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Introduction

The study of dynamical properties of matter is motivated by the quest for a detailed under-
standing of the forces between atoms, thus in the last forty years bulk phonons have been
studied with this aim both experimentally and theoretically. An important check of our
understanding is the comparison between bulk and surface properties of a material. The
lower particle coordination and the different symmetry at the surface can lead to a different
behaviour with respect to the bulk which can be a stringent test for the transferability of
models used to interpret atom interactions [1].

In recent years advances in experimental technique such as electron energy loss spec-
troscopy (EELS) and low energy He atom scattering have made available a great deal of
data for clean crystal surfaces of many materials, which interpretation is in many cases still
challanging [1] This is iﬁdeed the case of Beryllium surfaces which have recently attracted
much experimental and theoretical attention [2, 3, 4, 5, 6, 7, 8, 9, 10].

Be is the second row and second column element in the periodic table; it is a strongly
bound metal, stable in hcp crystalline structure. Its four electrons, in the ground state
for isolated atom, have él‘bitals 1S and 28, and to have a bond outermost orbitals have to

hybridize to p-states. Bonding has a partially covalent character more marked than other
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elements of the same column. Be (0001) surface presents an anomalous character: its first
layer relaxes outward by several percents (this behaviour is not a common one for metals)
and its density of electronic states, that has a peak near the Fermi ehergy, seems to be more
metallic than the bulk itself. Both this features contribute to strange dynamical properties
that have recently been measured, using EELS by the group of Plummer [5, 6].

Early attempts to interpret this data using accurate bulk-truncated models have failed
[6] giving even a qualitative disagreement: as we will show they predict wrong sign for the
dispersion of the lowest energy mode(Rayleigh Wave) in some high symmetry direction.
Evidently the marked difference between properties of this surface with respect to the bulk
crystal make it diffcult to use phoenomenological models, this fact has driven us to face the
problem using first principles calculation.

We have used density functional theory (DFT) [11] with the local density approxima-
tion (LDA) for the exchange-correlation energy and density functional perturbation theory
(DFPT). DFPT provides a general theoretical tool for obtaining the harmonic force con-
stants of complex systems fully ab initio without the use of any adjustable parameter. This
method gives access to the phonon frequencies and the corresponding atomic displacement
patterns at any point in the Brillouin zone (BZ), allowing us to calculate full phonon dis-
persions. This technique has been successfully applied to predict vibrational and related
properties of elemental and binary semiconductors [12] or insulators [13], semiconductor al-
loys [14] and eterostructures [15], and more recently to the calculation of phonon dispersion
in bulk metals [16] and surfaces [17].

The last part of the work will be dedicated to the study of thermal properties of this
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surface. As already said, one of the most unusual properties of Be 0001 surface is its outward
interlayer relaxation, that has been confirmed by experiments and calculations [2, 9, 8, 3].
However thére is a quantitative disagreement on the amount of the displacement of the
first layer of this surface. Traying to clarify discrepancies arosen between experimets and
theoretical calculations Pohl et al. [3] has revealed a strong dependence of this displacement
on temperature.

We will show that DFPT with the local density approximation is a fully adequate instru-
ment in reproducing bulk and, that’s more important, surface dynamical properties. So we
will deal with the problem of thermal expansion within the quasi harmonic approximation
scheme.

In Chapter 1 we will focus our attention on the main characteristic of Beryllium and
will explain the problems encountered in interpreting recent experimantal data.

In Chapter 2 we will give an account of the theoretical tools used for our Ab initio
calculation of crystal dynamical properties.

In Chapter 3 we will show and discuss our results.




1 Unusual properties of Be(0001)

surface

Berylium surfaces have recently attracted much experimental and theoretical attention [2,
3,4,5,6,7,8,9, 10], because they display markedly different properties with respect to the
bulk ones. In this chapter er will show some problems recently arosen in studying Be(0001)
surface.

Beryllium forms in the hexagonal-close-packed (hcp) structure with strongly contracted
c/a ratio and a low density of states at the Fermi energy. Both features are related to
partially covalent bonding, @rising from hybridization of the atomic 2s- and 2p-states, that
is strongly dependent on the local atomic coordination. In the close-packed (0001) surface
the top layer relaxes outward by several percents [2, 3] -this is not a common behaviour for
metal surfaces-, and the presence of electronic surface states[4] makes the density of states
more free-electron-like and very different from the bulk one (Fig. 1.1). Surface vibrations

are expected to reflect these changes.

1.1 Dynamical properties
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Figure 1.1: Comparison between calculated electronic density of states (DOS) of Be bulk and (0001)
surface. Bulk DOS has a minimum near the Fermi energy that make it resamble the DOS of a

semiconductor. Surface DOS has a more metallic character than the bulk one.

