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Nadie acterta antes de errar,
y aunque la fama se juega,
el que por gusto navega

no ha de temerle a la mar.

J. Hernandez

Cosa e’ un polarone?,

un orso polare grosso?

An outsider’s question.
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1 Introduction

In 1987 Bednorz and Miiller[1] received the Nobel Prize for the remark-
able discovery of ceramic materials superconducting at unexpected high
temperatures for the time being. The general belief was that the fol-
lowing year’s Nobel prize was going to be assigned to the theorist or
theorists who could explain such phehomena. This proved to .be too
optimistic, for still there is no theory of the high-temperature supercon-
ductors (HTSC) allowing to rationalize the enormous amount of accu-
mulated experimental data and, at the same time, having some predic-
tive power. Many ideas[2] have been proposed. One of the strongest
test for these ideas was the appearance of compounds that do not sat-
isfy the initial assumptions. In this way the discovery of HTSC without
Cu-O chains[3] with Tc of 115 K discarded the models based on one-
dimensional structures and the discovery of non-magnetic BiO3-based[4]
compounds makes hard to support the theories based exclusively on
magnetism, if one wants to obtain an unified view of these phenomena.

The charge transfer mechanism proposed for CuQO,-based HTSC by
different groups[5]-[7] proved to be one of the most robust mechanisms
against this kind of test. The same ideas have been shown to be applica-
ble to BiOs-based[8] compounds and electron-doped[9] Cu-O layers. In
this sense, it is suggestive that a small value of the metal-to-O charge-
transfer-energy seems to be what distinguishes high-temperature super-
conducting oxides from low temperature or even non-superconducting
oxides[10,11]. In spite of the progress made up to date, there is still
much to be done in order to turn this idea into a complete theory. This
work is an attempt to make an advance in that sense.

The high-temperature superconductors (HTSC) are insulating com-
pounds that become metallic upon doping. It is believed that the

charge gap in the stoichiometric compounds is mainly of charge transfer



origin[12]. Charge transfer systems are also found in one-dimensional
conductors [13].

In this work we show that the nearest-neighbour Coulomb repul-
sion of the p-d model (Sec. 2) treated in a site-dependent Hartree-
Fock approximation (Bogoliubov-de Gennes Formalism) (Sec. 3) can
generate charge transfer polaron and exciton states (Sec. 4). The im-
portance of charge transfer excitations in HTSC has been stressed by
theorists[5]-[7] and experimentalists[14]-[19]. Structure related to charge
transfer excitations in the Cu-O planes has been identified in optical
measurements[17]-[19]. Polaronic effects have been invoked[20]-[23] to
explain experimental results like optical spectroscopy[24,25], photoin-
duced optical absorption[26,27] and transport[28], among others. For a
complete review see Refs.[29,30]. The photoinduced optical absorption
experiments by Kim et al.[27] and Taliani et al.[31] show the importance
of localized states in the gap. The former tell us that such states do not
appear in the isostructural compound La;NiO4, while the latter shows
that they are common features in both Cu and non-magnetic Bi-based
high temperature superconductors. Experiments supporting self trap-
ping effects and importance of charge transfer excitations are reviewed
in Sec. 6. In Sec. 7 we discuss our results in the context of HTSC and

propose some routes for the future study.



2 The Model

A prototype hamiltonian to describe strongly correlated charge transfer
systems is the p-d model of HTSC. This model has been proposed in
the early times of the HTSC studies for the Lay_,Sr,CuQy, and applies
to all the Cu-O based compounds. It has been later generalized to the
three-dimensional Bi-O compounds[8]. In the case of the Lay_;Sr,CuO,
it takes into account the following:

e The compound is quasi-two-dimensional.

¢ The La valence states are far above the Fermi energy[32].

e The main states near the Fermi energy[32] are the d,2_,. orbitals
of the Cu and the p.,p, of the O directed towards the Cu. Their energies
are close to each other, producing a bonding and non-bonding bands.
They are the ones that mix the most.

e On-site correlations are large[32].

e As suggested by many authors we include also the interatomic
repulsion[5]-[7]. We expect it to be important because we know that the
carrier density is small[33] and, as a consequence, the screening length is
large. On the other hand, if the Cu-O bond were ionic, this term would
not play any important role, but we know this is not the case.

