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1 Introduction

The discovery of copper-oxide superconductors with critical temperatures as high
as 120K[15] raised hopes that one day we may be able to manufacture materials
that superconduct at room temperature. This discovery also raised doubts about
the common belief that, due to the nature of the phonon-mediated electron-electron
interaction[16], there are upper bounds on the critical temperatures much lower
than those achieved with the copper oxide. In addition, the lack of a significant
isotope effect with substitution of the oxygen sites seems to rule out the possibility
that the phonon Debye frequency is the characteristic energy scale entering in the
fundamental equations. Because of a number of peculiar properties of these materi-
als, there is a growing suspicion that a different mechanism may be responsible for
their superconductivity. Their phase diagram is rich because the superconducting
phase occurs near a metal-insulator transition, an antiferromagnetic as well as a
structural instability, and this fact has generated many ideas and proposals for new
mechanisms. It is natural to imagine that such high temperatures and pairing en-
ergy scales may arise as the low-energy scales of the interacting electronic degrees of
freedom in specific lattice structures of appropriate stoichiometry, where the lattice

dynamics do not play the key role.

Anderson’s original suggestion[17] that novel quantum spin fluctuations in the
Cu0, planes, common in all these materials, may be responsible for the supercon-
ductivity has received significant attention. Interesting magnetic properties revealed
by neutron-scattering experiments provide further support for this idea. It was con-
jectured that such fluctuations might destroy the antiferromagnetic long-range order
in the ground state, giving rise to a new state of the spin system, a quantum ”spin-
liquid” state[17]. The superconductivity in these materials was then conjectured

to arise from the behavior of a novel quantum fluid of a highly correlated set of




electronic degrees of freedom.

The Heisenberg Hamiltonian

H=J>S;-S; (1)

(i)
is assumed to describe the antiferromagnetic undoped insulator La,CuQ, or the
oxygen-deficient Y Ba,CuOg or other undoped copper-oxide materials. Doping the
insulator Y Ba,CuOg to create, for example, Y Ba,_,Sr,CuQ, introduces holes on
the CuO; planes. Increasing the oxygen content in the Y Ba,CuOg,, controls the
electron filling factor of the 2D CuO, planes in a less obvious way because of the

presence of the CuO chains.

The Heisenberg Hamiltonian can be thought of as a simple and rather general
model to describe the copper-oxide superexchange antiferromagnetic interaction [18]
mediated by the intervening oxygen ions via virtual hopping processes involving
double occupied Cu sites. The problem of quantum antiferromagnets is rather old
and longstanding; however, a number of questions arose following the discovery of

copper-oxide superconductors.

The doped CuO, planes in this rather simple formulation may be described by
the t-J model where holes are introduced. But the t-J model is difficult and analytic
investigations have to resort to limiting cases. Then, we studied as a first step
the frustrated Heisenberg model instead of the t-J model, since we know that the

ground state of frustrated Heisenberg model may be the novel quantum spin-liquid

state[3][4].

The frustrated Heisenberg model is deviced to describe the competition between

long-range order and the spin fluctuation.

1 1
H= §J1 ZSR'SRM# +‘2‘J‘ZZSR‘SR+§u (2)
Ry Ré,




where 7, is the nearest neighbor vector and §, is the next nearest neighbor vector

and usual periodic boundary conditions are assumed.

Many questions remain still open especially in 2D and S = % for this simple
model. For example there is now a considerable amount of numerical work [1][2] in
order to detect a first realization spin liquid state for large enough J,. Linear spin-
wave theory [3] and series expansion [4] have indeed predicted a possible transition

for J, > 0.38. However on a rigorous ground very little is known.

More clear is the knowledge about the pure (J; = 0) Heisenberg model and in

the follows we give a brief summary of what is known about the system.

One-dimensional antiferromagnetic spin chains described by the Hamiltonian (1)
have a ground state with no long-range order. The ground-state energy of the spin-
% antiferromagnetic Heisenberg chains can be calculated exactly using the Bethe
ansatz[19]. However, for chains of spins higher than  there is no exact solution.
The excitation spectrum of such spin chains may exhibit interesting properties.
More specially, it follows from the Bethe ansatz that the correlation function decays
following a power law, and it has been conjectured[20] that half-integer spin chains
have a gapless excitation spectrum. For integer spin chains, however, there may be

a finite gap, and the spin-correlation function decays exponentially with distance.

