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INTRODUCTION

In considering a differential equation, one of the main
problems to face is the estimation of the number of solutions.
Many mathematicians have contributed quite a lot in this direc-
tion for the nonlinear boundary value problems (BVP's) in the
past two and a half decades. In the literature there are various
methods to atfewck this question. We shall therefore in this
thesis give a survey of some of the most important methods and
results in the literature concerning the existence of multiple
solutions. Particular attention will be given to i) the techni--
ques from ordered Banach spaceé (OBS), which usually provide a
lower bound for the number of solutions and ii) the topological
degree techniques, which in some cases provide the exact number
of solutions.

The PLQn of the work is the following:‘in Chapter 0O, we
give a brief review of OBS and the fixegzyggex. It is good to
remark that a nice introduction to these, full of historical
and bibliographical materials is given by Amann [ 17 .

The deg{nit(ons,notations and results of this chapter are
basic for the whole of the thesis. They will be constantly used,
usually without further mention. It is also good to remark that
some of the gegutﬁs which we shall see were proved for more
general cases but we shall only be concerned with the Dirichlet
problem:

Lu = f(x,u) -

(*)
u= 0 on oL
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n
vihere £ is a bounded domain of IR whose boundary is an (N-1)-
2+¢
dimensional C -manifold for some ¢ € (0,1). L denotes a differen-

tlal operator of the form

N .
L==-i a Dp +>ald + a
Gkt IRV TR 9
with symmetric coefficient matrix (ajk)' We suppose that ajk’ aj,
a €& Cp@l) and that a2 0. L is also assumed to be strongly
uniformly elliptic. Also we shall assume that the maximum prin-
ciple holds. The effect of which is to provide not only a way
to invert the linear part, but also to have an inverse operator
which is positive in the sense that it maps positive functions
into positive functions,something very peculiar and useful. For

the case when N=1, L& is just a bounded open interval,{2 = (x ,Xl)
o

and L is a differential operator of the form

Lu : = —a”u” + a'u' + au

with continuous coefficients a,,a ,a € C() such that a”(x)>(3
and a(x) 2 0 ¥x € 42.. For the various cases to be considered,
we shall define the nonlinearity f, accordingly and f may
even depend on the gradient term, Du.

In chapter one we shall prove some multiplicity results of
Amgrn [ 3, T2]1, [3] . Here the consideration will be
for the case when the nonlinearity is independent of the gra-
dient term. The abstract tools to be used are results on
linear, order-presewing maps and the fixed point index for
compact map of a positive cone into itself; in chapter two, the
consideration will be for the case when the nonlinearity depends
on the gradient term. As we shall see, because of the presence

of the gradient term in the nonlinearity, most of the known



techniques are not applicable and the existence theory becomes
much more intractable. The main results of this chapter are by
Amann and Crandall Ellj; Hofer [10]; Ambrosetti and Hess {:5].
Finally in chapter three, we present some results by Berestycki
[7}, in which the proofs rely on simple eigenvalue comparison

arguments.
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CHAPTER O

Let E be a nonempty set. A non-empty subset P of E is
called a cone if P is closed, convex, invariant under multipli-
cation by elements ofjm+ and if PM(-P) = 0 . Each cone induces
a partial ordering in E usually denoted by €, through the rule
y%£z if z-y € P. This ordering is antisymmetric, reflexive,
transitive, compatible with the linear structure and with the
topology. A non—empta set together with an ordering is called

an ordered set. The elements in

p:=p \ {o]}

are positive and P is said to be the positive cone of the orde-
ring. Hence an ordered Banach space (OBS) with positive cone
P is a Banach space together with a partial ordering which is
induced by a given cone P. An OBS will be denoted by (E,P) and
we shall write E if the cone is known.

Let E be an OBS with positive cone P, for every pair x,y €E,
the set . .

[xylizdz €eE:xsz<y}= C-+P)IN (y- P)

is called the order interval between x and y. Every order in-
terval is obviously a closed convex subset of E. However, in
general an order interval will not be bounded. A subset X of E
is called order convex whenever x,y'é}0=%'Ex,y]CLX. A cone is
said to be total if E = P-P, generating if E = P-P, normal if

3 a§>0: ¥x,y € P,

Hxy i€ dmax(Hxll, iy

1),




&

If P is a normal cong then every order interval is bounded.

Let E,F be 0BS's with positive cones P and Q respectively
(with the ordering in each set denoted by % ). A linear operator
T: E—~»F is called positive if T(P) = Q . It is called strict ly
positive if T(P) = Q and it is called strongly positive if T(ﬁ):&,
where in the latter case, it is assumed that Q has non empty
interior Q. A non-linear map f:E=—>»F is called increasing if
xSy2f(x) £f(y), strictly increasing if x« y=» f(x) < f(y)
and strongly increasing if a £ @ and if x<€ y=3 f(x) - f(y)e:é.

Let X be a non empty subset of E and let f be a map from
X into F. Then f is called comdbtelnfﬁ?ggﬁifiintinuous and‘maps
bounded subsets of X into compact sets. f is compact if it is
continuous and if f(x) is relatively compact. The map f:D(f)eE=F
is called bounded if it maps bounded sets into bounded sets.
Clearly every compact map is completely continuous and the two
notions coincide if X is bounded. In the special case that f is
a linear operator f is called compact if f maps every bounded
set into a relatively compact set.

Let X be a non empty subset of some ordered set Y. A fixed
point x of a map f:X-»Y is called minimal (resp. maximal) if
every fixed point y of f in X satisfies x£y (resp. y£x).
Clearly, there is at most one minimal (resp. maximal) fixed
point. |

The following theorem of Amann [ 1] which will be needed in
the next chapters contains the basic existence result based on
monotone iteration schemes:

Thm 0.1 Let (E,P) be an OBS and let [:y,ﬁ:]be a non empty
order interval in E. Suppose that f:[:&,?JA)E is an increasing

compact map such that




- A
Then f has a minimal fixed point x and a maximal fixed point x.

Moreover,

- k - k
¥ = lim £ (y) and X = lim £ (¥)
k=»o0 K K-> a0
and the sequences (f (y)) and (f (?)) are increasing and de-

creasing respectively.

Let (E,P) be an OBS with positive cone P and let e €D be
given. Thene € E is called an order unit for E if [}e,e] is
absorbing, that is, for every X ¢E ,fﬂ a positive number

A ~Ne & x £ Xe. Hence e is an order unit for E iff

E = U{)\[—e,e] :)\(—1R+§
The following theorem whose proof is contained in EHJ, shows

that order units are closely related to interior points of the

positive cone.

Thm. 0.2 Let (E,P) be an 0BS. Then 3 order units for E iff P
has non empty interior. If g # @, then the set of all order units
for E coincides with g.

Given 'twg ordered normed linear spaces (ONLS) E and F with
positive conés P and Q, resp. A linear operator T:E=>F is called
e-positive if g an elementeaEé such that, for every x &P, there
MenmmmsN=M(ﬂ,%=?(m > 0: e & Txé%& Obviously,
every e-positive linear mapping is strictly positive and it is
easily seen that every strongly positive linear operator is
e-positive for every eéa. A mapping f: D(f)e E~F is called
e-increasing if 3 an e €Q: for every y,z €D(f) with y»z, one ~

can find constants % = « (y,z), §= %(y,z) > 0 with
Xe £ f(y) - f(z)= (?e-
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Let (E,P) be an ONLS with positive cone and lek e€P be given.
Then we denote by E the linear subspace of E defined by E = U >4}e°ej
e e Xzo

and we set Pesg P(\Ee. On Ee we introduce a new norm iE.He, the
e-norm, namely, we define }I.He to be the Minkowski functional
of the order interval [-e,e],ig for every xE—Ee, HxHeg inf{iw():
i—he £ x ¢ %e&-. In this norm (Ee’Pe) is an ONLS’with positive

cone. Moreover, Pe is normal and has non empty interior, namely
eaEPe. Finally, if P is anormal cone, it can be shown that Ee is
continuously imbedded in E, i.e. the e-norm is stronger than
the orginal norm of E on the subspace E_. Hence if (E,{.]]) is
complete then (Ee,ii.H) is an OBS with normal positive cone P,
and Pe has non empty interior. In the following, when referring
to Ee’ it will always be understood that Ee is considered with
the e-norm. Finally, it should be remarked that the Banach spaces
E and Ee are topologically isomorphic iff P is a normal cone
with non empty interior and etég.

Let E be an OBS with normal positive cone P and let e% 0
be fixed. Supﬁose f maps some order interval [y,gk:E into Ee.
Then, if ;3 a fixed point of f, it necessarily belongs to
[y,i“\Ee. Hence it suffices to consider f on this set. In the
following, we denote by Ey,é]ég Ey,é]f\ Ee with the topology
induced by Ee. Moreover, let je:Eé%-E denote the injection map.
Then we define f : [y,z]1—+E_ by feE fo (jei (v,z1 S It
follows from the fact that every interior point of the positive
cone is an order unit for the space, that every strongly increa-
sing mapping is e-increasing for every e Gé. In general, every
e:increasing mapping is strongly increasing w.r.t. the cone Pe

Next, we highlight some properties of the fixed point index

(equivalent to the well-known Leray-Schauder degree). The essence




of this is that since we shall consider, for instance, nonlinear
maps in OBS, which we defined on (relatively) opepn subsets of
the positive cone, if the positive cone does not have interior
points, the Leray-Schauder degree is not immediately applicable.
But due to the fact that the positive cone is a retract of the
Banach space, it is possible to define a fixed point index for
compact maps which @re defined in the positive cone.

A non empty subset X of a metric (more generally, topological)
space E is called a retract of E if 3 a continuous map r:E-— X,
a retraction, such that r|/X = idx. It is easily seen that every
retract is a closed subspace of E. By an important theorem of
Dugundji Eq] every non empty closed convex subset of a Banach

space E is a retract of E.