Motivated by the HTSC applications we shall name the atoms Cu
and O but we expect to find the same physics in similar one—dimensiohal

strongly correlated systems. The hamiltonian reads as

i 1 1
H = Z(Eiaaitrcia + 5 Z Uijacr'n‘io'nja') + Z EijC’iL, /jo (1)
0 jo' 1#5,0
here C’Z, creates a hole on site i with spin 0. E;, = Ey (E,), Uiivs =
Uq (Up) for a Cu (O) site. Nearest-neighbour matrix elements are E;; = ¢

and U, ,» = Upq. We define A = (E, — E;)/2

ijoo



For the sake of simplicity most of our results are in 1D but we expect
similar physics in 2D.

In 1D and in the limit U,,U; — oo, charge and spin degrees of
freedom decouple, and the former are described by a spinless fermion

hamiltonian [7],

H = Z[(—l)iACjCi + t(OiTCi_;.l -+ h.C.) + Updnini_,_l} . (2)

By doing this we loose all the relevant information about the spin degrees
of freedom (which are described by a Heisenberg model) but we gain
simplicity on the charge degrees of freedom. We know that Uy is very
large. Naively, one could expect the results to be insensitive to the value
of U, because double occupancy on O is rare. However we shall see later

(Sec. T) that this is not the case.



3  The Bogoliubov-de Gennes Formalism
(site dependent Hartree-Fock approxi-
mation)

We start with the spinless hamiltonian Eq. (2). In the Hartree-Fock

approximation the four-fermion terms n;n;y; are decoupled by:

NNy = N <Myl > + Ny <1y > — <0y >< g >

+ OjCiH’)’i + Oimci’?’i - 7i2’ (3)
where we have defined,
v =< C’iC'Ll > . (4)

The first three terms are the diagonal or Hartree part and the last three

terms are the exchange or Fock part. The Hamiltonian now reads as

Hpr = Z[Eiojoi + gi(OiTCi-i-l + Ciuoi)] +e, (5)

2

where

E; = (=1)'A+ Upi(< nig1 > + <niq >),
t o= t+ Upa¥i (6)
e = U< < i > ).

We can define new operators

of =Y arc) (7)

that diagonalize Hgyp. By solving
[Hur,a)] = E,a] (8)
we obtain the Schrédinger like equations

(Bi — BE))o + oty +Hiq0f, =0. (9)



Now the ground state is given by

¥ >= ] allo> . (10)

v<vg

So we get the self-consistency equations

<ni>= 3 (af)’ (11)

u<u)¢

and from Eq. (4)
Yi = Z ai-’ﬂai-’, (12)

v<vy
where we assume that all the o are real. In order to solve these equa-
tions, we just diagonalize Eq. (9) with some initial value for the af and
then recalculate the renormalized matrix elements Eq. (6). We return
to Eq. (9) and reiterate until convergence. We check that the energy
decreases monotonically in order to be stabilized at some equilibrium

value.
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4 Results

4.1 Uniform case

In Fig. 1 we show the chemical potential as a function of doping in
the uniform Hartree-Fock approximation for different values of U,q/t.
We see that the compressibility is negative for small enough doping.
This means that the uniform Hartee-Fock ground state is unstable and,
‘hence, something better should be tried.

There are several candidates such as phase separation, superconduc-
tivity or, as we shall see, a polaronic phase. Since we are in the unstable
phase, no precise statement can be made. The instability can be traced
back to the behavior of the renormalized Hartree-Fock diagonal ener-
gies. Let us give an heuristic argument in the strong coupling limit.
The effective levels for a chain of Cu and O at half-filling vs. the site
are schematically shown in Fig. 2(a). In the Hartree approximation the

diagonal energies of the orbitals renormalize as:
Ey= Eq+ 2noULq, (13)

Ep = Ep + 2ncuUpd. (14)

At half-filling and for small t, ng, ~ 1 and n, ~ 0, then

Ey ~ By, (15)

and

E, ~ E, +2U,q. (16)

When we add holes they go mainly to O sites raising the Cu level. These
will increase the mixing of Cu and O and will imply a transfer of charge

from Cu to O. The net effect will be that ng, decreases, and the O level

11
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FIG. 1. Chemical potential as a function of doping in 1D for A = .3. We subtracted the corresponding value of 2U,, to

each curve in order to make them all fall on the same scale.
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renormalizes to lower energies. This means that we are putting charge
in a level whose energy is decreasing. Therefore, the chemical potential

decreases with doping and the compressibility turns out to be negative.

