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Chapter 1

Introduction

Surface vibrations are involved in many processes on surfaces at ambient or
elevated temperatures. A detailed knowledge of the surface-phonon spec-
trum is essential in studies of surface diffusion, phase transition on clean
and adsorbate-covered surfaces, and desorption processes. It is also indis-
pensable for any quantitative studies of energy transfer and dissipation at
surfaces. Furthermore, the frequences of vibrational modes associated with
adsorbed species can yield information on surface-adsorbate bonding, the
geometry of the adsorption sites, and the lateral coupling between neigh-

boring atoms or molecules on the surface.

The past few years have witnessed a rapid growth in the experimental
effort to measure surface vibrations [1]. Development of experimental tech-
niques in electron energy-loss spectroscopy [2-3] and ineclastic He scattering
[4-5] have reached such a stage of sophistication that reliable surface-phonon
dispersion curves have been measured for a number of surfaces and data

on many other interesting surfaces will become available in the near future.



There is a need for theory to interpret these results and to provide insights

into the nature of the interatomic forces at the surface.

Surface-phonon dispersion curves for crystal surfaces can be obtained
by solving for the vibrational modes of a slab or semi-infinite solid. Lattice-
dynamics calculations [6] modeled the interatomic interactions by a Lennard-
Jones potential. Subsequent studies [3-5] use more realistic force constants
deduced from the fitting of measured phonon dispersion curves in the bulk,
with empirical adjustments of the surface force constants to reproduce the
measured frequencies of the surface modes. However, these changes in
surface constants are quite sensitive to the models adopted for fitting the
bulk phonons [7] and it is important to have realistic models to assess the
magnitudes of these changes and their dependence on the surface geome-
try. Although the theory of lattice dynamics has been formulated for some
time, it is well known that a detailed application of theoretical results to the
experiments, especially for a complicated surface (e.g. in the presense of
surface reconstructions), for temperature-dependent phase transitions and
near melting, runs into formidable problems. This is particularly true for
noble metals,where the d-s hybridization leads to many unusual properties

of the system.

A way to cope with these problems is to introduce computer simula-
tion techniques, but these, though exact in principle, are often still of low
numerical accuracy, particularly molecular-dynamics results for S (k,w).
Furthermore, the surface phonons are much more complicated than that in
the bulk case. While for the study of vibrational properties, MD is superior
to standard lattice dynamics, particularly in that it accommodates, without

any complications or approximations, for complex distortions, anharmonic



interactions and temperature effects, including possible diffusive motions

and phase transitions.

This thesis is concerned with the molecular dynamics simulation of
surface phonons. We show that with the calculation of time correlation
functions, a detailed dispersion relation in a complicated slab system can
be obtained. In our study of surface phonons on the Au(110) “missing
row” reconstructed surface, unexpected high-frequency modes have been
discovered based on many-body “glue” interactions. A detailed study of
mode polarization and dipole activity shows that the highest mode, around
20meV, strongly modulates the first-third layer spacing, and should be
observable in EELS experiments. A full study of temperature effects, in-
cluding softening of high and low frequency surface modes, is also presented

in this thesis.
The layout of the thesis is as follows:

Chap.2 describes the method, based on the MD simulation, to inves-
tigate surface phonon excitations. We have checked a simple test system
Cu(100) and found an excellent agreement with the conventional lattice

dynamics results.

Chap.3 contains an introductory review on the glue model and the
static properties of the Au(110) reconstructed surface. Also the bulk phonon

dispersion of gold has been calculated.

Chap.4 deals with our calculation of the surface phonon dispersion
of the missing-row reconstructed Au(110) surface at various temperatures.

The three main features of these results, namely high frequency modes,



low-frequency modes, and temperature dependence, are described.

In Chap.5 we calculated the electronic energy-loss spectroscopy, aim-
ing at present an experimental detectable quantity for the observed anoma-

lous high-frequency modes.



Chapter 2

Surface Phonons Studied by
Molecular Dynamics

2.1 Molecular Dynamics Method

The molecular dynamics (MD) method was first applied by Alder and Wain-
right [8] to investigate the properties of a classical hard sphere system. The
method has by now been extensively used [9-11]. The reason for its pop-
ularity is quite simple: it is the most direct technique that can be used to
calculate time-dependent properties of an arbitrary, classical many- body

system.

MD consists of a brute-force solution to the N-body dynamics and
provides complete dynamical information about the system under study.
MD can also yield equilibrium properties, but the real value is in its ability
to follow the actual trajectories of the molecules in the system. The Monte
Carlo (MC) simulation method, in contrast, can only yield equilibrium

properties.



Obviously, the MD equilibrium properties and time correlations for a
specific model can be compared with experimental results and thus be used
to assess the model. The MD method has also been used to generate results
for simple theoretical useful models in order to aid in the development of
the theory of time correlation functions. The level of detail provided by
MD is essentially complete, so that we are in the position to determine
molecular behavior in condensed matter from first principles for a given

model of molecular interaction.

Having assigned the positions and orientations, we calculate the net
force and torque on each intermolecular pote;ltial energy functions. With
the positions, velocities and forces and torques specified, we can begin the
numerical solution of the classical Newton equations of motion. During the
first several hundred time steps the molecular velocities can be scaled to a
preset value of temperature. This is the equilibrium state corresponding to
a desired value of temperature. This is the equilibrium stage during which
the initial velocities relax to their correct equilibrium distribution. After
sufficient equilibration the equation of motion are solved without velocity
rescaling, and the positions, velocities, and other properties are periodically

dumped for later storage on magnetic tape.

MD simulations are customarily carried out under conditions that
correspond to the microcanonical ensemble of statistical mechanics and it
follows in our calculations throughout. That is, the total energy E, the
number of particles N and the volume V are fixed. Methods for performing
MD simulations in octher ensembles, i.e. constant N,P,H where P and H are

the pressure and enthalpy, have also been developed [12].