Beyond one dimension, the exact solution for the ground-state energy or wave
function of the Hamiltonian on an infinite lattice is unknown. There are some rig-
orous proofs regarding the nature of the ground state, however. It has been shown
that the ground state of the three-dimensional antiferromagnetic Heisenberg model
for spin S > 1[21] and quite recently for § = 1 is characterized[6][7][8] by an-
tiferromagnetic long-range order. The long-range order disappears at some finite
critical temperature in 3D. In two dimension, the Heisenberg model cannot ex-

hibit long-range order for any spin at finite temperature[22]. The situation may be

quite different for the ground state (T=0) of these models. It has been shown that
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antiferromagnetic long-range order exists in the ground state of the isotropic antifer-
romagnetic Heisenberg model on a square lattice[23] and on a hexagonal lattice[24]
for any § > 1. So far, no rigorous proof is available for the existence or noexistence

of antiferromagnetic long-range order in the ground state of the isotropic spin-

B [

antiferromagnetic Heisenberg model on a square lattice, which is the model of our

interest.

Anderson[10] extended the spin-wave theory introduced by Holstein and Primakoff[25]
for ferromagnets to the study of the ground state of antiferromagnets with large spin
S. Following Anderson, during the same year, Kubo[26] using the Holstein-Primakoff
transformation and an expansion in powers of —;—, derived Anderson’s results. The
foundation of spin-wave theory is the assumption that antiferromagnetic long-range
order exists in the ground state and that the amplitude of zero-point motion of
quantum fluctuations about the classical Néel state is small. Initially, this approach
was thought to be an expansion in powers of fls— Since the role of quantum fluctu-
ations becomes more important for small S, it is natural to question the speed of
convergence of this approach for the smallest possible spin case, the spin-% antifer-

romagnet.

In more recent years it was argued[27] that large-amplitude quantum fluctuations
in the two dimension spin-; case might give rise to a new state. It was speculated
that such a state might be characterized by short-range order, in which a ”spin
liquid” could be formed; this state would be a superposition of states in which the

spins are locally bonded to one another, forming a resonating valence bond state.

Nowadays extensive numerical and experimental results have lead to the conclu-
sion that the 2D Heisenberg model displays long range antiferromagnetic order and

that there is no evidence of any exotic behavior in the unfrustrated model.

Spin wave theory, which originally was presented as an approximate technique,

is used extensively even in 2D Heisenberg model. The goal of the present thesis is




to extend the spin wave theory to a frustrated system on a finite size lattice and try

to see whether the spin liquid state is a physically acceptable state of nature.

In the section II, we will introduce the spin-wave theory in the infinite lattice.
In section III, we will present a method for a systematic spin-wave expansion of
the J; — J, Hamiltonian on a finite size. And finally in section IV, we will discuses
the anisotropic Heisenberg model and see how long-range order can be destroyed

- without frustration.

2 The Spin-Wave Theory

Here we give some of the preliminaries and we define the problem to be studied. We
consider an L x L square lattice of lattice spacing a and N = L? sites. The degrees
of freedom are vector spin operators S; attached to the site at r and ’o"breﬂy the usual
commutation relations

(52,85 = 4576, (3)

where the superscripts a, 8, and v stand for the x, y, and z components or any cyclic
permutation of them. We consider periodic boundary conditions. (Notice that in

our units A = 1 and the lattice spacing a = 1.)

We wish to find the eigenstates and eigenvalues of Heisenberg Hamiltonian. Let
|S7) denote the eigenstates of the operator S7 with eigenvalue S7. The Hilbert space

in which the Hamiltonian operates is spanned by the basis

1{s:h =11187) (4)




Since the Hamiltonian commutes with the operators of the total spin and the z

component of the total spin, namely,

St20£ = IZS'IZ

Stzot Z S:

we may choose to work in a subspace with well-defined eigenvalues of S, and

(5)

I

Sz .. Specially, Marshall[5] proved that the ground state of the antiferromagnetic

Heisenberg model on a bipartite lattice is characterized by Sy = 0.

In order to define the ground-state staggered magnetization, we add a field h to

the Hamiltonian, which couples to the spins of the two sublattices differently,
H = H+hrY (-1)s: (6)
where |r| = z + y and x,y are the two components of the vector r. Then, we define

mi = A (-1)s:

m! = limp_limy_ o (0|m!|0)

(7)

Provided that we take the thermodynamic limit before we set the external sublattice
field h to zero, if the ground-state expectation value m' remains finite we shall say

that the ground state is characterized by antiferromagnetic long-range order.

