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Preface

Complexity theory [1], as arising from Cook’s theorem of 1971 [2], deals with
the issue of classifying combinatorial optimization problems according to the
computational cost required for their solution. The hard problems are grouped
in a class named NP, where NP stands for ‘non-deterministic polynomial time’.
These problems are such that a potential solution can be checked rapidly whereas
finding one solution may require an exponential time in the worst case. In turn,
the hardest problems in NP belong to a sub-class called NP-complete which is
at the root of computational complexity. The completeness property refers to
the fact that if an efficient algorithm for solving just one of these problems could
be found, then one would have an efficient algorithm for solving all problems in
NP. By now, a huge number of NP-complete problems have been identified [1],
and the lack of an efficient algorithm corroborates the widespread conjecture that
NP+#P, i.e. that no such algorithm exists.

Complexity theory is based on a worst-case analysis and therefore does not
depend on the properties of the particular instances of the problems under consid-
eration. In order to deepen the understanding of typical-case complexity rather
than the worst-case one and to improve and test algorithms for real world ap-
plications, computer scientists have recently focused their attention on the study
of random instances of hard computational problems, seeking for a link between
the onset of computational complexity and some intrinsic (i.e. algorithm inde-
pendent) properties of the model. Analytical and numerical results have accu-
mulated [3, 39, 5, 38, 7] showing that the computationally hard instances appear
with a significant probability only when generated near “phase boundaries”, i.e.
when problems are critically constrained. Such phenomenon is know as the easy-
hard transition.

Randomized search algorithms provide efficient heuristics for quickly finding
solutions provided they exist. At the phase boundary, however, there appears
an exponential critical slowing down which makes the search inefficient for any
practical purpose. Understanding the behaviour of search processes at the easy-
hard transition point constitutes an important theoretical challenge which can
be viewed as the problem of building a generalized off-equilibrium theory for
stochastic processes which do not satisfy detailed balance. No static probability
measure, d la Gibbs, describing the asymptotic statistical behaviour of the search
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processes is guaranteed to exist. Moreover, the hardest random instances of com-
binatorial optimization problems provide a natural test-bed for the optimization
of heuristic search algorithms which are widely used in practice.

How to generate hard and solvable instances is far from obvious and very
few examples of such generators are known [9]. In most cases, like e.g. in the
random Boolean Satisfiability problem (K-SAT [38, 7, 45], hard instances can be
only found in a very narrow region of the parameters space. In this region the
probability that a random instance of the problem has no solution at all is finite.
Then, heuristic (incomplete) search algorithms have no way to disentangle, in a
given finite time, the unsatisfiable instances, from those which are simply very
hard to solve.

In this paper, we shall discuss a very simple and exactly solvable model for the
generation of random combinatorial problems. On the one hand, such problems
become extraordinarily hard to solve by local search methods in a large region
of the parameter space and yet at least one solution may be superimposed by
construction. On the other hand, the model may be solved in polynomial time
by a simple global method and therefore belongs to the class P.

At variance with respect to the famous random 2-SAT problem [11, 45], which
is in P and can be solved efficiently by local search methods [12] also at the phase
boundary, the model we consider undergoes an easy-hard transition very similar
(even harder) to the one observed in 3-SAT as far as local search methods is
concerned. However, the exact mapping of the model on a minimization problem
over uniform random hyper-graphs makes the problem analytically tractable and
also solvable in polynomial time by global methods which allows for the numerical
study of very large systems. Therefore, some of the open questions which arise
the the analysis of 3-SAT and which are common to the present model can be
answered exactly.

In the context of statistical physics the model provides a simple model for
the glass transition, in which the crystalline state can be view as the super-
imposed solution and the structure of the excited states is responsible for the
off-equilibrium behaviour and the associated structural glass transition. These
aspects will be the subject of a forthcoming paper. The limit of infinite connec-
tivity provides one of the most studied models in the context of spin glass theory,
see for instance [13, 14, 15, 16, 17, 18].



Chapter 1

The 3-XOR-SAT Problem

1.1 Introduction

In the first part of this work we we study a simple and exactly solvable model
for the generation of random combinatorial problems, which is a diluted p-spin
model at zero temperature in the statistical mechanics language. While such
problems become extraordinarily hard to solve by local search methods in a large
region of the parameter space, still at least one solution may be superimposed
by construction. The statistical properties of the model can be studied exactly
by the replica method and each single instance can be analyzed in polynomial
time by a simple global solution method. The geometrical/topological structures
responsible for dynamic and static phase transitions as well as for the onset
of computational complexity in local search method are thoroughly analyzed.
Numerical analysis on very large samples allows for a precise characterization of
the critical scaling behaviour.

1.2 Mathematical description of the model

In order to unveil the different aspects of the model, to be referred to as hyper-
SAT (hSAT), we give explicitly its definition both as a satisfiability problem and
as a minimization problem over hyper-graphs.

Here we discuss the hSAT model with K = 3 variables per constraint, which
can be viewed as a perfectly balanced version of the famous random 3-SAT prob-
lem. The case K = 2 does not present any interesting computational features as
far as hardness is concerned because it can be solved efficiently both by local and
global methods. Generalizations to K > 3 are straightforward.

Given a set of N Boolean variables {z; = 0,1};=1,.n, we construct an instance
of 3-hSAT as follows. Firstly we define the following elementary constraints (4-
clauses sets with 50% satisfying assignments)
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Cligkl+1) = (z:Vz; Vo) Az VI,V T)
AN (Z; Vo VT AT VTV )
Clijk| —1) = (3 VI VI) ATV V)

AN (VT Vag) Az Vo Vi) (1.1)

where A and V stand for the logical AND and OR operations respectively and
the over-bar is the logical negation. Then, by randomly choosing a set E of M
triples {¢,j,k} among the N possible indices and M associated unbiased and
independent random variables J;;;, = +1, we construct a Boolean expression in
Conjunctive Normal Form (CNF) as

F= N\ C(ijkl|Ji) - (1.2)
{i,5,k}eE
A logical assignment of the {z;}’s satisfying all clauses, that is evaluating F' to
true, is called a solution of the 3-hSAT problem. If no such assignment exists, F
is said to be unsatisfiable.

A slightly different choice of J;;; allows to construct hSAT formulae which are
random but guaranteed to be satisfiable. To every Boolean variable we associate
independently drawn random variables ¢; = 41, and define Jijk = €igjey for all
{4,7,k} € E. For this choice, CNF formula in Eq.(2.3) is satisfied by {z; | z; =
+life = +1, z; = 0ife = —1}. As we shall discuss in great detail, these
formulae provide a uniform ensemble of hard satisfiable instances for local search
methods. We refer to this version of the model as the satisfiable hSAT. Indeed,
the random signs of J;j, can be removed in this satisfiable case by negating all
Boolean variables ; associated to negative €;. The resulting model has J;j; = +1
for all {4, j,k} € E, and the forced satisfying solution is z; = 1, Vi = 1,..., N.
The use of the {e;} is a way of hiding the latter solution by a random gauge
transformation without changing the properties of the model. The impossibility
of inverting efficiently the gauge transformation by local methods is a consequence
of the branching process arising form the presence of K = 3 variables in each
constraint. For any K > 3 the same result would hold whereas for K = 2 the
problem trivializes.

The hSAT model can be easily described as a minimization problem of a
cost-energy function over a random hyper-graph. Given a random hyper-graph
Gy = (V, E), where V is the set of N vertices and E is the set of M hyper-edges
joining triples of vertices, the energy function to be minimized reads

HJ[S} =M - Z Jijk: SzS]Sk y (13)
{i,5,k}€E

where each vertex 4 bears a binary “spin” variable S; = £1, and the weights J;
associated to the random bonds can be either +1 at random, in the so called
frustrated case, or simply equal to 1 in the unfrustrated model.
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Once the mapping S; =1 if z; = 1 and S; = —1 if z; = 0 is established, one
can easily notice that the energy function in Eq.(2.4) simply counts the number
of violated clauses in the previously defined CNF formulse with the same set of
J’s. The frustrated and the unfrustrated cases correspond to the hSAT and to
the satisfiable hSAT formulae respectively.