Often experimental measurements produce spectra in wavenumber
and in frequency space (k,w) whereas simulation results are obtained in
real space and time (r,t). The two sets of results are theoretically related
through Fourier and Laplace transforms, and explicit comparisons between
simulation, experiment and theoretical models can be made. In particular,
the simulation can serve as a test of a model system in a comparison with

experiment.

MD generates real time trajectories of molecules. The trajectories,
which are stored on magnetic tape, are analyzed for the time correlation
functions relevant to a given dynamical property. For a system with free
z-motion and periodic boundary conditions in x and y direction, the Qy
vectors which can be studied in the simulation are restricted to have the

values

ng, ny.
Lz 1 + LyJ) (2'1)

where n;,n, are integers. This is because the system is periodic, by con-

Q = 27(

struction, with side length L, L, in the x and y (space frame) directions.

2.2 Method

For describing collective motions, the dynamic structure factor defined by

Slew) = o 3 [ < IR ARO) 5, oty (2.2)

2rN 7

is the experimental quantity indicating such motions. In the harmonic
approximation the scattering function for one-phonon processes is propor-

tional to the Fourier transform of the longitudinal displacement-displacement



correlation function. When the frequency dependence of S(k,w) exhibits
sharp peaks, the frequency of these peaks, as a function of wave vector k,
defines a dispersion curve of elementary excitations in the system. This
curve is called dispersion relation for the density fluctuation. It turns out
that the longitudinal as well as the transverse Fourier components of the
currents become the collective coordinates governing the phonon excitations

in such a system.

In view of the relation between the displacement and velocity, one
may expect that the velocity correlations as well exhibit oscillatory time
behavior. Thus the phonon excitations can bé traced out by studying their
couplings. It turns out that in practice the velocity-velocity correlation

functions are easier for calculation.

For a slab system, the surface phonon spectral function Ggg(Qu,t)
defined as

Q) = [ dtep(ivt) < v"(Qy,1)vg"(=Qy,0) >

2.3
) 2r < vfi'c(Q”,O)v/lg’n(—Q",O) > (2:3)

can be studied through the time-dependence of displacement-displacement

or velocity-velocity correlations such as their a coordinate
ug"(Qpt) = N7V2 30 (e (t) — Rys)exp(iQuris(t) (2.4)

v (Qy,t) = N~/2 Z vie (t)ezp(iQuris(t)) (2.5)

where r;,(t) and R;, are the instantaneous and equilibrium positions of
kth ion in ith cell in the lih layer and «, B run over polarizations. For
given Q values which are accessible in the MD simulations, phonons can

be classified by using their dominant polarization characteristic. We have



chosen the longitudinal (L), shear vertical (SV) and shear horizontal (SH)
directions, where L and SH represent vibrations with polarization parallel to
the plane, parallel and perpendicular to Q, respectively, and SV represents

vibrations with polarization perpendicular to the surface and Q-

Dispersions of surface phonons can be obtained by peaks of the spec-
tral function G, (Q),w) along the dominant polarization directions. In
this way we can trace out the frequencies of the surface phonons, through
study of the correlations of motions in the outermost layer. In addiﬁion,
the study of correlations associated with vibrations in the other layers is

helpful in understanding of the bulk-modes and surface resonances.

Before discussing in more detail the practical application to compli-
cated surfaces, we study a test system, calculate the surface phonons and

compare with the conventional lattice dynamics results.

2.3 Test System: Cu(100)

As a test case, we have studied the Cu(100) surface, modeled by the two-
body nearest neighbor potential potential of Jayanthi, Fasolino and Tosatti
[13] (Fig.2.1). Since the Cu(100) surface under the potential is an ideal,
unreconstructed surface and its MD has been well tested [13] , it is a suitable

test system for our study.

To evaluate surface phonons one should in principle deal with a semi-
infinite medium. This is actually true for long wavelength surface acoustic
phonons [13] for which the penetration depth is very large. In this manner

one avoids the interference effects occurring between the modes of the two



25 30 R
R(A) -

Fig.2.1. Pair potential (C) for copper

used in our calculation.



surfaces present in a finite slab. The case of a semiinfinite crystal makes
the theory very complicated. However we can treat the crystal as a slab
containing a limited number of atomic planes and in the case that the slab is
thick enough, the slab method gives a reasonable description of the surface

phonon spectrum.

A necessary ingredient in the lattice-dynamical calculations for the
bare surface is a proper description of the interatomic forces. For Cu sub-
strates an accurate description is achieved by the nearest-neighbor central-
fofce~consta.nt JFT model for the phonon dynamics. In this model there is
only one parameter 8 which is adjusted to fit the measured bulk-phonon
spectra. More sophisticated models of the phonon dynamics for Cu exist
which account for second-neighbor and angle-bending interactions [13]. In-
corporation of these extra terms in the phonon dynamics only affected the
surface-mode frequencies a few percent. This results from the fact that
thel angle- bending and second-neighbor force constants are < 10% of the

nearest- neighbor force constant. Thus the single-parameter JFT model] is

adopted in our test calculations for its accuracy and simplicity.

In modeling the surface force constants, we use the truncated crystal
approximation, where the loss of coordination of the surface force atoms is
the only effect considered in determining the surface force constants. Thus

the surface force constants are determined uniquely by the bulk values.

Using the nearest-neighbor central-force-constant model, the evalua-
tion of the dynamical matrix for the fcc (100) surface is straightforward.
The only nonzero matrices DQZ(Q”) are those for I = !',l' = [ 4+ 1 and

I' = | — 1. By evaluating those 3x3 bulk matrices and in a similar way

10



the 3x3 surface matrices using a truncated crystal, where the loss in co-
ordination of the surface atoms is the only effect considered, the surface
eigenmodes and eigenvectors for the finite slab with N atomic layers is then
obtained by constructing the 3Nx3N dynamical matrix from the 3x3 sub-
matrices . Once the dynamical matrix is formed, standard algorithms are

used to solve the eigenvalues and eigenvectors.