Thm. 0.3 Let X be a retract of some Banach space E. For every
open subset U of X and every compact map f:_a—%X which has no
fixed point on aU, 3 an integer i(f,U,X) satisfying the fol-
lowing conditions:

(i) (NORMALIZATION) For every constantmap f mapping U into

U, i(f,U,X) = 1

(ii) (ADDITIVITY) For every pair of disjoint open subsets

U U2 of U such that f has no fixed points‘on.a\(UlLle),

l’
i(f,U,X) = 1(£,U,%) +1(£,U,,X)

k,,x): = i(f]Uk,uk,X), k = 1,2;

where i(f,U
(iii) (HOMOTOPY INVARIANCE) For every compact interval I€IR, and
every compact map

h:I x U=>X : h(A,x) #£ x for (Mx)ET x QU

i(h(x,.), U,X) is well defined and independent of A € I.



(iv) (PERMANENCE) If Y is a retract of X and f(U)cY, then

i(f,U,X) = i(£,UNY,Y) where i(f,UNY,Y):=i(f|TnY,uny,Y)

The family '[i(f,U,X)i X retract of E, U open in X, f;a-%X
compact without fixed pointSanU}; is uniquely determined by
the properties (i)-(iv) and i(f,U,X) is called the fi. xed point
index éf f (over U w.r.t. X).

Corollary 0.1

The fixed point index has thesfurther properties.
(v) (EXCISION) For every opeﬁ subset V&U:f has no fixed
point in U\V,
i(f,U0,X) = i(f,V,X)
(vi) (SOLUTION PROPERTY). If i(f,U,X) # O, then f has at least
one fixed point in U.

We shall also require a generalization of the clgssical
fixed point index to strict set contractions (s.s ¢ ) defined
on certain metric absolute neighbourhood retracts as given by
Nussbaum ['HJ.‘Let E be a metric space and let X be a bounded
subset of E. Then the measure of:gémpactness of X, 8(X) is
defined by & (X): = inf{:§>'OiX can be covered by finitely many
subsets of E of diameter less or equal to E)}-. Clearly, X is
totally bound iff ¥ (X)=0.

If E and F are metric spaces, A mapping f:E=»F is
called an ot —set contraction if it is continuous and for every
bounded subset X<E, Xé(f(X))ge<é(X) where ¥, XZ are the
measures of non-compactness in E and F resp. The mapping f is
called a strict set contraction (s s c¢) if f is an ck-set con-
traction with « < 1. Hence, every completely continuous map is
a s s-c. For our purpose, if will suffice to consider ssc's

defined on closed convex subsets of Banach spaces. In the



following proposition we state the main properties of the fixed
point index for the case when f is a ssc. For the proof we refer
to Nussbaum [ Lt].

Propostion 0.1 Let X be a closed convex subset of a Banach

space and let U be a bounded @pen subset of X. Let f?ﬁ«—?X be
a ssc which has no fixed points on @ U. Then one can define an
integer valued function ix(f,U), the fixed point index of £,

' which has the following properties:

(1) 1If ix(f,U)ﬁO then f has a fixed point in U.

(2) 1If Ul and U2 are disjoint open subsets of U containing

all the fixed points of f then

ix(f,U) = ix(f,Ul) + ix(f,Uz).
In particular, if f has no fixed points, then ix(f,U) = 0 (Addi-
tivity property).
(3). Let F:Ux [@,i}—*X be a continuous map such that, for each
s Gip,l] and each x €U, F;(XYE F(x,s) # x. Suppose that
each FS is an &« -set contraction with«« 1 and ©® indepen-

dent of s. Finglly suppose that F(X,.): [o,i]—»x is uniform-

Ly continuous w.r.t. x Q.ﬁ. Then
X O x 1
(Homotopy property)

(iv) Let U, be bounded open subsets of closed convex subsets
i

X . of Banach spaces E,, i=1,2 resp. Suppose f_ :U - X

i i 1 1 2

and fz:-62—4rxl are , and ¥, — set contractions resp.

with dldiéil' Finally, suppose that flofz has no fixed

-1
points on a(f2 (Ul)). Then fngl has no fixed points on

B(fll(Uz)) and

il
H
]
H
Hh
I
c

-1
i f £ ,f U
b ety fy (0)) = 4
1 2
(Commutativity property)

- 10 -



(5) Suppose X is compact. Then,

i (£,X) =A(£),

X
where /\ denotes the Lefschetz number. (Normalization

property).

We shall recall two simple consequences of these properties.

* For proof, see Amann L2 7.
Lemma 0.1 Let X and Xl be closed convex subsets of a Banach
space E and XC:.Xl. Let U be a bounded open subset of Xl and

let £:U-»X be a ssc with no fixed points ondU. Then

ix(f,UﬁX) = ix‘(f,U)
Lemma 0.2 Suppose X and U are as in Proposition 0.1 and sup-
pose f:U~»X is a constant map with £(U) €U. Then ix(f,U)=l.
After these preparations, we are now in a position to state
a fixed point theorem for a ssc mapping a closed bounded convex
subset of a Banach space into itself.
Theorem 0.4 Let X be a closed bounded convex subset of a
Banach space E. Let f:X-»X be a ssc. Then
ix(f,X) =1
and f has a fixed point.
Now we look at a slight gene ralization of a ssc. Let E be
a metric space with measure of noncompactness X. A mapping
f:ET+E is called condensing if it is continuous and, for every
bounded subset X&E with ¥(X)> 0, we have ¥ (f(X))< ¥(X).
Obviously, every ssc is condensing but Nussbaum Lit] has shown

that there are condensing maps which are not ssc's.
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Let E,F be normed vector spaces (nvs). Then we denote by
L(E,F) the nvs of all continuous linear operators f:E=»F. For
every f €L(E) : = L(E,E) we denote by ¥(f) its spectral radius,
that is, r(f): = lim |2 ]|*. Let P be a total cone in E. A
map f:P=F is saig$:; be differentiable at x&P along P if

f'(x) & L(E,F):

lim S
he P il
f'(x) is uniquely defined. The mapping f is said to be asympto-

tically linear along P if Ei f' (o) € L(E,F):

£ = £ @)x]
!

lim =0

xe P
ixilt = o
Again, f'(0) is uniquely determined and called the derivative

at infinity along P. So, f'(e) does not have a positive eigen-
function belonging to an eigenvalue greater or equal to 1 if

v(£'(9)) < 1. We shall define by

Lt(E): = JZf € L(E)|f hasapositive eigenfunction
belonging to eigenvalue » 1 and no positive eigenfunc-
tion with engenvalue = 1}

and

Ll(E): = {ﬁ‘E.L(E)If does not have a positive

eigenfunction belonging to an eigenvalue 2,13 .

' +
The condition for f&€ L(E) to belong to Ll(E) simplifies if it
is known that f has at most one eigenvalue having a positive

eigenfunction. For example, this is the case if f is e-positive

- 12 -



We now state a lemma which generalizes Krasnose Iskii's
result [F3] for completely continuous maps - if f is completely
continuous, E complete and P is generating, the derivative
along P at x (resp. at e© )} is a completely continuous linear
operator. This result is based on the fact that in case (E,P)
is OBS with P generating 3 %z|: for every y,z€ P with x=y-2z
and max (i|ly:l,!lz]l) £ !ixij. However, in the general case,
where f:P-»>F is supposed to be an o -set contraction, this
implies only that f'(x) (resp. f'(w)) is a 2~ «% --set contrac-
tion where the value of P, is not known in general.

Lemma 0.3. Let E and F be nvs and let P be a total cone in E.
Let f:P—>F be an «x-set contraction which is asymptotically
line:;:;gand for some x € P, differentiable at x along P. Then

f'(®) |P and f'(x)|P are«-set contractions.

Proof: See Amman E5J .
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CHAPTER ONE

MULTIPLICITY RESULTS -~ TECHNIQUES FROM 0OBS

In this chapter, we shall prove some multiplicity results
by Amann |_{],[27, 31, using techniques from OBS. In the first
section, we prove a theorem using the extension of the theory of
topological degree to functions defined on cones of 0BS. The
'seumd section establishes criteria which ensure multiple fixed
points of a nonlinear mapping of a cone into itself. The abstract
tools used here are results on linear, orderpreserving maps and
the fixed point index for condensing maps of a cone into itself.
In the last section, asymptotically linear completely continuous
maps which leaves invariant a cone in a Banach space to ssc are
considered. The proof is also based on the fixed point index.
As we shall see all these have applications to second order
elliptic BVP where the nonlinearity is independent of the gra—

dient term.

Section one

In this section, we consider increasing maps, using some
topological tools, we shall prove the existence of multiple
solutions under appropriate conditions. In the l-dimensional
case, if f: [y,@}é&R be a continuous function on some nontrivial
interval |y,z]eIR : (f(y)-y) (2-£(z))» O. Then the intermediate
value theorem implies the existence of a fixed point of f in
(y,z). This has been generalized by replacing the interval [y,z]
by an order interval. As in Theorem 0.1, which was for increa-
sing compact self maps of a given order interval, the existence:

of a fixed point -~ (as well as that of a minimal and a maximal
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fixed point) was deduced by means of an iteration method. We
shall here be concerned with the conditions placed on an opera-
tor (continuous) mapping some bounded order interval ty,ilc:E
into itself and the condition on the ordering, to ensure the
existence of two or more fixed points. Indeed, if f: Ey,%}%E

is increasing and compact, then Theorem 0.1 (or Schauder's theo-
rem) guarantees the existence of a fixed point provided y< f(y)
and f(z)2z z. We now state a multiplicity result due to Amann

{1 1for the case when P is positive, ; # @, £ compact and strongly

increasing.