4.2 Non-uniform case

Let us now suppose that instead of putting the chargein a Bloch state we
localize it on an O site (Fig. 2(b)). The energies of the neighbouring Cu
will strongly renormalize and then, there will be charge transfer towards
the O. The net effect will be that the O level will locally renormalize
to lower energies. This will create a potential in which the hole can be
self-trapped.

This effect can be studied in a wide region of parameter space per-
forming the unrestricted Hartree-Fock approximation (~Sec. 3).

In Fig. 3 we show the example of one hole added to the stoichiometric
case.

In a simplified view, we can think of the particles of the O band as
moving in a potential generated by the charge distribution on the Cu
site and vice versa (Egs. (13),(14)). Therefore, in Fig. 3 the plot of
the charge distribution represents, in a different scale, the distribution
of site energies in which the particles move. The depletion in the Cu
charge pulls down a state from the O band and the bump in the O
charge pulls up states from the Cu band. The polaron wave function
carries some features of the bottom Bloch state of the O band. The
amplitude is larger on O sites and it changes sign from one O site to
the next. Note that the polaron forms an “impurity”-like state. In all
cases we found that the self-trapped solution has lower energy than the
uniform one.

Our problem presents a neat analogy with 1D problems studied in

the past[34]. In this context a related problem has been studied by

14
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Hubbard[13]. He showed that for the case A = 0 and ¢ << Up,q (strong
coupling), one hole added to the system dissociates into a soliton (kink-
like) pair, each one with charge e/2. When A # 0 the free soliton pair
is not stable because the charge between the two solitons is located “in
the wrong place”. In our case we can think of the polaron as a bound
state of the pair. For A = 0 the ground state is degenerate. Similar to
Hubbard’s[13] results we found kink-like solutions. In a kink-like solu-
tion half of the chain has the charge displaced towards the Cu sites, and
the other half vice versa. Furthermore, in the next section we show that
in the continuum limit the unrestricted Hartree-Fock equations can be
mapped into a problem closely related to that of the polyacetylene[34].
In this limit the polaron solution dissociates as a free soliton pair. Fig.
4 shows the weak coilp]jng version of Hubbard’s strong coupling result.
We see that the localized wave function has equal weight on Cu and O
sites as required from symmetry considerations. It has similar oscillat-
ing behavior to the polaron case. It is interesting to note the behavior
of 7. There is a constant part and a oscillating part. The later is clearly
dominated by the localized states. That is in Eq. (12) the sum over the
extended states has a smooth behavior and the sum over the localized
states provides the oscillating part.

We can now consider the problem of phase separation. If there is
a phase separation one would expect that for more than one particle
added, the system will nucleate a hole-rich phase. Due to the short-
range character of the interactions it is enough to consider the two-
polaron case. We generated a configuration with two particles close to
each other and iterated up until convergence. We found that the energy
decreases monotonically and the system converges to a situation in which
the polarons are well far apart (Fig. 5). Hence, in our formalism there

is no phase separation.

16
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We can also study excitonic states. In such state we consider the
stoichiometric case leaving the top state of the lower band empty, and

the bottom state of the upper band full. In Fig. 6 we show an example.

We note that the charge gap for these excitations is smaller than the
uniform Hartree-Fock gap. For equal parameters the exciton is more
localized than the polaron because the self-trapping potential is deeper.
This can be understood by comparing the distribution of charge in the
Cu for the two cases. For the polaron case the self-trapping potential
is generated by a relatively small lack of charge on the Cu, which has
been transferred to the O (see Fig. 3), while for the exciton case, there
is a whole particle missing which generates the self-trapping potential.
For the same reason the exciton spectrum is symmetric.

In the limit A = 0 the exciton solution dissociates into a free kink-

antikink pair.

19
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4.3 Two-dimensional case

In 2D the problem is more difficult because there is no exact mapping
into the spinless case. Anyway, we expect a spinless hamiltonian to be a
good approximation for the charge degrees of freedom and, indeed, such
an approximation has been used in the past[7]. In Fig.7 we show the
chemical potential in the 2D case. In addition to the d — p hopping we
introduce here also the direct O-O hopping t’. Since the same instability

appears we also expect important polaronic effects to be present.
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5 Continuum Limit

In the previous section we have seen that for reasonable values of the
parameters the localized solutions extend to several lattice sites. It is
natural, then, to try to consider the problem in the continuum limit in a
manner analogous to the problem of solitons and polarons in conducting
polymers[35]. We begin with the spinless fermion hamiltonian Eq. (2).
We write it in a different notation to emphasize the fact that there are

two non-equivalent sites in the unit cell,

pn = Cu,
(17)
dl = C2l+1 3
where [ now labels the cell. The hamiltonian reads as
where
T = Zt(pjdl +plez_1 + h.c.), (19)
I
Vo= SA@ -, (20)
!
V. = Z Upd(nfn? + nfn;i—l) . (21)
1

Let us first take the continuum limit for the kinetic energy T. We

Fourier transform the operators

23



1

Pr = ;e_iklpz )

(22)
1

—1ikl
dk = N1/2 ; € d[ .