Surface-phonon dispersions at the Be (0001) surface have been recently obtained by Electron
Energy Loss Spectroscopy (EELS) [5, 6], which are 'signiﬁcantly different from calculated
ones, based on truncated bulk models[6] (Fig. 1.2). With bulk truncated model it is meant
a model in which force -constants are calculated for the bulk and the force-constants so
obtained are used to modellize the interaction between atoms at the surface. There is
even qualitative disagreement between theory and experiment, in particular the sign of the
Rayleigh wave (RW) dispersion from K to M point in the surface BZ is incorrectly given
by the model calculation. This feature has been interpreted [6] as due to a reduction at
the surface—related to its more free-electron-like character—of the non-central interatomic

forces needed to describe the bulk vibrational properties [18].
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Figure 1.2: Be (0001) surface phonon from EELS [5, 6]. The filled (open) circles indicate intense
(weak) features in the measured dispersion. Solid lines indicate the calculated dispersion of surface
modes for a bulk-terminated slab. The shaded area corresponds to the projection of bulk phonon

modes onto (0001) surface (Fig. from [6]).
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1.2. Thermal expansion

1.2 Thermal expansion

It is well established that the first interlayer separation on most metal surfaces is contracted
at room temperature, with only a few exceptions reported so far. Beryllium (0001) surface is
one of these interesting exceptions [2]. Until very recently there was a substantial disagree-
ment between experimental and first-principles theoretical [9, 8, 10] results on the amount
of topmost interlayer expansion in this system, theoretical calculations giving roughly half
of the observed value. In a recent letter, Pohl et al.[3] reconcile experiment and theory on
this point showing that low temperature (110 K) low-energy electron diffraction (LEED)
determinations of the first interlayer separation are in agreement with first-principles (zero
temperature, static) calculations and that reported discrepancies at room temperature orig-
inate from a large thermal expansion of the top layer, reaching 6.7% at 700 K. These findings
are very interesting and puzzling, since surface phonons show no sign of enhanced anhar-
monicity [6, 3]. The calculation of the surface thermal expansion [3], within a simplified
quasiharmonic approach recently introduced in Ref. [19, 20], results in very good agreement
with experimental findings. However, the validity of such an approach has been criticized
by some authors [21], in particular because of the very poor sampling of vibrational modes

adopted in the free energy calculation.




2 Theoretical tools

The study of the structural, electronic and vibrational properties of the system investigated
in this thesis, has been performed within ab initio methods based on density functional
theory. At zero temperature, the properties we are interested in can be determined starting
from the knowledge of the quantum-mechanical electronic ground-state. It is obviously
impossible to solve exactly the many-body Schrédinger equations of electrons and nuclei
in a crystal, but an approximation universally used in solid state physics, known as the
Born-Oppenheimer approximation, allows to decouple the “fast” electronic variables from
the “slow” ionic ones, by virtue of the great difference of masses. The system is thus
divided in two subsytems: the electrons move in the potential of the fixed nuclei, following
adiabatically their slow motion and remaining always close to the quantum-mechanical
ground state, while the ions are treated as if they were classical particles in the effective
potential determined by the electronic ground state.

DFT provides a theoretical framework to describe the electronic ground-state of a solid,
without having tb solve the Schrodinger equation for the quantum many-electron system,
which would be an impossible task due to the very large number of degrees of freedom

involved in the calculation.
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2.1 Density functional theory

This theory was developed 30 years ago on the basis of the Hohenberg-Kohn theorem [22],
which proofs the uniqueness of the external potential acting on the subsystem of the elec-
trons as a functional of the electronic density n(r). The energy of the electrons can be
written as
Eln(r)] = Fln(r)] + / V(r)n(r)dr, (2.1)
where F[n] is a universal functional of the electronic density (independent on the external
potential), and V{r) is the “external” potential (with respect‘ to the electrons) generated
by the ionic cores.
In principle this problem should be solved via the constrained minimization of this
functional, in general unknown, with respect to the electron density, that must always be

normalized to the number N of electrons:

/ n(r)dr = N. | (2.2)

In order to apply this theory to actual calculations, Kohn and Sham proposed to separate

the functional F[n] into three distinct contributes:
Fln(r)] = Toln(r)] + 2/ r)” d dr' + Epoln(r)]. (2.3)

To[n(r)] is the kinetic energy of a system of noninteracting electrons of density n(r), the
second is the classical Hartree term describing the Coulomb potential of the electroms,
while Eg.[n(r)], defined by this formula, is known as the exchange and correlation energy
and contains all the information about the many-body interactions among electrons that

we do not know.
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This way, the problem of constrained minimization becomes the problem of solving a

set of self-consistent single particle equations:

\Y& . . .

[——2— + VSCF(I')} bi(r) = eibi(r) (2.4)
Hgs

Vsor(r)=V(r) + / l:'('r21| dr' + vge[n(r)] (2.5)

() = 3 () 6(ci — er). (26)

These are the well known Kohn-Sham (KS) equations [23], where the Fermi energy e is
defined by the constraint on the number of electrons, v .(r) = § Ezc[n]/én(r) is the exchange-

correlation potential and the single particle orbitals satisfy the orthonormality constraint

[ 5 (r)y(r)dr = 6;;.