Thm. 1.1. (Amann) Let (E.P) be an 0BS whose positive cone

has non empty interior. Suppose that there are four points yk 5

zk € E, k=1,2 with

Y 42 ¢, <z,

and a compact strongly increasing map f: [yrzé]47E such that

< f f . f , £ <=
' (yl), (zl)c 25 ¥y (yz) (22) z,

Then f has at least three distinct fixed points,

X,X : ylﬁx«z , ¥ <<x2-4_ 22 , and nyF- x#’zl.

,» X
1" 2 1 1 2

Remark 1.1 (Application to Dirichlet problem) - Applying Theo-
rem 1.1 to nonlinear elliptic BVP of the type
Lu = f(x,u) in

(1.1)
u=20 on D_0.

We obtain the following multiplicity result.
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o 1
Thm. 1.2 (Amann) Let f: 2 xIR-»IR be of class C . Suppose E!

a subsolution d% , a strict supersolution 42 , a strict sub-

solution QE. and a supersolution q& for the BVP (1.1) =
‘Pn < ¥ o< 4%2 < Y -
Then the BVP (1.1) has at least three distinct solutions

u , k=1,2,3 : 4% £ u <<u_ <« u S ¥-

Kk’ =1 2 3

Remark 1.2 The proof of Thm. 1.1 is based on the following simple
lemma.

Lemma 1.1 (Amann) Let X be a retract of some Banach space

and let [:X-»X be a compact map - Suppose that Xl and X2 are

disjoint retracts of X and let U k=1,2 be open subsets of

k,

X:UkC: Xk' k=1,2. Moreover, suppose that f(Xk)C:Xk and that

f has no fixed points on Xk\ U, k=1,2. Then { has at least

three distinct fixed points, x, xl,x2 with xke.Xk, k=1,2 and
€ X X X ).

x \( 1L} 2)

Proof (Sketch) We know if f:?jE)O—%X is a given compact

function, X some retract of a Banach space E, U open in X and
r:E=*X a retraction, that the fixed point index

_]_(

i(f,U/X) = deg (for, r (U),0)

is well defined. By the additivity property
. N . Vo , z
By the permanence property b
1(f,Uk,X) = 1(f,Uk,Ak)
and the excision property gives

i(f = 1 .
i( ,Uk,Xk) 1(f,Xk,Xk)

Consequently,

. A 2 ™~ ~
c BN (WU, x)= LIRXX) -3 L%, , X))

- 16 -



But we have (from the proof of Schauder's fixed point theorem)
that
i(f,c,C) =1

for every compact self~map f on an arbitrary retract C. Hence

i(f,X,X) = i(f,X_,X ) = i(f,X_,X_ ) =1
L(E,X,50 = 1(6,X,X)) = 1(£,X,,X,)

and so

i \ = -
L(£,X (U VU, X) = -1 ¢

N
This implies the existence of a fixed point of A X \(Ul\JUZ),

which is different from Xi and x2. g.e.d.

Proof of Theorem 1.1 (Sketch) Let X: = [yl,zé] and Xk:=[yk,zk],
k=1,2.

Then X,X1 and X2 are retracts of E with XKCX and Xl ('\X2 = 0.
Hence Xk’ k=1,2 is a retract of X. Moreover, since f is increa-
sing, the hypotheses imply that f(X) <X and f(Xk)C)Sa k=1,2.
Since f is strongly increasing and f(zl)< Zl’ it follows from
Theorem 0.1 that f has a maximal fixed point xl in Xl and x1<<
zl. Consequently, Xl has nonempty interior U1 in X and f has

no fixed point on the boundary Xi\ U1 of X1 in X. Similarly,
the existence of a minimal fixed point of f in X2 and the fact
that f is strongly increasing imply that X2 has non empty in-
terior U2 in X and that f has no fixed point on XZ\ U2. Hence
lemma 1.1 is applicable and the assertion follows. gq.e.d.
Remark 1.3 Suppose it is only known that the compact strongly
increasing map f maps one order interval into itself. Then, by
Thm. 0.1, f has a minimal and a maximal fixed point X and ;
resp. Suppose, in addition that %<X. Is it true that f has a
third fixed point in this situation. The following theorem

gives an answer to this question.
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THEOREM 1.3 (AMANN). Let (E,P) be an OBS whose positive cone has
nonempty interior. Suppose that y < z and let f:[y,z] —3>» E be
a strongly increasing compact map such that y < f(y) and f(z) < z.
Suppose in addition that the minimal fixed point x and the maxi-
mal fixed point X are distinct, and that f has strongly positive
derivatives at x and % respectively. Then f possesses at least
three distinct fixed points, provided

r(£f'(x)) #1 and r(£'(R)) # 1.
REMARK 1.4. The condition of Theorem 1.1 are somewhat restrictive.
It can be relaxed to more general situations. For example, it suf-
fices to assume that f is increasing (instead of being strongly
increasing) if it is known that the maximal fixed point x1 of f
iry E'7zi] sati sfies Xl << zl and the minimal fixed point x2
in[yz,zz] satisfies y2<x x2. Moreover, the hypotheses that f be
increasing can be completely dropped if it is known that f maps
each of the order. intervals X, X1 and X2 into itself such that
f has no fixed points on the boundaries of Xk’ k=1,2. For example,
this can be guarateed if the existence of strongly increasing
majorants and minorants are presupposed as given in the following

Section.
SECTION TWO

THEOREM 1.4 (AMANN). Let E be ap OBS with normal positive cone

P. Let [y,z]::E be an order interval and suppose, for some e »o0,
£ [y,z] —3 E is such that fe is a ssc. Suppose there exist
e
- A - A
e-increasing condensing maps f, f : [y,Z]«J?E with R(f), R(f)

< E , such that, for all x & {y,z]
e

- 18 -
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;(X) g f(x) = I’i(x}

Suppose there exist yj,z.,j =1, ..., mwith
J
= &z & € ...¢2 < <z = z
yEher Y 1 th T
such that
. ~
y «f(y) , f(z) 2z
and
- A
v, «f(y.), j=2, ..., m3 f(z )«z, , j=1, ...,m-1
J J J J
Then f has at least 2m-1 distinct fixed points x;, c ey x; 1 with
m—_
y. <& x*. < z,, j=1, ..., m and y. x*, z,, j=1, ..., m=1.
J = 2j-1 J J+1£ 2J¢ J
REMARK 1-5

Theorem 1-4 establishes criteria~(applicable to the BVP (1.1))
which ensure multiple fixed points of @ nonlinear mapping of a
cone into itself. Just as in Theorem 1-1, the following which
is also due to Amann [2] is an application of Theorem 1-4-
Let f: £2 x R—+R be C. Suppose that Vl’ vy Vm are strict
subsolutions of the BVP and Wl"") wm are strict supersolutions
such that

vlz wl< vzg ...<wm~_14vm< wm
Then the BVP (1) has at least 2m-1 distinct solutions

u*ge ... - u*
1< <7 om-1
such that
. #*
v, £u* 4w , j=1, ..., m and u . u, €u, ,j=1, ... -1
J 2j-1 "5 7 J+l$ 2J$JJ ' »

PROQOF OF THEOREM 1-4 (sketch).

This depends on'the'following two lemmas due to Amann [2) ;thich'
we state without proof:

LEMMA 1-2

Let E be an OBS and suppose [y,é] is a bounded order intermal.

suppose also that f: [y,é]*—bE is an increasing condensing map
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which satisfies
y £f(y) , f(z)<2z.
Then f has at least one fixed point. Moreover, there is a minimal
and a maximal fixed point xl, and x2 resp. in the sense that every
fixed point x* satisfies xlf>ﬁ‘§= x2. Fhﬂdly, the iteration method
= f , k=0, 1,
Kepp = F )

converges to x1 from below if xozy and it converges to x2 from
above if x =z.

O
LEMMA 1-3

Let E be an OBS with normal positive cone. Let f be a ssc mapping

an order interval Ey,z} into itself. Suppose there exist

= &7 < vee £ 2 < < z =z
Ve« 1t h %
such that, for every j=1, ... m

Ly, z1)e [y.,z.]
37 37

and
f

| ([‘yl,zj])cz[yl,zj] )

Moreover, suppose there exist open subsetsUl, oo U U17
m

Ul
m of [y,z] such that f has no fixed points on

- A .

[_yj,zJ]\Uj and [y,zj]\Uj , J=1, ..., m.
Then f has at least 2m-1 distinct fixed points XI, ceay x; 1

m=-
with
£ xX* =2 gz j=1, ..., m and fﬁ X* %z , j=1, ..., m=-1

SR P , 95,7 Zjij J=1, ,

We are now in a position to prove Theorem 1-3. The idea is to

use Lemma 1-3.

"
Set. e .= f(y,) and &z f(z.), j=1, ..., m. T maps each of
) J 9T e
Le, &. ], [e, 8 = E, J=1, ..., m into itself and
1 J J7 e
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By Lemma 1-3, to complete. the proof, it suffices to prove the

existence of open subsets of that Lemma. We note that

A -
fle ,6 Jele , 81 cE, kj
A k™ k' J
and so f has a maximal fixed point % . K in each of"tek, ék]
Js
which is of course unique for all k=1, ., m; 1.e.
R, . =% _ = =X, =X,
Jy1 J,2 J»Jd
We claim that every fixed point x* of f in [:ek, é,j satisfies
J
x* & ﬁj. For, if g* & Eek, éj] and f(x*) = x*., Then

A A
x*€f(x*), &8, » f(&,)

e

A
and I inereasing, f([x*,éj]) C:Ex*,é}. Again T has a maximal fixed

point in Ek*} éj] which coincides with X . Hence x* <« %X ..
‘ - J J

Similarly, in [gj’ éjj , T has a minimal fixéémpoint X. and
every fixed point x* of f in [EJ, éjj satisfies x*> X ..
A
By the fact that f is e-increasing, we have that for j=1, ,
m-1, there exist $.>o:
. A A
é. - 2 = f(AZ.)."“ f(ﬁ)Zbe y J=1, cee, m=1
i NEREE e
(Since obviously z > %, , Jj=1, ..., m=1 . Similarly there exist
J
1 - 1
LR o ~e.>% e j=2, ..., m.
5J J J'SJ ’ ’ ’

At this juncture we are at the following situation. We have a

tor £ that ma ach of e, 8.1, (e, &. E
ssc operator o ps e L 1’ jJ C 3’ J]c: e

into itself, j=1, ..., m, where
— ~ — A — A
eléelcezz.....4em_f-em<em.