We have taken the lattice spacing a'= 1, but we shall restore it when
needed for the sake of clarity.
The kinetic energy is given by

T=>3 2t cos(k/2)(p,1-dke_ik/2 + h.c.). (23)

This can be easily diagonalized. The dispersion relation has two branches
Ey = 2t cos(k/2). They are linear close to k = w. We can shift the
Brillouin zone in order to have the linear features appearing at the ori-
gin. Defining

g=k—m, (24)
we have F; = £2¢sin(q/2). We are interested in low energy phenomena
close to the Fermi energy. For the half-filling case the Fermi momentum
is ¢ = 0 (k = m). The physics does not depend on the precise form
of the dispersion relation far from the Fermi energy. Therefore, we can

linearize the Hamiltonian about ¢ = 0 and introduce a cutoff W equal

to the band width.

T = Y 2t sin(q/Z)(pjdqe"i(g“L%) + h.c.) ~

q
~ Z:tg(pque—ig + h.c.). (25)
q
This is diagonalized by
1 .
\Illq = ‘évz-'(pq + qu) s
(26)
1 o
¥y = W(Pq —1dg) ,



with energy Figa. Wy, (¥,,) describes left (right) going fermions. Close
to this momentum the field operator will have a fast spatial variation
(¢™) modulated by a slow spatial variation (e%). We are interested in
the slowly varying part which is related to the low energy phenomena.
Returning to real space,

1

Uy = Vi Z eivrleiql\I,qu . (27)
q
This can be written in terms of the 6riginal site creation and annihilation
operators,
1 —iml ’
¥y = 51728 (o +1dy) ,
(28)
1 : . '
\I!2l = We*"rl(pl hand 'Ldl) .

We can now take the continuum limit putting these expressions into
the original kinetic energy Eq. (19), and transforming sums into inte-
grals and finite differences into derivatives. Second derivatives must be

dropped because they are of higher order. We get then

L
_ )2 0, (2) — vl 2
T = zt/o dz[¥](2) - W1(z) ~ V}(2) 5~ Va(w)] (29)
where L = Na is the chain length. In the same way the site energy is
written as
A L
V== [ dal@](2)0s(e) + ¥l(2)01()] (30)

We want now to write the continuum limit for the interaction part V;.
For the sake of simplicity we first perform the Hartree-Fock approxi-
mation Eq. (3). The expectation values like < n¢ >,~; will be smooth
functions of I. Then, we can replace < nf,; >,v; with < nf >,v, . We
define,

§ = <nf>-—<nl>,

25



(31)
n = <nf>+<nl>.

The cell charge n; must not be confused with the atomic charge < n; >

of Sec. 3. With these definitions, the interaction term can be written as

Vier = Updz [ nf(‘nl +6,) + nf(nl — &)+ (pjdryl + plel_fn + h.c.)
l

2 2
ni — 6;

+ 2] (32)
which in the continuum limit becomes |
Ve = 22 [ das(e)(0]2)0s(2) + 0] (2) (2]
+ 22 [ dan(a) (0] ()01 (2) + 2] () ()
+ il [ dey (@) () 0(2) — (@) L)

b 22 7T gy (33)

We can obtain a more compact expression by using the Pauli spin ma-

trices and the identity,

oo (1) am (0T ) a3 ) e

z) = \Pl(m) 9
\I’( )_(‘1’2(:23))’ (J6)
the renormalized parameters
H(z) = t+ Upr(e), (37)
A() = A+ Upb(z), (38)

26



and putting all together, the hamiltonian reads as

Hpr = /OL dw\If(a:)T[if(a:)ay,—a—% + AS}) o1+ Upd:(m)f]‘ll
n /OL dx—%i{n(z)z ; 6(z)? + 27(17)2] ) (39)