2.1.1 The local-density approximation

The Kohn-Sham equations are exact and still contain a completely unknown term in the
exchange-correlation potential . In order to face this problem it is necessary, at this point,
to introduce some approximations. A very natural approximation to DFT is the well-known
local density approximation (LDA), in which the exchange-correlation energy is taken as a

local function rather than a functional of the density:

[N
-]
Nt

Beln(0)] = [ n(tes(n(v)) dr, (2.7

and the potential is given by:

d

Vae(r) = - (n(r)eze(n(r))) = pac(n(r))- (2.8)
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In this approximation, the total energy of the crystal in its electronic ground state is:

ot _Zg(q _GF)/qp;(r)v%z]i(r)dr - fVion(r)n(r)dr
+ 3 / ”I(rr)_” Lvdr' + / (r)ese(n(r))dr
!  ZZg .
! R; \R+Ts‘“7-sl (2‘9)

LDA works surprisingly well for a large variety of systems, even more than any possible
expectations, but it is known to be worse when describing weak atomic bondings. In the
last decade, a lot of improvements to LDA were proposed [24, 25, 26, 27], but none of them
seems to be a real “brea]ia(through”kin this dirgction.’

They are mostly based on the inclusion, in the dependence of the exchange and correla-
tion functional, not only of the electronic density, but also of its gradient, and even of the
Laplacian. For this reason they are commonly known as gradient-correction approximations
(GCA). These kinds of new functionals are not fully satisfactory from a theoretical point of

view, but certainly are able to describe better those situations in which LDA breaks down.

2.1.2 The plane-wave pseudopotential method

The actual solution of the KS equations can be obtained expanding the KS wavefunctions
on a basis set. The most widely used choice of this basis is that of plane waves (PW), which

have the great advantage of being translationally invariant:

Pi(r) = Yox(r) = > e EFe (k+ @) (2.10)
G

where k belongs to the first Brillouin Zone (BZ) of the crystal, G is a reciprocal lattice

vector and 7 is the band index. The PW basis set is infinite and it is usually truncated by
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choosing a kinetic energy cutoff through the condition:

To treat explicitly all the electrons it would be necessary to choose a very large number of
PW in order to describe accurately their rapid oscillations near the nucleus. This would
require a very heavy computational effort for the calculation. It is possible to avoid this
problem freezing the core electrons in the atomic configuration around the ions, and con-
sidering only the valence electrons.

To do this, one introduces the pseudopotentials, able to describe the interactions be-
tween these electrons and the pseudoions (ions+ core electrons). The valence electrons
wavefunctions are considerably smoother near the nucleus, but are identical to the “true;’
wavefunctions outside the core region. This method is now well-established in computa-
tional physics, and the results are very accurate.

The widely-used norm-conserving pseudopotentials [28] consist of a local contribution

for the radial function and a non-local one for the angular part:

lmGI
vs(r,r) = v%(r)é(r — ) + 3 weu(r)6(r — ) Pi(E, ), (2.12)
=0
where P is the projector on the angular momentum /.
This form of semilocal pseudopotential still is not the most convenient one from a com-

putational point of view, and for this reason Kleinman and Bylander (KB) introduced [29]

a fully non-local pseudopotential in which also the radial part of the potential is non-local:

lmaa:

oM, x) = o (ol =2 + 3 o e ), (2.13)
=0
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where

v (2.14)

l
(NL) o US,I(T)Rs,l(T)erm(9> d))y'[*m(el’ ¢/)Rs,l(rl)’vs,l(7‘/)
s ®E)= 2 (Rotlvatl Bt} '

This form of the potential allows a very convenient simplification of its matrix elements in

reciprocal space, where the KS equations are iteratively solved.

2.1.3 Non linear core correction

The idea underlying NLCC is to use the total charge instead of the valence charge to

compute the exchange—cérrelation energy [30]:
E,.= / dréege(ny + ne)(ny + ne), (2.15)
v

where n. is the charge density of the core electrons, computed as a superposition of the
atomic core charges of the atoms which requires NLCC and 7, is the valence charge. The
core charge is computed only once, together with the psuedopotential and then it is added

to the valence charge to compute the exchange-correlation energy.

2.2 Lattice dyhamics

Phonons are normal modes of the liarmonic lattice vibrations. Within the adiabatic approx-
imation, the lattice dynamics can be studied as if the ions were classical charges moving in
an effective potential determined by the ground-state electronic energy. Therefore the total
energy, as a function of the coordinates, plays the role of a potential surface for the atomic
motion. For small displacements of atoms around their equilibrium positions, us(R), the

total energy of the crystal can be expanded in a Taylor series, which up to second order
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would read:

aZEtot
du,(R)du, (R))

Etot[u] — E{t)ot_,_% Z
Rs,R's

(R)uy (R + O(u®). (2.16)

The linear terms vanish because of equilibrium. E&* is the total energy of the crystal at

equilibrium, and us(R) is the displacement of the s-th atom in the unit cell located at R.
Within this picture, the harmonic oscillations around equilibrium positions are governed by

the equations of motions:

a Etot

Ms’ﬁas(R) = —m

=" Z Cas,ﬁs’(.R - Rl)uﬁs’(Rl)y (217)
R' s 3

where M, is the mass of the s-th atom, and «,f = z,y,z are the polarizations. The

interatomic force constants are given by:

82 Etot

BB = R, (R

c

(2.18)

«s,Bs

where the second derivatives are calculated at equilibrium. C_ ;. (R ~ R') represents the
negative of the linear force on atom s in the cell at R along the a direction due to a
unit displacement of atom s in the cell at R’ along the 3 direction. The force constants
are connected to each other by relations due to symmetry properties of the crystal. In
particular they only depend on the difference R — R’ because of the translational invariance
of the crystal. Thanks to translational invariance,the solutions of the infinite set of coupled
equations 2.17 are waves:

1 \iqR—iw -
us(R):-\/ﬁs-us(q)eqR t (2.19)

where the wave vector q belongs to the Brillouin zone. Once the dynamical matrix is known,

the problem of solving the lattice dynamics is reduced to a 3Ny X 3Ny (number of atoms)
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eigenvalue problem :

wius(q) = > D, (q)uy(q) (2.20)

The dynamical matrix D, (q) is related to the Fourier transform of the matrix of force

constants:
1 —iqR o
D, p0(a) = = Cop gy (R)eTIT (2.21)
VMM, R
It is a hermitian matrix, and has the well known properties [31]:
Dcvs;ﬁs'(q) = Dgs/,as(q)’ Das,ﬁs'(-—q) = D:,s,ﬁs’(q) (222)

For each q point in the BZ, the 3N,; eigenvalues of the dynamical matrix: w2(q); v =
1,2,3,---,3Ny;,are positive for stable systems. Their square root gives the frequency of the
v — th vibrational normal-mode, i.e. the dispersion relations w = w,(q). The corresponding
3N,; eigenvectors u%(q) é,re related to the normal-mode atomic displacements through the
Eq.2.19. Every harmonic vibration of the lattice is a linear superposition of the 3Ng;

normal-modes.

2.2.1 Ab initio interatomic force constants

A complete description of the harmonic vibrations of a crystal is provided by the knowledge
of the interatomic force constants. Within the adiabatic approximation, the lattice distor-
tioin associated with a phonon can be seen as a static perturbation acting on the electrons.
Furthermore, it is well known that the linear variation of the electron density upon applica-
tion of an external, static, perturbation determines the energy variation up to second order
in the perturbation (up to third order, indeed, as stated by the “(2n + 1)theorem” [32]).

When the external perturbation is due to ionic displacements, this allows one to calculate the
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interatomic force constants which are directly obtained from the electronic linear-response
to ionic displdcements. In fact, the bare ionic (pseudo-)potential acting on the electrons is a
continuous function of the atomic displacements u = {u;(R)}. The electronic contribution
to the force associated with the displacement along « of the s — th ion in the cell at R

(uns(R)) is given by the Hellmann-Feynman theorem [33]:

OEE, ovier(x)
u] [u] 5 69"
T (R /n[u](r) s R) dr, (2.23)

where Eﬁll] is the electronic gro'und-state energy relative to given values of the atomic dis-
placements u, and up, is the corresponding electron-density distribution. The electronic
contribution to the harmonic force constants is then obtained by differentiating Eq. 2.23
with respect to usz(R'):

aZEel ) avion : 82vion ‘
e = Omp(e) OV 10) AN PRSP
Guzy (R)9uqs(R) Dy (R') Duos(R) Gy (R)Fucs(R)

where all the derivatives are calculated at the equilibrium positions, i.e. at u = 0, ng(r)
is the ground-state alectronic density of the unperturbed system, V[{f}”(r) is the bare ionic

(pseudo) potential acting on the electrons:
fdo]”(r) sz(r - R -1, —u,(R)), (2.25)

and m% is the linear-response of the electron density to the displacement of the s — th
ion in the unit cell at R. The interatomic force constants can be written as a sum of two

contributions:

C (R - R)—Celﬁ (R — R)+C“’” JR-R, (2.26)

as [35
where the electronic contribution Czls, is given by Eq. 2.24, and the ionic one Ci";‘, is the

second derivative of the Coulomb interaction between the ionic cores (which is essentially
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the second derivative of an Ewald sum). The matrix of the interatomic force constants is

conveniently calculated in reciprocal space:

1 R I A
CCYS:/))S = Z Ofsﬁs Zq ' (22‘)

q
where N is the number of unit cells in the crystal. The electronic contribution is then

written in reciprocal space as follows:

- [ an(x) 1FaVien(r) ; ReS N
Cosps'(@) = / [auw(q)] auﬁs:(q)dr+ 8, /no(r)au%(q 0}, (a = O)dr, (2.28)

where 2 a ((1)) is the linear variation of the external ionic potential due to a periodic lattice

distortion of wave vector q:

Ugs(R) = tgs(q)e' R, (2.29)

n{r)
as(q)

and ai is the corresponding variation of the electron density. Equation 2.28 shows that
the harmonic force constants of the crystal can be calculated by first-principles, once the
electronic ground-state density of the unperturbed system no(r), and its linear response to
a lattice distortion of the form 2.29 are known.