Also, there exist ;j' ﬁj with ;j -] ﬁj such that every fixed point

— . —_— N

of £ in Le é and Le 8.1 are already in [x., % and[g x.[resp.
e j’ J] C 11 J Y [ J’ J] | 41 Jj P

But the above inequalities show that, for j=1, ..., m

([gj,i‘cjj + el-e, el)n [:él,ém]c [El,éj]
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and
( {xj, xjj + €&l-e, é] )g\ Lel, e%]C: kgj, ej}
Hence since E—e, el is the unit ball of Ee, it follows that there

exist open subsets

3 .-
=1, ... £ , &
% ,Iﬁ , Jj=1, , m O Lel ej]
such that
- — [ - —
U c lLe, , & , U,cle , €,
J LJ’ J] J 1 J]

and such that f has no fixed points in [Ej, éjf\Uj and
e
. ¢
e g 1\ v , J=1, ..., m.
Leps Ny,
Finally P being normal implies that Eeis an OBS with normal

positive cone and the statement follows from Lemma 1-3.

SECTION THREE

Here we shall consider the case of asymptotically linear maps

in OBS. The following result is due to Amann [ 3] .
THEOREM 1-4

Let (E,P) be an OBS with total positive cone and let f:P—>»E

be a ssc which is asymptotically linear along P. Suppose there
exists a fixed point x of f such that, for every xz;;, flx) z x
and such that f is differentiable at x along P. Then P has a
fixed point x*’)§ provided one of the following conditions is
satisfied:

i/ f'(x) €L(E) andf'(eo) € LI (5)

ii/ f'(x) € LI(E) and f'(eo ) € LI (E) .
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REMARK 1-6

We consider an application when the map f depends on a parameter

whose proof follows directly from Theorem 1-4.

THEOREM 1-5 (AMANN)

Let (E,P) be an OBS with total positive cone and let f:P x IR+-'>P

be a map such that f(o,.) = o and such that for every)\(—fﬂ:i, oy A)

such that

is a ssc. Suppose that there exist U s U & L(E)

for m=0, ® and every A€ ]R+

f(x,A\) = Au (x) + r (x, \)
m m

with r‘m(X,/\) = of “x” ) as “}’" —> m in P. Moreover, suppose

that there exists a unique ncn negative eigenvalue ¥ of u
m 22

m
having a positive eigenfunctisn.Then, if Vo # Peo, for every X € (~JT1 .i_)

Moo
there exists a positive fixed point of f£(+,\).

REMARK 1-7

In proving Theorem 2-4, the main tool to be used is also the

fixed point index i(f,U,P): = i(f,U) for a ssc f defined on the

closure of the relatively open subset U of the cone P with values

in P. The proof follows immediztely from this Lemma.

LEMMA 1-4

Let (E,p) be an OBS with P pcsitive and total, f:P=—*P be a

ssc and B theefljrfl\it ball in E.

(1) Suppose that f is asymptotically linear along P. Then there
exist fm >0: for all [ 2 Py

(a) i(f, pBNP) =1 if f'(a0) € LI(E);

(b) i(£, PBNP)

il

0 if f'(oo) ¢ LZ(E).
(2) Suppose that f(0) = 0 and that f is differentiable at o

[

along P. Then there exist P,_«, > o such that for F € (o, P )
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(c) i(f, PB(\P) =1 if f'(o) & Ll(E);
(d) i(f, pBNP) = 0 if £'(o0) € L;EL

SKETCH OF PROOF.

Let u € LI(E) U LJlr(E) be given. Suppose u‘P is a ssc. Then
the closeness of (id—u)'P on bounded sets implies that
(id-u) (SNP) is closed. Hence since o ¢’ (id-u) (s8N P)r_-_‘; there
exist & o:

Hx - uGoll 2 e fix
Under hypotheses of the lemma, for m=o, so , there exist b(m>0:
for all x &€ P,

Hx - £ (m)x)| . » 0<m”XH-

Moreover, f'(m) are positive. Choose [? > o such that for all
m
x & P,

He(x) - frix)xll < (E(_CY‘WXM (Hxily P, x| < fo)
2

cLATH:
For every p 2 f_, (resp.¢ £ f‘o) every y € P with Uyl /F< «")é ,
and every » € [o0,1] ,
(1-A) (£f'(m) + y) + Af
has no fixed point on PS(\P. Indeed, for x QPSI\P,
llx = (1= 2N (£ (m) x +y) =AW 2 Hx - £ (m) x 1l
- le(x) - £ (m)xll - Wyp
2 w«m-ﬁruzn)
> 0 2 P
Hence, for every y € P with |yl < t’«n\/é
i(£, pBOP) = i(£'(m) + y, PBNP)

CASES (a) AND (c).

Set y = o and observe that f' (m)(&[_'l(E) implif~ that for every
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A E [o,lj , X -=Af'(m)x = o does not have a positive solution.
Hence
i(f, pBNP) = i(f' (m), pBAP) = i(o, pBNP) = 1

CASES (b) AND (4).

For this denote by h a positive eigenfunction of f'(m) belonging
m e’
to an eigenvalue A >, Then, for every ® %> o, the equation
m
x = £'(m)x = ®h does not have a solution in P. Indeed, suppose
m

X >0 and there exist E Z o such that xmafﬁz hm and for every

m m

>
o ﬁm ) X ‘)i_ ﬁhm. But then

Xx = f'"(m)x +=h 2> f'hﬂ(ﬁh ) +wh >(F+u)h
m m m m m m m m

which contradicts the maximality of F n' Now setting yzith with

A »o0 sufficiently small, we find
i(f,PBﬁP)==i(f%m)-+“hm,PBﬂP)==O

gince f'(m) +cth has no fixed point on PBﬂ P.

PROOF OF THEOREM 1-5 {sketch).

Define g: P —P by
g(x): = £f(x + %) - £(X) = £(x + %) - x.
Then g is a ssc which is asymptotically linear along P with
g'(®@) = f'(o0 ); and g is differentiable at o along P with
g' (o) = f'(g). Hence, without loss of generality, we may assume
X = o. By the above lemma, there exist ?O > oand P, > o with
Po <, such that i(f, §p mB{\P) , M=0, g is well defined. Hence
iﬁ}(&BVi@ﬂP):jlﬁ R BNP) =i (f, P, BAP)
= - 1 (in case (i))
=1 (in case (ii)

Therefore in each case, f has a fixed point in P B‘\ P ﬁ,
e o) (]

that is, a nonzero fixed point. g.e.d.
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SKETCH OF PROOF OF THEOREM 1-6.

It suffices to observe that the stated inequalities for A imply

that f(., N) satisfies the hypothes .es of Theorem 1-5, g.e.d.
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CHAPTER TWO

MULTIPLICITY RESULTS

CASE INVOLVING THE GRADIENT-DEPENDENT NONLINEARITY

We present in this chapter three main theorems due to Amann and
Crandall; Hofer; Ambrosetti and Hess respectively. All of these
deal with the situation where the nonlinearity depends on the
gradient term. in the first section, Amann and Crandall [ﬁ]
proved a multiplicity result using the monotone iterative tech-
niques. In fact this is an' extension of the first result (by
Amann) of the last chapter. By assuming (i) a growth condition
on the nonlinearity and (ii) the existence of a lower and an
upper solution it is proved that there is a least and a greatest
solution. . In the second section,
we see a result due to Hofer [lO] in which the multiplicity
result depends on a parameter. His line of proof is very similar
to that of Amann and Crandall. Lastly, in this chapter, a result
of Ambrosetti and Hess [5] is proved. Here the existence of at
least two solutions is proved by assuming also a growth condi-
tion foé?g%nlinear part and certain properties of two upper and
lower solutions. A}so use is made of a connected set of lower
solutions and thisj;seful in applying the Lyapunov-Schmidt

method.

SECTION ONE

We consider some multiplicity results by Amann and Crandall [4]

concerning the semi-linear elliptic BVP
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Lu = f(x,u,Du) in-Q ... (2.1)

u= o on J@
provided that suitable sub- and supersolutions v and ¢ resp. are
known. Because of the presence of the gradient term in f, most of
the known techniques are not directly applicable here. The essen-—
tial step in the technique of proof is to associate solutions of
(2.1) with fixed points of order-preserving compact mappings with
the same sub- and supersolutions as (2.1). To achieve this goal,

instead of (2.1), they solved an . auxiliary equation of the form

b oeo

Y 1, N N
for u, when g in |v, GJ is given, where A> o and h € ¢ (R; R).

u + A(Lu - f(x,u,h(Du))) = g in

u=0 on S

The associated mapping is denoted by u = T(g). The "modulo tech-
nicalities" is to show that A >0 and h can be chosen so that T
is well-defined, compact, order-preserving énd the fixed points
of T are solutions of (2.1). This allows result for (2.1) to be
deduced from standard abstract principles applied to T.ROugHL5,
speaking, they used the monotone iterative technique.

At this juncture, we remark that if f(x,s,t) grows at most quad-
ratically in t, the existence of an. ordered pair of sub- and

supersolutions implies the existence of a solution.

THEOREM 2-1,

— N
Let f: 2 x IR x IR ~» IR be a continuous function such that
Jags,and Dfst exist and are continuous where (x,s,t) denotes a
- N
generic point of {2 x IR x IR . Assume moreover that there is an

increasing function
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such that
2
[£(x,s,t)] £ clisl)(1 + ttl") e (2.3)
for
- R N

(x,8,t) €& L x R x R
Let v and ¢ be a sub- and a supersolution resp. of (2.1) such
that v £ ¢. Then (2.1) has a least and a greatest solution u

and G resp. in the order internal E;, G] .

