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INTRODUCTION

In this work the origin of the conformal anomaly
which arises in the Polyakov functional quantization of
string theories is discussed.

In particular the critical dimension d=26 for the
bosonic string is computed and a preliminary result,
which suggests the absence of conformal anomaly in the
Green-Schwarz formulation of the heterotic string, is
presented.

The plan of the work is the following:
in the first part we introduce the generalized Riemann
zeta function as a way to regularize the determinants
of certain differential operators. The connection of
zeta function with heat kernel is exploited.

In sect. 1.3 formulas are derived which relate heat
kernel and zeta function to the trace anomaly.

In sect. 1.4 heat kernel is used in order to esta-
blish an index theorem.

The results of the first chapter are mostly based on the



following references [lt;q]

In ch. 2 a method is presented which allows us to
evaluate the trace anomaly for the operators we are in-
terested in. It is basically a first order perturbative
computation of a Schr8dinger-like equation.

In ch. 3 we review the Polyakov prescription for
the guantization of the bosonic string following as
standard references Etg%‘“]

The results of ch. 1 and 2 are then used in order
to derive the Riemann-Roch theorem and the critical di-
mension for the bosonic string.

In the final section the Green-3Schwarz formulation
of the heterotic string is introduced; then we compute
the conformal anomaly for an operator which appears in
the quantization of this theory. The relevance of the

result in proving the conformal invariance of the hete-

rotic string is discussed.



CHAPTER 1
THE HEAT Ks&RNEL (ETHOD AND THE

ZETA PUNCTION REGULARIZATION

1.1 Introductory remarks and notations

We will describe a method which enables us to give
a precise meaning to the partition function for theories
formulated on a curved space-time background or, ejuiva-
lently stated, for evaluating the determinants of
certain differential operators.

In order to manage with well-defined mathemathical
objects we will work in the euclideanized version of the
path integral. Moreover, in order to make use of the

, Ci2l
spectral properties of compact linear operators, we will
work with compact manifolds (since we have in mind to
apply our results to the closed strings the manifolds
we consider are also assumed to be boundaryless and
oriented) .

Let 8ag)be a riemannian metric (we think of it as

an external background) for a manifold M .



The real fields ¢ over M ( $3 M- [R ) belong to a

Hilbert space whose scalar product is given by:

<<W>;£ | e Vo) Qe Yos qezdebg (L1)
oo

The eigenstates of the positions are the generalized
vectors |y» such that
Yidy <yl gy = d(y)
Then
|
V> = Yoo = §(xy) 7= (1.2)
v o) ( /%) Vg&)

The following relations hold:

< \2,1 2> = 8 (tg’2> \T"g{z) ( or\'\'\owmmb&\f} (,oho{/'\l"[oh) ( ]4'3)

Sa‘x‘@wln@d: 1 (wowmpOtomen nelation) (1.4)
Let () be an operator ( _(): ¢|—¢-¢' ) which admits

a complete set of proper eigenstates $M

L ‘(‘Pm = ’\MCPM
Z, 14,.5<h- 1 <Yl Gua7= 5,0,

The operator _() will be specified by giving all its
matrix elements

<O |y Ny o <ALy N owy.
Let <%l LUIVY> = _O_Qu)qlml

fhen  <XULLY> = O (xy) 2 Qoo 0= = Qupy<r1Yy (1:5)
def \(-9‘\\1’



Ty () 1is defined as follows:
Tmfla:imxm=z§¢myfﬂ¢m =

= EAM’\[%W <xl LLIw7

(1.6)

A generic state |{> can be expressed through its
mode expansion as \¢>‘: i@ Con | P> (1.7)

Let us consider now the following partition function:

Z (?) N waé)’\/\/@): g@d?uu e/‘;(_' fO(K, \I%wi@@"ﬂ@")q)@" (18)

For the moment the eigenvalues of the operator L1 are
supposed to be strictly positive (114M,=AAM¢M'%nAnf7O)
In a ) -dimensional space we can fix the mass dimension
of Qﬁy and (L, to be:
[_47,“@:]: % I:Q-O‘l] =2
Then the mass dimension of  Qov, Am, Cp will be:
- D -
[dead= -0, [An]= 2 I ERY
e define the measure g)@eu through the mode expan-
sion of ¢(wl, following a procedure which is similar t
Ci3]
the one introduced by Fujikawa for computing the chiral
anomaly
| Do =, Tin(pde) (19)
def.
An arbitrary massive factor M must be inserted in or-

der to have a dimensionless measure.



Haively the functional integral will be given by:

Zgr T pfdene 2 o

+°

Since we know that I dw e‘*“}: \[%- (1.11)
then -
Lok \ 1
Zigy= Tu(pVEE) = T (A2)
| N (112
e [:ﬁm _Aﬂ K = (Je} :£E j t
Mk Tt

fal

So, in order to give a precise meaning to the partition
function we have introduced, we need a prescription which
allows us to manage with the product of an infinite
number of eigenvalues. The presence of the arbitrary
faotar/m is unavoidable and this simply reflects the
arbitrariness to the choice of the normalization constant
for the path integral.

To make sense of expressions like 112 we will use the
zeta—-function technique. Before doing this we just mention
another approach which is worth to know because it 1s
widely used in literatureqﬂand which turns out to be
equivalent to the zeta—function technigue. This is the

so-called proper-time regularization.

It is based on the following representation of the loga-



rithm function: 400

Log = -] () (113)

The determinant of a finite dimensional operator A can

be expressed then as: 1o

db abA -t
o &
The determinant of the o —dimensional operator LL we
are considering can therefore be regularized by intro-u

ducing @ cutoff € was follows:

4 4+
fog deb L= Tof b dE g et (115)

Je point out that the presence of the cutoff ¢ spoils

the scale invariance one naively expects from the (formal-
o

ly infinite) expressions like FQm): S e'tk dﬁ
o b

A drawback of this method is the fact that in order

to remove the cutoff dependance of the results one needs

to implement a renormalization prescription.



1.2 Heat eguation and zeta function

In this section we will consider only non-negative,
self-adjoint, elliptic operators (for a definition of
elliptic operator see [14]).

To such an Operator.ll we can associate the following

equation ( the heat equation ):

;;_)% C_ﬂ (‘X’?I%) - _ﬁQu G_ﬂ(x’%lﬁc) “.JE)

with the boundary condition
%';w;_} G_Q(x,tg,%) = SCX'?)\F;\/, (1.17)
The heat kernel QJL(XQLT) represents the diffusion in
parameter time < of a unit quantity of heat (or ink)
placed at the point } at =0,

The equation can be formally solved by writing down:

S -2 mT B S
leanyft)= ZM(L ¢M@4¢A3): e &’SQ&QLL (LW)
Vg
Otherwise expressed is

—v(l
balxyr)= <xie 7T1Y> (1.19)

since for a generic function f@l) is

<xi Ly = L(Qo) Stx.y)\?‘?,( (1.20)
v/



It is obvious to define:

Tr Gﬂb('%l.t) d:p Th e/—"t:ﬂ .5 6—7)/“ (1.21)

It follows:
T G’_ﬂ(x,y!'t) = (Aw\[—éw <K 6—7_0' fx> = SD{M- 90" G:(L(.X’%/“C) (!(2,1)

We introduce now the generalized Riemann zeta function.
To the non-negative operator _Q we are considering we
can associate the following function
— |
‘? LS) - i/‘n -"§ (I(B)
Q A

~M
with the sum taken over the positive eigenvalues only.
The sum is convergent for large Res>0 ; for other s,
{_{{g; must be defined by means of analytic continuation.
One can prove that ?_ﬂ\s; is a meromorphic function and in
particular analytic at §=0.