First, we introduce the Holstein-Primakoff transformation as implemented for
antiferromagnets. An equivalent representation to the spin basis is obtained by

labeling the basis states by the eigenvalues of the ”spin-deviation” operator
n.=8-57 (8)
When the site r is on one sublattice, say A, and

n.=5+5° (9)




for a site r on the other sublattice B. In this representation the Hilbert space is

spanned by
{n.}) = I Ine) (10)

and eigenvalues of n, are 0, 1, ..., 25. A general state can be expressed as

) = {Z}C({nr})l{nr}) (11)

The operator S* is diagonal in this representation, while St and S when r is on

the A sublattice have the following properties:
Siin,) = \/25 1 -2 melne - 1)
S=|n,) = \/25(71,, +1)[1— 2] fns + 1)

When the site r is on the B sublattice, the action of the above two operators is

(12)

intercharged. It is a convenient bookkeeping device to introduce the operators

aifn,) = AT, +1)
aln) = Al — 1)

and similarly when r is on the B sublattice. The operators a! and a, obey the usual

(13)

commutation relations for two-component system of bosons,

[ar,al] = 6,0 (14)

lar, ar] = {CLT ai,] =0

r?

These equations can be obtained by applying the operators to a general state and
using the definitions. We find

St = V25f,(n.)a,

Sy = V2Salfi(n;)

Srz = S —n, (15)
n, = ala,
fs(n,) = -2z




for r on the A sublattice and
St = V2Salf(n,)
S: = V25f(n:)a,
52 = —S+4n,

n, = ala,

(16)

when r is on the B sublattice.

In the eqn. (13) the eigenvalue n, is free to take any value from 0 to co rather than
from 0 to 2S. There is no discrepancy, since the sector of states with 0 < n, <25
will not be connected to states with n, > 25 because |n, = 25) is annihilated by

S57(S!) when r is on A(B) sublattice:

S”|n, = 25) =0 (17)

The Hamiltonian can be expressed in terms of a and a', operators using the ex- -

pressions for S*, S', and S_, and therefore the spin problem is transformed to an

equivalent problem of interacting bosons:

H = —NdJS*+2dJS) n,
+ IS Y [fs(n)ar fs(ne)ar + alf fs(nr)al fs(ne)] (18)
(rrh)
- J Z T Ty
(rr)
The operator fs(n,), if we allow n, to take values from 0 to oo, can be expanded as
‘ n n2
(n,)=1— — — —L- —... 19
fs(nr) 45~ 3287 ()

We emphasize that if we truncate this expansion at any order, condition(17), which
decouples the physical from the unphysical states, is no longer satisfied. If, on the
other hand, we restrict ourselves in the physical subspace of 25+1 dimensions, then

this operator can be written as

25
fs(m) = 3 dm(S)ny” (20)

m=0

8




In the linear spin-wave approximation introduced by Anderson[10] for antiferro-
magnets, one retains in eqn. (18) terms up to quadratic in the boson operators. This
means that fs(n,)is approximated by 1 and the last term of eqn. (18) is neglected,
i.e.,

Hipw = —NdJS? +2dJS S m +JS Y (arar + alal, (21)
r (r,r’)
This Hamiltonian connects the physical states with 0 < n, < 25 with states having

n, > 2S5. If the ground state expectation value of n, is small compared to 25, this

approximation makes sense. This condition can be checked once the spectrum of

Hi,,, 1s found.

A quadratic Hamiltonian such as Hi,, can always be diagonalized. We introduce

the Fourier transforms of these operators as

where the vectors k correspond to the teciprocal space of the sublattice A or B. We
perform a canonical transformation to new operators cy and az, which also obey

boson commutation relations,
ap = coshByar + Sinthaik (23)

Substituting eqn. (23) in Hi,w, the function 6, is determined so that the coefficient

of alal is zero. We obtain

tanh(20;) = vk (24)
where

= % > cos(k - ep) (25)

"

where e, is the unit vector in the p direction, and

Higw = BY 4+ 2wy (k)ng (26)
k




where

o« T
ny = oo

EY = —dJSN(S+6)
¢ = w Z [1— m 1)
wolk) = 2dJS 1— 2
The ground state |4 is defined by the conditions ay|t) = 0 for all k in the Brillouin

zone. For square lattice, ¢ = 0.158 and the ground state energy per site in the linear

spin-wave approximation is -0.658.