The 3N eigenvalues w;(Qy) for Q| along the symmetry lines of the
two dimensional Brillouin zone of the (100) surface of an fcc crystal, are
sketched in Fig.2.2. There are frequencies associated with traveling modes
which form a quasi continuum and frequencies associated with localized
modes lying in energy gaps. The states decaying into the crystal are the
surface states. Among them there is the Rayleigh wave whose frequency
are the surface states formed by traveling and localized waves, the so-called
resonant modes. By increasing the number of planes, the quasicontinuum

of states becomes a continuum, that is the bulk phonon spectrum projected

on the surface.

For the purpose of compare with the future MD calculation, in Fig.2.3
we show the corresponding surface phonon dispersions of a 6-layer slab. Of
course in this case the bulk band can only be modeled by several modes

and the surface modes at long wavelength are influenced by the interference

effects.

11
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2.4 Results and Discussions

We choose a six layer slab and show in Fig.2.4, for system at room tem-
perature, the velocity correlation spectrum for two (arbitrarily) chosen Q-
values along the segment I'M of the two dimensional Brillouin zone. The
conventional LD results at the same Qy point are shown in the top panel
of Fig.2.4, which is based on the same model. For Qy values which are fit
into the MD box, the overall agreement between the peak positions in the
spectrum calculated by MD and the surface phonon dispersions is quite
good. In addition to the peak positions give the dispersions of the surface
phonons, the width of peaks may give information on temperature effect.
Temperature effects on the surface phonon spectrum are small but nonzero,

already at 300K for the present potential.

As a check, we have verified that the velocity-velocity correlation spec-
trum is proportional to w? times the cisplacement-displacement correlation

spectrum, which we calculate independently.

Temperature-fluctuations and surface relaxations appear to produce
shoulders on these peaks or double peak structures as shown in Fig.2.4b ,
the S; mode at M point. For the purpose to avoid such a problem, in the
future calculations we smooth the spectrum by replacing the § -function

like peak by a broadened peak with finite width.

We conclude that the present method provides a good quantitative
way of calculating surface phonons. We may now use the method to ex-
‘plore other situations, including complicated surface reconstructions and

temperature-dependent cases.

12
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Chapter’ 3

The Glue Model

3.1 Introduction

Many problems in solid-state physics and materials science require a de-
tailed understanding of the energetics and structure of nonuniformities in
metals and alloys. Due to the lower symmetry and long-range strains gen-
erally found around defects and surfaces, the study of these problems re-
quires techniques that can handle a large number of atoms. This, in turn,
requires a model of a solid which is both accurate and computationally
simple. Historically, these problems have been addressed with various pair-
potential models of the energetics of the constituents of the solid [14-186].
- This approach is certainly useful in many circumstances. Pairwise inter-
actions, however, fail very badly when applied to bulk noble metals, and
are understandably even worse for their surfaces. The reason for this is
electronic cohesion, which is strongly non-local and hence cannot generally
be accounted for by pair, or even few-body, forces [17]. Noble metals like

Cu, Ag and Au, which possess a (nearly) filled outer electronic d shell [18]

13



and about one sp valence electron, have very low shear elastic constants,
(c11—¢12)/2 and cyy, as well exhibit large deviations from the Cauchy rela-
tion (c12 = c44). The latter indicates the importance of many-body forces.
Microscopically, electronic cohesion in a noble metal is due partly to the
outer s-electron, and largely to the filled, but very broad, d-bands. This lat-
ter part is expected to be very non-directional in nature, since (crudely) the
same d-bandwidth could equally well be produced by several well-spaced
neighbours, or by fewer close-by neighbours. Based on this qualitative
reasoning, improved phenomenological classical schemes, containing many-
body forces, have been devised recently by several groups [18-22]. These
schemes have been shown to be able to mimic the true lattice properties
of noble metals [22] and bcc transition metals [20] very much better than
pé.irwise forces. Ercolessi,Tosatti and Parrinello [19] have recently devised
and optimized one such scheme, named the “glue” model, which is capable
of accounting at the same time for both bulk and surface structural and
thermal properties of Au. As with pair-potential models, the energetics of
an arbitrary arrangement of atoms can be calculated quickly, but the am-
biguity of the volume dependence inherent in pair-potential models [22] is
avoided. Because the glue model provides a more realistic description of the

metallic cohesion, it appears to be a desirable alternative to pair-potential

models.

3.2 The glue scheme for gold

Since the advent of the earliest experimental tools in surface physics, the

noble metal surfaces have constituted a kind of standard testing ground.

14



Their rather peculiar structural properties have therefore been discussed for
a long time [23]. For iridium, platinum and gold, in particular, the most
notable feature is surface reconstruction, namely a surface rearrangement
which produces new strange surface periodicities. For example, the (110)
surfaces all exhibit a so-called (1 X 2) reconstruction, meaning that the
surface periodicity is twice as long as expected along one surface direction

(the [001]), while it remains regular along the orthogonal [11C] direction.

A common factor of surface reconstructions seems to be the forma-
tion of close-packed (111)-type facets or overlayers, as was guessed pretty
early in some cases [18,22]. The electronic motivation for this tendency is a
subject of current theoretical research, and still open to discussion [24,25].
First-principle approaches (of the LDA type) are beginning to appear [24],
but it will be presumably some time before a consensus based on them
will form. In particular, it cannot be hoped that complicated geometries,
such as those of the (100) or (111) surfaces, as well as the complex recon-
struction/relaxation pattern of (110) reconstructed surfaces, could be han-
dled without another breakthrough of the level of the recent Car-Parrinello
method [11].