The usual Riemann zeta function gR is defined for

the eigenvalues of the harmonic obscillator TR: 2, s

and it is convergent for Re ¢ 4.
‘ -
For _() the primed determinant det {2 puilt up with

its positive eigenvalues only, is formally given by

det = Tpdn  Dndet 0= 3, 0u), (1.24)

For 111@) we can write

FRTUEE 3, &

L S o s (1.2%)
ds T



- 10 =

{ |
At a formal level we have 'j o) = - Ondet 2
QO

Therefore, since the definition of ?IL is such that at
$=0, §11 is analytical, it makes sense to regularize det N
by defining | J
Do deb L = - 2

def. d

We want now to make a connection between zeta function

e (1.26)

520

S

and heat kernel by expressing 'i(ﬁ)in.terms of C— ( x Y )
el L 1dt
or, more specifically, of its trace.
J\
Let (L be the operator obtained by restricting the
1

action of {1 to the subspace (}<wt_ﬂ;)
Let TT(Kemﬂj be the projector over Ker (L.
We remember that the operators we are considering are

Fredholm operators, havin a finite-dimensional kernel.

It is: | 40 A
-x (1 <! |
EL D SN PO D2 SR (X))
A S %] \S'
QN 0 Ay
Therefore
T L 7# <£¥ i A \¢ - 7? . = ? (s)
r s & ml s T S o (1.29)
We make use of the Mellin transform
4 A 49
- | - -
[dog 767 *:‘SB de €%’ (1.29)
0 AL o

(to understand this relation simply applies both sides to

an eigenvector I¢M)) in order to write
! t 5= ~ji

g'dx T e T (L%O)

0]

_ |
r‘LS ]

~
5
0
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ru§> is here the Gamma-function which is given for Resyo
f oo
by : Mor= ([ dy o™
) (131)
We can write
4o° A
— <= | | s-t -T (L
_i.f?‘: I"L:'[;Ly‘_‘ 2M<¢’M‘F‘ So“‘(,'t e l¢m7:
Sy
- ) (1.32)
| . -
2 2, <4l E,,SJT vt ‘}‘e/ftﬂd"ﬁ(f(@/bﬂ)] Q7
0

The final expression 1is

P

’i—ﬂ@): F[;g)j dx \Fgw g de " [G_a(x,x,”c) -a{\‘m(\'{mﬂ)] (1.33)

We end this section with a remark: an operator .116
acting on complex fields can be thought obtained from
the "doubling" of a corresponding operator {1, acting on
real fields. Naively one expects JeFllc: (d@FIHRf' (qu)
The zeta function regularization is consistent with this

requirement.
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1.3 Connection of zeta function with

trace anomaly.

In this section we show the connection of the zeta-
function to the trace anomaly.
If the operator (] is associated with iﬂg) , the

operator < ( o« is a constant 0 ) is associated with

.fdiﬁﬁjz -i}‘gng) (1.27)
It follows
|
@,,,ole;',,c_az *é—s({}xﬁs)ﬂ = Indet 0L +@nx?ﬂ(o> (l.%)
§=0
We remark that _ (1.3
j&ﬁo' ) hj_aw

This relation, as we will see, has the consequence that
trace anomaly does not depend on the arbitrary parameter
M which normalizes the path integral.

The following classical action

S= o Ve g 04008

( ¢ are real bosonic scalars ) is invariant under dif-

(1.29)

feomorphisms and, in D=2 dimensions, also under Weyl

&

transformations ( 9a,F> e~ $ unchanged).

09Q\° ,

Taking the parameter of Weyl transformations be inde-

pendent of space-time we get the dilatation invariance

0= 65= |du 89%6%_92: ["‘gf"‘tgkg%" (1.39)
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b
We define the energy-momentum tensor Tﬂ\g;as

T . L 8% (1.40)
(@)gw‘ ge, 59a
The relation [39 , since %5w>on, implies the
tracelessness of TOLL : #T&Q.: ¢] (1.41)

(this relation is obtained without making use of the
equations of motion)
From a quantum point of view we have the partition

function

L i n
Zgie & 2L (94, B G L)

With our prescription
-t @ho(;’il
e -
Z@): Q % /_&‘L

() is the operator

L

Qo= —— VY Vow o J x

o ol SN (1.43)
Then

W 1= 'ﬁ— _(i } S

@ 2 Is .[1/)«1

Under an infinitesimal dilatation we get

Yy

$-o

(1.48)
8\/\/@‘: iﬁ, Sd,? (o) = _‘E-Bal,*? (@
2 .(L//hu 2 LQa
Since 7'gn as we will see later is different from zero,
el
this relation means that the dilatation invariance is
broken at the quantum level.
L
We now define the quantum energy-momentum tensor T as
b
Te_ 1 W (1.46)

Jeg' \ré:)}o —ga.k
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We get SJWV;%,T“&—_ )ﬁﬁﬂ@) (1.u7)
The energy-momentum tensor is no longer traceless.

Until now we have just performed formal manipulations,
without worrying about how to compute things. The machi--
nery which enables us to extract informations from the
operators we are interested in will be developped in the
next chapter. Here however it turns out to be useful to
anticipate a result we will prove later: working in 2
dimensions the heat kernel G&J&ﬂxlf) can be expanded at
small ¥ as follows

G, o) = 2+ a,e + O0V7) (1.ug)

~

(the first coefficient «_ is independent of ).

We want to show now that the value of jﬁf‘ at §=0
is related to the coefficient Q,x« appearing in the expansion
above, in such a way that (almost)all the informations
about the trace anomaly are encoded in this coefficient.

We start by considering ?&M as given in the equation
(133) . at small s \:l—'\s,]"z s+ys +0(*)

To have a non-vanishing ?Ay at s=0 we have therefore

to look for the contribution of poles é— arising from

$o0
the integration | dv ¢*'(..)
o]
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400

The integration de(w_) can be decomposed as

o0 Ta R o

3(“.)=S(“J +1(uJ for an arbitrary %, -
0 0 Y, 4
The integration detu)gives us an analytic function of § ,

TO
in such a way that the only terms containing poles can

To
arise from integrating Sdr(f“)
0
If %, is chosen small enough we can insert the small ¢
expansion for Qn(*uﬁt) inside the integration.
At this point it can be easily realized that &« pole is

present with residue [.fAnV%@om@‘-AimanJI{]

At the end we have:

d,{ﬂ@) = \i galw\@en&om) - dhim LKM_(L)] (1.49)

We must observe that we are interested in full Weyl
invarisnce, not simply in scale invariance. To extract.
the dependance of the determinant of the operators under
Weyl transformations some extra work and an additional
hypothesis is needed.

We think of an infinitesimal transformation
O O0+50 parametrized by the infinitesimal function

Ofn. Let us suppose that under the transformation the

variation of the eigenvalue )\, is given by:

SAN\: K Am‘<¢m(5;I¢m7 (LSO)
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where K 1s a constant, (i)m are the eigenvectors cor-
responding to A, and = SFixy < SGx (x>
Therefore S0 = wde L (151

The formula one gets from this assumption can be easi-
ly applied to the case of the laplacian operators acting
in string theory.

We notice that with the hypothesis done

Ko L= Ko (+60) (1.51)

After performing some manipulations we arrive at the inter-

medial step
3 il V-
gﬁ-CtS) = T — g c"‘( "C‘S" Ld )«,\[?D‘QH SO‘@H C:(L(X.X"C) —Tft 80’\”-[-\(‘/\9’1_(1,)\] (15’))

s
r\»o

By inserting now the small T expansion for the heat kernel

G_(xxt) @s done before, one can write the final result:
e Al

SQMJC}"_O_: K[ go(w\fé@,gmx,aoou - 65’1’1Q<0/1_ﬂ,ﬂ U-BLD
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1.4 Connection of heat kernel with

index theorem.

In order to fully exploit and appreciate the conse-
suences of the heat kernel approach we have previously
introduced, it is useful in this final section of the
first chapter to sketch an argument which shows the con-
nection of heat kernel with an index theorem?l%ie relation
we get turns out to be useful in chapter 3, where we will
be able to derive the Riemann-Roch theorem.

For our purpose we have to consider a compact, orien-
ted, boundaryless manifold M which is thought to be the
base manifold for some vector bundles (say V+'V_ )

Let us denote as E, (respectively E_ ) the sets of
sections of our vector bundles ( therefore

Eve (4] 4 MoV, El= {4 M=)

Furthermore let us suppose that Ehe_have the structure
of Hilbert space with a well-defined, positive, scalar
product (to be definite we can think of qu_as the sets
of tensor fields introduced in >3pp. 1 ).