The computational issue consists in finding a configuration of spin variables
which minimizes H. If all the terms J;;5;5;S, appearing in the energy are
simultaneously maximized (“satisfied”) the energy vanishes. This is always pos-
sible in the unfrustrated case just by setting S; = 1, Vi. In the frustrated case,
there exist a critical value of the average connectivity above which the various
terms start to be in conflict, that is frustration becomes effective in the model.
In random hyper-graphs the control parameter is the average density of bonds,
v = M/N (or, for the CNF formula, the density of clauses a = 4v). For suffi-
ciently small densities, the graph consists of many small connected clusters of size
up to O(In N). If 7y increases up to the percolation value -y, = 1/6, there appears
a spanning cluster containing a finite fraction of the N sites in the limit of large
N. However, such a spanning cluster can a priori have a tree-like structure, for
which the randomness of the couplings J;;; = £1 can be eliminated by a proper
gauge transformation, S; — £5S5!, of the spin variables. As we shall see, there
exist two other thresholds of the bond density at which more complicated and
interesting dynamical and structural changes take place.

In spite of apparent similarities, hRSAT and the random Boolean Satisfiability
problem (K-SAT [19]) differ in some basic aspects.

In K-SAT the fluctuations of the frequencies of appearance of the variables in
the clauses lead to both single and two body interactions in the associated energy
function [20] which force the minima in some specific random directions and which
rule out the existence of a purely dynamical threshold (see below). Algorithms
may take advantage of such information and both heuristic as well as complete
algorithms show a performance which indeed depends on the criterion used to
fix the variables. For example, rigorous lower bounds to the critical threshold
have been improved recently by exploiting this opportunity in a simple tractable
way [21]. On the same footing, the efficiency of the most popular heuristic and
complete search algorithms, namely walk-sat [22] and TABLEAU [23], is again
based on strategies which exploit the above structure. Note that the above im-
provements can not be applied to the hSAT model where formula are completely
balanced.

Moreover, in K-SAT the mapping of the problem over directed random graphs
is rather involved and the exact analytical solution is still lacking, while in hSAT
the connection to random hyper-graphs is clear and makes the analysis tractable.

Finally, restriction of K-SAT to satisfiable instances (for instance by select-
ing at random clauses which are satisfied by a previously fixed assignment of
variables) does not provide a uniform ensemble of hard satisfiable problems even
when restricted to local search methods [24].
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Given the mapping over random hyper-graphs, the satisfiability problem for
hSAT can be solved in O(N?®) steps by simply noticing that the problem of
satisfying all constrains is nothing but the problem of solving an associated linear
system modulo 2, i.e. in GF[2]. Upon introducing the two sets of binary variables
{CLZ‘} & {0, 1}N and {bijk} € {0, l}M such that (—1)(“ = Sz and (—l)biﬂ“ = Jijk; the
hSAT decision problem becomes simply the problem of determining the existence
of a solution in GF[2] to the random linear system a; + a; + ay = bk, with ijk
running over all triples.

Finally, we notice that in the high v UNSAT (or frustrated) region the opti-
mization problem of minimizing the number of violated constrains, the so called
MAX-hSAT, is indeed computationally very hard both for complete and incom-
plete algorithms and no global method for finding ground states is available.

1.3 Outline of main results

For the sake of clarity, we anticipate here the main results leaving for the following
sections a thorough discussion of the analytical and numerical studies.

The frustrated hSAT model presents two clear transitions. The first one ap-
pears at 74 = 0.818 and it is of purely dynamical nature. There the typical
formula still remains satisfiable with probability one, but an exponential number
of local energy minima appear at positive energies. Deterministic algorithms, like
greedy search or zero temperature dynamics, try to decrease the energy in every
step and thus get stuck at least at this threshold. Randomized algorithms may
escape from these minima, but they undergo a slowing down from an exponen-
tially fast convergence to a polynomially slow one, i.e. at 4 the typical time for
finding a solution diverges as a power of the number of variables. The dynamical
transition at -, seems to be accompanied by a dynamical glassy transition due
to replica symmetry breaking (RSB) effects connected with the appearance of
an exponential number of local minima. An approximate variational calculation
(see ref. [43] for a discussion on the method) involving RSB gives v5%,, ~ 0.83
which is in good agreement with the value of v, where local minima appear.

The second transition appears at v, = 0.918 and corresponds to the so called
SAT/UNSAT transition (below 7, the typical problem is satisfiable whereas above
Y. it becomes unsatisfiable). At this point the structure of the global energy
minima changes abruptly. The ground states have strictly positive energy, thus no
satisfying assignments for the hSAT formula exist any more. While the number
of these configurations is always exponentially large (the ground state entropy
is always finite), at 7. a finite fraction of the variables, the so-called backbone
component, becomes totally constraint, i.e. the backbone variables take the same
value in all minima [26]. An important difference of the SAT/UNSAT transition
in hSAT compared to K-SAT [43] is the non-existence of any precursor. For
v < 7. and large N, all variables S; take equally often the values +1 and —1 in
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the ground states (they have zero local magnetization), even those which become
backbone elements when 7, is reached by adding new 4-clauses sets. The lack of
any precursor comes from the non-existence of single- or two-body interactions
in Eq.(2.4).

The unfrustrated or satisfiable hSAT problem has by construction at least
one solution which we find to be superimposed without affecting the statistical
features of the model for v < . in the limit of large N, including the dynamical
transition at v, = 0.818. It is impossible to get any information on the super-
imposed solution by looking at the full solution space, because it is completely
hidden by the exponential number of ground states. Randomly chosen satisfying
assignments do not show any correlation. At exactly the same v, = 0.918 as in
the frustrated model, there appears a transition from a SAT phase with expo-
nentially many unbiased solutions to another SAT phase where the solutions are
strongly concentrated around the superimposed solution. The latter one is now
hidden by the presence of exponentially many local energy minima with positive
cost. These minima have exactly the statistical properties of the global minima
of the corresponding frustrated hSAT problem, that is the hSAT problem defined
over the same hyper-graph but with randomized signs of the couplings J;;;. More
specifically, the energy, the entropy and the backbone component size coincide.
Due to their finite entropy, an algorithm will thus hit many of these local minima
before it reaches the satisfying ground state. As one can see from Fig. 1.5, finding
this solution by backtracking, e.g. with the Davis-Putnam (DP) procedure [27],
is nevertheless easier than proving the unsatisfiability of hSAT (or identifying
ground states in the frustrated version). This results stems from the missing in-
formation on the true ground state energy of hSAT above .. The solution time
is however found to be clearly exponential in both cases. In the v > -, region,
the model provides a uniform ensemble of hard SAT instances for local methods
which can be used to test and optimize algorithms.

1.4 Statistical mechanics analysis: the replica
results

In our analytical approach, we exploit the well known analogies between combina-
torial optimization problems and statistical mechanics. In both cases, the system
is characterized by some cost-energy function, as it is given e.g. by Eq.(2.4) for
hSAT. In equilibrium statistical mechanics, any configuration S = {S;};=1. v is
realized with probability exp{—8H|[S|}/Z where f = 1/T is the inverse tempera-
ture and Z the partition function. If the temperature is lowered, the probability
becomes more and more concentrated on the global energy minima and finally,
for T' = 0, only the ground states keep non-zero weights. In order to compute the
average free energy, we resort to the replica symmetric (RS) functional replica
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method developed for diluted spin glasses which is known to provide exact results
for ferromagnetic models.

The calculation of the average value of the logarithm of Z is in general im-
possible. To circumvent this difficulty, we compute the n!* moment of Z for
integer-valued n and perform an analytical continuation to real n to exploit the
identity log < Z" >»=1+n < logZ > +0(n?). The n'® moment of Z is ob-
tained by replicating n times the sum over the spin configuration and averaging
over the disorder [44]

<Z">= 3 <exp (-5 Z Hj[sa]> > (1.4)
a=1

S1,82,. 8n

which in turn may be viewed as a generating function in the variable exp(—23).