THEOREM 2-2.

Let the hypotheses of Theorem 2-1 hold. Suppose that Gj is a sub-

solution and ¥, is a supersolution for j=1,2 such that
J

VL0 LV <F . Assume, moreover that ¥ and ¥ _ are strict. Then
1 1 2 2 1 2

(2.1) has at least three solutions uj such that

v u u u_ €9 and u €flv., ¢ for j=1,2.
S T T T ; €0y vy J=h

THEOREM 2-3.

Let the hypotheses of Theorem 2-1 hold. Let v and ¥ be a strict
sub-~ and a strict supersolution resp. such that v, If ul= u
and u, = i are the least and greatest solutions of (2.1) in the

interyal fG, 0] , ul 4 u2 and the BVP.

Al
Lh -:E:f£ (s,u (x),Du (x))D.h = £ (x,u (x),Du (x))h = 0O in (2.
=t % i i J s i i
h =20 on L.

does not have a positive solution for i=1 ov i=2, then (2.1)
has at least three distinct solutions in E;, GJ .

REMARK 2-1.

Theorems 2-1; 2-2; and 2-3 follow at once from the following

proposition and known abstract tools [11 .
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PROPOSITION 2-1.

Let the hypothesis of Theorem 2-1 hold. Let v be a subsolution
and ¥ be a supersolution of (2.1). Then there exist h G_Cl(IRN; IRN)
and A > o such that
(a) for every g € v, ?] the problem
u + MLu - f(x,u, h(bu))) = g
u=2~0
has exactly one solution u satisfyingllﬁ[?, GJ

This solution is denoted by u = T(g).

(b) A function u € Lv, ¥] is a solution of (2.1) iff wu = T(u).

1, = 3 . 1, = . N
(c) Let CB(v—fl =&u & C(L£2): u=0 on 94’-}. Then
T : Lv v:] ? “* [;, G] ot () is continuous, compact and

strongly increasing. (Note if X is a Banach space of real-valued
functions on 2. , set
Ly, '(‘/.]X: = [v, Anx

and regard [;, ﬁ]x as having the relative topology from X).

(d) If w & [G, 6] is a strict subsolution (resp. strict super-

solution) of (2.1), then w<T(w) (resp. T(w)< w).

(e) If v and ¥ are strict sub- and supersolutions, then

[;, vl -
Ca (£2)
a self-mapping of Lv, v]

1, —
has non-empty interior in CB(gﬁL). Moreover, as
_— iti
! QIL) T has a strongly positive
Frechét derivative T'(u) for u in the interior of Lv, V]
5(_0.)
Flnally for each fixed point u of T in Lv, y} T'(u)h = h for

h & C (L) exactlg whenr h is a solution of the linear BVP.
Lh -~ ﬁt f (s u(x),Dbu(x)) Djh - f (s,u(x),Du(x)) h = 0 in -
s
h = O on o2
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Proposition 2-1 is proved by maximum principle and continuation
arguments in conjunction with the following a priori estimate:

PROPOSITION 2-2.

Let f satisfy (2.3). Then there is an increasing function
? : R -—> R such that if u is a solution of (2.1) then
+ +

iiu B8( tiufj )

j a,p

IW’I(_Q_) C(_f?_)

Moreover, B depends only on L, o., N, p and C.

We now show how these Theorems follow from proposition 2-1. Then
proposition 2-1 is established assuming proposition 2-2. Finally

proposition 2-2 is proved.

PROOF OF THEOREM 2-1.

If T is the mapping of proposition 2-1, it follows immediately

from (a), (b) and (c) that a = T (¥) decreases to an element

Q ofE;, ¥] as n—» o and G is the maximal solution of (2.1) in
. — - n, —
Lv, ?] . Similarly, un = T (v) increases to the minimal solution

u (or see Theorem 0-1)

PROOF OF THEOREM 2-2.

This result follows at once from proposition 2-1 and Theorem 1-1
applied to T.

PROOF OF THEOREM 2-3.

The assertions of Theorem 2-3 follow from proposition 2=1 and
Theorem 1-3 applied to T provided that it can be shown that the
Frechét derivative T'(u) has a spectral radius different from 1
if u is u  or u.
1 2 1
endomprphism of CB(.fL) by proposition 2-1 (e), the spectral

Since T'(ui) is a strongly positive compact
radius is an eigenvalue and it is the only eigenvalue with a
positive eignevector. These assertions follow from the Krein-

Rutman theorem.
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N
Consequently, if T'(ui)h%=h for every h € CB(Jﬂ—) with h» O, then
the spectral radius of “f'(u,) is not 1. But, according to prop-
i
osition 2-1 (e), this hdds under the assumptions of Theorem 2-3.

PROOF OF PROPOSITION 2-1 (sketch).

- 2,P .
Let v, 0 € W™’ (. £L) be a sub- and supersolution of (2.1) with
v e ¥, let

m = max(ii?iicl(JEL) ’ilv}lcl(,EL) ) o+ 1 wes (2.4)
N

‘Let H={n¢ cH(R; B ¢ |n(e) £ 2 (t] for ¢ E’RN:}

It follows from proposition 2-2 and the imbedding theorems that
there is a constant M with the following properties:

(i) m= M

(ii) If h € H and u €[v,¢] is a solution of

- (2.5
Lu = f(x,u,h(Du)) in<and u = 0 on a_CL_ ( )
7
then 1l uli — <m
C'(=2)
Choose h € H which satisfies
. N
h(t) =t for |tl <M and h(IR ) (2.6)
is bounded and consider the problem
u + AﬂLu - f(x,u,h(Du))) = g in - (2.7)
u=20 on JLL

where A » O and g € Lv, ¢]. If (2.7) has a solution u and u = g,

then

!‘Ui%‘éil) < M
by (2.5). By (2.6) we thus have h(Du) = Du and u is a solution of
(2.1). Conversely, any solution u of (2.1) wiéh.Lle Ev, V] is a
solution of (2.7) with g=u. We next show that (Z.7) in fact has a
unique solution u & [5, 0] for every g G[}, G] and the mapping
g —> u = T(g) so defined has the properties of proposition 2. |

provided that A is chosen suitably small.
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Set k(x, s,t) = £f(x, s,h(t)) and let A>»Qsatisfy -

1- Ak (x, s,t,) > @ for x €03, Isl £ m, ItI€ RN se+( 2.8)
It is possible & choose such a A since h (RH) is bounded and
kg (x, 8, £) = £,(x, s, h(t)). Fix X\ as above and define

G : c'(<Lr)—c(Q)

by
G (W) (x) = k (x, ulx), Dulx)) e (2:9)

So (2.7) can be abbreviated to

u+ A(Lu - G(u) =g in <2 .4‘;(51-90)

(o] O S <2

it

We make use of the following form of the maximum principle to

prove the existence and uniqueness of solutions of (2./0).

LEMMA 2-1
- 2,p

Suppose %jﬁ:ﬁmQJ:L) for j = 0,...., N and a0> o. Let ue w CJQ')
sagtisfy the inequalities

~

Lu + :E a.Dbu+auzo in 1L
g=1 4 ©
u = o O Q_(Z_

Then u z o.Moreover, if u=o then u (x) > o for every x & .-(L .
If u4 0 and u (x) = o for some x & ;Bil'ﬂxﬂl(%ﬂ)(x) < o

[2% L&) Bd
where & is an arbitrary outward pointing vector at x which

is not tangential to O .

PROOF

The assertion follows from Bony% maximum principle E8] by
means of standard arguments as given, for example in [15] .
Lemma 2 -~ 1 may be used to prove the following comparsion

result:
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LEMMA 2 - 2
2,P _
Suppose that u, v €W (LL) satisfy

fuit  _ S lvl 2w
C () Q)
and the inequalities
u + >\(Lu -G (W) zv+ ALv - LG (v)) in <2
en oLl
u=v

Then u 2 v. Moreover if u # v then u (x) > v (x) for x&.2. If
1]

u$ v and u (xu) = v (xc) for some x & 22 then (%i)xl - (5;)(}9

where ™ is an arbitrary outwqrd pointing vector at x which is

not tangential on OQ. .

PROOF_
Set w = u - v. Then the hypotheses imply the inequalities
¥
Lw+zak.Dsw+aw“_>_-o in (2
= dd o
J::I
, = 0O on  J.Q.
where a,(x) = - [k, (x, v(x) + B, Dv() + pDu() d
b © J (A
for j =1, ..., N and

i
a (x) =,\‘ L(l - )\ks(x, vix) + (\Zw(x), Dv(x) + F,Dw(x)) d!z\

fe]
We have a_ > o by (2.8) and hence lemma 2 - 1 implies the desi-
red hypotheses.
LEMMA 2 — 3
Ve A
Let g E:[,v, v] . Then the problem ( 2. 10 ) has a unique

1 — ~
solution u & Lv, v

PROQF -

The uniqueness assertion follows at once from lemma 2 - 2.