Keeping terms up to + in the expansion[11}, we find that the diagonal terms of

the Hamiltonian have the form

H = Eo+ ) w(k)[2(nf + nf, nf,) — 2(1 + Cia)ng mg, | + - - (28)
k
where )
Ey = —dJSN[1+ ]
w(k) = wolk)[L+ 5] (29)

Ci, = \/T_7/§1\/1“722
The ground state energy per site in this approximation for the spin- 7 model on a
square lattice is 757‘\1 = —0.6705. Since the energy of the Néel state is -0.5 and in the
linear spin-wave approximation is -0.658, and the next correction in the é— expansion
is small, one might conclude that there is an apparent convergence in the case of the
ground state energy. It is very different, however, to justify an expansion in powers
of 2t and therefore the expansion parameter for 5 = % is really the expectation
value of n,. That is to say, the ground state is in a linear superposition of state
with very small amplitude for those with large n,. Therefore the convergence of the

expansion could be explained if

€= — Z ) <1 (30)
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We obtain
=y =1 (31)
€ = —— —_— —
2V V-
and, for a square lattice, e = 0.197, which is a rather small number.

The energy of the elementary excitations is given by w(k) and, in the long-
wavelength limit w(k — 0) = ck. We define

[

Ze

il

(32)

Co
where ¢ is the "bare” spin-wave velocity obtained in the linear spin-wave approx-

imation, namely, ¢y = +/2Ja. For the antiferromagnet on a square lattice in the

above approximation the ratio Z, = 1+ £ = 1.158.

The ground state expectation value of the staggered magnetization operator for
S = 1 is obtained as
1

m*:i—e (33)

and for a square lattice m’ = 0.3034. Hence spin-wave theory predicts an ordered
ground state with finite staggered magnetization approximately 61% of its classi-
cal value. In one dimension the integral diverges logarithmically due to the long-
wavelength modes. This instability can be attributed to the fact that the ground
state fails to develop long-range order in one dimension. The fact that the inte-
gral diverges also means that there is no small expansion parameter, and that the

perturbative expansion around an ordered state is incorrect for spin chains.

We wish to add to the Hamiltonian a term of the form H, 3. S;. The per-
pendicular susceptibility is defined as x1 = %’%j, where (M) is the ground state
expectation value of 4+ ¥, SF. x. describes the response to an external magnetic
field in a direction perpendicular to the staggered magnetization. We define

X1
X1,0

Z, = (34)

[y
—




where x10 = ;;;7. Including the next correction in the % expansion, we obtain the

value Z, = 1 — ¢ — 2e = 0.448 for an isotropic spin-% square lattice antiferromagnet.

3 The Spin-Wave Theory on Finite Size

Numerical methods on spin hamiltonians are generally limited to calculation of
ground state correlation functions on a given finite lattice. Indeed in any finite size
simulation the antiferromagnetic order parameter m is extracted by a systematic

finite size study on a square lattice NV = L x L of the spin-spin correlation function

C(R—R')=<Sp-S% >,ie. :

: 1 R
m = hmJYv—Z(—l) C(R)

. Despite the accuracy between the extr@polaté;i order parameter m and the spin-
wave prediction, the validity of SWT is still questionable in principle since the
agreement is based on a single (or few) extrapolated quantities. For the above
reasons it is important to apply spin-wave theory directly on finite size and compare

exact data obtained by Lanczos or Monte Carlo with the SWT approximation.

Several attempts to generalize SWT on finite size have recently been published[12][13].

However, as it will became clear in the following, all these approaches are based on
unnecessary approximations to avoid spurious finite size divergence for the & = 0
and k = ) = (7, ) spin-wave modes. In these approaches these divergencies are
removed by imposing an “ad hoc” holonomic constraint on the sublattice magneti-

zation: it is set to zero (as it should) on any finite size.

In the present paper we derive a systematic spin wave expansion on a finite
lattice and apply it to the J;-J; model. We show here that the mentioned spin-wave
divergencies (“Goldstone modes”) do not affect spin rotation invariant quantities

and a straightforward calculation of the spin-spin correlation function C(R — R/)

12




is possible up to second order in 1/S5, fully consistent with the spin-wave theory

expansion.

In order to simplify the derivation, we consider first the simpler case when J, = 0
and only the leading term in S. The classical state is the antiferromagnetic (Néel)

state and we can use the following Holstein-Primakoff transformation:

St = V251 — )a St = V2Sd(1- ) (35)
S; = S—mn 53 = nj— S

where a and a' are canonical creation and destruction bose operators , and n; = ajai
is the number of bosons at the site 7. The indices i, j label lattice points R; and
R; belonging to the two magnetic sublattices. After substituting these expressions
in the hamiltonian, we can use translation invariance and write the leading term of

the hamiltonian in terms of

—sza;{

1
CL}; = ﬁ%e
H = S*Ec + SHgy +0(1)

i\ Z
Ec:—%rN
is the classical energy and Hgy- reads:
i 1o+ s
Hgyw = J1 2 Z[Dkakak —+ Enk(a‘ka’—-k -+ aka_k)} (36)
A

