
Proof: it is an immediate consequence of the proof of lemma

2.6. ##

The interpretation of v as an infinitely delocalized state
follows from that fact that the sequence v_ converges
pointwise to =zero everywhere. This type of phenomenon is
directly related to the infrared singularities of the
Wightman functions and to the minimality of the topology
chosen to costruct the Hilbert space (i.e a topology that

yields a maximal Hilbert structure) [14].
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Consider now the following subspaces of K':
I —

Ko = fo(R“) /¥ (f’o(R“) ) ' (2.60)

Kso = { £ € Ko : <x,£> =0 ) (2.61)

Lemma 2.8: K' decomposes into orthogonal spaces:

1 1 .
K=Koo+{x}+{v) (2.62)
Proof: let f € Kso. By definition

(v,£) = <x,£>=10 (2.63)

Besides if £ is a sequence of elements of 7 (Rl‘) converging
n o]

to £ in Kl then

(f,x)=lim(fn,x)=0 (2.64)
Finally
(v, x)=<x,x>=0 (2.65) ##

. . 1 . .
The action of the metric operator 7 on the 2-dimensional

subspace of K generated by v and y is given by the following

Lemma 2.9: 1) n'v = x , 2). n'x = v (2.66)
Proof: let f € K'. One has

(v, f)=<x, £>=(n'%, f) (2.67)
and this implies (2.66,1).Let now f € J"(RA). One has that

(x , £)=£(0) (2.68)

29



Besides from lemma (2.7) it descends that

<v ,f>=1lin<v, f>= £(0) (2.69)
Therefore
(x ,f)=<v, £f>=(nv, £) (2.70)

The density of P(R*) finally yields (2.66,2). ##

It is finally possible to enunciate and demonstrate the

(S R . . .
Theorem 2.10: the space K 1is a Krein space i.e the metric

operator nl satisfy the equation (nl)2 =1 - (2.71)
Proof: let P be the projector on the subspace Kso. By lemma

2.8 it 1is possible to decompose a generical f € K' in the

following way :

f=Pf + (v,E)v + (x,0)x (2.72)
Lemma 2.9 then imply that

<f, g>= (Pf,ang) + (£, v)(x,g) + (£,x)(v,g) (2.73)
It is easy to understand that

Pn'P = Py'P (2.74)
o

Define v, = 2 (v *x) (2.75)

and let P, be the corresponding projectors. One has
<f,g> = (£,mg) = (£, ( PBn P+ P- Plg) (2.76)
v £,g € K'. This implies that

nt = PniP +P, - P (2.77)
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Using (2.77) and theorem 2.2 one can easily show that the

(2.71) is true and K' is a Krein space. ##

. 1
Corollary 2.11: the one-particle space K may be concretely
realized in terms of functions that depend on the momentum

variables as follows:

A

Z,d,u)+{V)+{x} (2.78)

k' = @R, ¢
Proof: the proof is easily obtained by lemma 2.8 and by the

observation that the norm (2.18) is equal to the norm (2.12)

on functions of the form h = £ - (v,f)v , with fer (Ré).##

The closure of D with respect to the topology induced by
o
(2.16) is called K. Clearly K has the form of a direct sum of

tensor products:
1 n
K-Zn(®sz<)-zn1< (2.79)

Theorem 2.12: the space K is a krein space i.e. the metric

. . . 2
operator n satisfies the equation n"=L1.

Proof: by equations (2.15) and (2.16) it follows that
n KW c K (2.80)
and therefore

" =n'® '@ g (2.81)

this concludes the theorem. ##
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2.5 THE OPERATORS U(a,A) AND THE ESSENTIAL UNIOQUENESS OF THE

VACUUM.
The representation of the Poincare’ group defined in (1.14)
induces the following representation on the test functions

depending on the momentum variable:
U(a,A)E(k) = exp(ika)f(Anlk) (2.82)

Using this equation it is possible to show that the operators
- U(A) = U(0,A) are bounded when restricted to the n-particle
space K, but their norm is greater than one. This implies
that U(A) is unbounded on K.