Let g € [¥, (7] be fixed and set

W'\ N N A 138
Vo= v+ ALV - Glv)) - g .

i A A A
Since v is a supersolution and v - g % o we have / 2 o.

p )
From the L - theory of elliptic BVPs and lemma 2 — 1 it
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‘9
follows that for every q& L (£2) the problem

(L +1) w = q in £
Dy

w = o0 o

- 2P
has a unique solution w = Kq & W™ (LX), Moreover,

K : LP(»CZ-)“-*» W;Z'P(-wLZ ) is continuous. Set % = —K (L + 1)/:/
and w = % + Q, Then w Q'WD.'?('—Q—) , (L+1) % =0, %w="5. Depi-
ne
H : C{ (-—Ei) x R—> C'(—é)
by

. & e : . AN
H(u,[g) = A(u —({w) + KL(l -Nu - AG(u) —g—%(\}l—/\w)] - (2.12)
Clearly, H is continuously differentiable and
H (u,t{,) =KLU"".;\(LL1-.-G(U)) -g—g?a\ifj g - )
provided u -@ﬁ QW%PL12~) and (u —@&) =0
Hence H (:\‘/, 1) = o and a solution u of H (u, o) = o is a solu-
tion of (2.10). To show how to contwnue the solution u = v,
f?: 1 of H= o0 to a solution at{i: o. Let D[H(u,(},) denote the
Frechét derivative of the mapping u*—)H(u,{;). Clearly)
| Iy [} bt
DH (U,él,) : C (£L2)—> C (%) is given by
- o -
DH (u,p) h =Ah + k(1 -Nnh -)\G(u)hj
where
N
i
G(u)h =_Z-K, (x,u,Du) Dh + K_ (x,u, Du) h
F 3 >
A function h € ¢({i) satisfies D'H(u,(yh = o iff
- Y N n
h€W’ (LX), h=o0 ondland h +AL - G(u))h = o in L2,
Lemma 2 - 1 and (2 - 8) imply therefore that D‘H(u,}z) is

‘ P
injective if {Jull % m. Since K is bounded from L(& to
G

=P e Pa) PR
W(.£2), it is compact from L(.£2) to C(->) and it follows

R |
that D‘H(u,ﬂl)) is an automorphism of C(L-) for (u,(s)e C(ﬂ )xiR
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with Hull _% m. Therefore by the implicit function theorem
( N
there is a neighbewhood V x W of (v, 1) in C(£-)x R such that

H(u,?) =0 has a unique solution u = u(E,) for g, & W with u(%) € %

A A
In particular, u(l) = v since livll

&
| c(2)
nuoKs, we can assume Uu((g,)il <M by choosing W sufficiently
=) -
small. From H( u(&g),%) = o and (2. 13) we deduce that u((g)éw ' C_Q)

m and .{Ja-—'-" u(ﬁ;) is conti-

" and

%n] =g+§%‘:]\"

~
= VvV

u ((.3) + )\{Lu(tjﬁ,) - G(u
u (%) =[}.w =€,
for ?, cwnio, l]. Since also

(
5

g PV g+ W= T e AT - oD
for such‘L, lemma 2 - 1 implies u(%) = 3. In a similar %NJQ,
we see that u({,) =y for @EW ﬂ [O,l].Using in addition
(2.6), (2.9) and the defy. of h, it follows that G(u(%))
remains bounded in L (£2.). Then (2. 12) and HOu(R),R) = o
show that El(?)' :@G w N [0’135& is bounded in W:Z'P('Jl-) and
hence precompact in C‘(wEL). |
A standard continuation argument now establishes the existence
of a continuo@s mapping u : [p,i]—4> C‘Li5~) such that
H(u (%),F) =o0and v £ u(FQ;$ ¥ for @e [b,i& Hence lemma
2+3 is proved.
According to Lemma 2 - 3 we now have defined a mapping
g & [5,3l~4>u = T(g) where u is the unique solution of (2.10)
in [5,3]. From (2.5) and (2;6) the fixed points of T are pre-
cisely the solutions of (2.1) which lie in the interval[?,CY.

Thus (a) and.(b) of Proposition 1 hold. Moreover, as above, we

W0

. A 2
see that T(Lv, v]) is bounded in W (<) and hence precompact
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in Cg(wai). To see that T is continuous as a mapping

6
T:[v,9]. =» [v,0] , . we then need only check that it has clo-
3

v,V .
sed graph, which follows at once from the uniqueness. The fact
that T is strongly increasing follows at once from Lemma 2-2.

Thus (c) of Proposition 1 holds. Next let w be a subsolution

of (2.1) with w & EV, 0]. The intervallV,V] may be replaced
by[w, 3] in the above proof (w satisfies the same assumptions
as v and v = w= 6 implies the choices of)~, m and h work for
w in place of V), so T({w,v]) & i:w,'\»;] and so w< Tw. If w is
not a solution, then w # Tw so w« Tw. Similarly, supersolu—

tions w of (2.1) satisfy T(w) & w with strict inequality for

strict supersolutions. This establishes (d). We turn now to (e)

If v and v are strick we have v ¥ V. By (c¢), there is an€70
such that if %:is the ball of radius & about the origin in
C;(«Ei) then

T(V) - T(V) + B, Shue€ () i uz of.
But then o T(Q)
[v, ¥J 2 9, )= Mfg‘““+ B, )
which shows that EG,%] has nonempty interior. To see that T
is continuously differentiable as a mapping from the interior
of E;, Gl:,ca§a set which clearly contains the fixed points
of T if v é;d v are strict) to C‘CJﬁL), we need only recall
that T was obtained by applying the implicit function theo-
rem. Indeed, let us write H(u, %, g) to indicate the depen-
dence of H on 9 in (2. 13). Since H is of class Ci,
h(T(g), 0, g) = 0 and D‘H(T(g), 0, g) is an automorphism of

=

]
C (L), g—> T(g) is continuously differentiable. Calcula-

i



ting the derivative shows that T?g)h = w. 1s equivalent to
w & Wiptlﬁ-) and-
w + AAw — G‘(T(g))w) = h in —2
w=0 on oL
Hence Lemma 2 - 1 implies that T'(g) is a strongly positive
linear operator. Finally, if u = g is a fixed point of T,the above
chaacterization of T éstablishes the last assertion of (& ).
Now the proof of Proposition 2 - 2 follows at once from
the next Lemma whose proof will be om;tted.
LEMMA 2 - 4
For every b & L ({2) there is exactly one solution
u € Wzﬂiwﬁl) of the problem?
(A+1)u = b(l+lDuﬁ) in L2
o DQ,
u = o
Moreover, there is an increasing function c,* R;—é»Rf such
that {fujj = c(

NP 2)
on A, | p and N.

bil ). The function depends onl

L (<) P Y
REMARK .
Indeed, if u is a solution of (2.1), it is also a solution of
(A+1)u = b(1+{Du*), u = o, where b = (f(x, u, Du)+u)/(1+{Dul).
Thus if we set F(T) i CQ(C(?) + ), the assertion of Proposi-

tion 2 - 2 follow from Lemma 2 - 4.



SECTION II
Next in this chapter we see another multiplicity result
by Hofer [id] . In fact, here the existence and multiplicity
of solutions is proved in dependence on a parameter. The BVP
under consideration is
(Rt) Lu = G((x,u, Du) + tr in L=
u - o on L2
where t is a real parameter value. L is the usual strongly uni-
form ly elliptic differential operator and adding I, ¢o¢ ¥ 0O to
both sides of U% ), ao(x)‘i [ 70‘V‘x t L. Moreover,
()-- r € C (&)\ bol satisfies T (x)z o in —2-
If deenotes the principal eigenvalue of the linear BVP
Lu =Au in < , U= o0 on gL, since a, 77 ¢ we have }\“7 0.
For the nonlinearity we assune:
(GI) & :A&f~ji x R x R§—§ R is continuous

I . continuously differentiable with respect to & and t and sati-

sfies the growth conditions
(i) G (x, s,%) = c‘(lsl) (1 +i§f) for all (x, s&,5) € 4\

(i1) G (x,8,%) = ¢, (s¥) (1 +jsl +1Ig])

for all (x, s, ) € % R x RY

where C,: R*—ééfare suitable increasing functions andv429:ae_
[%

notes the set {x&&&l \r(x) = oé and gt= s if s2 0 and st = o
otherwise.
(G 2 ) There exist a continuous function

G*: «2 x R—»R such that

G (x,s,t) 2 G (x,s,) for all (x, s, t)e A\ and

(1) Qim sup G*(x,s) < XA
Sr—p~ o0 S !

(ii) tim sup G*(x,s) > A

i
S 2400 PN

uniformly for x & .03
The main results are :

THEOREM 2 - 4 (HOFER)

Assume ¥ and G satisfy ({) and (Gl), (G2) resp. Then there



exists a tg & R such that (%f) is solvable for t < Qjand
not solvable for t »> 2,

THEOREM 2 - 5

Assume the hypotheses of THM. 2 - 4 are satisfied and in
~q
addition that there exists for all bounded intervals f < R
a constant M = M (') such that ut(x) < M for all x & ey ,

where u is an arbrtrary solution of (B, ), t € I”. Then there is

t
at & R such that (E;) possesses at least two solutions for
t « tﬂ, at least one solution for t = t and no solution for
t 7 t.
REMARK

The proof of the above results are achieved by constructing
a global strongly increasing fixed point operator in a suita-
ble function space and observing that the fixed point operator
has some properties similar to a strongly positive linear endo-
morphism. This has an advantage in stiédying multiplicity over
the method of Amann and Crandall. The following proposition
and Lemma whose proofs are contained in'Lloj (and will be omit-
ted here) will be needed in the proof of the main results.
PROPOSITION

Assume DU : d@ji.)~49 fn(wﬁL) is a continuous operator
iZ

which satisfies IBXLH (x)‘ < ¢ (fu ()] ) (1 + | Du(x)|)

= + . . . .
for all x €L |, where ¢ : R —» ﬁ%ls a suitable increasing func-—

tion and h(o) = 0. Moreover assumed admits for all u, v €
C'(wfi) the representation N
Fw) - (v) = > 6D (u=v) + b (u-v)
= vt °
with b; = b; (u, Du, v, Dv) & L™(£L%), i = o, ...., N and

bo'?.O. Then we have
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(a) The problem
(#*) Lu+8(u) =f in, u =0 on.0-
2,0
is for all f € I[°(>) uniquely solvable in W (<) and the So

lution operator H : ﬁm

(<= )—> C:,s(fé—) is strongly increasing and
compact where the function spaces are equipped with the natural
order stwrectures. If S & Lw(.il) is a - bounded set, equipped
with the induced L?—- topology given by the imbedding I?O(MSZ)—;}

> Hf is

P —
L (<), then the operator HS: S —= C;)(_‘f?—) : -
continuous.
A 1 -

(b) If there emist an open subset.{l < £l ang ¥ve C (L)
a constant M (v) &> o such that
[ (wev) (x) - (v) (0] € m(v) (hu(x)| + [Dw(x)] ) for x €<

#
and w £ o, and if ¥ satisfies (1) with r(x)» o for all x &_O\L&,
then for all a & C(L) and all $ € Cc (S ) we find T = .