When the unperturbed problem is solved in the framework of DFT, the electronic linear

response is calculated within Density Functional Perturbation Theory [11] by solving the

selfconsistent set of equations:

[Hrs + O, — &)AY;(r) = —PCAVSCF(I')'%(I‘), (2.30)
. — AT~ ) An(rl) 1 duge A o
AVSCF(r)¢z(r) = Al zon(r)¢1(r) + 2/ [r — r'[ dr + an ez ) An(r), (2.31)

=43 HAN), (2.32)
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where ¢ Tuns over the occupied states. In the Egs. 2.30-2.32, in order to simplify the
notation, A f indicates the derivative with respect to the relevant ionic displacements: Af =
g—é. AVscp(r) is the variation of the self-consistent KS potential due to the variation of
the bare ionic potential produced by the lattice distortion, and it is self-consistently related
to the linear variation of the electronic density, An(r), through the variation of the Hartree
and exchange-correlation potentials (Eq. 2.31). The operators P, and O, are introduced in
order to obtain a numerically stable solution: they orthogonalize the solution with respect
to the occupied states and make the system 2.30 non-singular. These two operators are
defined in a different way for metallic and non-metallic systems. For non-metallic solids,
where empty and occupied states are separated by a finite energy gap, the projection of
the perturbed orbitals over the unoccupied states many-fold is well defined, and it is the

solution of Eq. 2.30, where P, and O, are defined respectively as:
Pe=1=7 o) (], (2.33)

0, = QZ |%u) (o], (2.34)

where « is a constant larger than the valence energy band width, in such a way to make
the linear system 2.30 non-singular. In this way only the valence states are involved in the
computation of the linear variation of the charge density, without explicit introduction of
the conduction states. In the case of metals, the smearing technique [34, 35] is used to deal
with BZ integration in the presence of a Fermi surface, so that partially-filled states are
introduced. As a consequence, empty and filled states are no more separated in energy, and
the projection of At;(r) over the (partially-) unoccupied states is no longer well defined.

In this case the problem is solved by introducing in Eq. 2.30 the “smeared operators” P,
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and O, defined as [16]:
Oy =3 ailts) (3 (2.35)

Pc(i) = éFi - Z/ﬁz‘jl%‘)(lbﬂ (2.36)
J

. U Op; — Op;: ~ ~
Bij = Oribij + 0p;j0 + o f——fi% (2.37)

1T
where §p; is a smooth approximation of the step function 0(er — ¢;), «; being chosen in
such a way that the system 2.30 is non-singular, and it is assumed to vanish when 1; is
unoccupied, so that 3;; vanishes when both ¢ and j refer to unoccupied states. Therefore
only the partially filled states enter the definition of these “smeared operators”, and no
explicit introduction of the onoccupied states is needed in the computation of An(r), as
for the non-metallic case. A detailed description for practical implementation of force

constants calculation within DFPT can be found in reference [12] for insulating systems,

and in reference [16] for metals.



3 First principles calculation

In this chapter we present our first-principles calculations of the structural and dynamical
properties of Be (0001) surface, as obtained by state-of-the-art density-functional perturba-
tion theory (DFPT) [11, 36], and will compare our results with experiments. The obtained
vibrational frequencies will be used to estimate Be thermal expansion within the quasi

harmonic approximation for bulk and (0001) surface.

3.1 Structure and dynamical properties

3.1.1 Be bulk

As a preliminary step, we have computed the structural and lattiée-dynamical properties of
the bulk metal. Our calculafions have been performed within the local-density approxima-
tion (LDA) [23, 37] using pseudopotentials and plane-wave (PW) basis sets. Be atoms were
described by a separable pseudopotential [29] that includes non-linear core correction [30]
and has been generated so as to optimally reproduce several atomic configurations [38, 39],
to enhance transferability. Our basis set included PW’s up to a kinetic energy cutoff of

22 Ry and BZ integrations were performed with the smearing technique of Ref. [35] using

20
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the Hermite-Gauss smearing function of order one, a smearing width =50 mRy, and a
120-points grid in the irreducible wedge of the bulk BZ [40]. With these parameters all
calculated properties were well converged. The resulting hcp lattice-constants, a and c,
bulk modulus, B, and Poisson ratio, vp, are in good agreement with experimental results
(in parenthesis): a = 4.25 (4.33) a.u., ¢/a = 1.572 (1.568), B=1.25 (1.1) Mbar, and vp=0.04
(0.02 - 0.05). Note the contracted value of ¢/a and the small value of the Poisson ratio,
indicating rather strong and anisotropic bonding along the ¢ axis.

In Fig. 3.1 we display the calculated phonon dispersions of bulk Be and compare them
with neutron-diffraction data from Ref. [41]. The overall agreement is very good (about 1%
throughout thé BZ) and typical of ab-initio DFPT [11]. The agreement with experimental
data is even better than that obtainable by empirical Born-von Karman scheme—as, for in-
stance, in Ref. [6]—after extensive fitting of the experimental dispersion relations. Note that
our calculations have né adjustable parameter and the only uncontrolled approximations

are the adiabatic one and LDA to deal with electronic correlations.