We can obtain the self-consistent Hartree-Fock equation minimizing the

energy,
< Hmr> _ Uy t Upd oy —
“on(e) |~ o < H@UEE)> 47 n(e) =0,
0 < Hgr>  Upy i Upa —
e = o< V() ¥(z) > +-258(z) = 0, (40)
8 < Hgr> . i 0 Upd_( \ _
Ty e Mg V) > b (e) = 0

To solve these equations we can express the field in terms of the opera-
tors that annihilate particles in the self-consistent single-particle states

of Hyp, i.e.,
U(z) =D pu(2)e, (41)

where

v (z)

ole) = (). (42)

The ground state is written as
@ >=T]"cfl0 >, (43)

where the prime indicates that the index v runs only over occupied
states. The ¢, are found by varying < Hgr > with respect to ¢> and

using the Lagrange multiplier ¢, to guarantee the normalization.

- 0 A U ;
GO L LS OF (44)

27



The self-consistent Hartree-Fock equations Eq. (40) now read as
6(:1:) = _Z ()01/ 0-1(191/ ) )

v(z) = —izz'ﬁoi(w)ffsg;%(w)a (45)

n(z) = Y 'ei(e)lpu(e).

This is a system of coupled nonlinear equations, and in principle it is
very difficult to solve. However, some analytical progress can be done in
some special cases. First we neglect the spatial variation of . We take
it as a constant and measure all the energies in units of ¢ (we restore it
for clarity when convenient). We look now for solutions with n =const.

With this simplification our equations become,

- 2381;,, -+ A(m)'vu = Eu,,
(46)
A(z)u, = FE,u,,
and the self-consistency equation is
Be) = A = U Xl ) + o (@) (2)] (47)
where
E,, =&y — Upgn . (48)

Similar equations[36] are used in the theory of inhomogeneous super-
conductors where they are known as the Bogoliubov-de Gennes equa-
tions. They are also used in the theory of one dimensional conducting
polymers[34]. In analogy with the polyacetylene problem in the limit

A = 0 they are equivalent to the one component Gross-Neveu model[37].
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5.1 Uniform case
The simplest solution is the homogeneous case where

igz

u(z) = u,e,
(49)
v(z) = v,e'%,
We use the upper index (u, [) to label the upper and lower bands, re-

spectively.

A
VEIA? + (B~ g]

uy” =

(50)
Eu,l —q

VLA + (Bl —q)2]

E¥ = £4JA2 4 g2, (51)

We can substitute Egs. (49)-(51) into Eq. (47) in order to determine

v, =

The band energy is

the self-consistent value of A. Transforming the sum into an integral we

obtain

- w/2 A
A=A+ Y dw—é—— . (52)

T Jo . /Az + w2
In the limit we are interested in, A << W and Eq. (52) can be written

as

A=wWwe Bal'"a) (53)

5.2 Non-uniform case

In the general case Eq. (46) can be decoupled by changing the variables
as follows,

fEf=u, +iv,, (54)

v
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obtaining the Schréedringer-like equation,
2

(—505 + VI = B, (55)

VE=A"4+ B (56)
The solutions of this equations are well know[34]. For A = 0 one has
kink-like solutions, and for any A polaron-like solutions. Unfortunately,
in general they do not satisfy the condition n =const. However, one can
argue that qualitatively similar solutions can be found.

There is one special case for which the condition n =const. is satis-

fied, and it is the exciton solution. The gap function is,
Az) = Ao — ko(tT —1t7), (57)

where A is the gap parameter far away from the exciton and, therefore,

is determined by Eq. (52),

t* = tanh[ko(z + o)), (58)
zg is determined by,
k
tanh(koazo) = m 5 (59)
wq 1s defined by,
wi=A2 k. (60)

The only parameter that remains free is ko. It will be determined by
the self-consistency condition Eq. (47).
The one-particle states are the same corresponding to a polaron so-

lution. There are two localized states in the gap. One with energy

k
=g
fu_ = -i‘/%q5+7
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and the other with energy —wy,

|k
f1+ = _293_,

(62)
Ik
=1 -2ﬂs+,
where
s* = sech[ko(z + zo)] , (63)
The extended states are
+ ei’w(k +' Zkgt_)
RN/ R
(64)
_ (k - ZAO) eik’”(k + 2k0t+)
fu.,l = u,l Py °
E, L(kE + k2)
The boundary condition is,
fE(L/2) = fE(-L/2) (65)
which in the limit L >> z, gives,
kL + 2arctan(ko/k) = 27n , (66)

with n integer. In order to test the self-consistency we have to insert
Eq. (57),(61),(64) in Eq. (47). The occupied states are all the extended
states of the lower band and the upper localized state. Using the fact
that Aq satisfies Eq. (52) we obtain,
k2 + Az 1
ko = 223 gy 2 ol (67)