=)
T(a, ¢, r) € R such that H(a + tr )= {o for all t £ T.

LEMMA

D0

2,7
For every b € L (L) there is exactly one solution u € W ’(,.Cl.)
of the problem Lu =b (1 + lDu\2 ) in2, u = o on 3. Mo-

reover there is an increasing function d : R+»—“> R+such that

Huﬂ‘2 f— d (Wibl}] ). The function d is depending only on L&,
<)) [a%)
p and n.

PROOFS OF THE MAIN RESULTS

e

Proof of Theorem 1. Define ¥ :-2Zx R x R=»R by (Gs;: 9G/as)

T (x, s, $)= g(sign (Gs(x,u,ﬁ)—le(x, u,% )') du + s
Then the maps s—>» ¥ (x, s,%) and s ¥ (x,s,§)+ G(x,s,8) are
strictly increasing for all fixed (x,§) €fix Rﬂ Consider

Lu +g(x, u, Du)= G(x, v, Du)+3(x,V, Du)+tr in (2-
u = o on o=

where v is a given function in C(~—EL). We will show that (2)
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is for all v uniquely solvable and that the solution operator

T : R xC (45_)~%>Cé(n§i): (t,v)—> u(t,v) is strongly increasing

in both arguments and compact. Definehﬁynji-x R x RT—5R by
ZV(X, 5,5 )=¥(x, 5,8 )=Cx, v(x),§)=3(x,v(x),5)
+G(x,v(x),0)+%(x,v(x),0)
Then %Qis locally uniformly lipschitz continuous in s and
%, satisfieg {K§x,s,§)lfcv(}si)(l +‘§r3 for a suitable increa-

sing function c Rt4>R¥depending en v, and is increasing in

v

s. Moreover we have
¥ (x, 5,5 )-§(x, s g‘):%v(x, 5,6 )=3(x, shg) + & (x, shg)
~XV(X;L S', ";l)
—_—bﬂ(s—s;)wki bc('#s[' (5‘;>

L=
where for i=l...n

(3, (x, s, §)-30x, s\ NE-g T, Sk 3

-

k{&J =

0 otherwise
and
ool
- - o 4+ S
o (§(x, 5,8 )=8(x, 85§ (s=sh™"  ©
k) =] v
c 0 otherwise

o~

Since Qyis strictly increasing in s we have q}(x)v»o and by
the lipschitz condition for i = O....n:bﬁiﬂxkiq-) . Let«ﬁfé_ff.
Since the mapping (s#%)-%ﬁi(x, s,% ) is locally uniformly
lipschitz continuous and satisfies for given L €R
Igl(x, s,% )igca_(ﬁ) (1+]s] +i§D for all (x, s,% )Eif; R x Rﬂ”
with s<n, we find for all given w&C'(_{i) a constant M (w) such
that

' Rv(x, s+w(x),§+Dw(x))—géx,w(x), Dw(x)ﬂg M(w)(is\+]%i)

for all (x, s,4 )&dx R x R C @)
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Let us define the operator &ﬁ ' ()= L= (2) by Xéu) =

5;( ., u, Du )_By (3) we can find for all w&;Cikji) a con—
stant M(w)»0 such that
|, Cerw) =8 (w)) Gl M (w) (fu |+ |Dutx] )
fbraM.xEﬁﬁemdaﬂljecuii) with u=0.
The preceding discussion of.iiimplies that Tvsatisfied the hypo-
theses of the proposition.
This implies that (2) is uniquely solvable because it is
equivalent to
Lu+ Xv(u)zG(.,v,O)+Xv( e, v, O)+tr in..(Z)u =0 on 2 (4)
Let T:RxC(L- N C%(«éi): (t,v)—-»u(t,v) be the solution ope-—
rator of (4). Using Lemma 2 and proceeding as in the proof of
proposition, part (a), we deduce thak T is stronglﬂ increasing
and compact. The solution u of
Lut §(M)=G(.,0,0)+ § (.,0,0)+tr in.@ w=0 on do
is by definition T(t,0). Applying now the propostion, we con-
clude for t*fs 0 small enough T(t*,O)<l 0. From results in
[12] (Proposition 2.13) we obtain because of the asymptotic
behaviour of G as s--go , that there exists a strict subsolu-
tion U <0 of (P+) which implies T (£ ,9)>» T in C'B(A.EL). Sin-
ce T (t%,.) is strongly increasing, it maps V= [, Q]Cé (ALY =
int(V). Moreover V is bounded in C (&) which implies that

* .
T(t , V) is bounded in Cé(.ﬁl); Hence, by the compactness of

i

L)

T(t ,.):C(-Z) = C (£Z),we find a fixed point in int (V) by

Schauder's fixed point theorem. Let t = sup{tfR‘(P) is solvable}
o : .
+

If (P i i i
(t) has a solution %;for some t we infer that qtls a strict

supersolution for all t< t. As above we find a strict subsolu-

tion which implies the existence of a solution

“u,
+
u & int : - :
o n ([p,ué} C;(Jﬁq) of (Pt')'
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By the asymptotic behaviour of G as s-»+20, one can

show that tc< +ou(see[12]>.*oof of Theorem 3.4, P 636 ).

Proof of Theorem 2. Let T be as in Theorem 1 and choose t «t,.
As we have seen in the proof above there exist strict sub- and
= A - A~
i P, )¢S . D te th int 1iaq, —
supersolutions of ( t) e u<u enote e order interva Lu UJCf LIL)
by A. Since T = T(t,.) maps A=*»int (A) we find that the fixed

points of T in A are in int(A).We may assume there is only one

fixed point u &€ A (otherwise we are done).Finally we find for some &30

such that u + € Boint (A), Where B denotes the open unit ball
in Cé(il.), making use of the standard properties of the Leray-
Schauder-Degree and the fixed point index
deg(I-T,u+eB,0) =i(T,u+eB, Ck(JR.)):i(T,u+£B,A)
= i(T,A,A)] =1
For a solution u of T(%,u):u, —Eeﬁz,to +l]5 {7 we have u(x)£ M(D),
On the other hand solutions are bounded from below by
Lu=G(x,u,Du)+tr
ZG‘*(x,u)+tr
Z(Xrihhklin L2
u=0 on = 9L
for some t>0 small enough and a suitable constant h depending
only on = and I". Hence uzK(h), where K denotes the positive so-
lution operator of
Lu-—()\‘—é)u%g in£, u=0o0on DI .
Since the solutions of (P%),.%e r‘, are contained in a C(Ii)-
bounded set, they must be bounded in Céi.ii) by a constant k-1.
We deduce, since we may assume u+€BC kB, making use of the ad-
ditiviy, homotopy and excision properties of the Leray-Schauder-
Degree

deg(I-T, kB\u+€&B,0)= deg(I-T,Kb,o0)-1
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=deg(I-T(t,+ 1..), kB,0)-1

== which implies the existence of a se-

cond solution. To study (%) choose a sequence (tn)’ tet,t—t.

One can show as before that the sequence (un) of solutions u
m
(%,) is relativelg compact in Cé(~EL). Hence we may assume(for
n

a subsequence) U->u strongly in 4:k,§L). Taking the limit for
e

T(%t,, un)=u we find T(t, ,u)=u which completes the proof.

SECTION III
In this section, we see a result of Ambrosetti and Hess[é]
where the existence of pairs of solutions for a certain class
of nonlineay elliptic equations is proved provided the nonlinear
part grows quadratically with respect to the first derivatives
and existence and certain properties of two supersolutions and
two subsolutions are assuméd.
THEOREM ( AMBROSETTI AND HESS )
Given the BVP
Lu = f(x,u,Du) in —2 (‘\
u = o on DL ‘
where f € C%_Eix R x Rﬁ R). Suppose the following is satisfied:
(Hi) '-F(x,s,t)i = c(1l + \t\l) for all (X,S,t)&ILXRXRN
Moreover assume
(HZ) (1) has two supersolutions _\;',Tl;with .\-/i (x)<“\71(x)
for all x &<
(H2) (1) has a set S of subsolutions which is conneted in the
space E := C(L%);
(H4) there exist‘y‘ and ynhin S such that:
Y, & V} in O
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- c
V., Vl(xu) for some x & 2
Then (1) admits at least two distinct solutions.
REMARK
It is known (Amann and Crandall T47] ) that if (Hl) is sa-
tisfied and if (1) has a subsolution V and a supersolution V
with V :JV, then (1) has a solution u such that Vz u ~ V in (2. .
PROOF OF THEOREM ( SKETCH )
By the above Rémark, (1) possesses a solution u with
< U = \7
- = i
To obtain a second solution, set
Vo - v —_—
s'={v €5 : ¥(x) 4 T,(x) for all x €-C2 N
T , -
Siz.{y €85 | there exist x&.42 with V(x)»V(x)
— c &

By (H4_) and the fact that V(x)< V,(x), for all x €42,
it follows that S‘and s'are not empty. Since S is equipped
with the topology of uniform convergeice, it is easy to see
that Siand §‘are open in S . Moreover, Sw\ §‘= ¢ and hence, S
being connected,
S\esys"Y ¢o

Let z€s\ (s'U 5"). Sincez € s\s"

z 47V, in <2 == (2)
Further, z ﬁ{ S‘implies the existence of x & (2

z (%) = V,(x) - - -(2)
From (2) it follows that (1) has a further solution glwith

— A _

z < u_ =« V in<2. By (3), u (x) = V., (x) and hence
2" ., 2

A - * A

(x) = V'(x) < Yl(x) = uz(x)

Thus the two solutions u‘and glare distinct solutions.