Let P be an operator connecting £, with E

+ + N
P-E,»E ( P is its adjoint, P E—>E, ).
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We define as_ﬂ+ L _the operators:
AN S

ﬂ@,;{)_ PP ( Q,,: E+—>Eﬂ (1.5%)
.z, A (1.50)

It turns out that _j%;) are self-adjoint operators
(QQ¢)+= 0, ) Wle suppose them to be elliptic in order (L57)
to guarantee the completeness of their eigenvectors.
The operators which satisfy the hypothesis above
have some important properties. A first property is

expressed by the relations:

Kooy = KnP  Keeq = Ke? (1.58)

which follow from
Pd=o =7 Q,.¢=0 for Q €Ey (1.59)
0,420 =7 <hlDy1§rz0=> <PEPE7=0= Pg=0 (1.60)

Another important property is the isomorphism between
4 1
the subspaces (Kﬂ4ll+) C €, and (}<0@Jl_) ce_ (Lbl)
The isomorphism can be seen as follows:

let@meﬁ+be an eigenvector of<11d,with positive eigenvalue

(e A dep0) IE we put =P (W, ¢E) (1-62)
it then follows from the relation
P, = pP(ptp)= (PPT)P= L%,F (1.63)

1
that Y is an eigenvector of.QLﬂwith positive eigenvalue A, .
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As a further consequence, this not only means an lsomor-
phism between (Kgajh>l and(K&nILfénd.a one-to-one cor-
respondance between the positive eigenvalues of.ll+and,Q,
but it also implies that (1, has the same spectrum of po-
sitive eigenvalues of (l_ .

If the eigenvectors @m , labelled by " , are chosen
in such a way to form an orthonormal basis for the sub-

1
space (K£411+) , we can also see from the relation

<¢mip*pM%Q:Am3hmthat the eigenvectors Y, of Ll_ *;:KE W% (1.6Y)
form an orthonormal basis for 0<0111,YL ’
At this point we remember that for our operators the
kernel is a finite dimensional subspace and therefore it
makes sense to define an analytic index -IAF\ as follows:
T@)=  dim(KeaP) - dim(Ken ) (1.65)
AT del.
The index theorem connects the analytical properties
(which are expressed by the analytic index I%GV) of the
operators YIV+ with topological properties which are
expressed by the so called topological indeX, by stating
that the two indices are equal.
Now we want to show how the machinery developped in

£Y

the previous sections will enable us to compute the analyss &
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tic index I (P).

From the discussion above it is clear that we can write:
TPy T o im™ _5 o hmt |.6b)
TP =2,¢ Z.¢ \

(the parameters n m label the eigenvalues respectively

of Jl&‘and ka). This relation can also be expressed &as
IAU)) = In GﬂJ‘(X’X,z) - In Gﬂ‘tx‘x't) (1.67)

( G_atb‘::j.ﬂ is the heat kernel for L+ ).

This equality holds for any <.

In particular we can choose T to be small enough so that

we can insert in the r.h.s. the small < expansion for
C-ﬂi(x'x,'c) . Therefore, in order to compute IA(P) one

nas simply to compute the coefficient o (working in 2

dimensions) in the small ¥ expansion for G‘_QJ(LX,X,T) and G’_g}";","’)

This will be done, as already explained, for the laplacian

operators introduced in pp. 4 . We will see then that the

index so computed is a topological invariant gquantity.

e close this section pointing out that the discussion
about index theorem we have done could be repeated in the
framework of Witten's approach to the index of supersym-
metric theoriesl.:lb]

In this supersymmetric context we can think of a Hil-
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bert space rK, given by Y - E+€BE_
It is possible to introduce =z hermitian operator
acting on Y , as a"supersymmetry operator'", by defining:
P
Qd:ef!. (s 5 ) (1.68)
The operator L‘)F , Ziven by
(~)F= ((ﬂ) _Oﬁ) (1.69)
plays the role of "fermion number operator" and H,
H= Q} plays the role of supersymmetric hamiltonian. (1.70)
The following commutation relations are satisfied:
Lhal= LW wr]=0 (1.70)
{'Q,L‘)F} -0 (1.72)
It is easy to check that for each positive eigenvalue
of H +there is a pairing of a "bosonic" state with a
"fermionic" one. The correspondance is broken for states
having "zero energy". The analytic index]%@)can therefore
be expressed as ‘IAUH-: T (1.73)
This viewpoint is at the basis of an alternative way
to look at the heat kernel expansion, by exploiting its
commection with supersymmetric quantum mechanical

Ci7] ]

systems.
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CHAPTER 2

COMPUTATION OF TRACE ANOLALY

2.1 Explanation of the method used.

de have mentioned in the previous chapter that in
order to get the trace anomaly one need not know the
full solution to the heat eguation; actually it is suf-
ficient to know the behaviour of Git(xdﬁt) for x=9
a2t small T.

In this chapter we present the method which allows
us to compute the coefficient @y in the expansion .48
for a certain class of elliptic operators acting on fun-
ctions which are sections over a 2-dimensional manifold.
The method vroposed is worked out in detail since it is
interesting in itself and it is worth to know because
it can be ersily generalized, along the same lines, to
get informations for operators acting on objects defined
over higher dimensional manifolds.

We use the perturbative approach: therefore if Lo

is the operator we are considering, we can think of it
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as splitted into two pieces:

Loy = Lo+ Vow (2.1)
where.fléy is an operator for which we suppose to know
the exact solution of the heat eguation.

- ¢ __0«014

We want to express e

RV T o)

as:

and make use of the Campbell-Hausdorff formula, which

reads as follows

e eB e QC(A'B) (22)

. [ —-
with  C(AB)= AsB - [ag] v LA DR+ [B [BA])+..

i + -B)
ﬁAfB: LﬂA BQ-BIQB: QC(A+B’ BQB LZQ)

Identifying Az -vQ, |, Rz —xV

and applying both sides of 2.2 to S(x'%).L
Vo
we can write the formula:

-l Ty~ L
G_ﬂ.(xr‘j,'t) = {ﬁ‘tv ZL’EV/ Lﬂa '*"2

L

-4 [Tﬂotfm,’tv]]%..} |
2 ( G’_‘L(X, ’,C)__.

DT

)z €T 6y (2.6)
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If we work in 2 dimensions we can take as (], the flat

laplacian

__Q,O: - 06(9:‘4'(();1) + it

It is an easy exercise to check that the function Go(ﬁj'3>
]

which solves the eauation

‘% G"(xxﬂ/ﬂc) = =L C”ob‘fﬁ/?’)

with the boundary condition

G Glege) = Eluy)

T ot
is precisely given by:

|
Glxyr)= — ¢ G
0( ‘% ) [iﬁoc't

Before going ahead we want to stress that the el-
liptic hermitian operators under consideration are the
laplacians which play a role in string theory and which
are introduced in app. 2.

It turns out that, when expressed in real coordinates

these laplacians are of the following kind:

(g = — \:qu (\(();L J((b:z) +B(X'(9)‘|+ J()XJ + CQ&;:}

In this chapter we find convenient to work with real
coordinates. The final formula we get will be translated

into the complex notation we use for the strings.