In the glue Hamiltonian, the total potential energy V of a system

with N particles is written as
1N
V=22 8(ry) + 2 Uln) (3.1)

where

ni= 2 p(rij) (3.2)



and r;; is the distance between atoms ¢ and j. The three functions ¢(r),
U(n) and p(r) are built empirically. ¢(r) is a standard short-range two-body
potential, repulsive at small distances. n; is a “generalized coordination”
of atom ¢, computed as a sum of contributions p(r;;) coming from the
neighbouring atoms, p(r) being a suitable positive, monotonically decaying
short-range function. Finally, the “glue function” U(n) associates an energy

to this coordination.

It should be noted that: the units for n (and p) are arbitrary: they
are only auxiliary quantities in the scheme. It is convenient to fix them by
imposing no = 12 where ng is the generalized coordination for a bulk atom
in a perfect fcc lattice; a term which is linear in n can be assigned either
to the two-body part or to the glue part. In fact, the glue Hamiltonian is
invariant with respect to the transformation

o(r) — (r) = ¢(r) + 22p(r)

U(n) — U(n)=Un)—An (3:3)

for any A. Hence, with no loss of generality we can impose the condition

dv
dn

n=rng

=0 (3.4)

This choice is just a matter of convenience, since it simplifies the fitting

process.

In the glue scheme, ¢, U and p have been determined by fitting exactly
the T=0 lattice parameter, the cohesive energy, the surface energy, the
bulk modulus, and the transverse phonon frequency at the X-point [19,25].
Analytical forms based on polynomial splines‘have been used for all the
functions, and the range of ¢(r) and p(r) have been arbitrarily limited

to the first neighbours. The optimized functions are reproduced in Fig.3.1.
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Quantsty Ezpertmental | Glue Model

T=0 Lattice parameter (4) . 4.07 4.0T
Cohesive energy (eV/atom) 3.78 3.78°
Surface energy (meV/A?) 96.8 96.6"
Vacancy formation energy (eV) 0.95 1.26

| Bulk modulus B (10** dyne/cm®) 1.803 1.803"

|'Cy1 (10* dyne/cm?) A 2.016 2.203

Cys (10% dyne/cm?) | 1697 | .1.603
Cu (10% dyne/em?) . 0.454 0.600 -
Th. exp. coeff. at 773 K (107¢K~%) | = 152 ~ 13.8°
Melting temperature (K) , 1336 1357
Latent heat of melting (¢V/atom) 0.13 | 0.12
* fitted )

-

Table'il: Comparison between some experimental qua.ntii;.ia of gold and
the same quantities as predicted by the glue model. The fit is not always

" exact, due to the procedure used (see’text)..



Table 3.1 compares calculated with experimental data for several properties
of gold.

Computationally, the glue model energy can be evaluated with about
the same amount of work as simple pair potentials since the forces depend
only upon distances between pairs of particles. Therefore, it is still feasible
to perform large-scale computer simulations of a wide variety of phenomena.
Thus the glue hamiltonian provides a powerful new technique for atomistic

calculations of metallic systems.

3.3 Bulk Phonons

With use of the parameters in our glue scheme, we calculate the bulk
phonon dispersions. In Fig.3.2 we show the result. From discussions of the
last section, we know that the X-point phonon has been fitted. As a conse-
quence of the fitting process, the elastic constants (velocity of sound lines)
associated with transverse modes are systematically higher than experi-
mental results. While compared with the calculations with only: two-body -
interactions, the glue potential improves results of elastic constants related
with longitudinal modes. From the dispersion spectrum we can observe
that the glue term does not have any effect on the transverse phonon fre-
quencies: that are completely determined by the two-body potential. This
fact can be intuitively understood by noting that the atomic density (or
the coordination in the scheme) remains roughly constant in a transverse

mode, while it is strongly modulated in a longitudinal mode.

It turns out that the many-body term in the expression for the bulk

17
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modulus is what has been called "the Cauchy pressure”. The glue hamil-
tonian removes the Cauchy discrepancy in the elastic constants. As stated
above, the glue term does not have any effect on the transverse phonon
frequencies. Moreover, it can be seen from the calculation that it does not
have any effect for all k points that lie on the Brillouin zone boundaries.
Therefore, all the phonon frequencies at the standard points of the Bril-
louin zone can be expressed in terms of the two-body potential. All these
frequencies, as well as the shear moduli, depend on a single parameter,
namely U”(12). Clearly, some kind of compromise must be adopted in the

fitting process.

It follows from the results of the bulk phonon calculation that from
the point of view of fitting the lattice vibration spectrum a glue hamiltonian
is not substantially better than a two-body description. The origin of this
difficulty lies in the fact that the glue is central, or non-directional, i.e. the
glue energy depends only on the number of neighbours around an atom,
while how these neighbours are disposed is not relevant. On the other
hand, we expect that in real materials different angular arrangements of
the atoms should make a significant difference to the energy. This picture
is supported by the fact that it is possible to obtain an excellent agreement
between the calculated and the experimental phonon dispersion relations

by using three-body force constants with an angular dependence [22].

This spherical symmetry is perhaps the most important shortcom-
ing of the glue hamiltonian when compared to other empirical many-body
schemes. But, the simplification, resulting in a saving of computing power
for a molecular dynamics or Monte Carlo simulation, is enormous, and can

hardly be underestimated. However, we note that in the presence of surface

[y
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or defects, due to the lack of symmetry in z-direction or in the system, the

terms containing
U” (n;) 3 ;B By (3.5)

is no longer without contribution. In these cases the dynamical matrices
depends delicately on the parameter U”(n) where n is the coordination of
the atoms. Since the coordination of atoms at surface are poor, the force
constants at surface crucially depend on the geometry of the system and in
reality the glue term provides naturally the driving force of reconstruction

of surfaces.