Here Z = 2d is the number of nearest neighbours, 7, = wf—;&(iﬁ, and the diagonal

part in this particular case is constant Dy = 1. The leading part of the hamiltonian
is free and can be generally diagonalized by the known Bogoliubov transformation

which acts independently on any k wavevector:

_i,
A = UpQg + VpQ_y

[ Dy + €
Up =4 ————
26k

13

with




Dy — ¢
ZEk

e =y/ D} — mg

being the spin wave energy in unit of J;ZS. However the k = 0 and k£ = () modes,

v = —sgn(nk

important at finite size, cannot be diagonalized by this transformation since u) and
vi are not defined in this case. We can in fact define two hermitian operators that

commute with the hamiltonian
Qz‘ - L‘Lj) + aq

Qy = i(az;; — ag)
and write the singular k£ = 0,Q contributions in (36) in the form:

LSz
)

Hs (DyQ% + Do Q2 — Dy — Dg).

The physical meaning of these two operators becomes clear if we use the Holstein-
Primakoff transformation for the total spin along the x (y) axis Sg(oyt) = }:S;(y).
R
Then at leading order Q, = S1°'A/5% and @, = Sg"‘/m%—. and the singular part of
the hamiltonian
HS o (SZot)E 1+ (Sg‘ot)z
represents a term which clearly favours the singlet ground state, in agreement with

the Lieb-Mattis theorem[14].

Since @, and @, commute with the hamiltonian, and [@;,Q,] = 0, we can
formally diagonalize the hamiltonian in a finite size in a basis where @, and @,
have definite quantum numbers. In the chosen basis @, and @, become classical
numbers ranging continuously from —oo to oo and the hamiltonian Hg becomes a
simple classical contribution. The ground state has then @, = @, = 0,ie. itis a

singlet (as it should on any finite size and for any S)[14] and can be formally written

14




as the normalizable Fock state |0 >, of the operators ay ay and ag projected onto
the subspace of @, =@, =0:

o [e.0]

sy > = / da / dBeiaQ=+8u0 > (37)

This state is the formal ground state |1pg > of H for S — oo and includes usual
spin-wave fluctuations on the Neél state |N >, i.e.

el

0 >.= ( 11 -———-—) |N >
kr0.Q Uk

. Unfortunately v gy after projection on @, = @), = 0 is eigenstate of operators with
continuous spectrum and, as it is easily seen from (37), it cannot be normalized.
This singular behra'viour is a consequence of the large S expansion, since at any finite
S the Hilbert space is finite and any operator on a ﬁnite Hilbert space has a disgrete
spectrum. As a consequence for infinite S a Bose condensation of the k - O,Q'
modes occurs since the expectation value for the average number of modes

< pswlaf aglsy >
< Yswlsn >

diverges for k = 0 or Q.

Nevertheless a systematic finite size study of spin-rotation invariant quantities as
for example the ground state energy and the spin-spin correlation function C(R—R')
is indeed possible. For example the ground state energy derived in the previous
example for J, = 0 is perfectly finite and well defined on any finite lattice. In fact,
having in mind that Q, = Q, = 0, we get for the contribution to the energy linear

in S -the spin wave term-:

L Z

J 7
< Hgyw >= Egyv = Z T(Ek — Dy) :

where 3. / means summation over all k but £ = 0,Q in the Broulluin zone. Note

also the non vanishing negative term coming from the careful analysis of the singular

15




contribution Hg. This term is negligible at infinite size but is important for any

accurate estimate of the energy at finite size.
Let us consider now the general case with J, > 0.

In order to get the spin-spin correlation function C(r) , we add the following
spin-rotation and translation invariant term to the Heisenberg Hamiltonian

1
H = a.flh,;sR-SRm

where the vectors 7, are equivalent lattice vectors in any of the possible orthogonal
directions with |7,| = |r|. By use of the Helmann-Feynman theorem the spin-spin
correlation function is obtained by differentiating with respect to h, the ground state

energy of the hamiltonian in presence of the external perturbation:

2 d

C(r) = 77, 2w, Folb)-

In the following we describe in detail the calculation of the spin-spin correlation
function on opposite sublattice. For J, < 0.5 th classical Néel state is still stable

and we can use eq. (1). Then the hamiltonian can be expanded as:
H = S*Ec + SHsw + Hin (38)

where

1
Be = —5(1—a—h))\NZ

Hgyy is the leading free boson term in the expansion and has the same form as in
(2) with
Dk"—‘l—a(l—~5k)+hr