(2.7)

(2:8)

(2.9)

(2.10)

(2.11)



- 25 -
o The theories we are considering are invariant under
diffeomorphisms. This has the consegquence that we can
fix y=0 , compute G_Q ("1 0%) at x=0 and work in
a particular frame of reference. The particular frame
. . BREY
given by the normal coordinates expansion around x=0
implies that for our laplacian operators we can put
o) = 4 9 Au; = 0
A(,) X4,’L Q - (ZIZ)
Since from our definition the heat kernel G_ab(l‘} )
i

is a scalar both in X and in Y the results we obtain,
whose form depends on the particular choice we have
done, can be reexpressed at the end in a manifestly
covariant form.

fle are interested in computing the corrections of
GO[O,O‘"C) at small ¥ . We notice that the application

1 Al AL
of the operator 7 :QXJ,Q)‘ at Go(x,oltt) has the effect
i 1

of multiplying (;o(x,o‘z) by the factor

-
L
g AT bt
The piece — vanishes when we evaluate the trace
Yoty

( X=0 ). It is then possible to introduce a sort of

T —-dimensionality of the operators: a derivative 9

has a ¥ -dim.: [D] = —L?J (Q'B>
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A y factor has a ~ -dim. [n] =1L
2
since, in order to have a non-vanishing value when we

compute Gﬂ(x'o‘\:) at ¥=0 it must be "eaten" by a
derivative.
We can now expand the functions A /BW ,CQU

in Taylor series around X=0

Je get the following expressions:

el

il

L, + L2,

A

Q= =[enhe Lawtens J(959))
s - [ oo ] 0+

_.Q%: - [c,+.__]

where
(3
Q= A(O) , ‘Pa.: Q‘O_AU‘) / e&‘p: l A\"'i
O =0 RN
\)'-‘- BLO’ / Cla/: i‘)’ B&XI\
X x=0Q
C - CQQ?

The flat laplacian (1, is given by

N,= - [O” (9:'1'9:1) + c]

(2.14)

(2.15)

X=Q

(2.16)
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As told before we can put (L:i/ Q&:o (218)

It is clear that the only operators in TV  which
give contribution to the lowest order in ¥ are those
whose T —-dimensionality is <14

This implies that the only operators which play a role

Tvl= "I])‘La\)bb&k["?: (9)::*9:1/) ('K “ddim = ’f.)
= ~br (0 0% (vdm= L) (219
V= =y (0 «idy,) (v-diw = 1)

We now evaluate the commutators of these operators with

v, ; we get

(8

[ea,wv]= <" L9 7 "a"Leatf’)L]:
et ( 0.9 +2 )J’”@M?QT) (t-dim=4)  (220)

[vaq, VY, ]- O

[t o [0 s da (it |- 240 (0,0)  (edins 1)

ihen we evaluate the commutators of 3 operators we

W

have:



[Tl%’[%ﬂ%TWH::[Tﬁﬁxnﬂm@MX}:

X . (2.21)
- [\rt(‘)l z'rtlk'&eacglgﬂ: ﬁqmgea\cgﬂg D (t"’t"‘"’:i)

In [tV,[T%zjh]] the only operator which can give
contribution for the dimensionality argument is V, ,
but its commutator with.-flo is zero.
Clearly all the remaining commutators give no contribu-
tion at the lowest order in ¥ .
At this point we can apply the formula 2.5
The exponential will be expanded in power series, we
get:
G Lo0) = { | -2V ‘%[TV,T-(LO‘J +TL2 [zV,[ch,T_(loﬂ ‘i[’cﬁol—,‘tﬂo;ﬂ]\»
+%{@VL§} C'g(xlolt) >‘:o. ‘\;:%D’ +O(V%) (ZQQ)

. . . T l
Taking the derivative 9".19"1Of (}o ("'OI'C)

and putting x=0 has the same effect as multiplying

Cqu;)by a certain factor:

T _at - ¢ 'L':E-—_'. (31_91;}‘
(‘)x. :(()XL: “2?: (3 o) - ,L,‘L
2.13)
[ty — 1 qtt(at Aty = (
'_Z"‘ft V'L = —z' [% (Qk‘_(‘)xt) - @]
We get then the final result:
I L | : l -
G_[L(OIO{T,): L‘ + QTQCC‘E’E(CJX!*‘O{X?J e ;1—(; + O(V’L) ('ZQH)
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262 Final result.

It is convenient to reexpress the final result in a
compact form, both in real and complex notation ( for
complex notation see app. 1 and 2 ).

Let

Do = - [AGIES L) 4B (e ) +Ge]  2as)

fQLQ) = ‘i lax‘l/xOLI

=9 (2.76)

Xz

Then

Catog)= =+ | 4 (900)A

Y + CLO)] ¥ O(\FC)

:- —Z‘,_ (Dx 7 ; sz) B

X=0 X=0
(227)
In complex notation
D= -[4ALY + 280, +C] (229)
Then
G p A L | Y _
a0 7ot oga| Al - %B| s co] o (220)

In this formula a factor 2 has been inserted w.r.t. 427
for taking into account the fact that llc is assumed

to act on complex fields.
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CHAPTER 3

THE STRING THEORY

3.1 Introduction to string theorye.

In this chapter we will review the Polyakov functio -
nal approach to the quantization of the closed, oriented,
bosonic string and we will show how, in this approach,
the critical dimension d=26 is singled out (different
approaches to the quantization of the bosonic string,
like the canonical gquantization or the BRST quantization,
turn out to be equivalent to the Polyakov formulation;
in these different approaches the critical dimension d=26

ol
is obtained from different structures: for instance in
the operatorial formalism the critical dimension is re-
lated to the central extension of the Virasoro algebra).

In the final section of this chapter we will discuss
the conformal anomaly for the Green-Schwarz heterotic
superstring. -

In this introduction we will briefly discuss the ba-

sic ingredients of the classical string theory we need
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to know.
ca] Lo

A string theory is charachterized by the fact that
its fundamental objects are not point-like but one-di-
mensional: it is a theory of a curve whose evolution
sweeps out a 2-dimensional surface, the so called world-
sheet, in space-time.

At a classical level the equations of motion are de-
termined by the Nambu-Goto action, which is given by the
geometric area of the surface. Such an action is highly
non-linear in the coordinates and therefore difficult
to quantize.

£23]

According to the Polyakov prescription we have to

take as starting pointran equivalent classical action

which depends on an additional intrinsic metric %ub .

This new action is givan by:
ab m
IO (X;Q):‘ —Ql; Sﬂdlx \@ 9 QQX QBX/‘&

M is a compact 2-dimensional, oriented surface; g

is a riemannian ( positive definite } metric on M .

(3.0

70“ is an embedding of M into a d -dimensional space-

d
time: X:M~> R* . The space-time is thought to be

flat and euclidean (we have assumed that a Wick rota-
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tion has been performed both on the 2-dimensional world-
sheet and in the tangent space-time where the string
moves ).
iWhen we use the variational principle to get the
equations of motion we are free to vary both :Kﬁkand gaE
independently. The metric 9 is non-dynamical and may
be solved for, so that we are led again for X* to the
equations of motion deriving from the Nambu-Goto action.
The string action :IQ admits 3 invariances at a
classical level:

i ) invariance under diffeomorphisms of M :
f ‘
W w = (%)

'BXICD
X} = X
Jast! Qx> Ax® ded

ii ) conformal ( Weyl ) invariance under local rescaling
of the metric:

9“5@1}—5 Q 8&4}'

iii ) invariance under global rotations and translations
of IR?.

As we have already seen in ch. 1, the conformal in-
variance will in general not be preserved at a quantum

level. As a consequence, this means that when we regula-

(3.2)

(332)

(3.4)
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rize the partition function with a scheme like the
proper-time regularization, the criterion of renormali-
zability forces us to start with the most general action
having couplings of non-negative dimensions and consistent
with the symmetries i) and iii) (the zeta function
technique we use, however, allows us to bypass this
point since there is no need to compute explicitely the
counterterms).

For boundaryless manifolds the most general action

is given by

I (X9)= ELASNJQ\/E}%&\’Q&XPQ,DXMBH_‘; AR+ cjnda\@ 3.5)

The second term is a topological invariant quantity
which gives no contribution to the dynamics while, at

a classical level, the equations of motion require

Czo.

(2.6)
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3.2 Quantization of the bosonic string.

The Polyakov functional approach to the quantization
of the bosonic string is essentially a perturbative ap-
proach which postulates a partition function A given
by:

Z= N3, Dy fxr 7 000)
ewnbedddugh

mmebvion

Here h is an integer, the number of handles of the
world-sheet surface. The sum over h is a sum over the
different topologies of the world-sheet surface and
takes into account the effects due to the string inte-
ractions.
A\ is a coupling constant; N is the usual normaliza-
tion factor.
If one wanted to compute S-matrix amplitudes one would
have to include the insertion of vertex operators.