In order to compute the expectation values that appear in Eq.(2.5), one no-
tices that each single term exp(—f£7_; H;[S]) factorises over the sets of dif-
ferent triples of indices due to the absence of any correlation in the probability
distribution of the J;;;. It follows

L 7" >= Z <<exp{ ﬂnyn—ny—’r ZeﬁzasfsfskJrO( )}>>
§1,52,..,8 ijk

(1.5)
The averaged term in Eq.(2.7) depends on the nx N spin replicas only through the
2" occupation fractions ¢(&) labelled by the vectors & with n binary components;
¢(&) equals the number (divided by N) of labels 7 such that S¢ = ¢%, Va =
1,...,n. Therefore, the final expression of the n'® moment of Z to the leading
order in N (i.e. by resorting to a saddle point integration), can be written as
K Z" >~ exp(N F|[c]) where F[c] is the maximum over all possible ¢(G)’s of the

functional [44]

~BFle] = =7(1+ fn) = T e(@) loge(@) +7 T el@)e()e(7) xp(§ 3 o)
(1.6)

7,0,T

The saddle point equation %%1 = 0 reads

c(&'):exp{ A+3')/Z (P)e(T) exp ,BZU“ ¢r?) } (1.7)

2%

where the Lagrange multiplier A = 37 enforces the normalization constraint
>z ¢(d) = 1. In Eq.(1.6), one may easily identify two terms, one model dependent
and the other (— 35 ¢(&) log ¢(&)) simply describing the degeneracy (the so called
combinatorial entropy) with which each term of the generating function appears
given the representation in terms of the occupation fractions. In the limit of

interest T'— 0 and in the Replica Symmetric subspace, the freezing of the spin
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variables is properly described by a rescaling of the local magnetizations of the
form m = tanh(h/T). The probability distribution P(h) of the h’s is therefore
introduced through the generating functional

e ST
c(3) /_ PO e (1.8)

where h is nothing but an effective field in which the spins are immersed. In this
representation, the free-energy reads

— BFIP(h)] =
v [ dhydhadhg P(hy)P (o) P(hs) 1og T (s, ha, hs, 5)

dh dK

5 e "™ Ppp(K)[1 — log Ppr(K)]log[2 cosh(8h)] (1.9)

where Ppr(K) is the Fourier Transform of P(h) and

7 2c08h(B(h + ha))[e7* + e727M3] + 2 cosh(B (s — ha))[e™P% + e72 PN
B (2 cosh(Bh1))(2 cosh(Bhs))(2 cosh(Bhs))

(1.10)
The associated saddle-point equation reads

[ dh P() 2 = exp {37 +3y [ dindhy P(hy) P ()G (b, h2)} (L11)

where

cosh(B(hy + ha)) 4 e~ cosh(B(h1 — hy)) ) o

Glh, ha) = (cosh(ﬁ(fh — hg)) + e 2P cosh(B(h1 + hs))

(1.12)

In the case of satisfiable hSAT, at § — oo (T = 0), the spins turn out to be
subject to an effective local field A which fluctuates from site to site according to
the following simple probability distribution

P(h) =Y pPs(h— ) (1.13)
£>0
in which : 0260
1- 2
0 _ ¢ g v
and where pgo) = p, must satisfy a saddle-point self-consistency equation. The

above structure is not surprising for a ferromagnetic model since 1 — p, is nothing
but the fraction of sites which have a non vanishing field and that therefore
are totally magnetized. The saddle-point equations simplify once rewritten in
terms the probability distribution P(m) of the local magnetizations m; = 0, 1.
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Following the notation without random gauge (Ji;x = +1,V{%,,k} € E), the
P(m) arising from the replica theory takes the particularly simple form,

P(m) = py6mo + (1 — py)om1, (1.15)

where 4. is the Kronecker-symbol. Thus, a fraction 1 — p,, of all logical variables
is frozen to +1 in all ground states, whereas the others take both truth values
with same frequency. The self-consistent equation for p, arising from Eq.(1.11),

B B 00 3 3~)¢ .
p=etitmr =3By (1.16)
c=0 :

can be justified by simple probabilistic arguments: A variable is frozen if and
only if it is contained in at least one hyper-edge {4, j, k} € E where also the two
neighbors are frozen. Thus a variable is unfrozen, m; = 0, if and only if every
adjacent hyper-edge contains at least one more unfrozen variable. For a spin of
connectivity c, this happens according to Eq.(1.15) with probability (1 — (1 —
py)?)¢. The average over the Poisson-distribution e=37(3)¢/c! of connectivities ¢
results in the total probability for a variable to be unfrozen, so Eq.(1.16) follows.
As an additional result of replica theory, we derive the ground-state entropy

s(v) = ;gr;o%log/\fgs = log(2) (py(1 —logp,) =71 = (1—p,)*]) . (1.17)

For small v, Eq.(1.16) has only the trivial solution p, = 1 where all variables
are unfrozen, i.e. m; = 0 for all <. No internal structure is found in the set of
satisfying assignments and, choosing randomly two of them, they have Hamming
distance 0.5N + O(v/N). To leading order in N, the order in the M 4-clauses
sets act independently, each dividing the number of satisfying assignments by two
and so N, = 2V~ This is a clear sign that the structure of the hyper-graph
is still tree-like.

At 4 = 0.818, a new solution of Eq.(1.16) appears discontinuously, having a
fraction (1 —p,) = 0.712 completely magnetized variables. This transition can be
seen as a percolation transition of fully magnetized triples of connected variables.
The entropy of this solution remains however smaller than the entropy 1—+ of the
paramagnetic solution, thus the total solution space is still correctly described by
m; = 0 for alls = 1,..., N. The appearance of the new solution signals however a,
structural change in the set of solutions which breaks into an exponential number
of clusters. The cluster containing the imposed solution z; = +1 is described by
the new meta-stable solution.

Another important difference to the low-v phase is an exponential number of
local minima of the energy function (2.4) showing up at ;. These have positive
energies, and the corresponding logical assignments do not satisfy the hSAT for-
mula. Algorithms which decrease the energy in every time step by local variable
changes, like e.g. zero-temperature Glauber dynamics or greedy algorithms, get
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almost surely trapped in these states and do not find a zero-energy ground state
for v > =4. Randomized algorithms may escape from these minima, but as found
numerically, this causes a polynomial slowing down.

Above 74 increasing -, the number of ground-state clusters decreases. At vy, =
0.918 all but one ground-state clusters disappear, and the non-trivial solution of
(1.16) becomes the stable one. So only the cluster including the imposed solution
survives, it still contains 2°982Y golutions, but 88.3% of all variables are fixed
to 41, thus forming the backbone which appears discontinuously. As is known
from Ref. [7], the existence of an extensive backbone is closely related to the
exponential computational hardness of a problem. The remaining 11.7% of un-
frozen variables change their values from ground-state to ground-state. They are
contained in small disconnected components or dangling ends of the hyper-graph.

The behavior of frustrated hSAT is similar, as given both by numerical analy-
sis and by RS or variational RSB calculations. We find that the solution z; = +1
(and its corresponding cluster) in satisfiable hSAT are just superimposed to the
solution structure of random hSAT. Thus, the statistical properties of the solu-
tions do not change for v < 7., including also the clustering of solutions above ;.
At 4. = 0.918 the model undergoes a SAT/UNSAT transition, and the solution
entropy jumps from 0.082 down to minus infinity. The variational RSB calcula-
tion gives a value for the dynamical critical connectivity 737, ~ 0.83 which is
close to the exact value 0.818. This result gives evidence for the validity of the
variational approach in the region where local minima first appear, i.e. where the
result does not depend strongly on the specific functional Ansatz made for the
RSB probability distributions. For the SAT/UNSAT static transition the predic-
tions of the variational RSB analysis can be strongly affected by the restriction of
the functional space which does not necessarily match the geometrical structure
(clustering) of the space of solution. However, in the case of hSAT the results

are still in good agreement, we find 7%, ~ 0.935.

1.5 Connection with graph theory

In the hSAT model, we are able to extract exact results — without the need of RSB
— by identifying the topological structures in the underlying hyper-graph which
are responsible of the SAT/UNSAT transition (or of frustration and glassiness).
The presence (or the absence) of such topological structures in the hyper-graph
drastically changes the statistical mechanical properties of the model. The dif-
ferent phase transitions can be viewed as different kinds of percolation in the
random graph theory language [49].