Upd VeI A,
L = k24 k3 2

which determines k.
There is one conceptual conclusion from this section. Up to now

we considered only static solutions. In the limit considered here the
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translational symmetry is a continuous symmetry. The localized solu-
tions spontaneously break this symmetry. From the Goldstone theorem
one expects that the fluctuation spectrum about the mean field solu-
tion has a zero energy mode that recovers the translational symmetry of
the problem. This is a mode in which the Hartree-Fock solution rigidly

translates with infinitesimal velocity.
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6 Review of some experiments support-
ing self trapping and importance of charge
transfer excitations

6.1 Polaronic effects

We have shown that the p-d model gives rise to polaronic or self-trapped
states of charge transfer origin in a natural way. This should manifest
in spectroscopic data as states in the gap and in transport properties
as the enhancement of the effective mass of the carriers. Once a self-
trapped state is formed, one expects that the lattice will relax around it
creating localized or resonant phonon states. This should be seen in a
spectroscopic experiment as states that split of from the phonon bands,
or as shifts of the phonon bands. Effects of this kind have been reported
by many experimentalists. Here we give some examples.

Many theorists[20]-[23] have invoked polaronic effects due to the lat-
tice, or some more exotic origin to explain experimental results like opti-
cal spectroscopy(24,25], photoinduced infrared absorption[26,27], trans-
port[28] among others. For a complete review see Refs.[29,30].

The strongest evidence of self-trapped states comes from optical
properties. In photoinduced optical absorption the semiconducting com-
pound is optically doped by promoving electrons from the valence band
to the conduction band with a laser. The optical absorption of the
sample is measured as a function of the photon energy.

Ginder et al.[38] performed such measurements in La,CuQO,. They
found a gap of 2eV and two photoinduced absorption peaks at .5eV
and 1.4eV. They interpret them as long lived defect states and make
reference to the case of one dimensional polymers where “electrons pho-
toexcited across the band gap and holes that remain in the valence band

eventually form long-lived defect states such as solitons, polarons, and
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FIG. 8. Possible energy-level diagram for photoinduced defect states in the energy gap of
La;CuQ4. Reproduced from Ref. 38.

bipolarons.” We show in Fig. 8 their schematic illustration of the defect
levels. The studies of Kim et al.[27] and Taliani et al.[31] demonstrate
that the lattice relaxes around these localized states. They meésure the
variation of reflectivity with the laser on and off. By comparing vibra-
tional lines with the corresponding Raman lines they can see shifts of
the phonon bands due to distortion of the lattice. The common temper-
ature and intensity dependence of the corresponding spectral features
allow them to associate the lattice distortion with the localized elec-
tronic state. For YBa;CusOg.25 the bound energy of the “hole state”
(D* in Fig. 8) is .14eV suggesting a less localized state in the higher 7.
system[27].

Due to the fact that these photoinduced absorption features are not
observed in the isostructural compound La;NiO4, Kim et al. conclude
that polaron or bipolaron formation plays an important role in the
HTSC. It is interesting to note that similar features[31] with a local-

ized electronic state at .5eV are present in the non-magnetic BaBiO;
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ruling out an exclusively magnetic (spin-bag-like) polaron.

M. Suzuki[39] measured the optical transmittance and reflectance to-
gether with the Hall coefficient in single crystal thin films of Lay_Sr,CuOy4
for different values of x. In the transmittance for x=0 he found an ab-
sorption edge corresponding to a band gap of 2eV. The edge splits due
to Sr doping. As the concentration of Sr is increased, the lower edge
shifts towards lower energies giving rise to an absorption peak. This
absorption is considered to reflect the modified density of states near
the top of the valence band. This also means that the 2ev gap measured
by Ginder et al.[38] does not collapse during doping.

In the reflection spectra, he found another peak centered at 1.8eV.
He interprets that as due to the enhanced density of states near the top
of the valence band in agreement with optical transmission.