3.4 Static Properties of Au(110)

The (110) surfaces of Ir, Pt and Au exhibit a (1x2) reconstruction, meaning
that the surface unit cell length is the same as in a truncated bulk along the
[110] direction, while it is twice as long along [001]. Among gold surfaces,
Au(110) is probably the most studied. Experimental data for Au(110) have
been obtained with a number of different techniques, namely LEED , He-
diffraction , low, medium and high energy ion scattering, STM , X-ray

diffraction and transmission electron microscopy [23].

While various models have been proposed in the past to explain the
(1 x 2) pattern (see, é.g., Ref.[26]), general consensus has now gathered
around the “missing row” model. In this model, every other close-packed
[110] row is absent in the topmost layer. The resulting surface structure is
thus constituted by a succession of tiny (111) facets, which form—neglecting

relaxation effects—a 35° angle with the surface plane. A point debated in

19



literature concerns the relaxation of the top row. By now, most authors
believe that the top (ridge) row is contracted towards the second layer

[26,27], although expansion had been argued by some authors [22].

The T = 0 missing-row structure of Au(110) (1 x 2) as given by
the glﬁe model was detailed in ref.[23]. The topmost row is sunken by
~ 27%, the second-layer rows are slightly inwards paired, and the third-
layer buckling magnitude is about 26%. While experiments [28,29] indicate
somewhat smaller relaxations, and no second-layer inwards pairing, the
overall agreement of the distortion pattern seems fairly good. We also
found a small (~ 0.2 A) sliding distortion of the top rows along their own
direction. The average distortion however disappears at an Ising-like critical

temperature T, ~ 230K.

Other theoretical studies [26,27] also predict stability of the Au(110)
missing row structure, although they differ on the details of the relaxation
geometry. On the other hand, a calculation mace by Daw for the similar
Pt(110) (1 x 2), using an Hamiltonian of the sarne class, shows directions

of the atomic displacements in agreement with the study [25,26].

“Missing row” structures are found close in surface energy—ijust above
the (1 x 2) and all well below the non-reconstructed (110). These struc-
tures differ from the (1 X 2) in the extension of the (111) facets: a (1 x n)
missing row has (n + 1)-row wide slanted (111) facets. The (1 x 3) and
(1 x 4) are occasionally observed experimentally Our data confirm that the
tendency to (111) faceting is the driving force for the (110) reconstruction,

‘as suggested by Binnig et al. [29].

All the relaxed structures, including the (1 x 1), exhibit a small slid-

20



ing distortion of the top rows along [110], i.e., parallel to themselves (see
the inset of Fig.3.3). On the optimal (1 x 2) missing row, this distortion
amounts to 0.26 A for the top row atoms and to 0.06 A for the third layer
atoms underneath. As a side effect, the mirror symmetry across a (100)
plane (orthogonal to the rows) is destroyed. We are not sure for the time-
being whether the true Au(110) should have a similar phase transition, or
whether this is an artifact of our glue model. A room-temperature symme-
try breaking which might be explained by our distortion was reported by
spin-polarized LEED [30}, but was later questioned by another group [31].
In our system these atom displacements form a sort of strongly anisotropic
Ising-like system. The distortion order parameter disappears with a phase
transition at T, ~ 230 K, where the full (average) symmetry of the sur-
face is restored. Low-temperature diffraction studies of Au(110) would be

helpful in settling this question.
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Chapter 4

Surface Phonons on the

Missing-Row Reconstructed
Au(110) in the Glue Model

The so-called “missing-row” reconstruction of noble metal (110) surfaces
has been the subject of much attention. As discussed in last chapter, it is
found on clean Au [28-30], Ir [30], Pt [31], while Cu and Ag are “dormant”
cases—the reconstruction can be provoked by only a modest alkali coverage
[32]. Through the removal of every other row the flat (110) surface is con-
verted into a sequence of tiny (111) facets, which in turn are favoured by the
very low (111) surface energy, relative to (110) [29]. Recent experimental
studies of Au(110) (which we take as our prototype) have shown [27,28] that
the reconstruction is accompanied by heavy distortions (multilayer relax-
ations) of the surface lattice, the second-layer rows are laterally displaced,

and the third atomic plane also undergoes a large buckling distortion.

Theoretically, this type of reconstruction pattern has been shown to
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vield a minimum of surface energy, both by first-principle electronic calcu-
lations [24], and by phenomenological many-body force schemes, such as
the “glue” [19] or “embedded atom” [18] models. The latter approaches
are particularly revealing in showing how both the reconstruction and the
associated relaxation arise from the necessity of bringing the surface atom
coordination as close as possible to the higher bulk value, at least to the

extent permitted by hard-core repulsions.

Many implications of this complex reconstruction/relaxation pattern
of the missing row surfaces on the surface dynamics are as yet unexplored.
In particular, it could be expected that large distortions, such as the heavy
sinking of the topmost rows, might bring about fairly heavy modifications
of the surface phonon spectrum. In this chapter we present new theoretical
evidence, predicting the existence of anomalous high-frequency modes as a

typical signature of the missing-row reconstruction. We focus in particular

on Au(110), which stands out so far as the best studied missing-row noble -

metal surface.