The situation is different for what concerns the operators
U(a) = U(a,l). Indeed it 1is easy to see that they are
unbounded also when restricted to the space K . However the
unboundedness of U(a) is due to the ultraviolet region and
therefore it is not a serious problem in this context.

An important feature of the Krein space 1is given by the

following

Theorem 2.13: The space K contains an infinite dimensional
subspace V of vectors which are invariant under Poincare’
transformations.

Proof: the first step consists in proving that the wvector
v € XK' is invariant under U(a,A). Since U(a) 1is unbounded
it is necessary to check that v belongs to its domain. This

is true because the sequence U(a)v 1is a Cauchy sequence in
n
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K' with v_defined in (2.59).

Now it is sufficent to observe that for f € f(RA) one has
<v,f> = (x,f) = £(0) (2.83)
This implies that

< U(a,A)v - v , £f>=<v -f£>=0 (2.84)

’ f(a,A}
The density of f(R4) and the non degeneracy of the intrinsic
inner product together with (2.84) allow one to proof the

Poincare’ invariance of the wvector v. Clearly all the wvectors
n

v =0 Vv (2.85)
5

are Poincare’ invariant and this concludes the theorem.##

At this point it 1is worth to mnote that the wvacuum is
gssentialy unique in the sense that the n-norm of the vectors
(2.85) is zero. These features of the Krein-Hilbert space of
the dipole field are very close to the corresponding ones of
the two-dimensional massless scalar field [1l4]. This is not a
surprise because the x-space two-point function has the same
form iﬁ the two cases. It is perhaps useful to say again that
it is possible to discover these structures and in particular
the infinitely delocalized and Poincare’ invariant vector v
only by making use of a minimal topology to majorize the

Wightman functions.

The vector v has an interesting counterpart at the level of

the field algebra. Here too there is an important difference
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with respect to the standard case : the strong closure of the
field algebra contains infinitely delocalized field operators
which are translational invariant. Operators of this kind
have been introduced in past, in different contexts, as ad
hoc ingredients. On the contrary they appear in the present
treatment as naturally associated to the infrared structure
of the theory,and it is believed that they are proper of
every Q.F.T. with non positive infrared singularities.The
dipole shares also this' characteristics with the massless
scalar field (see [1l4] for more details about the next

paragraph).

2.6 EXTENSION OF THE FIELD ALGEBRA. INFRARED OPERATORS

The representation of the fields is given on a dense set by

the formula

nt+l

(YD = { (m+1)Y? waj d'k @(ko)s'(kz)z'(-k)m (kKo k)

n

n A

-1/2 n-1

+n .Zlf(k) ¥ (kl"'kyi’kiﬂ"'kh) (2.86)
=

where U” are symmetric functions in f(th.
It 1is simple to check that the field ¢é(f) transforms

covariantly under the action of U(a,A), i.e.

U(a,n) ¢(f) Ua,r) = (£ ) (2.87)

{a,n)}

The norm of a vector belonging to K is defined by making use
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of the definition (2.16), and is denoted by | “K. Using

(2.86) one obtains for ¥ € K':

| oo o< @™ g | e (2.88)
with

e =1el+10€] - (2.89)
and %’(k) = ;_(—k) (2.90)

It is clear that the sequence of vectors

¢ (£ ,..... E ) v ﬁ (2.91)

converges strongly in K if each of the sequences fn and f;

i i

converges strongly in K'. This in turn implies that field ¢
has a strongly continuous extension to the closure of f(Rq)

w.r. to the topology defined by the norm || ||

1]
Lemma 2.14: r@RY) /¥ (PRY)

2

- 1fcuc, ¢ WdK) + (v )+ (v )+ {x ) (2.92)

Proof: for the proof one has to repeat the steps leading to
corollary 2.11. The vector v is obtained as the limit of the

sequence v . ##
n

Corollary 2.15: The strong closure of the local field algebra

contains two infinitely delocalized operators. Their explicit

representation is the following:

GOW= @ L v TG,k kLK) (2.93)

=1
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ntl

(B HV™ = (D)2 CRIN k) (2.94)

They are invariant wunder Poincare’ transformations and

satisfy the following commutation relations

[ ¢(v) , ¢(£) 1 = - £(0) (2.95)

[ ¢(v) , ¢(£) 1 = £(0) (2.96)

for each f belonging to f(Ré).