He interprets the behaviour of the absorption coefficient in the follow-
ing terms. “Ep shifts to lower energies from the band edge by doping,
forming a band of about 1eV in width. At the same time, the band
gap, which was originally 2eV, decreases to about 1.2¢V.” He reports
agreement of this results with electron energy-loss spectroscopy (EELS)
measurements by Niiker et al.[40] who also found defect states grow-
ing with doping. As a possible explanation Suzuki invokes the spin-bag
mechanism of Schrieffer et al.[41]. In this framework the local suppres-
sion of the spin-density wave (SDW) gap by the introduced holes “may
be reflected in the optical absorption spectrum as the reduction of the
optical gap, as just observed in the present (his) study. Indeed the
optical density at this reduced energy, which may be proportional to
the number of spin-bags, increases nearly proportional to the hole con-
centration.” An analogous explanation replacing SDW gap by charge
transfer gap and spin-bag by charge transfer polarons obviously applies.

Other evidence of polaron formation comes from the studies of Bo-
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FIG. 9. Schematic diagram of the electronic structure and formation of Fermi-liquid states in
high-Tc superconductor. (a) charge transfer semiconductor; (b) “impurity states” are created at
the Fermi level by hole-doping; (c¢) Fermi-liquid states are formed by overlapping of the “impurity
states”. Reproduced from Ref. 43.

zovic [24,25]. He claims to be able to explain the “frequency, tempera-
ture, and carrier concentration of the optical conductivity without any
fitting” by assuming intermediate polarons of diameter ~ 6A and mass
Mgy = 2 — D M.

States in the gap have also been detected in photoemission spectros-
copy[42,43] and X-ray absorption[43]. In Fig. 9 we show the schematic
picture of Matsuyama et. al. Angle resolved photoemission spectra have
revealed that these states form narrow dispersive-like bands crossing the
Fermi level[44]. Similar impurity-like states have been observed[45] in
X-ray-absorption in the electron doped case.

Of course these experiments do not tell us the nature of this states. A
possible interpretation is that they are Kondo-like resonances[46] how-
ever this is ruled out[43] because they are mainly of O character, whereas
a Kondo-like state should have a dominant Cu 3d nature. We belive that
charge-transfer polarons are good candidates.

Once the self trapped-state is formed, other effects like distortion

36



of the magnetic background or phonons can contribute to the binding

energy.

6.2 Charge transfer excitations

Charge transfer excitations in which holes from the Cu band are excited
across the gap to form exciton states should be also seen in spectro-
scopies. Traditionally in conventional semiconductors the pressure vari-
ation of possible candidate structures has been used to identify their
origin.

Early optical measures in thin films of YBa,CusO;_s by Bozovic et
al. showed a lack of evidence for excitons[47] in contradiction with pre-
vious results in sintered samples[15,48]. Incidentally they interpreted
their results as due to polarons. Later studies[49] with thicker films on
oriented YBa,CusO7_s found excitonic-like features. This was confirmed
in many subsequent works[16]-[19],(50,51]. Kelly et al.[50] made a care-
ful optical study in sinterized and single-crystal samples of YBa,Cu;0,.
In Fig. 10 we show their measured imaginary part of the dielectric func-
tion for different O contents. There are two sharp excitations, one at
1.7¢V, and the other at 4.1 eV whose intensities decrease as the sys-
tem becomes metallic. There is another weaker structure at 2.6-2.7 eV.
Venkateswaran et al.[17] made a study of the optical properties as a
function of pressure and identified the 1.75¢V and 2.6eV features as
charge-transfer excitations involving Cu(d) and O(p) states in the Cu-
O planes. Kelly et al.[19] made an extensive study of the 1.7eV and
4.1eV features and showed that the former is present in many differ-
ent families of the Cu-O including Nd,CuOy4, a parent compound of
a n-type superconductor. They confirm that the former are related to
charge transfer excitations in the planes and the later is related to charge

transfer excitations in the Cu-O chains. For La,_,Sr,CuQ, the 1.7eV
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feature shifts to 2.1 eV. Similar structures were found[51] by electron
energy-loss spectroscopy (EELS).