M — Nk + hr T

8, = cosk, cosk,

16




= — Zezkrﬂ

and

Hint = ’“'21—NJ1Z Z

kikoksky
5(k1 - k2 + k3 - k4)(77/€1—k2 - O!(Skl —ko —+ ﬁTkl—]Q )aLlakza}:aak‘} (39)
—inhZ Z [6(ky — ko — k3 — Ky)(nx, + ,37'@)cLI;THCLkQakachL1
Ky kokaky
+8(ky + ko — kg — ky)obp,al af, agan,] + hoc
_ )

where o = 7

The next leading contribution to the energy is obtained by the evaluation of

< Ysw|Hint|si >

Ein~ =
f < psi s >
L N o e
Eint = —-2*J1Z—4—(C,; + h"CT — aly )+ Hfs (40)

where

2
C, = WZ "(Vid + mUi Vi)

:—Z (1 -8V,

and C, is obtained substituting the functlon ng with 7, in the expression for C,
while H;, comes out after a careful treatment of the singular modes , yielding a

finite size correction to the ground state energy:

1
Hf‘g —_— §J1Z(Cn -I— hrCT)

Differentiating
Ec = S*Ec 4+ SEsu + Ein

with respect to h, and letting h, = 0, we can get the spin-spin correlation function

between two sites on different sublattices

12
(S0-5,) = ~(5 = 2Co+ )" 4 o — 20,008

v w2, (1)

17




where

. _l , (l—a+a5k)—77keikr~
=y {[(1—a+aak>2—nzl% 1}

C,=C,—Cj

and

oC, 1 [e" (1 — o+ ady) — mime(l — 6)
o~ Z 213 )
Oh, N 7 (1= o+ aby)?— i)

Similarly, we have the spin-spin correlation function between two sites on the

same sublattice

B 1 ., 1500,
(SuSr) = (5= 507)" =50 Bh, (42)
where
1 : (1 — a4+ ab)
Cl(r) = — 'l-e’kr){ l——l}
ew g (et oty —mif
and

ocC; 1 n (1 = 8 )ni
1 — = "1 — tkr k .
D ST A IR

In the previous quantities the singular contributions of the k = 0,k = @ modes
cancel out at the end of the calculation after many non trivial simplifications and

E;,, is perfectly defined and finite quantity, as well as its derivatives with respect to

the field h,.
The above equations fulfil the sum rule N3 C(R) = 0 order by order in £,

consistent with a singlet ground state[14].

Thus we have finally obtained an ordered expansion of the spin spin correlation

function:
C(R) = (,1)35'3 +a(R)S + B(R).

The order parameter m can then be expanded in the following way:

m(L) = S+a&+B/S

18




with & and 3 simply related to the functions a(R) and B(R) on finite size:
. 1
=% Z(_

2 = (2(-—1]):&1%) _ &2>

The ground state energy per site for h, = 0 is given by:

B =250 + a0(5,)

m

From the path-integral representation of the partition function of the antiferro-
magnetic Heisenberg mode, we can pass to the continuum limit, where the quantum-
mechanical nonlinear ¢ model in two space and one time dimension is obtained as

a field-theoretical model that describes smooth spin fluctuations.

_ _Ps . d 2, -2 2
Z = [ [Dnlezp 5 drd®r(| v n|* + ¢;*|0:n]7) (43)
o ,
Then, the long wavelength behavior is determined by the spin wave stiffness p, and

the spin wave velocity cy.

We calculate the first order correction to the ground state energy due to the

finite size effect. We get

_ JISZ " 20) l—a V2a oo
AD = i e N e S N TaE Py R

where C,(c0) , Ci(o0) is the corresponding quantities calculated on the infinite

(44)

lattice and

1 1
c= — I 1.438.
2m m#0 Iml

As pointing out by Fisher[28] and Ziman[29], it is proportion to the spin-wave ve-
locity,

Cy

AE =

c (45)

=
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where ¢, is the spin-wave velocity. By compares rhs. of eqn. (44) and eqn. (45), we

can get spin-wave velocity quite easily.
We also calculate the first order correlation to the square magnetization due to
the finite size effect. We have
1 2 c 1= 1 c
AM? = (5M(e0) - 8)yJr5m— — 3C
5 M(e0) (1-2a)v/N 2 (o) [2(1 - 2a)] VN

where C,(co) , M(co) is the corresponding quantities calculated on the infinite

(XA

(46)

lattice and
1

S _
= 7% 2 Tl

Following Fisher[28] and Ziman[29], it is proportional to the spin-wave stiffness,

—0.6208.

z

4p3\/ﬁ

where p, is the spin stiffness. By compares eqn. (46) and eqn. (47), we can get spin

AM? = ¢ | (47)

stiffness quite easily.