3.1.2 Be (0001) surface

To describe the surface We adopted a repeated slab geometry with 12-layer Be slabs sep-
arated by a ~25 a.u. thick vacuum region (equivalent to 8 atomic layers) to decouple the
surfaces. In the BZ integrations we used a 30-point grid, obtained projecting the bulk
grid on the surface BZ. Atomic positions in the slab were fully relaxed starting from the
truncated bulk, keeping .the in-plane lattice parameter fixed at the bulk value. Symmetry
fixes atomic in-plane positions and relaxation involves only modification of the inter-layer

spacing. The three outmost layers relax significantly from the bulk value, in agreement with
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Figure 3.1: Calculated phonon dispersions for bulk Be (lines) and neutron scattering data from Ref.

[41] (full dots). The calculated density of states and the hcp BZ are also shown.

experimental evidence [2, 3, 7]. The calculated values for the interlayer spacing variation
are reported in Table 3.1, along with experimental data [2] and previous theoretical re-
sults. Our theoretical calculation agrees well with previous ones, but all theoretical results
disagree with the LEED structural determination [2]. The use of different exchange and
correlation functionals does not improve the comparison [10].

Recently the importance, in order to get close to LEED results, of including in first-
principles calculations the effect of zero-point vibrations has been suggested for transiton
metal surfaces [20]. In the present case, however, calculation shows ( next section) that
zero-point vibrations do not modify significantly the top layer relaxation. Very recently
a new, low temperature (110 K), LEED determination of the structural properties of Be
(OOOI) surface has been made [3]. The agreement between theoretical results and this new

experimental determination is very good, the value for the topmost layer expansion being
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Table 3.1: Relaxation of the three outer layers of Be (0001) as obtained by LEED and several
electronic structure calculations. The experimental temperature is shown, while for the calculations

the exchange and correlation used and the number of layers in the slab are indicated.

Adia(%) Adaa(%)  Adsa(%)

Exp: LEED (300 K)[2] +5.8 0.2 +0.2
Th:  LDA-12 layers, this work +3.2 +1.0 +0.4
LDA-11/13 layers [8] +2.7 +1.2 +0.6
LDA-9 layers [9] +3.9 +2.2
GGA-9 layers [10] +2.5

3.1%, with similar agreement for the inner layers. Disagreement with previous experiments
[2] seems to be due to a large extent to a very strong temperature effect [3]. However,
preliminary calculation of the surface thermal expansion gives only a relatively small effect,
as will be shown in the next section.

Surface-phonon dispersions of Be (0001) were calculated by sampling the surface-BZ of
our 12-layer slab on a 6 x 6 grid of points and Fourier interpolating dynamical matrices in
between to obtain real-space interatomic force constants (IFC). Although the surface IFC’s
are well converged and recover the bulk values in the middle layers of our slab a thicker
sample is necessary to decouple those surface vibrations that penetrate deeply in the bulk.
The dynamical matrices of a 30-layer slab were built matching the surface IFC’s to the bulk
ones in the central region.

The resulting phonon dispersions are reported in Fig. 3.2 and compared with experi-

mental data for the intense (full dots) and weak (open dots) peaks observed in Ref. [6].
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Although we predict three surface modes below the bulk continuum and only one is clearly
revealed in the experiment, a very good agreement is found between the experimental RW
and the most surface-like calculated vibrations as can be seen in Fig. 3.3 where modes
that are confined more than 30% in the first layer and are polarized perpendicularly to the
surface are shown as full dots.

Note that results from truncated bulk calculations differ from experilﬁental ones even
qualitatively, giving wrong sign, and amount, for the RW dispersion from K to M. As
already suggested in Ref. [6], this feature is to be related to modifications of the bond-
ing properties, due to the relaxation of the three topmost layers at the surface. However
the situation is more complicated than the one described by Hannon and coworkers: we
find interatomic forces near the surface continue to have a strong non-central component,
comparable to the one found in the bulk.

We find that many layers are involved in the surface dynamics. To point out the surface
character of the calculated modes, in Fig. 3.3 we show as open dots modes confined more
than 50% in the three topmost layers. Our calculation predict two additional modes below
the bulk-band edge that are not observed in Ref. [6]. These modes are peaked in sub-surface
layers and have both in-plane and out-of-plane components. We suggest that they are not
observed in the experiment [6] because of the strong intensity of the rather close RW, which,
in the region where three modes are predicted, is for more than 70 % localized in the first
layer and z-polarized. Only at the M point a shear orizontal mode has been observed [5] in

the appropriate geometry. The experimental value of 50.5 meV agrees well with our result

(50.0 meV). Many of the additional surface vibrations in Fig. 3.3 agree qualitatively with



3.1. Structure and dynamical properties 25

20 20
= o
g 79
'l =
8 40/,__3
= o
o
2 X o 5
L

wn
Do
O

| —y
T K M T

Figure 3.2: Phonon dispersion of a 30-layer slab modeling Be (0001) surface. Full and open dots are
EELS data from Ref. [6] (intense and weak features, respectively). Thick lines delimit the bulk-band

continuum.

weak features present in the experiment (open dots).