A very interesting work by Rao et al.[14] has shown the importance
of the charge transfer excitation energy. They made measurements of
the Cu 2p core-level-photoelectron spectra in different compounds. In
these experiments the kinetic energy distribution of the photoemitted
electrons carries information of the dynamic response of the states near
the Fermi energy. In the sudden approximation the wave function of the
initial state is decomposed into the eigenstates of the final hamiltonian.
It is assumed that the velocity of the photoelectron is so large that the
rest of the system does not have time to respond to it. The initial state
is a mixture of |Cu3d® > and |Cu3d'°L>. The later denotes a state
in which a hole has been transfer from the Cu to a linear combination
of the nearest neighbour O orbitals. The initial hamiltonian can be
represented by a 2x2 matrix with a A difference in diagonal energies and
tpa off-diagonal elements. These are not the same parameters defined
in the previous sections but are closely related. In the final state the
|Cu3d® > becomes |Cu2p3d® >, where 2p denotes the core hole, and
is push up in energy (in a hole picture) due to the Coulomb repulsion
with the core hole. Due to that, the hole, which was mainly on the
Cu is transferred to the O (]Cu2p3d*°L> plus a small component of
|Cu2p3d® > final state). This gives rise to the main line. The possible
transition to the mainly |Cu2p3d® > state gives a satellite line. The
relative intensity of the two features (I,/I5r) is determined by A, tpq and
Uge, the core-hole-d-hole repulsion. They showed that in all cases the
I,/In ratio decreases as T, increases. They suggest that the common
factor determining the variation of 7, and I,/I;; is the Cu-O charge
transfer energy. In order to substantiate this finding, they calculated

the variation of the I,/Iy as a function of A. Finally they showed
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that A correlates with the carrier concentration. This gives a common

interpretation with the experiments of Tranquada[52] et al. who showed

that T. correlates with the O hole concentration. In Fig. 11 we show

the measured dependence of I,/Iy as a function of hole concentration

and its correlation with 7,. The decrease of A with increased carrier

concentration is natural if one assumes the A to be renormalized by
the U,q (See Eq. (13),(14)). They estimate Upa ~ 2.7, a value which is

not entirely unreasonable if one takes into account that band structure

and other effects have been neglected. These experiments encourage

further studies on the role of charge-transfer excitations in connection

with superconductivity.
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7Y Conclusions

The problem of which is the simplest model, one or two bands, that
can capture the essential physics of the HTSC has been a subject of
considerable controversy[53]-[58]. There is consensus that the p-d model
describes the Cu-O layers[53,59], so the question is the degree to which
the one-band model reproduces the physics of the two-band model. The
question is not trivial because by simple arguments[53] one could draw
the conclusion that it is possible, in some limit, to map the p-d model
into a one-band model. However, one must be sure that no important
piece of physics was lost in the process. This is not an easy task because,
firstly, one has to be sure to understand the p-d model. Here we have
shown that the p-d model gives rise quite naturally to self-trapping
effects that cannot be captured by one-band models.

We see that one particle added to the half-filling case distorts the
charge balance between Cu and O around it and forms a polaron of
charge transfer origin. In this picture polarons will form é disper-
sive band growing with doping. As we could see in the previous sec-
tion this is fully consistent with many different experiments like optical
measurements|24,39], photoinduced absorption[38,27,31], photoemission
spectroscopy(42,43] and X-Ray absorption[43].

Using a different formalism, Grilli[60] et al. found the same instabil-
ity in the compressibility but they interpreted it as a phase separation.
The difference is that they set the repulsion on the O equal to zero, while
we set it equal to infinity. Since the polaron states are mainly due to O
character, we expect the result of Fig. 5 to be different in their case, so
in principle the results are not contradictory to each other. However,
further investigations must be done in order to clarify this point.

The p-d model has been studied in higher dimensions in the limit

t << A << U,,Uy by perturbation theory in the hopping, in connec-
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tion with hole-doped CuO and BiO based HTSC[8], and electron doped
CuO layers[9]. It has been shown that one particle added to the half-
filling case produces charge transfer excitations around it in a way which
resembles our results. When two particles are put close together low en-
ergy charge fluctuations are allowed which lower the energy and produce
pairing. The same mechanism does not work in 1D but we expect that
within a suitable mean-field approach, bipolaron states, relevant for the
superconductivity, can be found in 2D.

There are other obvious routes for the future. One is to understand
the dynamics of these excitations. An intuitive approach is to try to
solve the time dependent Schroedinger equation in the Hartree-Fock
approximation. In this way one can look for a solution in which the po-
laron with its self-trapping potential moves self-consistently. But a time
dependent Hartree-Fock is nothing more than the RPA approximation.
In other words, one has to look for the linear modes or the one loop
corrections around the localized solution. One of them is the Goldstone
mode discussed in Sec. 5. A similar problem has been faced for the
polyacetylene[34]. Other interesting problems are the understanding of
the effects of phonons, and the relationship with magnetism.

In conclusion, we have shown that polarons and excitons of charge
transfer origin arise quite naturally in the p-d model for HTSC and could
provide a qualitative explanation for several experiments. We believe
that these nonlinear excitations play an important role in the physics of

HTSC.
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