In order to compare our spin wave calculation, we have deviced a code to exactly

diagonalize the Heisenberg model on small clusters by using Lanczos method.

We show in Tab.l a comparison of spin-wave results and exact data on finite
systems obtained mainly with Quantum Monte Carlo. The accuracy of the spin
wave theory is confirmed even for any finite and large size. The finite size order
parameter is always slightly smaller than the spin-wave prediction (with exception
of the 12 x 12 lattice where error bars are too large). Our results give therefore
a strong support to the existence of long range order in the S = % Heisenberg
antiferromagnet, and that the ground state can be naturally represented by the
Neél state dressed by small quantum fluctuations. The order parameter is very
much close to the spin-wave predictions and in close agreement with the Monte

Carlo estimate.
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As we turn on J, the spin model is strongly frustrated and we expect the spin-
wave expansion to be convergent or at least accurate in the region where the order
parameter is the same as in the classical case (S — oco). With this technique we
can therefore detect a possible spin liquid state by looking for a breakdown of the
spin-wave expansion for large J,. We show in Fig.1 the order parameter as predicted
by spin-ave theory compared with the available exact results on a 4 X 4 and 6 X 6
lattice as a function of —% The agreement is very good for -j—f < 0.2 and in fact the
second order contribution seems already enough to give an accurate answer. The
infinite size prediction plotted in the same picture should therefore be quite reliable

in this region.

For J, large enough the second order term does not improve the first order
estimate and we can define a crossover value of J = J¢ where the second order
contribution becomes a worse estimate of the order parameter compared to first
order one. As shown in Fig.1 we get Jo = 0.30 for the 4 x 4 lattice and Jg = .35
for the 6 x 6 one. These results indicate that a possible breakdown of the spin-wave
expansion occurs already at J, ~ 0.30. This estimate is slightly different from the
linear spin-wave result (see Fig.1) where a critical value of T;f =0.38 for S = 1 was

2

found when the first order contribution of the order parameter m; = S+ & vanishes.
However the next leading contribution to linear spin-wave mg = 5+ &+ %, that we
have explicitly calculated in this work, indicates that the previous estimate is quite

approximate because the higher order corrections have opposite sign and become

more and more relevant close to the transition point.

In conclusion we have developed a scheme for applying a systematic spin-wave
theory on a finite lattice, and we have applied it to the frustrated Heisenberg model.
This technique can be applied to more general hamiltonian with or without frus-
tration, including triangular and Kagome’ lattice, anisotropic model, local defects

etc.etc. where we expect even accurate results with a minor computational effort.
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The advantage is that on small size one can directly check the accuracy of the re-
sults, and have reliable prediction on the infinite systems. In the J; — J, Heisenberg
model we have found that spin-wave theory works very well for small frustration
(J» < 0.2) and very accurate estimate of spin-rotation invariant quantities can be
obtained with only few terms of the expansion in %g- We finally confirm the existence
of a non classical spin-liquid state for large J2, based on an approximate estimate

for the breakdown of spin-wave expansion.

4 The Anisotropic Heisenberg Model

As we mentioned in the introduction, the ground state of one dimensional Heisenberg
model does not have long-range order but that of the two dimensional Heisenberg
model has. We argue that when -}: changes from 0 to 1, the ground state of the

Hamiltonian

H=1J, R}: SR - SRynx T Jy ; SR * SRiny> (48)
Nz My

will change from a one-dimensional-like to a two-dimensional-like. So we could have

a phase-transition in between.

From similar calculation as in the last section, we have

E = O ‘I‘ Haw + Hint ' (49)
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where

~1(J. + J,)5(S + )Nz
Hyp = JS2 3" \J(1+ @) + (n. + amy)?
k

Hin = —3J2'5(C5, + aCR) + 372(C. + aCy))

1 = cosk;
(50)
1y = cosk,
Co. = % Xk: (V¢ + .Uk Vi)
Cny = % Z (Vi + 1y Uk Vi)
k
J
a = ﬁ
We can also get the spin-spin correlation function as in the last section,
1 1 00,
- (S _ = el v 51
(So-8) = (S~ 5. + 73 - 390753 (51)
for the opposite sublattice.
1 1 0C
(So-S7) = (8~ 301 = jaC—2 (52)
for the same sublattice. where
c. = 1Y '{(1+a)—(m+am) }
T - N
P+ @) = (ne+ amy)?
. = LZI N zkr{ (1+a) _1}
YR V(L +0)? = (n, + any)?
tkr
8ggy _ 2% Z ( Tlv)[(l + a)e™ — (72 +§a77y)] (53)
' k [(1 + a)? — (1. + qu)2}2
Do L g1y (1 = m)[(1 + &)1 — e)(n: + o7y
K a 4)*(04)+ (”Iz) + omy)?)?
TN T &)
o = gy A mlnren)
K \/1 +a)? = (7. + any)?