V’ (x) £ u,
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CHAPTER THREE
MULTIPLICATY RESULTS - CASE WHICH RELIES ON SIMPLE EIGENVALUE
COMPARSION ARGUMENTS

Here we shall present two results of Berestycki‘?]
where the principal eigenvalue plays a central role. The proofs
are based principally on the systemical aid of the arguments
of the comparsions of the eigenvalues of certain linear pro-
blems combined with the positivity properties and the nodal
characterization of the corresponding eigenfunctions. The
first result (which deals with the Dirich&et problem
Lu = g(x,u) + hix) (x ¢.Q) ,u= o on 90) gives an elementary
and more general proof of the theorem of Ambrosetti and Prodi
[6], which sta tes under what conditions the problem has 0, 1,
or 2 solutions. In the second section of the chapter we see
a result E%r the nonlinear eignevalue problem Lu+f(u)=u in (L
u = o on Ja which determines the number of solutions for various
values of X,

SECTION ONE

In this section, we %eg¢ some complements to a classiCresult
of Ambrosetti and Prodi which concerns the problem of the type
Lu = 3(x,u) + h(x) in 2

u =0 G DL

by - - .

where h(x) is a given function in CQMGOQ.

THEOREM I ( BERESTYCKI)

Given the BVP (1) where gz-jix R—»R is of class C‘ and sati=
sfieg the following conditions:

(2) ¥x €0, s—>g(x,s) is a strictly convex and increasing
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function;

(3) Lim g(x,s8) . 5 , uniformly wpt, x ¢ (L
Sy = %
where ) denotes the ith eigenvale of the Dirichlet problem.
v

(4) LY=Apin .22, $=0 on 2L

MO

Then (1) admits at most 2 solutions, independent of h &€ C
Furthermore, if (1) possesses exactly two solutions, u and v,
then these are ordered.

Proof (Sketch)

p—

Let a be a continuous function. in .% : ayo, a #'o in wﬂL)
denote by |%(a) the ith eigenvalue of the Dirichlet problem.
(5) L¢=payin&,¢y=o0 on L2
Then
r’;(l):%;; Fd%g =1; ﬁﬂ%)( 1 if i<j and
pl()‘-‘;)>l if irj.
Also if,
agb, a$b in <2, then ¥(a)> ¥ (b) Vi
Suppose that (1) admits two distinct solutions, u and v
2,

in C 7 (<2 ). Then W=U-Vik O satisfies the equation

(6) Lw=px)w in-Q, w=0o on L2

where
P (x) =glx,ulx)) —glx, v(x)) whea wlx)gg v =)
Goad W)= vix)}
?&): g'(x, u(x)) for u(x) = v(x)
Since w 3§ o, (B) means that 1 =\tﬁp) for a certain integer 1i.

Now conditions (2), (3) imply oep(x)a X V¥ x & 2
2
S50

1=y(p) 7 Fe()*z) =

i

S| >
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Therefore this implies that i4£2, meaning that i=1 : 1= P((P).
It i s then classical that w is considered as an eigenfunction
of (5) (where a= P) associated with the first eigenvalue, is
of constant sign. So, the two distinct solutions of (1) are
necessarily ordered.

We show next that (1) cannot possess three distinct soluti-
ons. If (1) has three distinct solutions, u,v and z, one can
suppose witﬁlloss of generality, from the preceeding, that for
example u € v 4 z in £k, So w=v-u and @ =z-v satisfy

Lw = Pw in£, w=0 oa O(Z

(1)
L = ’f;é\u in 2, w=0 on D2
where P(x) = glx, vix)) - g(x, u(x))
A vix) - u(x)
and  P(x) = alx, 2(x) - alx, v(x))

. z(x) - v(x)
Since o<\>, F‘>‘QV x €L | we obtain frorjh(79 that
L) - i)
which is impossible. For, by using the convexity hypotheses,
one gets P(x)( @ (x), x €2. (for example, because
G(x)é g\:(x, vix)) 2 (g‘(x)) and this implies that pl(‘))>p‘(%)

which is a contradiction g.e.d.
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SECTION TWO

In this section, we consider the problem

Lu + f(x,u) = Aau in 2.

u=0 on o .<2 (2.1)

We suppose that a £C° (&), a» 0 in{2and that
= +
f: Qx R ~— R is continuous and satisfies

f(x,0) = 0; f(x,s) = o(s) 4in the n.b.d. of s = 0

uniformly w.r.t. x (2.2)

s —3»f(x,s8) (defined as O for s = 0) is a strictly

s + .
increasing function on R % x & £ (2.3)

Lim flxys) _ +oo, uniformly w.r.t. x & O... (2.4)

S+ 60 s

As usual, let >\ denote the ith-eigenvalue of the problem
o i

L = )\a+ in 2 $=0 on D (2.5)
THEOREM (BERESTYCKT)

Under the hypotheses (2.2), (2.3) and (2.4), for every A ‘>)\' )
2,P
T ¥ P of

there is a unique positive solution, u, &€ W

A
problem (2.1). The map )\.__311)\ is continuous for ()\\,+ao ) in

ot — - -
C () and the branch {()H U)\w) Py &‘(’\1> ”i‘bo)}
bifurcates starting from the straight line of the trivial sol-

ution on (/\‘,O). Moreover, u, is strictly increasing with 'h:

A .

if A 4y, then u <« u in . and ‘?_\:2\ > SYpy on Pa. Lastly,
N P O S

when A\ —3+0 , we have u>\(x)~——-> +o@, ¥ x€.Q , the convergence

of Li)\ ‘being uniform on every compact set in _(2_ .

Proof; ’

Fof.? (‘.C‘;(K)-), denote by Vi(?) the ith eigenvalue of the

problem )
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I;d?+—?4>= vad> in <% = 0 on o2 ... (2.8)

A A
So, xi = v, (0) and if P£f , ¢*¥ 0 in-—, then

A
vi(p) < v, () ¥ i & N. Observe, that (2.1) does not admit
i
any non trivial solution if >\éf>1. Indeed, if u 7 -0 1is a
solution of (2.1), u satisfies (2.6) with

fXx) = f(x,u(x)) if u(x) >0
u(x)

= 0 if  u(x) =0 and N = v.
We then have A= vl(@ ~ vl(O) = >\1 since () 70, {=% 0.
Remark that the fact that A= vl(P)“V‘non trivial solution of
(2.1) implies in particular that u >0 in-and %%i £0ond<
One obtains the existence (well known) of a positive sol-
ution of (2.1) for X'>§\1 then by observing that (2.1) admits
a lower and an upper solution which are ordered. In fact, if
4% is the first eigenfunction of (2.5) associated to >~1 we
can immediately verify by using (2.2) and ’\7}‘1 that &4,
for ¢7» 0 very small, is a lower solution of (2.1). Furthermore,
(2.4) implies that there is a constant M ) O sufficiently large,
(:haM-f(x,M) 2 0 ¥ x € <%) is an upper solution of (2.1). We
then have a positive solution of (2.1) lying between fiéﬁand M.
More precisely, we remark that M = M}\is such that
Ma(x)s - f(x,s) €0, ¥ x€ L, ¥ s 3% MA’

It is easy to verify, with the use of the maximum principle,

that every solution u™» 0 of (2.1) satisfies u M. Since M is an

upper solution, it means that for every )v>xr (2.1) possesses a po-
sitive maximum solution Uy s (0F4 %X< M\ . In fact u_ is the unique
(non trivial) positive solution of (2.1). Indeed, if (2.1) admits

one other positive solution u, we would have u<u . On the other hand,

taking into account of (2.3) this contradicts
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A = v, [f(«,u):l = v, [f(o,ua) \ (since f(»eu) . v, uy)
u u, ' u Uy
Then, ug is the unique solution of (2.1).

Let )\’4 M4 P . Since u)\is a lower solution of problem (2.1)
corresponding to ¢ , we have uA LS Uy in <2 and %‘:%_ > b_%‘__r_i\f
on AL ; u.)\ increases (strictly) with A . We deduce , by a classi-
cal reasoning, the uniqueness of the solution of (2.1) and the a
priori estimate is obtained triviaily from M',\; that ,\._s,u;\ is
continuous, for example on ()\l, +e0) in Cl’m(fﬂ) where & & (0,1).
Since for A= )'\‘, the unique solution of (2.1) is u= 0, the
branch

IL(}\,uA) tNE ()\‘,4—00) bifurcates in (}\‘,O) starting from

l,a(ﬂ).

the straight line of trivial solutions R x {0} in R x C
We now show that u)\(x)~—>+oo as A—>»+oo , for x &, De-
fine, for § > 0

A = Aflali . o+ max  £(x,¥)
CEey e ¥

for every § > 0, A(¥) < +o0 ;3 /\ is an increasing function of
¥>0. Let ¢i be the first eigenfunction of (2.5) (associated
with X)) satisfying \l@tulfo =1 ¥ A zA®W), 'gq)l is a low-
er solution of (2.1). Indeed, (2.3) implies that
f(x, ﬁ(b‘) £ (f(x,%)/%) 8 dp‘ . We then have

LOS®) + £0x, 8d) 2 [Na + f(xx,zs) §30 cABBD
Let, for A%

LG + £(x,¥¢) ¢ A¥P in 0, Xd>l =0 on o~

K@ﬁ being a lower solution of (2.1), we have ?S(‘p‘ < ux In sum-
mary, we have shown that # X»>0, there exists A(¥) > 0:

Az A= )S(pI < uy in. Q.. Since (bl is positive in{2-, we
deduce that in (% u)\(x)~—-‘->~+ o0 when A —> +00 with uy

converging uniformly on compact sets of £2 . This completes the

proof. g.e.d.
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