Proof: The existence ofﬁthe operators ¢(v) and ¢(v ) follows
easily from lemma 2.14. Their Poincare’ invariance may be
obtained using the covariance of the fields and the Poincare’
invariance of the vectors v and v . The commutation relations

are easily computed as their own vacuum expectation values.##

A final remark is in order: a result of Garding and Malgrange
[16] guarantees that if ¢ is a tempered solution of a
hyperbolic wave equation then it is sufficent to smear it
either in the space or in the time variables; therefore they

make sgnse the fixed-time fields

$(t,£) = j $(t,x) £(x) d’x (2.97)
and the fixed space fields

$(g,x) = J ¢(t,x) g(t) dt ‘ (2.98)

and they are infinitely differentiable of the time and
respectively of the space variables. This result is the key
for a possible canonical formulation of the theory (which

will not be performed here).
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In particular thanks to equation (Al.1) one easily
understands that the fields ¢ and 49 A4 , as well as 8 ¢ and
o o

A¢ are canonically conjugated.
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CHAPTER 3.

3.1 The physical states.

The structure that has been constructed in the previous
chapter may be used here as an intermediate step toward the
identification of the physical Hilbert space of states.

Thé reasons that have been exposed in the introduction as
well as the unconventional features of the space K revealed
in chapter two should be enough to convince everyone of the
convenience (if not necessity) of this intermediate step.

'
Arrived at this point one must identify a subspace K ¢ K such

that
<VT , ¥>=>0 if ¥ € K (3.1)
¥ € K (3.2)

r
The subspace of K whose elements have n-norm equal to =zero

is denoted by

K —{TeK: <¥,0>=0} (3.3)

The positivity of the intrinsic inner product when restricted

’

1 rt
to the space K gives sense to the quotient space K / K

Then by completing this space in the topology defined by the
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intrinsic inner product ( which defines a norm on it ) one

obtains the physical Hilbert space of the theory:

>
’

K = (K /K ) (3.4)
phys
As before it will be possible at first to look for a

one-particle physical space, and then to obtain the complete

physical space by a Fock procedure.

3.2 Some considerations on the breaking of the Poincare'’

group.

Before making the concrete construction of some particular
physical spaces it is worth to explore the possibility of
constructing one physical space which is invariant under the
Poincare’ group. Actually the complete solution to this
problem is not yet known but some considerations are
possible.It is considered only the explicit action of the
time translations.

Consider a function f & f(R4) such that

2

<f,f> =J (1-D) ;%[ dp = 0 (3.5)

where the expression (3.5) has obviously the meaning that was
given to it in chapter 1. Clearly if f has a chance to
represent a physical state must satisfy condition (3.5).

The time translations are represented on f in the usual way:
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%a(k) = exp(ikoa) %(k)

(3.6)

It is useful for the following to compute the expression

h (a) = Re <f,f > =
n na

Define

m

0™ (@) = E (@)

It is possible to show with a recurrence argument that

h(2m+l)(0) -0
n

(2m) _ _om m 2(m-1) Sz dk
h =7 (0) =n" {(-1) w ((1-2m-D)ff|)lC'7;-}

2 2
=nmh:(tm)

(0)

Consider now the expression

F (a) = <f-f ,f-f > = 2<f,f> - 2h (a)
1 a a 1
By construction one has that

Fl(O) =0

Besides (3.9) implies that

(1)
1

F

|
o

(0) =

Re J ((1-Dy|£]? - inako|f|2)exp(inako) du

J'( cos(nak ) (L-D)|f|” + nak_sin(nak_)|£]”)du
(o]

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

Therefore the point a=0 is an extremal point for the function

Fl(a). If one requires the non negativity of the function
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Fl(a) then he must impose the condition

(2) Sz S2 a’k :
F 20(0) = -2f {[£]" + D|£] }LC — =20 (3.14)
+

Note that now the expression in the R.H.S. has a perfect

meaning in itself.