We have already seen that the formation at v, = 0.818 of a locally stable
ferromagnetic state in the unfrustrated hSAT can be understood in term of per-
colation arguments. The same arguments reveal that at 7; many metastables
states arise in both versions of the model, giving rise to a dynamical transition.
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In order to understand what happens at the critical point 7, we need to
introduce the notion of hyper-loop, that is the most natural generalization of the
usual loop to graphs where multi-vertices links are allowed. Given a random
graph G = (V, E), where V is the set of vertices and F is the set of (hyper-)links,
a hyper-loop can be defined as a non-zero set of (hyper-)links, R C F, such that
the degree of the subgraph £ = (V, R) is even, i.e. every vertex belongs to an even
number of (hyper-)links (including zero). In Fig. 1.1 (left) we show the smallest
hyper-loop in a K = 3 random hyper-graph. Note that in random hyper-graph
typical hyper-loops are very large and the one shown in Fig. 1.1 (left) is extremely
rare for N large.

In a similar way we can identify those vertices which are totally constrained.
A set of (hyper-)links, 7 C F, constrains completely the spin at site 4 if in
the sub-graph F = (V,T®) the vertex i has an odd degree and the remaining
vertices an even one. In Fig. 1.1 (right) we show the smallest of such structures.

In a configuration whose energy is zero (SAT assignment) we have that ;5,5 =
Jijk,V{3,7,k} € E. Then, given any hyper-loop R, we have that

I Ziw= 1I SiSiS=1, (1.18)

{ijk}eR {i.j,k}ER

where the second equality comes from the fact that in the second product every
spin appears an even number of times.

In the frustrated hSAT the coupling are randomly fixed to +1 and, conse-
quently, the first product in Eq.(1.18) is equal to -1 with probability 1/2. Then
we can conclude that as soon as one hyper-loop arises in the hyper-graph half the
formulee become unsatisfiable. In general, given a hyper-graph with N, hyper-
loops, the fraction of SAT formulee (with that given hyper-graph) is 2=V, Still
one needs to average this fraction over the random hyper-graph in order to obtain
the right fraction of SAT formule.

We have numerically found that at the critical value 7, = 0.918 the percolation
of hyper-loops takes place, that is, in the large NV limit, the average number of
hyper-loops Ny (7) is zero for v < ~, and O(N) for v > .. This is the direct
explanation of the SAT/UNSAT transition in terms of hyper-graph topology.

In the unfrustrated model J;; = 1 and Eq.(1.18) is always satisfied. However,
the mean number of hyper-loops Ny (7) is related to the entropy of the satisfiable
hSAT through S(v) =1log(2)(1 — v+ Nu(y)/N). The derivation of this equality
straightforward if we consider the linear system modulo 2 of M equations in N
variables, introduced at the end of section 2.2. In terms of the linear system
hyper-loops represents combination of equations giving a trivial one (e.g. 0 = 0)
which does not fix any degree of freedom. The entropy, which is proportional
to the number of degree of freedom, is then given by S(v) = log(2)(N — M —
Nu(7))/N.

Considering now a totally constrained spin at site £ and a SAT assignment,



1.5. CONNECTION WITH GRAPH THEORY 17

Figure 1.1: The simplest hyper-loop (above) and the hyper-loop with one totally
constrained vertex of odd degree (below) [30]. Triangles represent the interaction
between the three spins located at the vertices. The black dot represents the
constrained spin residing on the odd-degree vertex of the hyper-loop.
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we have that

{i.5,kYeT® {i,,k}eT®
Then, in every SAT formula, hyper-loops with one odd-degree vertex (to be
denoted by the label hl — 1) fix one spin variable to a complicated function of
the couplings. We have numerically checked, that such structures arise at ., like
hyper-loops, but in a discontinuous way.

In the satisfiable hSAT we have that J;;; = 1, so that any independent hyper-
loop with one odd degree vertex fixes one spin to 1 [31]. Then the magnetization
of the model is equal to the mean density of such loops, m(y) = pu-1(7) =
Npi—1(7)/N. Because of the discontinuous nature of the transition the limits
lim - pr-1(y) = 0 and lim,_, + pn—1(7) = me = 0.883 do not coincide.

In the frustrated hSAT Eq.(1.19) fixes the variables belonging to the backbone.
Then one would be tempted to relate the backbone size to the density pp—1(y) of
hyper-loops with one frozen vertex (which is true) and to estimate the backbone
size at the critical point to be 88.3% (which is not true). Indeed at the critical
point there is a coexistence of SAT and UNSAT formulz (see next section) and for
v > 7, all the formulae become UNSAT in the large N limit. Then Eq.(1.19) can be
applied only for v < . where the density py;—1 goes to zero when N — co. While
the appearance of the backbone is necessarily related to the presence of hyper-
loops with frozen vertices, the estimation of its size is non-trivial. A very rough
estimate can be obtained assuming that at the critical point half the formulee are
SAT (according to the numerical results presented in the next section) and that
the backbone size is 0 for UNSAT formulae and 0.88 for SAT ones. Under these
very crude hypothesis the backbone size would be 0.44, which in not too far from
the numerical result (see next section).

1.6 Numerical results

We have performed extensive numerical experiments on both versions of hSAT
in order to confirm analytical predictions and to compute quantities which are
not accessible analytically. Beside the GF'[2] polynomial method, we have also
used two local algorithms, namely the Davis-Putnam (DP) complete backtrack
search [27] and the incomplete walk-SAT randomized heuristic search [22] , to
check the hardness of the problem for local search. The existence of at least one
solution in the satisfiable hSAT allowed us to run walk-SAT in the whole range
of 7, the halting criterion always being finding a SAT assignment.

The first set of results concerns the numerical determinations of the critical
points of hSAT obtained by the polynomial method over large samples.

For the frustrated case, the fraction of satisfiable instances drops down to
zero at v, = 0.918. In Fig. 1.2 we show this fraction as a function of v, which
has been obtained, for any size N, counting the number of hyper-loops in 104
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Figure 1.2: The probability that a formula is SAT as a function of the coupling
density. Inset: The energy reached by a deterministic rule becomes different from
zero at the dynamical critical point.
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different random hyper-graphs. For any given random hyper-graph the fraction
of SAT formulee is given by 27"#, where Ny (v) is the number of hyper-loops.
The same set of simulations run on the satisfiable hSAT show that at exactly the
same 7., the model undergoes a discontinuous ferromagnetic transition.

At 74 = 0.818 a dynamical transition takes place in both versions of hSAT.
There appears an exponentially large number of positive energy local minima
strongly affecting non-randomized dynamics, which is not able to overcome en-
ergy barriers. We can easily detect the dynamical transition by adopting the
following deterministic algorithm as a probe and by checking where it stops con-
verging to solutions. The algorithm exploits the only local source of correlations
among variables that is fluctuations in connectivity. At each step, the algo-
rithm chooses the variable with highest connectivity, fixes its value at random
and it simplifies the formula (“unit clause propagation” [27]). As can been seen
in the inset of Fig. 1.2 the energy reached running the above process on very
large formulee(N = 10%,103,10%) starts to deviate from zero at a value which
is highly compatible with the analytical prediction ; = 0.818. Unfortunately
the mathematical analysis of this kind of algorithm appears to be beyond our
present skills due to the correlations induced into the simplified formulee by the
particular choice of variables. For a simple random (connectivity independent)
choice of the variable the algorithm can be analyzed along the lines of Ref. [32]
and a convergence can be proved up to v = 2/3, which is also a rigorous lower
bound to the true critical density .. A rigorous upper bound is easily established
by noticing that the probability for the satisfiability of a formula at fixed « is
bounded by the number of satisfying assignments, averaged over all formulse of
length yN. It follows 7. < 2log2 (which is the so called annealed bound known
in the statistical mechanics of disordered media).

We have performed standard finite size scaling analysis in order to determine
the size of the critical window w(V) and the v exponent defined by w(N) oc N~1/¥
for large N.

As soon as in a growing random hyper-graph the first hyper-loop arises the
fraction of SAT formulee drops down to 0.5. We have measured the mean v value
where this event takes place, v.(N). Such value scales as 7.(N) — v, o N71, i.e.
its critical exponent is v = 1 as expected for a discontinuous transition (see lower
inset in Fig. 1.3).