To be definite we have of course to specify the
functional measure.
It turns out that a natural measure éb:xﬂ‘ for the con-
figuration space C of strings ( C,:.{X C M- mﬂ} )

is the one corresponding to the metric

(3.7)
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1WA [ %G §xnex (3.8)
M

between two nearby maps Xﬂ} X' X Sy
(we remember that in an ordinary Riemann space of finite
dimension N with metric dslsz#xﬂxé the volume element

dV is given by dV= o(Nx\/g ). (2.9)
The word natural is used for the following reason: our
metric is the simplest expression invariant under global
translations of )(M and under diffeomorphisms which does
not involve a derivative of % or a derivative of Xfm
We point out that the measuregbxﬁ‘is not conformally in -
variant.

The same procedure allows us to determine the

measure ED%, ¢ let ]%, be the space of the riemannian
metrics ‘}_ on the world-sheet manifold. _?{, turns out
to ba a convex, non-compact space. A natural metric
(natural has the same meaning as before) for ]z is ex-

pressed by the relation:
q,‘ocJ a,l': cJ
ISq 1% fﬁ“‘zx\@(ﬁ tug g )%a\ﬁgw{ (3.10)

U 1is an arbitrary constant 0,

abecd
G “® is a projector onto the space of symmetric,

traceless tensors:
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G‘w\DCd : —é— ( 6‘;—850‘ +gwd 5‘3(3_ 80&900’) &}“)
EDE} is of course the measure associated with this
metric and it is, just like SfX” , not conformally
invariant. We will see that for d=2b the conformal
anomaly associated with E@%ﬂ precisely cancels the
conformal anomaly associated with @X’“ .

Both the action and the measure are covariantly de-
fined so that, at least formally, the partition function
is invariant under a reparametrization of the world-
sheet. Physically equivalent configurations are counted
manyfold: the configuration space over which one is in-
tegrating is the product space C X 7( , while the
space of physical equivalent configurations is the quo-
tient space ( C-X.?C)//Difﬂ(ﬂ)

Phe functional integral contains an overall infinite
factor which has to be removed by restricting the inte-
gral to a gauge slice, i.e. to a subspace of metrics
which meets each orbit of local gauge group exactly
once.

The full diffeomorphism group Diﬁ{(M) may be

thought of as a discrete transformation in combination
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with an element of D[f& (M) , the subgroup of dif-

feomorphisms connected with the identity.

It turns out that the deiscrete diffeomorphisms may be

anomalous. Here we will use the Fadeev-Popov technique

in order to factor out the integration over Dif&(ﬁ)‘
To apply the Fadeev-Popov technique we have to de-

compose the most general variation Egmk ags follows:

§9abs Shay +29,, 07
with  Shab= G %6 1)
o 900‘

( g&mb is a symmetric traceless tensor ).

Inserting this decomposition in‘H@sze can write:
‘ bed 1 2
Usa % (d5Va 65 sh sy + bwldiVg (8w (3.13)
gl | 4505 LShoy P 45

which implies the following relation
®9:®%X9t) (3.14)

(we have to warn that 3,12 is a decomposition of a tan-
gent vector in an unspecified orthonormal frame which
is in general not integrable and does not lead to a
coordinate system labelled by {, ana ¥ ).

The infinitesimal variation ggwk is specified by
3 arbitrary functions: 2 for the traceless tensor S&AL

and 1 for Sv . It is useful at this point to express
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the generic variation 69@L in terms of an infinitesi-
mal diffeomorphism connected with the identity ( such a
diffeomorphism involves 2 arbitrary functions ) and of
an infinitesinal Jevl transformation which involves 1
arbitrary function (it must be said that not every Sgag
can be expressed in this way: we will come back on this
point later).
Our infinitesimal diffeomorﬁhism is specified by the
infinitesimal vector field $V'um. The corresponding
variation of gak is given by

Sp9a,=s VL8V, + Vil (3.15)
( X/, is the covariant derivative).

Under an infinitesimal Weyl transformation we have:

Sw 90033 280‘30&; (7).16)
Therefore ggahr gbjag-fgwugmk (3.17)

It follows

ggm,lo: GQ.LCA ggcal = Q‘ch:ca( vcg\/ol = (ng)ovb 3.18)

| Cd \~
Ugun0 = 919" 6901 gus[ 207 +9° T,
\
- 1ged

The operator P maps vectors into traceless tensors.
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Changing our variables from -&A% 0 to V ¢
}
we can write the measure as:

(D6 @) = (Do) (DV)T (2.20)

J is the jacobian

T %%3%;/:(A@r(g - (deb Pt Gan

(the term denoted as ¥ gives no contribution to the
determinant because the matrix is triangular).

P* is the adjoint of P and maps traceless tensors
into vectors.

There are two crucial observations; the first one

concerns the zero-modes of the operator P : the vec-
tors oV which satisfy PSV=0 (3,1’1)
belong to Kea? and are called conformal Killing

vectors. A diffeomorphism generated by such a vector
is equivalent to a change in the conformal factor
and must be omitted since the deformation of the metric
has to be counted only once. The correct jacobian is
therefore given by the primed determinant (JC}‘F+P)%
which is built with the positive eigenvalues only.

The second observation concerns the fact that not

every deformation 6&agcan be expressed as Pov .
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It is very simple to realize this if we go back to the
discussion of sec. 1l.4. There is a one-to-one correspon-
dence between the subspaces of vector fields given by

(KMP)J— and the subspace of traceless tensor fields
given by (KQ/LPf)J-
The procedure used to isolate the volume of gauge group
is incomplete and we are still required to integrate
over the deformations which belong to the finite-dimen-
sional subspace Ko P*¥ . These are the so called Teich-
mliller deformations.

We are thus led to write our partition function

as

4 !
/=N 7%0?0%.% Do Dt _QJ..WOSW“(M P*p)

s
ﬁo{;{){)o is the volume of diffeomorphisms which are per-
pendicular to the conformal Killing vectors.
b denotes the Teichmtiller deformations ( Pt is the
integration over the Teichmiiller deformations).
A . . A
9 is a given reference metric.
Since the action IO is gquadratic in Xﬂ the in-

tegration over COB)('“ can be performed in the usual way:

; e L (XI 5&16)

(3.23)
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A
Let X’“ be the classical solution of the eguations of
motion in presence of a background metric % .

We have

. ]
g@x’”oji"(x@): g~I°(X'g)(AeFA> g QX/A (3.24)

0-

/A, is the laplacian operator .43 associated with
the action IQ ( see sec. 1.3 ).

With the symbol J Q)X we denote the eventual inte-

0-wmo

gration over the zero-modes for the laplacian operator.

Since our classical action is conformally invariant

(3.27)

AN

we have Iob’}‘g): ]‘D( 5%/ 9325>
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3.3 The conformal anomaly for the bosonic string.

In this section we will compute the conformal anoma-
ly for the bosonic string, that is to say we will compu-
te the dependence of the partition function / on the
conformal factor Ow.

If in 7 +the integrand is not affected by a change
of ¢ ( T Catine , Then the measure E@G@» can be absor-
bed in the normalization factor N and the theory is
conformally invariant.

To simplify the formulas in our derivation we do
not worry about the complications introduced by Teich-
miller deformations (for instance we can assume to work
in the sector h=0 where our base manifold M is
equivalent to a sphere which admits no Teichmuller de=
formations).

The partition function 3.13 can be therefore re-
written as y

7 N (D0 i oy, W' 7o) U A) [ oxE (26
LU .

where the ratio _leﬁyé1jﬁ is essentially llCKy s the
‘ifo

volume of the conformal Killing vectors.
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We must observe at this point that the operator P
which maps vectors (specified by 2 real components)
into traceless tensors (also specified by 2 real com-—
ponents) is expressed in the complex formalism intro-
duced in app. 2 by the covariant derivative V?J which
maps tensors et'! (2 real components) into tensors

cex? (2 real components t00).
Therefore the operator Pe coincides with the lapla-
cian /_.\Z of app. 2.
In the same way A\, is related to A: (the diffe-
rence is that the latter acts on complex objects, while
we have assumed that A, acts on real fields).

To work out the conformal anomaly we have therefore
simply to apply the method shown in ch. 1 and 2 to the
operators AS’I AY' of app. 2.