4.1 MD DETAILS

We investigate the dynamical behaviour of the missing-row reconstructed
surface using MD. For the present dynamical study, we have used two
different slab systems, denoted as 4 and B, each consisting of 1200 particles
arranged in 16 layers, with 40 (1 X 2) unit cells on each free surface, plus in-
plane periodic boundary conditions. System A has a rectangular 20 x 4 MD
cell, i.e., the cell length is 20a/\/§ along the direction (henceforth direction

z), and 4a along (henceforth direction y), where a is the lattice parameter

o
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of the crystal. System B is instead elongated along y, with a 4 x 20 MD
cell. We use A to compute the phonon frequencies along directions I'’X and
Y'S in the surface Brillouin zone, and B for directions I'Y and XS. By
comparing the two results at & points common to both systems, we have

checked that size effects are negligible within our accuracy (better than
0.1meV).

Standard microcanonical MD is used, with a time step At = 7.14 x
10~ 5. The in-plane lattice parameter a is set at each temperature from a
zero-pressure bulk calculation [22] with the same potential (values ranging
from a = 4.074 A for T=50K to a = 4.092.4 for-T=500K). Approximate sur-
face phonon spectral densities are extracted from the trajectories through
the l?—resolved, first-layer velocity-velocity correlation functions as discussed

in the previous chapters.

4.2 THE SURFACE PHONON SPECTRUM

The phonon spectrum is reported in Fig.4.1: dashed regions indicates the
reconstructed surface projection of the bulk modes calculated with our po-
tential using a standard lattice dynamics calculation (T=0K). At the edges
of the bulk-phonon bands we may encounter Van Hove singularities. We

can work out the surface projection of the bulk bands by using
p(Q)) =3 6w —wh) (4.1)
k=

then within the bulk-phonon bands we are left with a one-dimensional den-
sity of states, the density of the bulk phonons whose wave vector lies along

a line in the three-dimensional Brillouin zone, normal to the surface. Such
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one-dimensional density of states have Van Hove singularities of the form

|w — w,|71/% at the band edge with frequency w,.

Despite the considerable complexity of the surface-mode spectra shown
above, all the surface modes and mixed modes can be understood in the
context of a simple phenomenological scheme [6]. We begin with the bulk
bands for a crystal without surfaces. For a monoatomic crystal there are
ordinarily be three bands (which may overlap), corresponding roughly to
two groups of transverse modes and one of longitudinal modes. We then
introduce the perturbation represented by the surface, which actually con-
sists of two parts-a "first order” perturbation due simply to the truncation
of the crystal and a ” second-order” perturbation due to changes in the
force constants near the surface. At large wavelengths, where the surface
modes penetrate deeply, the second part should not be important, but it is

important at small wavelengths.

The strength of the total perturbation depends on the point in -the
SBZ. If the perturbation is strong enough for a given fra.lue of Qy, it will
peel one or more surfacelike modes off a given bulk band. Ordinarily the
perturbation should correspond to a softening of the vibrations, since the
truncation of the crystal allows the surface atoms to vibrate more freely. For
such a softening perturbation, the surface modes should be peeled off the
bottom of the bulk band. It is interesting to note that , due to the missing
row reconstruction, the coordination of atoms at top and second layers is
poor,then the glue potential causes a change in the interaction between the
particles near the surface, the total perturbation leads to a stiffening of the
lattice vibrations. In such a case the surface modes are peeled off the top

of the bulk band. Such high-frequency surface modes were produced in the
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calculations of Musser and Rieder [6] when the surface force constants were
stiffened, but it does not seem likely that they will occur naturally in ideal
monoatomic crystals. We will discuss in next chapter about this mode in

some detail.

Ordinarily, the total perturbation due to the surface should first peel
off (from a given bulk band) a mode primarily localized in the first layer.
If strong enough, it should then peel off a mode primarily localized in the
second layer,and so on. The nth-layer mode in this series has the same
character in the nth layer as the first-layer mode has in the first layer.
Sometimes the perturbation will not completely succeed in peeling off the

mode, in which case the mode remains within the bulk band as a mixed

mode.

When a mode is peeled off, one of four things will happen: (a) Tt
may fall under all of the bulk bands, in which case it will necessarily be a
surface mode. (b) It may fall into a gap between two bulk bands, in which
case it again will necessarily be a surface mode. (c) Along a symmetry
line associated with a reflection plane, it may fall into a region occupied by
bulk modes to which it is automatically orthogonal, as shown in Fig.4.1,
the S; mode along I'X direction. In this case it will necessarily be a surface
mode. (d) It may fall into a region occupied by bulk modes to which it is
not automatically orthogonal. In this case it will not be able to survive as

a pure mode and will be a mixed mode instead.

Occasionally two surface-mode branches will attempt to cross each
other. In such a case there will be hybridization, with the hybrid branches

exhibiting a mutual repulsion and interchange of character. The only case
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where two surface-mode branches could, in fact, cross is along a symmetry
line associated with a reflection plane, with the two modes belonging to
mutually orthogonal classes and therefore invisible to one another. Such a
situation does occur in the present results along I'X direction. While at
higher temperatures, when the sliding-distortion has been averaged up, the

crossing is allowed in the I'Y direction.

4.3 Discussions

We have constructed the phonon dispersion curves for T=50K, T=230K,
and T=500K in Fig.4.1. The main feature of these results, namely high-
frequency modes,low-frequency modes, and temperature dependence, will

be seperately described below.

(i) High-frequency modes. The main striking feature of this spectrum
consists of two anomalous high frequency surface modes with rather flat
dispersion (Hi, around 20 meV, and H,, around 17 meV). To clarify their
origin, we have made a separate study of their eigenvectors by using the
quench-echo technique [33]. If all atom velocities in the simulation are
artificially set to zero with a frequency 2wq, only the vibrational modes of
frequency wo, 2wy, ...,nwy survive, while all the others are destroyed. For
high enough wo, there are no modes of w = nwy with n > 1, and single
phonons can be studied. We have applied this procedure for wy ~ 20meV
and wo =~ 17meV. Due to the flat dispersion, several modes with nearly the
same frequency but slightly different k vectors are excited. To single out
the eigenvectors at one k point, we further calculate the Fourier-transform

of the atomic displacements 3, eig'é"‘ima(t) (@ms denoting displacements
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of atom s in the cell m located at I_?:m) and then retain only the desired

I;-component.