However in the model there is also another source of pure statistical (not
critical) fluctuations [33]. These fluctuations come from the fact that almost
every formula can be modify by the addition (or deletion) of order v/N clauses
without changing its satisfiability. Therefore in the large N limit these purely
statistical fluctuations will dominate the critical ones, leading to an exponent
v = 2 in the scaling of the SAT probability. In the upper inset in Fig. 1.3 we
show the width of the critical region [34] as a function of N, together with the
best fit of the kind Az=% + Cz~'/2. Notably the best fitting value for B is
perfectly compatible with 1, giving more evidence to the crossover from critical
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Figure 1.3: Scaling function for the SAT probability. Lower inset: The - value
where the first hyper-loop arises scales as N~!. Upper inset: The critical width
undergoes a crossover from v = 1 to v = 2. The fitting curve is 3.4/N+0.74//N,
while the line is the asymptote 0.74/v/N.
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fluctuations (v = 1) to statistical ones (v = 2).

In the main part of Fig. 1.3 we shown the scaling function for the SAT prob-
ability. Note that the value at criticality is equal to 0.5 up to the numerical
precision. Slight deviations from perfect scaling appear in the v > «. region.
However scaling relations hold only close to the critical point and our data per-
fectly collapse in all the range where the SAT probability is between 0.2 and
0.8.

The different kind of transition taking place at . in the two versions of
hSAT is reflected in the behavior of their entropies s(v) shown in Fig. 1.4 and
defined as the normalized logarithm of the number of assignments minimizing
the energy. For 7 < <, both entropies coincides and they have the analytical
expression s(y) = log(2)(1 — ) up to 7. For v > <., while the entropy of
the satisfiable hSAT decreases exponentially fast with v (the solutions are more
and more concentrated around the superimposed one), in the frustrated version
the entropy decreases more slowly with -, indicating that the number of unsat
assignments minimizing the energy remains exponentially large up to v > ..

At the SAT/UNSAT transition the solution space acquires a backbone struc-
ture, with a finite fraction of the variables that take the same value in all the so-
lutions. Above the critical threshold a similar structure characterizes the ground
states. In the inset of Fig. 1.4 we report the results of exhaustive ground states
enumeration on small systems, giving the average size of the backbone and the
average energy. Increasing the system size, the average energy converges to zero
for v < 7, and it becomes positive at 7. in a continuous way. In the UNSAT
region, even for small sizes N, the energy slope rapidly converges to the value
1/8 which is the analytical prediction in the large v limit. The appearance of
the backbone becomes sharper increasing the system size and, in the thermody-
namical limit (N — 00), we expect it to be zero for v < . and finite for v > v,
consistently with a random first order phase transition predicted by the replica
theory. As can be seen in the inset of Fig. 1.4 the backbone size does not depend
strongly on the system size in the UNSAT phase. As discussed in Ref. [7] the
presence of a finite backbone is conjectured to be the source of computational
hardness in finding solutions at the SAT/UNSAT transition for both complete
and randomized local algorithms.

In the v > 7, region the backbone size shows clear oscillations, due to finite
size effects. At fixed energy the backbone size is a non-decreasing function of 7,
but it typically decreases when the energy jumps to a higher value. For finite
systems such jumps, which are of order 1/N, are particularly evident and induce
observable fluctuations in the backbone. We expect these fluctuation to disappear
in the thermodynamic limit.

In the satisfiable hSAT once we consider only the lowest local minima con-
figurations just above the zero energy solutions (the so called ezcited states) we
find that they share completely the same statistical properties with the ground
states of the corresponding frustrated hSAT, i.e. the model defined over the same
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random hyper-graph with randomized couplings. We have performed a set of DP
runs in satisfiable hSAT similar to the ones used previously, with the additional
requirement of not considering the superimposed solution. The backbone size,
the average energy and the entropy of the excited states just above the solution
are identical to those measured on the ground states of the frustrated version (see
Fig. 1.4). These results, together with some preliminary analytical findings [35],
show in detail why a model without quenched frustration behave and can be
modeled as having random sign interactions, i.e. like a spin glass model. Such
a mapping is believed to play a particularly important role in spin glass theory
of structural glasses, in which the only source of frustration is geometrical (i.e.
dynamical). Once the Boltzmann temperature 7' is introduced in the model, the
critical points of hSAT can be thought of as zero temperature limits of critical
lines in the (7', <) plane. In spite of the absence of any static frustration and of
the existence of a pure “crystalline” state (the spin configurations corresponding
to the satisfying assignment), the spin system undergoes several dynamical and
static transitions as the temperature is lowered. Both the crystalline state and
the first excited states are never reached in any sub-exponential time and the
system stays for very large times in the metastable states (the same happens in
the frustrated version).

In Fig. 1.5 we report data concerning the computational costs for finding a
solution in the satisfiable hSAT and for proving satisfiability for the frustrated
hSAT [36]. For both algorithms (DP and walk-SAT) and in the whole range of
v, we have measured the logarithm of the running time averaged over thousands
of samples of different sizes. The choice of analyzing the averaged logarithm
instead of the logarithm of the average is dictated by the presence of fat tails in
the running time distributions, even in the v < «y, region. The averaged logarithm
provides directly the information on the most probable cost.

The main body of the figure displays the DP computational costs for proving
satisfiability in h-SAT and for finding the satisfying assignment in the satisfiable
h-SAT (given the same underlying hyper-graph structure). Both costs show a
sharp easy-hard transition at <., where an enormous increase in the typical run-
ning times take place. For v < . both costs obviously coincide and they increase
as a power law of N, the only effect of v, being a change of the exponent from 1
to a large value which eventually diverges at .. For v > ~., the computational
costs remain very high, i.e. < log[7(vy)] > o(y)N, with an exponent o slowly
decreasing as 1/ [37].

In the inset of Fig. 1.5 we show the average logarithm of the running times
needed by walk-SAT for finding a solution in the satisfiable hSAT model. Analo-
gously to DP the walk-SAT costs undergo an easy-hard transition at -,. Interest-
ingly enough, above 7, the computational costs for finding solutions remains quite
high and they do not decrease as in DP, where the additional constrains act as
a pruning strategy in the search process. In the hard satisfiable region standard
heuristic algorithms, like walk-SAT, get stuck in local minima and they are not
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Figure 1.5: The computational costs for finding a solution or proving unsatisfia-
bility with the Davis-Putnam algorithm strongly increase approaching the critical
point. For v > ~, they grow exponentially with the problem size N. Inset: The
same computational costs for the walk-SAT algorithm, which can be run for every

7 in the satisfiable model (N = 25,50, 75, 100).
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able to exploit the large number of constraints in order to reduce the searching
space. In particular, the large scale structure (O(N)) of the hyper-loops makes
them difficult to detect in polynomial time by a local search process which is
dominated by the exponential branching process arising at each step when the
tentative choices for the variables are made. However, having at hand a model
on which new heuristic algorithms can be tested, such a searching optimization
can be hopefully pushed far forward.

A thorough analysis of computational costs dependence on system size N
gives the following overall picture. For v < «y,; the cost is a linear function of N.
For 7 € [v4,7.) the typical cost increases as a power law of N, with an exponent
which should diverge in .. For v > . the costs are exponential in V.

1.7 Conclusions

part we have presented the study of a model for the generation of random com-
binatorial problems, called hyper-SAT. In the context of Theoretical Computer
Science such a model is simply the completely balanced version of the famous K-
SAT model, while in Statistical Physics it corresponds to a diluted p-spin model
at zero temperature. We have studied two version of the model, a frustrated one
and an unfrustrated one.

Increasing the density of interactions, v = M/N, the model undergoes two
transitions. A first one purely dynamical and a second static one. Such phase
transitions have a straightforward interpretation in terms of the structure of the
underlying hyper-graphs, leading to a very simple connection between Theoretical
Computer Science and Graph Theory, and Statistical Physics of random systems.

The locations of phase boundaries, can be computed exactly within the RS
replica formalism, leading to 74 = 0.818 and 7, = 0.918. We expect the replica
results to be computable also by more rigorous probabilistic methods.

Exploiting a global method for solving the problems which is polynomial in
the problem size we have been able to study very large problems, determining
with high precision critical points and critical exponent and a cross-over from
critical fluctuations to statistical ones has been measured.