Finally, for long wavelenghts (q — 0) RW follows closely the bulk-band edge, without
entering it (as was suggested instead by the model calculation in Ref. [6]) and only a minor
stiffening of the RW is observed in the T — K direction with respect to our truncated bulk

calculation, as opposed to the 35% stiffening reported in [6].
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Figure 3.3: Surface character of the calculated Be (0001) vibrations: modes localized more than
50% in the three topmost layers are shown; dot size is proportional to this percentage. Full dots
correspond to modes localized more than 30% in the topmost layer, polarized perpendicularly to the

surface. Thick lines delimit the bulk-band continuum.
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3.2 Thermal expansion

In this section the thermal expansion of Be (0001) surface is studied from first principles
minimizing the free energy of the surface as a function of the interlayer separation in the
quasiharmonic approximation (QHA). The QHA is applied avoiding additional simplifica-
tions [3, 19, 20] thanks to the efficient calculation by density-functional perturbation theory
[11] of the needed vibrational freqﬁencies. The ability of QHA to deal with thermal effects
in bulk solids has been demonstrated in recent studies [42, 43]. The approximations in-
volved in the determination of the surface thermal expansion within the QHA are carefully
studied and an accurate éamp]ing of the vibrational modes in the surface BZ turns out to be
important in Be (0001) surface, showing that simplified calculations [3, 19, 20] may lead to
inaccurate results. The full calculation does not show the large thermal expansion observed
experimentally [3] and indicates that present understanding of Be (0001) surface structure
is yet not fully satisfactory.

In purely harmonic crystals, ion mean positions do not change upon increasing temper-
ature, thus crystal thermal expansion is a consequence of anharmonic terms in the inter-
atomic potential. MD simulations account exactly for interatomic potential anharmonicity,
but treats ionic degrees ‘of freedom classically, and can give reliable results only near or
above Debye temperature. The QHA provides a complementary approach, valid below
the melting temperature[42, 43], for determining the temperature dependence of structural

properties. In this approximation, the Helmholtz free energy, F, of a system is given by

. fwyq(a) o
T a) = b =422 3.1
F(T,a) E(a)-}—k‘BT%ln [2 snn( T )J, (3.1)

where E(a) is the static energy of the crystal and w,q(a) are the vibrational frequencies of



28 | § 3. First principles calculation

the system as a function of the structural parameters, a, whose temperature dependence

can be extracted from the minimization of F at any fixed temperature, 7.

3.2.1 Be bulk

As a preliminary step in our study we have computed the thermal expansion of bulk Be in
the hcp structure. We previuosly calculated the structural properties of bulk Be minimizing
the static energy, £(a) in eq. (3.1). Here, the free energy of eq. (3.1) has been considered
function of the two axis lengths, a and ¢, and calculated on a grid of points in the two-
parameter space. The vibrational contribution to the free energy resulted to be remarkably
linear in the two parameters. Due to low atomic number of Be, the account of zero-point
vibrations is expected to bé more important than in other systems and in fact it results
in a = 0.7% increase in both lattice parameters, further improving the agreement with
experimental data: the static and the QHA calculation at T=0 give a = 4.25 a.u., ¢/a =
1.572 and a = 4.28 a.u., ¢/a = 1.571, respectively, to be compared with the exﬁerimental
values, ¢ = 4.33 a.u. and c/a = 1.568. The calculated bulk phonon dispersions for the
corrected lattice parameters are similar to those obtained at the static minimum, again in
good agreement with experimental data [41]. The calculated temperature variations of the
bulk lattice parameters, reported in Fig. 3.4, show that QHA accounts very well for Be bulk

anisothropical thermal expansion in the whole temperature range of interest.

3.2.2 Be (0001) surface

In the previous section we have shown that we have found outward relaxations, relative

to the bulk, for the three topmost interlayer separations: Adyy/dy = +3.2%, Adaz/dy =
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Figure 3.4: Calculated thermal expansion of bulk Beryllium. Experimental data from Ref. [44].

+1.0%, Adzy/do = +0.4%. These values are found relaxing the slab from the truncated
bulk positions, keeping the in-plane lattice parameter fixed at the (static) bulk value; they
are in agreement with previous theoretical results [8, 10, 3] and with experimental evidence
at low temperature [3].

The thermal expansion of the first surface-layer has been calculated by minimizing the
QHA free energy as a function of the first interlayer separation, di3. In-plane lattice parame-
ter, a)|, and all other interatomic distances were assumed to vary according to the calculated

bulk thermal expansion. In order to evaluate the free energy variation with respect to dqy
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Figure 3.5: Comparison between experimental and theoretical surface toplayer expansion. The upper

experimental point at room temperature is from Ref. [2], all other from Ref. [3].

aﬁd @), full phonon dispersions have been calculated [45] for two different values of dys,
corresponding to ¢) static lattice equilibrium and ii) the topmost layer further expanded by
2%, and two in-plane lattice parameters, corresponding to i) static equilibrium geometry
and i) the theoretical bulk value at 7 =700 K (a = 4.31 a.u.). The resulting vibrational
free energies were interpolated (bilinearly) in between. We have examined the effect of
varying the second interlayer spacing on our results and found that they are unaffected by
its precise value: varying Adyz/dp between 0 and 1.5% the total energy of the slab as a
function of di2 does not change neither minimum position nor its curvature.