The first ting to do is to compute the small <
expansion for the heat kernel GAi(X'x"t)

In order to do this we have to specialize the formula
(2.29) to our operators A:’ ,insetring the proper
coefficients.

We remember that the invariance under diffeomorphisms

allows us to fix at x=0
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TLO): O ga,(}lxp\x_-‘—o (3?,7)
with this choice we can write:
G— + (O 0x) = 4 v g ( 7 t 0 (V+ 2.23)
Ag 9) e 7 ~Do‘)m+ (V%) (
G _(oo07) - —— - 3nt (_99 3 3.29)
Avn (O' 'b) I 1% ( & Ud)L«Q +O(\rb) (
In order to express GAi(ﬁﬁ‘) in a manifestly cova-
riant form we have to notice that, with the position'327
we have RO)= -thdi (3-30)
Xz 0
Therefore the traces are given by
Tn G (xx7)=-4 SJZXV—— +3ner [T OV (3.30)
A:; {9 1t 90” ——-l—(z;- AX\%Q\,K\X) + [T)
‘Tm G (e xa) = L 5%V, = 3=t (g8 R, + O(VT) (331)
AV\ v Zﬂ’t j %‘N 174 jdﬂ \{é@l Q(
The Riemann-Roch theorem is at this point easily
derived: the analytic indexfIAﬁxmis given by
T (V) = dim(KeaVd) - dim (Ken(@2)") = (3:33)
= T*LC— +(xx"(,) - T)t(r _ (>, x71) L’%%l{)
Avx ] Ah,,. {1
Therefore
- L = 3
IA(VM%)—(ZV‘H) . gol x\@ﬁ —(zmu) X(M) B 5)

(we point out that in our formula the dimension of the

kernels are given counting the number of real components).
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The latter equality makes use of the Gauss-Bonnet theo-
rem and shows that the analytic index is a topological
invariant quantity ( by the way, if one would not know
the content of Gauss-Bonnet theorem, our analysis could

prove that -'——S\[%R is an integer ).
M

4n
In particular for n=! we get the relation:
4 vonl. Kl veck. — Y Teichm, deform. = b-6h (3.36)

The variation of the operator A:@’; under an in-

finitesimal Weyl transformation ¢ r+dc is given by:
+ +
S/_\;W) AJtic) - A=

o lwn)SeAter +im(@2) 55V (3.37)

1

v

The corresponding variation of a positive eigenvalue P
of A,:G‘/ is:
6)\;: <. gA:k‘"" ]&€4‘> (3.38)
|LP;$ is the normalized eigenvector of A:w“, which cor-
responds to the eigenvalue ). (therefore L.~ E&WAA‘;;IUTJ—L
and it is a n-rank tensor).

It follows
S)\:: ‘2/(."*')<LPCI 60"4:@“:“{;7 +le<<7,fq2;\6ﬂ‘7:tp;>:

= ‘2(w+«)/\;<k('¢{50'lt.(ﬁ +2n )\, <V SalYy (23%

where |¢;>= \[.;.Z__.qu); belongs to ¢ ™' and is a normalized
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eigenvector of A:\‘ﬁ ( A‘M‘U’" Iy, 7= A; [4ey
. oL
which means |y;» e&&mAn“) ) .
We define QN”JMJ/\+wj by making use of the genera-
W
lized zeta function. It is clear that in order to com-
! +
pute the variation ggmdefzﬁvﬁh we have simply to re-

peat, with only slight modifications, the procedure ex-

plained at the end of sec. 1.3. We get the final result

8 ‘(.)MO{@]"A:@') = - M SJLXGQ"KQ‘ISQX’ +7_(VH'I)T/71§G"T{ K(J/LV/:) -

T

- 2n Trebrnxei )
The expression above is a differential equation which
can be integrated. In order to do this we have to ex-
press the quantities 9, R in terms of a reference
metric 0 : then we have = o exp i

; A
The first term in the r.h.s. can be easily integra-

ted, while the terms containing a trace can be reex-—

pressed as

(Qw+07m6¢nKuA;1 S det MA:)

~%n TnbemKke A= Sthdet H(d,,)

Here H(A}) is a finite-dimensional matrix, defined

as H“’o?e{! <<P,i]4>:>

\3.40)

(2.41)

(3.42)

(3.43)

(3.44)
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+
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where ¢’H q° span a basis for KAL)
and are taken to be independent of the conformal factor.
A similar position holds for H(A_)in terms of KuA,

At the end we get

Q/v\oleF'A:Lcr): 6"‘ tbntl gdz \[—?) [A“"Qkfﬁbmﬁa] +

CE. (3.45)
£ Indet HAT) +ImdetHA, )+ G
Fi%) is a term which is independent of the conformal
factor.
We are now ready to compute the conformal anomaly.
A careful analysis conducted in [QH]'[ﬂ] and which takes
into account the contribution of conformal Killing vec-
tors and Teichmiiller deformations shows that the correct
Fadeev-Popov determinant is given by:
T - det 'AT g (3.ub)

det HAT ) -debBA,,.)

The contribution of the jacobian to the conformal anoma-

ly is therefore contained in the piece

EARRHEREISS o
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d
( LA
The last thing we have to compute is (d6¥<Ao>'L{@XPV
, O-V‘ao?(@/-"
For what concerns chﬁw , it is obtained from 345 Dby
putting n=0 and an overall factor -ﬁ- which is due to
the fact that A, acts on real fields.

We get then

S hndob AT -2 g\ﬁgfi&ﬂﬁm( S¢T KAl )

T

SQ/V\JM—AO = ~r;.ﬁ§\{'éf{g(r+?]-fb(50"ﬂ KQ/LAO)

The second term in the r.h.s. and which depends on Ketlp

is compensated by the variation SSEﬁXj“ of the inte-
Q-V\n‘odm

gration over the zero-modes of the laplacian as the fal -

lowing analysis proves:

4 . o . .
we expand a function @e T in an orthonormal basis

as done in sec. l.1. We get at o and oo = derbon
(t) = ZV\ Cnl‘?/n)g- <‘(~.|%m70_: S

ZP = En C'ml((,‘n7a_. <\f"/h“{)‘/m>0": (Y,,,m

We have to take into account only the zero-modes.
The eigenvectors which correspond to a zero eigenvalue
R A* .
for the laplacian operator o are independent of 0.
Therefore, if l%g>,|?g> are zero-modes at F,Uf re-—

spectively, it follows: L @'s> = (1480) 1o

(3.43)

(3.49)
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S\ is a constant.

Since
[ 4% rg (1 280) (148A)gR(1430) ¢, = Mx \/’9 9,9, = 4 (3.50)
we have g}\ - — golzx \[5 56‘4’:&0 (35‘\)
Sdlx \@4:4’0 |

It is  CH= G(1-§)) and then follows

o.w.,)dmw So-modg/}: golc'o-solco = ‘SXKOICQ L':S.‘-Tl)
akgl-cele ol e

gJCo is a constant factor which appears in the nor-
malization of the partition function; the variation in-
side the partition function is then precisely given by7k@6KmA:)
Since in our case the laplacian operator Zﬁo acts on

d fields we get at the end fo.m@, —jo.mmz d T&(Eo“ﬂ\(m[\o)

. . A . (2.53)
which precisely cancels the corresponding term appearing

in (OI et 'AQ)‘%

The final result is that in d=26 dimensions the con-
tribution of the laplacian operator precisely cancels
the contribution of the Fadeev-Popov determinant and °
the partition function turns out to be conformally in-

variant.



In dimension 0! different from the critical one, we
get that the partition function Z contains a term

which is the Liouville model, given by

+ o-Th “zx\(s[ﬁakgqﬁgbf Re +Aef]

g@@'\x/ e U4n

The term proportional to the constant A has been in-
serted in order to have the most general action inva-
riant under diffeomorphisms ( remember the discussion

at the end of sec. 3.1)'

(3.54)
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3.4 The heterotic string.

The last application of the method we have described
concerns the computation of the conformal anomaly for
the Green-Schwarz formulation of the heterotic string.