We have found that the computational costs for finding a solution to a typical
problem or to prove that it is unsatisfiable using only local search methods under-
goes an easy-hard transitions at 4 and .. The growth of the costs with the prob-
lem size N is linear up to 74, is polynomial in N in the range v, < gamma < 7,
and finally it becomes exponential in N above 7.. The above scenario has been
checked for both complete and incomplete local algorithms, thanks to the exis-
tence of an halting criterion in the unfrustrated version of hyper-SAT where at
least one solution is guaranteed to exist. The use of this model as a benchmark
for heuristic algorithms may result in a good improvement of their performances
in the phase where many local minima are present.
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h-SAT can be viewed as an intermediate model between 2-SAT and K-SAT
(K > 2), which is exactly solvable and in which the presence of hidden solutions
can be kept under some control. Hopefully, some of the results and methods of
our analysis of h-SAT can be extended to NP-complete problems.







Chapter 2

The 2+p-XOR-SAT variant

2.1 Introduction: the role of phase coexistence
and finite-size scaling

In this chapter we study a mixed version of the previous proble, where sentences
made out of 2 (2-XOR-SAT) and 3 (3-XOR-SAT) variables are mixed with rel-
ative probability p. Rare events are shown to affect the combinatorial “phase
diagram” leading to a coexistence of solvable and unsolvable instances of the
combinatorial problem in a certain region of the parameters characterizing the
model. Such instances differ by a non-extensive quantity in the ground state
energy of the associated diluted spin-glass model. We also show that the critical
exponent v, controlling the size of the critical window where the probability of
having solutions vanishes, depends on the model parameters, shedding light on
the link between random hyper-graph topology and universality classes. In the
case of random satisfiability, a similar behavior was conjectured to be connected
to the onset of computational intractability.

The statistical mechanics study of random K-SAT have provided some geo-
metrical understanding of the onset of complexity at the phase transition through
the introduction of a functional order parameter which describes the geometrical
structure of the space of solutions. The nature of the SAT/UNSAT transition
for the different values of K appears to be a particularly relevant prediction [7].
The SAT/UNSAT transition is accompanied by a smooth (respectively abrupt)
change in the structure of the solutions of the 2-SAT (resp. 3-SAT) problem.
More specifically, at the phase boundary a finite fraction of the variables become
fully constrained while the entropy density remains finite. Such a fraction of
frozen variables (i.e. those variables which take the same value in all solutions)
may undergo a continuous (2-SAT) or discontinuous (3-SAT) growth at the criti-
cal point. This discrepancy is responsible for the difference of typical complexities
of both models recently observed in numerical studies. The typical solving time
of search algorithms displays an easy-hard pattern as a function of v with a peak

29
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of complexity close to the threshold. The peak in search cost seems to scale poly-
nomially with N for the 2-SAT problem and exponentially with N in the 3-SAT
case. From an intuitive point of view, the search for solutions ought to be more
time-consuming in presence of a finite fraction of fully quenched variables since
the exact determination of the latter requires an almost exhaustive enumeration
of their configurations.

To test this conjecture, a mixed 2 4+ p-model has been proposed, including a
fraction p (resp. 1—p) of clauses of length two (resp. three) and thus interpolating
between the 2-SAT (p = 0) and 3-SAT (p = 1) problems. The statistical me-
chanics analysis predicts that the SAT/UNSAT transition becomes abrupt when
p>po ~ 0.4 [7, 41, 42, 43]. Precise numerical simulations support the conjecture
that the polynomial /exponential crossover occurs at the same critical py. Though
the problem is both critical (7, = 1/(1 — p) for p < pp) and NP-complete for any
p > 0, it is only when the phase transition becomes of the same type of the 3-SAT
case that hardness shows up. An additional argument in favor of this conclusion
is given by the analysis of the finite-size effects on Py(y, K) and the emergence
of some universality for p < pg. A detailed account of these findings may be
found in [7, 41, 42, 43, 44]. For p < p, the exponent v, which describes the
shrinking of the critical window where the transition takes place, is observed to
remain constant and close to the value expected for 2-SAT. The critical behavior
is the same of the percolation transition in random graphs (see also ref. [45]).
For p > py the size of the window shrinks following some p-dependent exponents
toward its statistical lower bound [33] but numerical data did not allow for any
precise estimate.

In this paper, we study an exactly solvable version of the random 2+p SAT
model which displays new features and allows us to settle the issue of universality
of the critical exponents. The threshold of the model can be computed exactly
as a function of the mixing parameter p in the whole range p € [0,1]. Rare
events are found to be dominant also in the low ~ phase, where a coexistence of
satisfiable and unsatisfiable instances is found.

The existence of a global — polynomial time — algorithm for determining sat-
isfiability allows us to perform a finite size scaling analysis around the exactly
known critical points over huge samples and to show that indeed the exponent
controlling the size of the critical window ceases to maintain its constant value
v = 3 and becomes dependent on p as soon as the phase transition becomes dis-
continuous, i.e. for p > pg = .25. Above py and below p; ~ 0.5, the exponent v
takes intermediate values between 3 and 2. Finally, above p; the critical window
is determined by the statistical fluctuations of the quenched disorder [33] and so
v =2
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2.2 Model definition and outline of some results

The model we study can be viewed as the mixed 2 + p extension of the 3-hyper-
SAT (hSAT) model discussed previously, as much as the 2 + p-SAT [7] is an
extension of the usual K-SAT model. In computer science literature the hSAT
model is also named XOR-SAT and its critical behavior is considered an open
issue [46]. Given a set of N Boolean variables {z; = 0,1},=1 _y we can write an
instance of our model as follows. Firstly we define the elementary constraints (a
mixture of 4 and 2-clauses sets with 50% satisfying assignments):

Clijk| +1) = (z;Vz; Vo) Az VIV Ik)
N (ZiVziVIE) ANZ; VT Vay)
Clijk| —=1) = (Z;VZ;VI) AN(Z; Vxj Vzg)
N (@ VTV ap) Ao Va; Vi) (2.1)

for the 3-hSAT part, and

CGjl+1) = (ziVZE) ATV ay)
C(Z]! — 1) = (.’Ez V I‘j) A (i’z \% .fj) 5 (22)

for the 2-hSAT part. A more compact definition can be achieved by the use of
the exclusive OR operator @, e.g. C(ijk|+1) = z; ® z; ® z. Then, we randomly
choose two independent sets E3 and Ey of pM triples {i,j,k} and (1 — p)M
couples {7, j} among the N possible indices and respectively pM and (1 — p)M
associated unbiased and independent random variables T;;, = £1 and J;; = £1,
and we construct a Boolean expression in Conjunctive Normal Form (CNF) as

F= N\ CGgklTa) AN C(ildiy) (2.3)

{i,4,k}EE; {i.7}€E2

As in [?], we can build a satisfiable version of the model choosing clauses only of
the C(ij| + 1) and C(ijk| + 1) type. For p < py the problem is easily solved by
local and global algorithms, whereas interesting behaviors are found for p > py,
where the local algorithms fail.

The above combinatorial definition can be recast in a simpler form as a min-
imization problem of a cost-energy function on a topological structure which is a
mixture of a random graph (2-spin links) and hyper-graph (3-spin hyper-links).
We end up with a diluted spin model where the Hamiltonian reads

HJ[S] =M - Z T%jk SZSJS]C - Z Jij SZSJ ) (2.4)

{iajak}€E3 {Zaj}EEZ

where the S; are binary spin variables and the the random couplings can be either
+1 at random. The satisfiable version is nothing but the ferromagnetic model:
Tk = 1 and J;; =1 for any link.
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As the average connectivity v of the underlying mixed graph grows beyond
a critical value ~y.(p), the frustrated model undergoes a phase transition from a
mixed phase in which satisfiable instances and unsatisfiable ones coexist to a
phase in which all instances are unsatisfiable. At the same ~.(p) the associated
spin glass system, undergoes a zero temperature glass transition where frustration
becomes effective and the ground state energy is no longer the lowest one (i.e. that
with all the interactions satisfied). At the same critical point the unfrustrated,
i.e. ferromagnetic, version undergoes a para—ferro transition, because the same
topological constraints that drive the glass (mixed SAT/UNSAT to UNSAT)
transition in the frustrated model are shown to be the ones responsible for the
appearance of a nonzero value of the magnetization in the unfrustrated one. We
shall take advantage of such coincidence of critical lines by making the analytical
calculation for the simpler ferromagnetic model.

