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Introduction

There is great interest in large-scale electronic structure calculations, based on
Density-Functional Theory (DFT) in the Local Density Approximation (LDA).
Within DFT, the electronic ground state is given by the minimum of the energy
functional, which is usually obtained by solving the Kohn-Sham equations. This
problem is in turn converted into self-consistent matrix eigenvalue equations. If A/
is the size of the basis set employed in the expansion of the electronic wavetunctions.
this approach requires O(M?) floating-point operations for each diagonalization; A/
may be very large, especially in plane-wave pseudopotential calculations. Moreover.
in order to achieve self-consistency, the diagonalization must be iterated I times:
typically, I is of the order of ten.

In order to reduce the size of the calculation, one tries to exploit the fact that
only the lowest NV eigenstates are needed to compute the ground-state energy within
DFT; usually &V is much less than M.

One of the possible approaches is to replace the full matrix diagonalization with
a partial one, which yields only the lowest .\ eigenstates (e. g. Davidson block
iterative technique [1. 2]). In this way the size of the caleulation reduces to Of N2
in plane-wave pseudopotential calculations.

A different approach. which has been proposed in the context of ab /nitio molec-
wlar-dynamics simulations [3]. regards the minimization of the energy functional ax
an optimization problem: this allows one to obtain simultaneously sell-consistency
and diagonalization. The size of calculations performed in this scheme scales again
as N2M.

In this preliminary work, we implemented two minimization techniques. based
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on steepest descent (SD) and conjugate gradient (CG) methods [4]; since both allow
only for downhill moves, they are suitable in situations where a single minimum
is present in the functional, which is usually the case in total energy calculations
performed at fixed ions. Our attention is mainly devoted to CG approach, which
is generally more efficient than SD,vin particular when dealing with low-symmetry
systems. A further advantage of conjugate gradient method is that no parameters
are needed to control convergence, such as the time step in SD or the potential

mixing parameter in Davidson scheme.
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Minimization Techniques

2.1 Steepest Descent (SD)

The simplest and most intuitive procedure to find the minimum of a function of

several variables is the SD method [4], which can be cast in terms of the following:

a'lr/'i(’r'st) . 9
_——(?)t—— = (‘)1[ Z \IJZ T, t (._41)
= —Hui(r,t) — > Aiji(r,t) (2.2)
J

where ¢ is a fictitious time variable and A;; are Lagrange multipliers introduced in
order to satisfy the orthonormalization constraints. The SD step consists in the

following:
Di(t+ A = i) = A | Huey Z Aol (2.3)
= vt A =AY N (2.1)
J

(1 4+ At) is the unconstrained evolved of ij(#). Setting X = MA™. the constraint

equation 1s

X?+BX+XB+A-1=0 (2.

N
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where
Ay o= (i(0)R5() (2.6)
Bij = (§;(t + At)|wi(1)); (2.7)

the wavefunctions at time ¢ are assumed to be orthonormal. Since A = 1 + O(#?)
and B =1+ O(t), Eq. (2.5) is usually solved iteratively [5, 6]:

x(0)

x ()

(1—-A) (:
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[1-A+X"0(1-B)+(1-B)X" U -XD (29)
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r

We actually solved Eq. (2.5) in a different way; when written by components, it is

a quadratic equation, whose solution is given by the usual formula

X=-B+vVB?-A+1 (2.10)

2.2 Conjugate Gradient (CG)

Suppose that the function f to be minimized (energy) is approximated by a quadratic

form

where

f(x):c——b-x«kék&A-X (2.11)
X = (ll ...... U\ ) (.2. l.”

c = [f(0) (2.13)

b = =Y flo (2.14)

Ay = 22 (2.15)
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One then proceeds in an iterative fashion, defining a sequence
Xir1 = X; + Ah; (216)

where A; are scalars and h; a set of directions in the N-dimensional space. As we

have seen, in SD one simply sets
h; = =V f(x;) (2.17)

and A; can be either a small scalar (the time step At¢, in the previous notation) or
such as to minimize f along h,.

The former implementation of SD may require too many function and gradient
evaluations to converge; furthermore, it requires an empirical choice for the conver-
gence parameter At.

On the other hand, the latter is not at all optimal either, even with quadratic
forms, because two consecutive directions resulting from Eq. (2.16) are usually nearly
orthogonal, possibly causing the method to perform many tiny steps down to the
minimum.