Our results are reported in Fig. 3.5 along with experimental data [2, 3]. Zero-point

motion does not change significantly the first interlayer distance at zero temperature ( 3.3%)
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with respect to the static result (3.2%). By increasing the temperature the topmost layer
relaxes outward reaching 4.1% expansion, relative to the corresponding bulk value, at 700
K. At all temperatures, the expansion is mainly due to anharmonicity in the out-of-plane
vibrations that accounts for about 90 % of the effect. Good agreement with experimental
data is found at the lowest temperature as well as “reasonable” disagreement at room
temperature, in view of the scatter between experimental data, mainly due to different
experimental analysis [3]. At the highest temperature, however, the discrepancy is well
beyond the experimental errorbar.

Since in Ref. [3] very good agreement has been obtained with experimental data using
the simplified QHA approach introduced recently in Ref. [19, 20], we examined the effects
of the approximations involved in such approach on our calculations. In Ref. [3, 19, 20]
the sum over vibrational modes in the vibrational part of the free energy is replaced by
the sum over three “representative wave packets” corresponding to modes at the surface
BZ center where the top layer moves on a rigid substrate. Moreover the in-plane lattice
parameter is kept fixed at all temperatures. In Fig. 3.6 we report the results of calculation
at various degrees of approximation (full dots) together with the theoretical results from
Ref. [3] for comparison (open circles). The lowest curve (full line) is our most accurate
result, already shown in Fig. 3.5. Keeping fixed the in-plane lattice parameter at the static
equilibrium value, still performing the full summation over vibrational modes in the free
energy calculation, results in an almost rigid outward shift of the top layer (dashed line).
This is a trivial effect associated with the zero-point motion tendency to make the system

to expand. No large thermal effect is observed. It is only when the accurate sampling of
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Figure 3.6: First layer thermal expansion calculated at various levels of approximation (full dots

and lines, see text) compared with theoretical results from Ref. [3] (open circles).

the vibrational mode is drasticaly reduced to include only the three “representative wave
packets” that alarge (spurious) thermal effect appearsin the calculated interlayer separation
(dotted line), very similar to the results obtained with the same approximation in Ref. [3]
(open circles). A similar, although less dramatic, overestimation of the surface thermal
expansion due to the three-modes approximation [19, 20] is also found for Ag (111) surface
[46]. In conclusion, in the case of Be (0001) surface, the better the calculation the worse is
the agreement with the experiment.

This failure might suggest that QHA itself is inadequate at high temperature, due to
the enhanced anharmonicity at the surface [47] with respect to the bulk case, where QHA

works well. Comparison of experimental and theoretical root mean square (rms) vibrational
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displacements also shows (Fig. 3.7) good agreement for the bulk values, over the whole
temperature range of interest, while for the two topmost surface layers experimental rms
diplacements appear to be much larger than theoretical ones. Note, however, that enhanced
anharmonicity cannot be the (only) reason for these discrepancies. In fact, experimental
surface-layer rms values are larger than theoretical ones even at low temperatures where
QHA is expected to be accurate and accounts well for the observed surface relaxation.
Note also that the temperature dependence of the rms displacements is well described by
the calculation and the agreement with experiment could be greatly improved by a rigid
shift in the theoretical, or experimental, data. It is well known (see for instance Refs.
© [48, 49]) that it is very difficult to tell apart static and dynamical displacements in LEED
analysis and we believe that Fig. 3.7 carries strong indications that in the actual surface
some degree of structural disorder is present, which has erroneously been attributed to
dynamical effects. Deviations from clean and flat morphology would certainly affect the
apparent rms displacemgnts, the layer relaxations and their temperature dependence in.
LEED analysis of “nominally ideal” surfaces. We found, for instance, that a complete fec
Be adlayer, whose stacking fault cost is only 50 meV/atom in LDA, relaxes outward 2%
more than the Acp terminated surface. Since adatoms are more stable, by ~ 40 meV, in fec
sites than in hep ones [8], mixed fec/hep layers could exist, expecially if some residual H,
affecting the local energetics of defects [8] were present. More experimental and theoretical

work is still needed on this issue.
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Figure 3.7: Comparison between experimental [3] and theoretical rms vibrational displacements.

Outer layers display larger rms amplitudes.



Conclusions

We have shown first-principles calculation of the dynamical properties of Be (0001) surface,
as obtained by state-of-the-art density-functional perturbation theory. We have calculated
dynamical properties of fully relaxed 12-layer Be slabs and found significantly different
results from those obtained using bulk-truncated geometry. Our results are in excellent
agreement with recent EELS experiments and show that three layers are involved in the
surface dynamics.

We have also shown a first-principles study, within the quasiharmonic approximation, of
the thermal expansion of Be (0001) surface. The free energy is obtained from full vibrational
dispersions computed by density-functional perturbation theory. Our calculation describes
very well the thermal exnpasion in the bulk but we do not find the large thermal expansion
recently observed experimentally and we argue that the morphology of the actual surface

could be less ideal than assumed.
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