From above expression, we can see that when J, = 0,1ie. a =0, the last term

drops out, we recover the one-dimensional results and when J, = Jgy e, a =1,
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the last term also drops out due to the fact that C' = 0, we, again, recover the two
dimensional results.
Numerical calculation shows that there is a phase transition at o = 0.1 — 0.2,

see Figure 2 and 3.

The part of the work is still in progress.
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Table Captions

Table 1: First and second order contribution in % for the staggered magnetization
(eq.5) (my and my) and ground state energy per site (Ey and Es) for the square
lattice Heisenberg antiferromagnet as a function of the lattice size N=LXxL

for J, = 0. The exact values are obtained by diagonalization [1] or by quantum

Monte Carlo[8].

Table 2: Same as in Tab. I, for different values of J,, and increasing sizes 4 X 4

(top), 6 x 6 (middle, data for mezac; taken from Ref. 2) and oo x co (bottom).
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Fig.

Fig.

Fig.

Figure Captions

1: First order S + & (dashed lines) and second order (continuous lines) cor-
rection S+ & + %B for the order parameter m plotted for § = 1/2 fora 4 x 4
(upper curves) and 6 x 6 lattice (lower curves). The full squares and triangles
are the exact diagonalization data for the 4 x 4 and 6 x 6 respectively. The
arrows indicate the value of J» where the second order contribution is worse

than the first order estimate, suggesting a breakdown of the expansion.

2: The energy per size of the anisotropic Heisenberg model for L=4. The
dashed line and continuous line correspond to the leading and the next leading
term in the expansion in % The empty dots are exact energies obtained by

diagonalization.

3: The spin-spin correlation function of the anisotropic Heisenberg model for
L, =4, L, = 6. The dashed line and continuous line correspond to the leading
and the next leading term in the expansion in % The empty dots are exact

energies obtained by diagonalization.
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L my ey Meract E; E, Eezact

4 | 0.5238 | 0.5251 | 0.5259 | -0.6920 | -0.7026 -0.7017

6 | 0.4501 | 0.4545 | 0.4581 | -0.6676 | -0.6801 -0.6789

8 | 0.4133 | 0.4173 | 0.420 | -0.6620 | -0.6746 -0.6734

10 | 0.3913 | 0.3945 | 0.397 | -0.6600 -0.6726 | -0.6715

12 | 0.3766 0.3793 | 0.378 | -0.6591 | -0.6717 | -0.6706

oo | 0.3034 | 0.3034 | 0.3075 | -0.6579 | -0.6704 -0.6692

TJIOT m ms2 Mezact E, E, Eezact L
0.05 | 0.5184 | 0.5122 | 0.5223 | -0.6711 | -0.6815 -0.6806 | 4
0.10 | 0.5118 | 0.5193 | 0.5180 | -0.6508 -0.6607 | -0.6598 | =
0.15 | 0.5034 | 0.5166 | 0.5129 | -0.6313 -0.6402 | -0.6395 | =
0.20 | 0.4922 | 0.5150 | 0.5066 | -0.6128 -0.6200 | -0.6199 | =
0.30 | 0.4553 | 0.5283 | 0.4885 | -0.5801 -0.5791 | -0.5830 | =
0.40 | 0.3602 | 0.7357 | 0.4573 | -0.5592 | -0.5233 -0.5511 | =
0.10 | 0.4318 | 0.4439 | 0.445 | -0.6281 | -0.6397 6
0.20 | 0.4038 | 0.4344 | 0.431 | -0.5914 -0.6004 =
0.30 | 0.3548 | 0.4414 | 0.405 | -0.5595 | -0.5613 =
0.40 | 0.2407 | 0.6309 0.370~ -0.5377 | -0.5121 =
0.05 | 0.2876 | 0.2922 -0.6383 | -0.6504 o0
0.10 | 0.2687 | 0.2804 -0.6193 | -0.6308 =
0.15 | 0.2458 | 0.2685 -0.6010 | -0.6114 =
0.20 | 0.2171 | 0.2576 -0.5836 | -0.5924 =
0.30 | 0.1301 | 0.2580 -0.5527 | -0.5541 =
0.40 -0.0606 | 0.5086 -0.5312 | -0.5078 =
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