There are two ways to describe superstrings. The

251 Lkl
first one is due to Neveu, Schwarz and Ramond and makes
the 2-dimensional world-sheet supersymmetric, while the
embedding is an ordinary space—-time.

13 L¥]
The second, due to Green and Schwarz, is a manifestly
supersymmetric formulation in space-time, which appears
to be equivalent to the supersymmetric truncation of -
C29)
N.S.R. model. For G.S. the string world-sheet is an or-
dinary 2-dimensional surface, but the embedding is a
superspace of 10 commuting and 16 or 32 anticommuting
30] [31)
coordinates.E

The N.S.R. formulation has the advantage that the
gauge-fixing procedure is straightforward, but the 10-
dimensional supersymmetry is not manifest.

In contrast the G.S. action is manifestly supersym-

metric but difficult to quantize for the presence of a

complicated local supersymmetry: calculations may be
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performed in the light-cone gauge formulation.

A general gauge-fixing procedure has been suggested in
J [3u] 03]
P4 the framework of Batalin-Vilkovisky method. In
this framework is interesting to verify the absence of
conformal anomaly because it can be an indirect proof
of the correctness of the guantization ( in the light-
cone gauge the absence of conformal anomaly is related

with the absence of Lorentz anomaly ).

In its original form the covariant G.S. action de—
scribed the embedding of a 2-dim. surface with minkow-
skyan metric into a minkowskyan flat superspace. The
embedding must be minkowskyan because lajorana-wWeyl
spinors in l10-dimension riemannian manifolds do not e-
xist. It is convenient however, as done before, to take
a riemannian world-sheet ( we also assume it to be boun-
daryless ).

The Green-Schwarz lagrangian for the heterotic

L3l

string is given by:
L= 3) IR N )(’“(QX ) 9) (3.5%)

with T{avM: ’C)a)(ﬂ__ ;éxﬁga,@
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9’ is an anticommuting Hajorana-Weyl spinor ( having
16 real components ).
An extra-term which contains the sector of left-moving
"matter-fields" must be added to the lagrangiane.
Besides global super-Poincaré invariance, the Green-

Schwarz action admits a local supersymmetry given by

86—: 2\, Mi\w%K
Tt
Syro 1 Gymib (3.56)
. 5 NG M 2
e = —9(*:19199 —%?) 3
K is the gauvge paramete; leiz ﬂa;;ﬁaf& Xﬁ*

@2'52 are "zweibeins".

The local supersymmetry reduces at a half (from 16
to 8 ) the number of fermionic physical degrees of free-
dom, in such a way that they match the number of bosonic
physical degrees of freedom as it is required from glo-
bal supersymmetry.

The local supersymmetry closes only on-shell: this
fact is at the basis of the difficulties in the quanti-
zation procedure ( just like those supergravity theories
for which no set of auxiliary fields which closes the

algebra is known ).
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As a gauge choice we can take the light-cone gauge

condition

0= ~\;:£ (X”ryq) f-0 (3.57)

In order to impose it near the gauge slice we have to
choose a gauge parameter
<e (e L) Myy'E (3.58)
We must notice that this expression is singular at zeros
of e’}ﬂl( this fact is probably related with the pro-
blem we will discuss later )°
However the jacobian of the change of variable from Z+9
to K 1s independent of f%T* and this change of variable

should be allowed.

With this gauge-condition our lagrangian simplifies

to: _— : .
L= - 'z \@3 l°(9[,»>( JpX" =29 X 7 x*) +
(3.59)
+ D&XJFE- | Vg go‘L Oy 09 -0y 9]
Introducing the projectors T;L: 'é:(\%&Lj C€Q>¢%> (3.60)

the last term can be rewritten as
_0 - + Q\.a_' -
(-2iy) & x* P Gy 5,0
To understand the passage from 345 to 359 we have to ta-

ke into account the properties of X’ matrices, like the
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hermiticity condition
ot

A
(== ¥ =y Gl)
Lz1 8 Y - ﬁ(z{o—gjq)
and the commutation relations
zf-fzfc __Kt:g't
K{'X-" on+

which imply that terms like 8’5“98' are vanishing

i

(3.62)

1

in our gauge.
It is an aesy exercise to check that the classical
equations of motion for Xf‘ are given by
Ax =0
-_ %¢ ( ab—
A\X = ‘@gm [ 9X 959\@)
In order to quantize our theory we have to split the
;e oy
'X fields into a classical background )( which solves
the equations of motion plus a quantum correction:
VS
X X +>(g (3.64)

The terms which in our lagrangian contain the quantum

fields Xﬂ' 9’ are therefore given by
!

L P AR (T -2 (By0,0)V, +
g
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IR s LI % -
PG [ 90K+ 2R 20,80, -
2 805
20000 -206 Dbx;]
v
If we integrate by parts ﬂ and EL and take into account,

(3.65)

respectively, the equations of motion of )?; and >A(+ ,
our lagrangian simplifies.
Another simplification is obtained by integrating by
parts 1 ana ﬁ and taking into account the equations
of motion of )2“" .
We have also to notice ( as we can see by integrating
by parts \[3‘30.9&%95;\(‘) that in our lagrangian there is
no dependence on )AC .
The only term in the lagrangian which contains the
Ma jorana-wWeyl @ fields is therefore
R RS CoA A
with §<+ such that A, $*=0
The integration over & leads us to (Ole*' D)q
where D is the operator
Do P00, (3-66)

expressed in local complex coordinatesas:

D= gﬁ 3 )lz"gt (2467)
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-10
" L
The integration over >(Q leads to (ﬂefle> ¢
To look at the conformal anomaly of our theory we
have therefore to compute the conformal anomaly for the

operator D .

2T (]
It is easily proven that for an operator D= 9 Uzaz

¥ , given by D= g%iUzgg (3.63)
is its adjoint if and only if 9%(}@:0 (3.69)
[36]

It is well known that for a boundaryless manifold
M with h handles this equation has h solutions, each
of one with @(irc) zeros ( Ui is antianalytical
because 3. L3 is a Cauchy-Riemann equation ).
However, and this fact is of difficult interpretation
for our case, the Liouville theorem requires that no so-
lution can be expressed as U€=»2§¢.

If external sources are present Qiﬁ* is a meromor-
phic function with w poles and 2(h-i) +n zZeros.

What we have done is to apply the machinery of ch.
1 and 2 to compute the conformal anomaly for the opera-

tor

2

L=DD= _gﬁ Uzd, 70,0, = -(@)

with the condition 9205:;0
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In our case %*SJTD;ﬁ plays the role of the metric.
It must be said that since Uz is not nowhere vani-
shing (the only exception is the unique solution to
Dzui‘O on a torus  hsl ), the metric is singu-
lar at certain points and the application of the method

presented in ch. 2 has to be done in a more careful way.

We have to insert the coefficients

l i?
A= LU,
B = 3*1_ ?H U%_Q%(j%iuz)
in the formula (2.29)

Tt is 9“"— Pt
- ! - 46 2
Ll(fz e 4 l ul

We define '3
The condition analogous to 3.1Tis now

{ !
0)= - =
6°0)=0 ?gﬁo'!o 0
It is easily shown that

(3.79)

(3.73)

DgBl; _:Z_ 9:.7 [jﬁ Ué tagzi UZ)]L): :7': 91? [4(91;)"%"93 (3%*-%)]‘

which implies
-1 e
Dﬂh-z%%t%§+%%l
In the formula 129 a term proportional to

ngio-—‘loz 929_20«}0 -_LIT’()%Di QM ““Zlo
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is also present.

The final result ( expressed in a menifestly cova-
riant form ) is

G, (007)= ?—;—t - éﬂ\l@) -flfn ‘%39%92“@"”% K 0(Vz) (3.74)

The last term gives contribution only in presence of
zeros and poles of U% .