Consider then the expression
F_(a) = <£-2f +f , £-2f +f > = 6<f,f> - 8h (a) + 2h (a)
2 a 2a a 2a 1 2

(3.15)

(1)

N (0) = 0.

Again by construction FZ(O) =0 and by (3.9) F
One has that

(2)
2

F'? 0y = -8hi”(0) + 2h;”(0) - -8hf’(0) + 2[4h;”(0)] -0

(3.16)
The third derivative of Fz vanishes thanks once more to (3.9)
and therefore one has to compute the fourth derivative.

(4)
2

(4) (4)

(0) = -8n "’ (0) + 2n; ¢4

F (0) = 24 h1 (0) (3.17)

The local minimum (i.e. positivity) condition now is written

A A 3
4y, 2 2 2 d k
h (0 = - J w { 3|F|° + D[f’}[ﬂv—;~ >0 (3.18)

The next expression to deal with would be

F (a) = <£-3f +3f -f , £-3f +3f -f > =
3 a 2a 3a a 2a  3a

=20<f, £> - 30h1(a) + 12h2(a) - 2h3(a) (3.19)

One may direcly check that all the derivatives of Fa(a) up to
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the fifth order wvanish when computed in a=0. One has
F§6>(0) - -3Oh§5)(0) + 12h;6)(0) - 2n.°7(0) =

(6)

- -SOhiS)(O) + 12[64h§5)(0)] - 2[7290:°7(0)] =

-720n.%’ (0) (3.20)

In this case one has that the f must satisfy the condition
(6) by w12 ~oay dk

“h "7 (0) = -J w{S|£]° + D|f|}¢t+~5— >0 (3.21)

Going on in this way one arrives at the n-th step in which

takes in consideration the function

(E?(-l)kfk;> ' (3.22)

= 5 o - 'J
Fla) =<YXQCDYE 0

n
i=0 k=
One has that all the derivatives of Fn(a) up to the
(2n-1)-th vanish while the 2n-th one gives the condition

q°

w
+

-

|

f wz“‘z{(l-zn)|%1z - D|%|2}LC > 0 (3.23)

They have been obtained in this way a set of necessary
conditions that a function must satisfy if the linear span
constructed with the function itself and its time translated
is poéitive.These conditions will be wused in the next

section.
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3.3 The physical spaces.

It is now time to describe concretely the structure of some
possible physical spaces and their behavior wunder the

Poincare’ group.
g

Theorem 3.1: There are three families of maximal subspaces of

1. . e . . .
K in which the intrinsic inner product 1s positive

semidefinite; they are given by

a)y K © =L@, ¢, aw) + (v) (3.24)
z2,v z

B) K = LI@RY, &% ap) + (x) (3.25)
z2,X z

) K Y = 12@®Y,6%, du) + (v ) (3.26)
z,v z +

+

where z is a complex number such that

Rez < 1/2 (3.27)

LZ(R4,CZ, dp) is the subspace of Lz(RA,Cz,dp) whose functions
z

are of the form {(l-z)¥ , zU } ' (3.28)
These spaces are the completion in the norm defined by the

Krein inner product of the dense sets

al) @;1= £ e PRY D%o(k)tc - z%o(k) , §O<k> -0 (3.29)
bl) D;1= (£ e r@®" : D%O(k)LC = z%o(k) , <x,£> =0 (3.30)
+
cl) w;1= {f e P(RY): D%o(k)Lc - z%O(k) | EQ0) = <x, £} (3.31)

+ +
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Proof: By lemma 2.8 a generic function fer” may be written
f=Pf + (v,6)v + (x,B)x (3.32)
Therefore f has positive n-norm if

<Pf,Pf> + 2Re {(v,£)(x,£)) = 0 (3.33)

This may be verified if

<Pf,Pf> = 0 (3.34)
and
2 Re (v,f)(x,f) = 0 (3.35)

The (3.35) is verified in one of the following case:

1) (v,£) =0 (3.36)
2) (x,£) =0 (3.37)
3) (v,£) = (x,£) (3.38)

The interpretation of the first two of these conditions is
immediate; in the third case f has a component in the space
generated by v and x which is directed along the vector v,
which has been defined in (2.75)