The eigenvectors of Hy; and H, obtained in this way at & = O are
shown on Fig.4.2. In mode H,, the top row atoms and the third-layer
atoms just beneath move essentially along z (with a small z component,
related to the sliding distortion), while the second-layer atoms move mainly
along y with a small z component. These four atoms move essentially to-
wards (or away from) their center of mass, thus clarifying the large stiffness
of this mode. Third-layer atoms below the missing rows remain almost mo-
tionless. This form of the eigenvector indicates that this high-frequency
mode arises because of the deep sinking of the topmost Tow, giving rise
to a stiffening of surface force constants. In mode H,, all motions are es-
sentially along y, and only second-layer atoms exhibit some 2 component.
This mode is very close to the bulk continuum, and might be difficult to
detect in practice. Conversely, mode H; lies well above, and should be eas-
ily detectable, by either inelastic He-scattering or by electron-energy-loss

spectroscopy (EELS), this will be confirmed in the next section.

From the above discussion one can realize that the glue force pro-
vides a source for the stiffening of the first-third layer force constants. The
presence of strong inwards relaxations, quite typical of many metal surfaces
(but not of LJ surfaces) may lead to a surface stiffening . A quantitative
theoretical verification of the tendency of some metal is generally difficult,
because of the complicated many-body nature of electronic forces. However
gold should in many respects represent the opposite extreme as compared
with metals which can be described by the conventional two-body forces.

The necessity of improving surface close-packing is strong enough in gold
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to make simple inwards relaxation insufficient, causing instead a surface re-
construction phenomenon. The stiffening arises mainly because the reduced
number of “bonds” of a surface atom (relative to a bulk atom) implies that
each bond becomes shorter and stiffer. This, in turn, causes the surface
lattice to be less prone to acquire both large anharmonic fluctuations, and

large concentration of defects such as vacancies or adatoms.

(ii) Low-frequency modes. The low-frequency modes in Fig.4.1 have
quite a normal appearance. In particular, we note that the “hindered
translations” along y are not particularly soft. Again, this stiffness can
be attributed to the deep top row sinking. Regular Rayleigh-like waves are
found at small E—vectors, somewhat more prominent along I'Y. As typical
spectral functions, we collect our results at several high symmetry points.
Fig.4.3a shows the results at ' point. The two high frequency modes shift
their frequencies toward the band edge. Fig.4.3b shows the results at ¥
point. It should be noted that the SH modes (vibrate along x-direction)
soften near the critical temperature T, ~ 230K. Fig.4.3c shows the results
at X point. The vibrations along x and z direction change much stronger

than those along y-direction, and. Fig.4.3d shows the results at S point.

(iii) Temperature dependence. A temperature-dependence of the sur-
face phonon spectrum can arise due to different reasons, namely (a) surface
structural phase transitions; (b) intrinsic surface anharmonicity; (c) overall
bulk anharmonicity. Our missing-row (110) surface has in principle two
phase transitions, one connected with the sliding distortion (7, ~ 230K )
and another connected with the disappearance of reconstruction (1x2)—
(1x1). The latter, experimentally found around 700K in Au [34-36], has re-
cently been studied by Monte Carlo methods by Daw [37]. The present MD
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SPECTRAL INTENSITY (ARB. UNITS)

0.0 5.0 10.0 15.0 200 25.0
FREQUENCY (meV)

Y -point surface phonon spectral density of Au(110) at various temper-
atures for directions z (solid), y (dotted) and z (dashed). Note the
softening of the z (shear horizontal) mode at low frequency, and the

high-frequency z (shear vertical) modes.



simulation is not designed for the study of this transition, which involves
large displacements and long simulation runs. Only the low-temperature
transition can therefore play a role in our case. Its main signature in the
spectrum of Fig.4.1 is an anomalous softening of the shear-horizontal low-
frequeﬁcy branch near the Y point for T ~ T.. The nature of this whole
branch consists precisely of motions of the top rows along their own direc-

tion (z).

The high-temperature mode H; is also remarkably temperature-dependent.

At k = 0, it exhibits a steady downwards shift from ~ 20meV at 50K to
~ 18meV at 500K, without any apparent connection with the sliding tran-
sition. Since bulk anharmonicities are still irrelevant at 500K, this softening
must be attributed to strong intrinsic surface anharmonicities. This fact
seems to contrast the usual notion that stiff systems are also rather har-
monic. We speculate that the reason why this particular surface mode is
also very anharmonic should be connected with the possible decay into a
pair of bulk-like modes whose frequencies add up to 20meV. Interestingly,
Fig.4.3b shows that (at least at the Y point) there is a large spectral den-
sity of bulk-like modes around 10meV, which provides some support for
this idea.
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Chapter 5

Flectron Energy Loss
Spectroscopy and Surface
Phonons of Au(110)

The anomalous high-frequency mode H; lies well above the bulk contin-

uum, and should be easily detectable, by either inelastic He- scattering =~~~ =

or by electron-energy-loss spectroscopy (EELS). Pursuing further this last
possibility, we have attempted a calculation of the & = 0 (dipole) EELS

spectrum based on our simulation data.

A complete description of the inelastic electron scattering requires
an understanding of both the scattering process and the dynamics of the
surface. Lattice—dynamiéal calculations have used a number of calculational
schemes such as the Green’s-function techniques [38-40], continued-fraction
method [38], and finite slabs [41-42]. In the case of ordered adsorbate
overlayers, direct information concerning the adsorption-site configuration

may be obtained in some cases, from a simple symmetry analysis based on
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selection rules for dipole scattering [43].