It is useful to compare the formula above with the
formula for the laplacian operator zﬁ: :

GA“ (o,02)= ?:111‘ " —112; REOJ - (37)
) < 1

Under an infinitesimal Weyl transformation or>eric

the variation of (1l is given by
0O~ __(2": e’zgfbi’ejzxcb: 0 - %8¢ D+D "‘2D$86'D (376)

If we repeat the analysis done in the previous section
+
for the Aﬂiq laplacians we get that the conformal ano-

maly for b+b is given by:

o 9“ olet Ujﬁb) = %ﬁ j\@w Saw ): R +\j—% 91«(‘)5 ‘QM U} L] (3.77)

+
The corresponding term for the laplacian Z&o is

Slmder(A)) = =2 (Vg S R (3.76)
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The presence of the extra-term in 377 has not yet been
interpreted.

For a better understanding one can think to delete
a small area from the world-sheet surface around each
of the zeros of U% and to compute the conformal anoma-
ly. To do this a modification of the machinery presented
in ch. 2 is required, in order to treat with manifolds
with boundary537]

If we discard for the moment the extra terms we can
see that the contribution to the conformal anomaly of

D' is such that the heterotic string is conformally

invariant for left and right movers separately ( this

[38]

also means, as Alvarez has pointed out, that the Lorentz
anomaly vanishes as well: the Lorentz anomaly has in ~
fact the same absolute value as the conformal one; in
the ordinary bosonic string is not present because left
and right movers give opposite contribution ).

To see the cancellation of the conformal anomaly we
have to look at the right moving sector only because the
left moving sector is already equivalent to the stan-

dard 26-dimensional bosonic string.

The determinants involved in the computation are the
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laplacian A, acting on 10 bosonic coordinates X,
the Fadeev-Popov determinant for the diffeomorphisms
(d@LAj)){ and the contribution of Ld@FDWﬁ}i

which acts on the lfajorana-ieyl fields. One has to take
into account the fact that the laplacian and the Fadeev-
Popov determinant have to be restricted to the right
movers sector. The computation which shows the cancel-

lation of the conformal anomaly is sketched in app. 3.
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APPENDIX 1
REAL AND COUPLEX NOTATION FOR

2—DIWENSIONAL ORIENTED IMANIFOLDS

Gvery oriented 2-dimensional real manifold is a com-
plex manifold of complex dimension 1. If such a manifold
is also connected, it is then called a Riemann surface.

Let )‘4, X, be the real coordinates which, in a given
chart, specify a point of our surface. The connection
between real and complex notation is given by the fol-

lowing relations:

7Z= )(,‘ + l.)(,?/ 7= )("— ‘:)1/7, (AI)

0y = é ('D)('-«'(()xt) V; = —?':- ((’)x.+ «' sz) (A.2)

49%95: 9;‘ +9xll = A\g (A3)
The condition (3@,{1:0 ( or respectively (c)%.ﬁ:O ) (A.4)
is the Cauchy-Riemann equation which implies the analy-
ticity ( or the antianalyticity ) of {3

A basic fact in 2 dimensions is the following: for
any given riemannian metric (3%(& <) there is always a
reparametrization > %'= w!(x) ( a change of chart )

which at least locally, i.e. in a given chart, makes
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the metric conformally euclidean. We can therefore make
use of the reparametrization invariance %o put ourselves
locally in the so-called "conformal coordinate system",
with the metric given by:
-0 : -7 -

dsl: € ('X"xt)(o(x}-f-o‘x,i'):?, 0‘%0‘2 (A%)
In our system we can write the metric ds? in terms of
complex coordinates as

1. i - 3

dst= 9.: dzdi +gnd%c1%

with metric tensor components gitven by

e giizo g (A.4)

57 95 50
We remark that an analytic change of coordinates
VA Z'=£@} , %ﬁ,:o is the most general coordinates
transformation which preserves the conformal nature of
our local coordinate system. Under such an analytic
change of coordinates the metric component 931 trans—
forms as a tensor so that 9%5 ded3 is a scalar.

In general a n-rank tensor field T ( for n inte-
ger ) is a function of 3% which under the analytic
reparametrization 7z z2'z 2'(3) transforms as fol-

lows: T e T'= C%E)MT (A 1)
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If W30 , such a Tensor will be denoted as 1 o with
n upper indices; if h<? it will be denoted with n
lower indices as T, 4
It is sufficient to congider tensors which have only z
indices because the metric 3%% can be used to trade a

f index for a z index.

.3
The space of n-rank tensor fields T" " will be deno-

ted as T

T™ has the structure of Hilbert space with an inner

product given by:

e STeT" <s|Ty= [d° "X A3
for S, Te 9!|>dep'fdz\/5(%> §*T (A%)

* -
(if S is a n-rank tensor in z , $" is a n-rank tensor in z)
Such a definition makes our inner product an invariant
quantity under reparametrization.

We specify that the conventions we have used are the fol-
3 : 0/
lowing Jc\"g,‘\,(*.fuz \I—é:,"z)t CZ
\ o= N R
derg(23) = Vgui) = 9es™ 3¢ (A9)

%%2 :(?32)4: Q«C’?’G\‘
At} = Za‘xla‘xz
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APPENDIX 2

COVARIANT DERIVATIVES

In app. 1 we have introduced the spaoe’tmof n-rank
tensor fields. Here we will introduce the covariant
derivatives which transform a tensor field into a ten-
sor field.
It is easy to verify that the operator YQ? , expressed
in local coordinates by KL}z ?%igi (AJO)
has the following property Klfz v
which makes it a "raising" operator.
Conversely, the operator Yj" ) eXpressed by

vm ( 9(2% _9 +2w90' (A1)

in the local conformal system, satisfies
14
N T — T
71 C T
1)
( :A is a " lowering " operator ).
It is easily checked that, with our scalar product,
raising and lowering operators are adjoint of each
i AN he! !
others: (VM) = -V, (A.12)

With our raising and lowering operators we can build

up two different kinds of self-adjoint elliptic operators



[&i , such that Z&; LT

"

They are defined respectively by:
ANEEELA VAR VA (AR)
AN A VARA (A.1y)

In the conformal coordinates system they are given by:

Abe ctet 00 - Tl | (A.15)

|

f—n

/_,\; - 4 EQ%D% + (lw@%o‘)gi +(Zw@}9€0'):} (A.1b)

In real coordinates we have:

Ao - V[ AT (007 ) (0,00 )] (A1)

it

A,

K]

-V AT (@,‘,-:Dﬂ)o-)(a*f.-a,%)nwa] (A19)

* ,
an are called generalized laplacians because in the

1imit of flat metric they coincide with the usual flat
laplacian (this also explains the choice of 2 inA,B/lq as
normalizing factor).

We close this appendix by introducing the curvature

R , which is expressed by the following relation:

AR ASAVARVAE ZR (A.19)

Despite of the form of the l.h.s., R is a function,

not an operator.
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f{ turns out to be a scalar object which is given,

in the local conformal system, by
-0
R=-2 ¢ Ar (A-20)

The Gauss—-Bonnet theorem ensures us that the gquan-
tity ZLn gd"x\@ﬁ is a topological invariant quantity
which preczsely enuals the Euler charachteristic X(wm)
of the manifold ™M (we remember that a compact, bounda-—
ryless, orientable, real, 2-dimensional manifold M is
topologically equivalent to a sphere with some handles;
for such a manifold (M) is given by X(M)=127-1h (A.2)

where 4 is the number of handles).
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APPENDIX 3
CANCELLATION OF THE CONFORMAL
ANOVMALY IN THE BOSONIC AND IN

THE HETEROTIC STRING

We give here the final computation which shows the
cancellation of the conformal anomaly in the bosonic and
in the heterotic string.

The notation used is a bit sloppy ( for explanations and
details see the text ).
The operators we are interested in are L\:; AT and DD,

They satisfy

Shadet A= -2 (vgrse (A7)
§ hndetA < -_'lzgmmf (A13)
S O det D = *;%ﬂﬁ‘rz”"‘ (A.24)

We have Unddeb &, L ety omd bndet VD= & bnder DD (A25)

In the bosonic case

(Ondeb 5% elndetA ) =

I

TR - 4(=)- L W.T)
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which implies that the critical dimension is 26.

In the heterotic case we have:
9 g
}{ =

Lon deb27) "+ g detd,) * deb ' ) ] * =

N

v.‘gh} Moven
7ok o) ao(E) 0

which implies the cancellation of the conformal anomaly.
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