Condition (3.33) may be rewritten
<Pf,Pf> = J (|fl]2- ;f2|2) dp = 0 (3.38)

T

vhere { £, f} = ﬁ+(Pf> (3.39)

and is solved by the spaces (3.28). It is easy to see that
these spaces are maximal in the sense that no one of them is

properly contained in a largest positive semidefinite
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subspace of LZ(RQ,CZ,du). It is also clear that they are
isomorphic to IF(RA,C,dp). This concludes the first part of
the theorem. To obtain the second part one starts from the

dense set f(Ré). Again one asks that
R
<f,f> =<f ,f > + 2Re £(0) <y, f> =0
o] Q
This condition is splitted into the two inequalities:

<E L E> = j (1£, - DE_(k)|*- IDE_(k)|)dp = 0 (3.40)

Re £(0) <f,x> = 0 ‘ (3.41)
A linear condition which solves (3.40) is written
Dfo(k)LC =z fo(k)L . (3.42)

+ +

(3.41) is solved by the one of the conditions

£(0) = 0 (3.43)
<x,F> =0 (3.44)
%(0) = <x,f> (3.45)

First of all notice that there are solutions to the condition

(3.43) in P (R"): indeed for instance
e}

A A

f = wf - 1/2 K*(Df - zf) fer (RY) (3.46)

explicitely solves (3.42). A more interesting class of

solutions of the (3.43) may be written in the following way:

A

g =0 () [% - K% (Df -z%)/zwz} fer (RY) (3.47)

It is now clear that the Krein closures of the sets (3.29),

(3.30), (3.31) are the sets (3.24), (3.25) and (3.26).##
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The one particle physical spaces that one obtains exploiting

the procedure (3,4) are

1 "1

Konys 2.0 = K, / (V) (3.48)
1 ‘1

Kphys z,x—Kz,x/ {x) (3.49)

K -k (3.50)
phys z,v+ z,v+

The complete spaces are then obtained by a fock procedure.

It appears clear that the physical spaces of the theorem 3.1
are not invariant under the action of the Poincare’ group;
this may be seen by considerig the fact that the subsidiary
condition (3.42) is not leaved invariant by the time

translations:

D(eXp(iakO)%(k))Lc = (z + iako)%(k) (3.51)

+

To the same conclusions one arrives by observing that the
subsidiary condition (3.42) is mnot in accordance with the
conditions (3.23).

However the (3.51) itself may be interpreted as a subsidiary
condition identifying another physical space and this because
of the Poincare’ invariance of the intrinsic inner product.

One has indeed the following mapping

'

U(a) 7); -9 (3.52)

z+iak
Thus ﬂ; is leaved invariant only By the spatial translations.
The subgroup of the time translations is spontaneously broken
in all the spaces of theorem (3.1). This result goes in the

same direction of the results obtaines by Thirring with other
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tecniques.

Using the formula (Al.34) it is possible to show that the
Lorentz transformed of a function obeying the subsidiary
condition (3.42) must satisfy the following subsidiary

condition:

D£(A™K) [ = [0 0% 2z £ 0] [ + (kOAOi6; £
+ + +

(3.53)
’
where J means derivative with respect to the transformed
variables A" 'k. When A = 1 the (3.53) reduces to the (3.42).

’

If one denotes 9 the set of functions satisfying (3.53)
z

A
then

’

UA) D =10 (3.54)
2 z,A

The condition (3.53) implies that purely spatial rotations
map each physical space onto itself while the subgroup of the
boosts is spontaneosly broken.

The spontaneous breaking of the time translations and of the
boosts relies on the choice that has been made of expressing
the subsidiary conditions in terms of the operator D.

It is however possible to rephrase the entire formulation of
the theory in terms of the operators DC of appendix 1.B .

In particular making use of Dﬁm = ki 6/31{i one may obtain
physical spaces in which there is a spontaneous breaking of
the spatial translations and rotations . This alternative
possible formulation has never been noticed in past.

However the question of the possibility of constructing a
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Poincare’ invariant

nontrivial physical space is still

unanswered and may be the first continuation of this work.
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