Moreover, the nature of the phase transition changes from second to random
first order, when p crosses the critical value py = 1/4. For p > pg the critical
point 7.(p) is preceded by a dynamical glass transition at v4(p) where ergodicity
breaks down and local algorithms get stuck (local algorithms are procedures which
update the system configuration only by changing a finite number of variable at
the same time, e.g. all single or multi spin flip dynamics, together with usual
computer scientists heuristic algorithms). The dynamical glass transition exist
for both versions of the model [47] and corresponds to the formation of a locally
stable ferromagnetic solution in the unfrustrated model [48] (the local stability
is intimately related to the ergodicity breaking).

2.3 Statistical mechanics analysis

We compute the free energy of the model with the replica method, exploiting
the identity log < Z" >»= 1+4+n < logZ > +0(n?). The n® moment of
the partition function is obtained by replicating n times the sum over the spin
configurations and then averaging over the quenched disorder

KZ">= > <Lexp <—6 > HJ[S“]> > (2.5)
Sis2,..,8m a=1

Since each of the M clauses is independent, the probability distributions of the
ferromagnetic couplings can be written as

P = T [(1-3F) otT) + 7000 - ]

P = H[(l—g’y—“]\—;—@) 5<Jﬁ>+%—‘—@auw——1>] | (26)

1<J
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giving the following expression for the < Z™ >>:

> exp{ ﬁ'yNn—nyJr Zeﬁzasgs;sa (1- ~ 7Zeﬁza5a5a+0( )}
S1,82,.,80 ijk

(2.7)
Introducing the occupation fractions ¢(d) (fraction of sites with replica vector &),
one gets

—BF[c] = —y(1+p8n) =3 c()loge() VZ ()l e "

&

+ p'yz )e(F)e(7)el 2a Tt (2.8)

In the thermodynamlc limit we can calculate the free energy via the saddle point
equation obtaining

c(d) = exp{ A+2(1-p 72 ﬁ)expﬁZa

+ 3pyY_c(p)e(T) exp ﬁZO“ ‘%) } (2.9)
T

The Lagrange multiplier A = —v(2 + p) ensures the normalization constraint
>z ¢(@) =1 in the limit n — 0. Finding the minimal (zero in the unfrustrated
case) value of the cost function amounts to studying the 8 — oo (zero tem-
perature) properties of the model. In the Replica Symmetric (RS) Ansatz, the
behavior of the spin magnetization can be described in terms of effective fields
m = tanh Sh whose probability distribution is defined through

ﬂhZcf
/ dhP 2cosh(ﬂh)) ' (2.10)

In the unfrustrated or ferromagnetic case, the P(h) turns out to have the following

simple form
=> né(h—1) , (2.11)

1>0
where the effective fields only assume integer values. In the satisfiable model the
saddle point equations all collapse in one single self-consistency equation for rg:

ro = e 3 (1-ro)?=2(1-p)y(1-ro)
3py)§ (2(1 — 5
Z Z o377 g—2(-p)y ( p’T)l 21 —p)v)s (1= (1= r)%) (ro)* (2.12)
01=0 cg— C1: Cg!

The equations for the frequency weights 7, with [ > 0 follow from the one for 7

and read
= By =) + 2l$1 —py(t =)' (2.13)
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The previous self consistency equations for rg (or for the magnetization m =
1—rg) can easily be derived by the same probabilistic argument used in the pure 3-
model, due to the fact that the clause independence allows to treat the graph and
the hyper-graph part separately. Note that in the simple limit p = 0 we retrieve
the equation for the percolation threshold in a random graph of connectivity
v [49],

00 k

t-n=c Y o 214

k=0 '
Since the ground state energy of the ferromagnetic model is zero, the free energy
coincides with the ground state entropy, which can be written as a function of p,
ro and 7y

S(7) = 1og(2)lro(1 —log(ro)) = ¥(1 = p)(1 = (1 = 70)*) — yp(1 — (1 = 70)*)] (2.15)

To find the value of the paramagnetic entropy we put ourself in the phase where
all sets of 4- and 2-clauses act independently, each therefore dividing the number
of allowed variables choice by two: the number of ground states will be Ny =
oN-PIN=(1=p)7N — 9N(1=7) The resulting value of Spurq = (1 — 7) log(2) coincides
with the one found setting 7o = 1 in Eq.(2.15). This may not be the case in more
complicated models, where the ground state entropy is a complicated function of «y
also for v < 7., reflecting the fact that the magnetization probability distribution
in the paramagnetic phase could be different from a single delta peak in m = 0.

Solving the saddle point equation for ry, we find that a paramagnetic solution
with ry = 1 always exists, while at a value of v = v4(p) there appears a ferro-
magnetic solution in the satisfiable model. For p = 0, the critical value coincides
as expected with the percolation threshold 4(0) = 1/2. As long as the model
remains like 2-SAT, up to p < py = 0.25, the threshold is the point where the
ferromagnetic solution appears and also where its entropy exceeds the param-
agnetic one. The critical magnetization is zero and the transition is continuous.
For larger values of the control parameter p the transition becomes discontinuous.
There appears a dynamical transition at v = 4(p) where locally stable solutions
appear. At v = v.(p) > va(p), the non trivial ry # 1 solution acquires an entropy
larger than the paramagnetic one and becomes globally stable. The shape of
v = ~va(p) and v = .(p) as functions of p are shown in Fig. 2.1. The inset picture
shows the magnetization of the model at the points where the dynamical and the
static transitions take place.

2.4 Numerical simulations

The model can be efficiently solved by a polynomial algorithm based on a repre-
sentation modulo two (i.e. in Galois field GF[2]). If a formula can be satisfied,
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Figure 2.1: Critical lines (static and dynamic) in the (v, p) plane. The black dot
at (0.667,0.25) separates continuous transitions from discontinuous ones (where
Yd < 7Yc). Inset: Critical magnetizations at 4(p) and ~.(p) versus p.
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loop hyper-loop

p=0 p>0

Figure 2.2: Typical loop and hyper-loop. Lines are 2-spin links, while triangles
are 3-spin links. Note that every vertex has an even degree.

then a solution to the following set of M equations in N variables exists

{ SiSiSk = T V{i,j, k} € By (2.16)

SiSj = J;; V{Z,]} € Fy

Through the mapping S; = (=1)%, Ji; = (=1)" and T} = (—1)%*, with
i, Mijks Gigi € {0,1}, Eq.(2.16) can be rewritten as a set of binary linear equations

{ (oi+oj+op) mod2 = (i Vi, j, k} € B (2.17)

(Ji -} Uj) mod 2 = M V{’L,]} € Ez

For any given set of couplings {7;, Gijx}, the solutions to these equations can be
easily found in polynomial time by e.g. Gaussian substitution. The solution to the
M linear equations in N variables can be summarized as follows: a number Ngep, of
variables is completely determined by the values of the coupling {n;;, (;;x} and by
the values of the N = N—Ngp, independent variables. The number of solutions
is 2Nsree and the entropy S(7y) = 10g(2) Nfree/N = 10g(2)(1 — Ngep(y)/N). As long
as Ny, = M we have the paramagnetic entropy Spere = log(2)(1 — 7). However
Nyep may be less than M when the interactions are such that one can generate
linear combinations of equations where no o’s appear, like 0 = f({7i;, Gijx})-
This kind of equations correspond to the presence of loops (resp. hyper-loops)
in the underlying graph (resp. hyper-graph). A hyper-loops (generalization of a
loop on a hyper-graph) is defined as a set S of (hyper-)links such that every spin
(i.e. node) is “touched” by an even number of (hyper-)links belonging to S (see
Fig. 2.2).

Here we are interested in the fraction of satisfiable instances Psar (7, p), aver-
aged over the random couplings distribution. One can show that, for any random
(hyper-)graph, Psar is given by 2~ Ve where Ny, is the number of independent
(hyper-)loops. In Fig. 2.3 we show the fraction of satisfiable instances as a func-
tion of  for p = 0 and p = 0.5. The vertical lines report the analytical predictions
for the critical points, v.(p = 0) = 0.5 and v(p = 0.5) = 0.810343.
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Figure 2.3: SAT probabilities Psaz(7,p) for p = 0 and p = 0.5. Data has been
averaged over 10* different random hyper-graphs. Vertical straight lines are ana-
lytical predictions for critical points: v.(p = 0) = 0.5 and ~.(p = 0.5) = 0.810343.