This can be avoided exploiting the knowledge of the hessian matrix A. In the
quadratic approximation, the gradient V f at x is A - x — b; if we move along some

direction we have

S(Vf)=A-(6x) (

S
—_
(v}
~

Suppose that we have moved along some direction u to a (line) minimum and now
set a new direction v. In order not to spoil the minimization along u. the gradient

has to stay perpendicular to u. that is
O=u-8(Vf)=u-A-v (2.19)
When this property holds. u and v are said to be conjugate. When doing successive

line minimizations along a conjugate set of directions. there is no need to reconsider

any of the previous ones, and each step is virtually an improvement over all the
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preceding ones.

In the CG method [4], A is used to define an optimal set of directions h; along
which to line-minimize. Let go be an arbitrary vector and go = hg. Fori =0,1,2,...
let

gir1 = 8i—NA-h; (2.20)

hiyy = g+l (2.21)

where )\; and 4; are such that g;41-g; = 0 and h;1; - A - h; =0, that is

g "8
A= 2.22
gi . A . hi ( )
o . A . l‘l
& hg-A-hi (_'Hg)
Then it can be shown by induction that for all ¢ # j
girg;=0 and h;-A-h;=0 (2.24)

The important fact is that the hessian matrix is not actually necessary. Let g, =
—V f(x;) at some point x;; suppose to move from x; along h; to a new point x;4;.
and set g1 = —V f(X;41); then gix1 can be shown to be the same vector which
would result from Eq. (2.20), but has been constructed without explicitly using A.

Going back to our physical problem. we also have to take into account the or-
thonormalization constraint involving the wavefunctions. Since using Lagrange mul-
tipliers, as in the previous section. would imply performing line minimizations on
curved trajectories. in order to keep things simple we give up the ideas exposed in
the previous section. recasting the minimum problem in terms of non-orthonormal
wavefunctions. For the purpose. we introduce a new energy functional which is
the composition of the initial one with a transformation which maps a set of non-
orthonormal orbitals {¢;} onto an orthonormal one. {vy} [2. 7]. This scheme ix

feasible when both sets span the same subspace. The latter function can be ex-
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pressed in terms of the overlap matrix Sj; = (¢;]¢:):

o—1/2
= S5 e

J

The energy functional and the gradient are then

E{s)] = Y(dHlo))
ij
oF
= H.‘:S'Tl
s = 2o

571
i

Q™)
Ot
~—

In order for the overlap matrix to remain non-singular, the {¢;} set is orthonormal-

ized at every CG step; this is demanded by numerical convenience only, since the

value of E is invariant under such kind of transformation.
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Numerical Tests

A simple test for the conjugate gradient method was to find the ground state energy
and the first excitation energies of a non self-consistent hamiltonian. In particular.
we considered solid GaAs in the zincblend structure. by means of the empirical pseu-
dopotentials by Cohen and Bergstresser [3]; our results reproduced those obtained
with full matrix diagonalization.

A second important test is to check how the CPU time needed for convergence

scales with the size A/ of the hamiltonian.

1.2
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Figure 3.1: CPU time required for convergence as a function of the size of the hamiltonian

The computation of F(\) (see previous section) requires the evaluation of tle

matrices (¢|H|@), (o|H|h), (o|h) and (hlh). When using local pseudopotentials.

(e8]
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O(NM'log, M') ! operations are needed for computing H¢ and Hh, O(N 2M[) for
each of the above matrices, O(N?) for the inversion of S and O(N2M) to orthonor-
‘malize the orbitals at each CG step. On the whole, the number of floating-point
operations required is asymptotically a N M log, M’ + BN?2M; thus the big dimen-
sion of the system enters only linearly in the count of the operations.

Fig. 3.1 summarizes several calculations performed at different cutoffs; it clearly
shows that the asymptotic behaviour is substantially linear, confirming our expec-

tations.

LAl = M is the number of points used in FFT operations
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Conclusions

The main characteristics of the CG method as applied to total energy minimization

can be summarized as follows:

e The cost of a CG step has the correct scaling behaviour with the size M of

the hamiltonian, i. e., is linear with A/;

e The rate of convergence is considerably better than SD when low-symmetry

systems are considered;

e The cost of a (partial) matrix diagonalization is comparable in CG and David-
son methods; but in SCF calculations the former achieves simultaneously di-
agonalization and self-consistency, whereas in the latter the diagonalization

has to be repeated I times to obtain self-consistency;

o There are no convergence-controlling parameters. such as the time step in SD

or the potential mixing parameter in the traditional method.

10
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