5.1 Theory

The inelastic scattering of low-energy electrons from surfaces can be de-
scribed by two scattering mechanisms which can be conveniently discerned
by the appropriate scattering geometry [44]. These are dipole scattering
from the long-range Coulomb interactions between the incident electron
and the electric field fluctuations associated with the surface modes, and
impact scattering from short-range interactions with the atomic potentials
of the surface atoms. Dipole scattering is associated with an intensity
distribution with peaks sharply in the specular direction, corresponding to
very small wave-vector transfer parallel to the surface, Q [38]. In contrast,
impact scattering is typically associated with a broad angular distribution
and gives a small contribution in the specular direction in comparison to

dipole-excited modes [44].

The theory of dipole scattering from surfaces is well established [38,45].
The inelastic cross section obtained in the Born approximation is given by
a product of two factors. The first is a kinematic factor which depends
on the scattering geometry and is independent of the properties of the
substrate. The second factor is related to the correlation function of the
charge-density fluctuations in the surface region [46]. In the application ‘o
vibrational motion, this factor is the spectral function S(w) for the dipole-
dipole correlation function which is defined as

1 dt

exp (1wt) < u,(t)pu.(0) >, (5.1)

(<]
[AV]



where p, is the normal component of the total dynamic dipole moment, N
is the number of surface primitive cells, and the angular brackets denote a

statistical average.

The semi-infinite crystal may be regarded as a system of planes of
nuclei, with each plane parallel to the surface. Let the position of each
atom be denoted by R(L), where L = (Ly, L.), L is a vector parallel to
the surface directed to a particular unit cell, L, denotes a particular atomic
layer. The relation between the normal component of the total dipole
moment and the displacement u(L) of an atom away from equilibrium is
given by the effective charge field e*(L) defined by

Pz = ;e*(L) -u(L) (5.2)

Due to the translational symmetry of the lattice we have e* (L) = e’(L,).
Thus only displacement fields at the I' point Q) = 0 can give rise to a

nonzero dipole moment u,.

The evaluation of the spectral function S (w) thus involves determin-
ing a displacement-displacement correlation function. The spectral func-
tion S(w) can be directly related to a phonon density of states, g(w,v*),

projected onto a normalized effective charge field v* as

(w) = 2l oo (220D, (5.3

where )
vi(z) = VUL (5.4
o = (S (L. (5.5
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Here n(w) is the Bose-Einstein distribution factor. In the classical limit it

is proportional to 1/w.

The evaluation of the spectral function is facilitated by considering
the symmetry of the system. Due to symmetry, displacement fields belong-
ing to different symmetry classes are decoupled. Furthermore, the dipole
selection rule states that only the totally symmetric displacement fields at
the T point of the surface Brillouin zone (SBZ) are dipole active. This se-
lection rule follows simply from the invariance of the total dynamic dipole
moments for all operations belonging to the symmetry group of the sys-
tem. Thus for the evaluation of the spectral-function it is necessary only

to consider those displacement fields which are totally symmetric at the T
point of the SBZ.

In the modeling of the effective charge field we make the assumption
that the effective charges e*(L,) are nonzero only for the top three layers.
This assumption is based on the fact that the efficient screening by the
conduction electrons will limit the dipole activity to the outermost surface
layers. Additionally, noting that for mode H; the topmost row and the
underlying third-layer row vibrate bodily against one another, we further
model the dipole activity by the bond-stretch displacements between those
two rows only. While this simplification is largely arbitrary, we have also
checked that different choices differ only by uninteresting relative shifts of

intensity.

The density of states constructed from MD simulations will then con-
sist of a discrete set of peaks located at the eigenfrequencies. The limited

energy resolution in measured energy-loss spectra can be described by re-
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placing these peaks by a normalized Gaussian distribution with a width
given by the experimental resolution. In our numerical work, we have
simulated the resolution of the ‘instrument’ as follows. Let I(w) be the
contribution from one particular bulk or surface phonon excited in a scat-
tering geometry of interest. Then we use for the loss cross section I (w) to

be compared with the data

(5.6)

where 2T is a measure of the resolution.

5.2 Results and Discussions

The simulation is based on a 16-layer slab, with in-plane (x,¥) periodic
boundary conditions, and free z-motion. At each temperature, a suitable
number of canonical MD steps, usually 2000 (one step=7.14x10~15 sec) ig-- -
allowed for equilibration. Following this, a total of 7000 steps are used for
evaluation of the average. In essence, the mean instantaneous modulation of
the first third layer spacing is assumed to be proportional to the oscillating

macroscopic dipole moment capable of scattering the electron .

Fig.5.1 presents our results for S(w) as a function of temperature. We
identify two main frequency ranges: bulk frequencies (w < 16 meV), and
high frequencies (w > 16 meV). The EELS spectra exhibit several strong
peaks in the bulk range, the intensity broadening from one to the other
with increasing temperature. The overall feature of these low frequency
structures represents the surface dipole scattering produced by bulk modes.

It is rather strong, and should be fully observable. However, it is neither
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very eventful, nor very much related to the reconstructed structure.

The high frequency modes found in our simulation is the same mode
we discussed in the previous chapter,thus the above results constitute a
prediction for a high resolution EELS vibrational experiment as a function

of temperature.

In summary, we have reported a study, carried out by molecular dy-
namics, of the temperature-dependent surface dynamics of reconstructed
Au(110), as it would appear through inelastic vibrational spectroscopy.
We have shown that the missing-row reconstructed Au(110) surface should
exhibit anomalous high-frequency modes, directly related to the topmost
layer “sinking” relaxation. This feature is expected to be common to all
other missing-row reconstructed surfaces, in view of their close structural
analogy and very similar underlying physics. Direct observation of these

modes has not yet been attempted, and should be considered, particularly
by means of EELS.
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