Bold curves for v < 7, are analytical predictions for the SAT probability in the
large N limit.
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In the limit of large N and for p = 0.5 the fraction of SAT instances sharply
vanishes at the critical point in a discontinuous way, that is lim__, - Psar(y) > 0
while lim__, + Psar(y) = 0. This is the usual behavior already measured in
3-SAT [7, 41] and 3-hyper-SAT, with the SAT probabilities measured on finite
systems crossing at ., and becoming sharper and sharper as /V increases. On the
contrary for p = 0 and large N the probability of being SAT becomes zero at =,
in a continuous way. The main consequence is that finite size corrections make
Ps 4r(7y) larger than its thermodynamical limit both before and after the critical
point and thus the data crossing is completely missing.

Note also that for p < 1 the fraction of SAT instances for v < 7.(p) is finite
and less than 1 even in the thermodynamical limit, implying a mized phase of
SAT and UNSAT instances. This is due to the presence in the random hyper-
graph of loops made only by 2-spin links (indeed the mixed phase is absent for
p = 1 when only 3-spin interactions are allowed). The expression for the SAT
probability in the thermodynamical limit (bold curves in Fig. 2.3, the lower most
for p = 0 and the uppermost for p = 0.5) can be calculated analytically and the
final result is

Psar(y,p) = ex70PIH0-P) [1 _2y(1 — p)]¥*  for y<q.(p) . (2.18)

In order to obtain to above expression we note that the SAT probability is related
to the number of (hyper-)loops by

o0

Psur(v,p) = Y P(m;y,p)2™™ (2.19)

m=0

where P(m;~, p) is the probability of having m (hyper-)loops in a random (hyper-
)Jgraph with parameters v and p, and the factor 2™ comes from the probability
that for all the m (hyper-)loops the product of the interactions is 1 (thus giving
no contradiction in the formula). In order to estimate P(m;~,p) we may restrict
ourselves to consider only simple loops (made of 2-spin links), because hyper-loops
which involve at least one 3-spin link are irrelevant in the thermodynamical limit.
This can be easily understood with the help of the following counting argument.

The probability that a given 2-spin link is present in a random (v, p) hyper-
graph is p, = 2y(1 — p)/N and for a 3-spin hyper-link is p3 = 6yp/N?. Thus
the probability of finding in a random (v, p) hyper-graph a hyper-loop made
of ny links and ns hyper-links (n3 must be even) is just the number of different
ways one can choose the (hyper-)links times py?p3®. Because the number of nodes
belonging to a hyper-loop of this kind is at most n, = ny+3n3/2 and the number
of different hyper-loops of this kind is order N™, we have that the probability of
having a hyper-loop with ny links and n3 hyper-links is order N —ns/2,

Then, for v < 7. the number of hyper-loops is still finite (their number be-
comes infinite only at -, where a transition to a completely UNSAT phase takes
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place) and the SAT probability, in the large N limit, is completely determined by
the number of simple loops (n3 = 0).

The typical number of these loops does not vanish for 7 < 5='—, and therefore
such “rare” events lead to a coexistence of SAT and UNSAT instances with equal
energy density.

The average number of loops of length %k can be easily calculated and it is
given by z¥/(2k), where z = 2v(1 — p). The average number of loops of any size

gk 1 r z?
Alz) =Y = =-—ln(l-2) - - | (2.20)
= 2k 2 2 4

indeed diverges for  — 1, that is for v — ﬁ. The probability of having m
loops in a random (v, p) hyper-graph is then

m
P(m;,p) = e 4@ é—@-,)— , (2:21)
m!
and the fraction of SAT instances turns out to be the one in Eq.(2.18).

We have numerically calculated the SAT probabilities for many p and N
values, finding a transition from a mixed to a completely UNSAT phase at the
v.(p) analytically calculated in the previous section. We also find, in agreement
with analytical results, that the transition is continuous as long as p < 1/4 and
then it becomes discontinuous in the SAT probability.

Let us now concentrate on the scaling with N of the critical region. We
have considered several alternative definitions for the critical region. The one
we present here seems to be the simplest and also the most robust, in the sense
it can be safely used when the transition is both continuous (p < 0.25) and
discontinuous (p > 0.25). We assume that the size of the critical region is inversely
proportional to the derivative of the SAT probability at the critical point

w(N,p)-t = Wsartrp)) (2.22)

87 Y=Y

For any value of p the width w(N) goes to zero for large N and the scaling
exponent v(p) is defined through

w(N,p) ox N~1/v®) (2.23)

In Fig. 2.4 we show, in a log-log scale, w(N, p) as a function of N for many
p values, togheter with the fits to the data. The uppermost and lowermost lines
have slopes —1/3 and —1/2 respectively. Data for p < 0.5 can be perfectly fitted
by simple power laws (straight lines in Fig. 2.4) and the resulting v(p) exponents
have been reported in Fig. 2.5. We note that as long as p < 0.25 the v exponent
turns out to be highly compatible with 3, which is known to be the right value
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Figure 2.4: Scaling of the critical window width. Errors are smaller than symbols.
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Figure 2.5: Critical v exponents obtained from the fits shown in Fig. 2.4. For
p = 0.75 and p = 1 filled squares show the subleading term power exponent, the
leading term one being fixed to —1/2 (filled circles).
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for p = 0. Thus we conclude that for p < 1/4 the exponents are those of the
p = 0 fixed point.

For 0.25 < p < 0.5 we find that the v exponent takes non-trivial values be-
tween 2 and 3. Then one of the following two conclusions may hold. Either the
transition for p > py is driven by the p = 1 fixed point and the v exponent is
not universal, or more probably any different p value defines a new universality
class. This result is very surprising and interesting for the possibility that differ-
ent universality classes are simply the consequence of the random hyper-graph
topology.

More complicated is the fitting procedure for p > 0.5. In a recent paper [33]
Wilson has shown that in SAT problems there are intrinsic statistical fluctuations
due to the way one construct the formula. This white noise induces fluctuations
of order N~%/2 in the SAT probability. If critical fluctuations decay faster than
statistical ones (i.e. ¥ < 2), in the limit of large N the latter will dominate and
the resulting exponent saturates to v = 2. Data for p = 0.75 and p = 1 shown
in Fig. 2.4 have a clear upwards bending, which we interpret as a crossover from
critical (with v < 2) to statistical (v = 2) fluctuations. Then we have fitted
these two data sets with a sum of two power laws, w(N) = AN~Y/» 4+ BN~1/2,
The goodness of the fits (shown with lines in Fig. 2.4) confirm the dominance of
statistical fluctuations for large V. Moreover we have been able to extract also
a very rough estimate of the critical exponent v from the subleading term. In
Fig. 2.5 we show with filled squares these values, which turn out to be more or
less in agreement with a simple extrapolation from p < 0.5 results.

2.5 Conclusions and perspectives

The exact analysis of a solvable model for the generation of random combina-
torial problems has allowed us to show that combinatorial phase diagrams can
be affected by rare events leading to a mixed SAT/UNSAT phase. The energy
difference between such SAT and UNSAT instances is non extensive and there-
fore non detectable by the usual § — oo statistical mechanics studies. However,
a simple probabilistic argument is sufficient to recover the correct proportion of
instances.

Moreover, through the exact location of phase boundaries together with the
use of a polynomial global algorithm for determining the existence of solutions
we have been able to give a precise characterization of the critical exponents v
depending on the mixing parameter p. The p-dependent behavior conjectured in
ref. [7] for the random 2+ p SAT case finds here a quantitative confirmation. The
mixing parameter dependency also shows that the value of the scaling exponents
is not completely determined by the nature of the phase transition and that the
universality class the transtion belongs to is very probably determined by the
topology of the random hyper-graph. The model we study has also a physical
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interpretation as a diluted spin glass system. It would be interesting to know
whether the parameter-dependent behavior of critical exponent plays any role in
some physically accessible systems.

A last remark on the generalization of the present model. With the same an-
alytical techniques presented here, one can easily solve a Hamiltonian containing
a fraction fj of k-spin interacting terms for any suitable choice of the parameters
fx [60]. The case presented in this paper (f =1 — p and f3 = p) is the simplest
one. There are choices which show a phase diagram still more complex with, for
example, a continuos phase transition preceded by a dynamical one.
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